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Abstract We address a two-dimensional nonlinear elliptic problem with a finite-
amplitude periodic potential. For a class of separable symmetric potentials, we study
the bifurcation of the first band gap in the spectrum of the linear Schrödinger operator
and the relevant coupled-mode equations to describe this bifurcation. The coupled-
mode equations are derived by the rigorous analysis based on the Fourier–Bloch de-
composition and the implicit function theorem in the space of bounded continuous
functions vanishing at infinity. Persistence of reversible localized solutions, called
gap solitons, beyond the coupled-mode equations is proved under a nondegeneracy
assumption on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the coupled-mode
equations and convergence of the approximation error is verified. Error estimates on
the time-dependent solutions of the Gross–Pitaevskii equation approximated by so-
lutions of the coupled-mode equations are obtained for a finite-time interval.

Communicated by M.I. Weinstein.

T. Dohnal
Seminar for Applied Mathematics, ETH Zürich, Zurich, Switzerland

Present address:
T. Dohnal
Institut für Angewandte und Numerische Mathematik, Universität Karlsruhe, Karlsruhe, Germany

D. Pelinovsky (�)
Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
e-mail: dmpeli@math.mcmaster.ca

G. Schneider
Institut für Analysis, Dynamik und Modellierung, Universität Stuttgart, Stuttgart, Germany

mailto:dmpeli@math.mcmaster.ca


96 J Nonlinear Sci (2009) 19: 95–131

Keywords Gross–Pitaevskii equation · Coupled-mode equations · Existence
of gap solitons · Fourier–Bloch transform · Lyapunov–Schmidt reductions

Mathematics Subject Classification (2000) 41A60 · 35C20 · 35Q55 · 35L60

1 Introduction

Interplay between nonlinearity and periodicity is the focus of recent studies in dif-
ferent branches of nonlinear physics and applied mathematics. Physical applications
of nonlinear systems with periodic potentials range from nonlinear optics, in the dy-
namics of guided waves in inhomogeneous optical structures and photonic crystal
lattices, to atomic physics in the dynamics of Bose–Einstein condensate droplets in
periodic potentials, and from condensed matter, in Josephson-junction ladders, to bio-
physics in various models of the DNA double strand. The paramount significance for
these models is the possibility of spatial localization, that is, emergence of nonlinear
localized structures residing in the spectral band gaps of the periodic potentials. To
describe this phenomenon, the primary equations of physics are typically simplified
to the Gross–Pitaevskii equation, which we shall study in our article in the space of
two dimensions. More precisely, we consider the two-dimensional Gross–Pitaevskii
equation in the form

iEt = −∇2E + V (x)E + σ |E|2E, (1.1)

where E(x, t) : R
2 × R �→ C, ∇2 = ∂2

x1
+ ∂2

x2
, V (x) : R

2 �→ R, and σ = ±1. Time-
periodic solutions of the Gross–Pitaevskii equation are found from the solutions of
the nonlinear elliptic problem

∇2φ(x) + ωφ(x) = V (x)φ + σ
∣
∣φ(x)

∣
∣2

φ(x), (1.2)

where φ(x) : R
2 �→ C and ω ∈ R arise in the substitution E(x, t) = φ(x)e−iωt . It is

known that localized solutions of the elliptic problem (1.2) with a periodic potential
V (x), called gap solitons, exist in every finite gap of the spectrum of the Schrödinger
operator L = −∇2 + V (x) and in the semi-infinite gap for σ = −1 (Stuart 1995;
Pankov 2005). Bifurcations of localized solutions from edges of the spectral bands
were studied earlier in Heinz et al. (1992), Küpper and Stuart (1992).

Coupled-mode equations were used by physicists for the analysis of existence,
stability, and dynamics of gap solitons (Mills 1984; de Sterke and Sipe 1994). A jus-
tification of the one-dimensional coupled-mode equations in the context of the elliptic
problem (1.2) with x ∈ R was carried out in Pelinovsky and Schneider (2007) in the
limit of small-amplitude periodic potentials V (x). (A justification of time-dependent
coupled-mode equations on finite-time intervals was done earlier in Goodman et al.
(2001), Schneider and Uecker (2001).) In the limit of small-amplitude potentials, nar-
row gaps of the spectrum of the Schrödinger operator L = −∂2

x +V (x) bifurcate from
resonant points of the spectrum of L0 = −∂2

x , while the Bloch modes of L bifurcate
from the Fourier modes of L0. In other words, photonic band gaps open generally
for small-amplitude one-dimensional periodic potentials V (x). Small-amplitude gap
solitons of the elliptic problem (1.2) in x ∈ R reside in the narrow gaps of L for
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V (x) �= 0 according to the approximation obtained from the coupled-mode equations
(Pelinovsky and Schneider 2007).

We refer to the opening of a spectral gap under a small change of the potential
V (x) as to the bifurcation of the band gap. Bifurcations of band gaps do not occur for
small-amplitude multi-dimensional periodic potentials. This is caused by an overlap
of the spectral bands of L0 = −∇2 in the first Brillouin zone if x ∈ R

N and N ≥ 2
(Kuchment 2001). As a result, photonic band gaps in multi-dimensional potentials
open only at some finite amplitudes of the periodic potential V (x) and the resonant
eigenfunctions are given by the Bloch modes of L = −∇2 + V (x) rather than by
the Fourier modes of L0. Although the coupled-mode equations were also derived
for multi-dimensional problems with small periodic potentials (Aceves et al. 1995,
2004; Agueev and Pelinovsky 2005; Aközbek and John 1998; Dohnal and Aceves
2005) and the resonant Fourier modes were used for the approximation of the full
solution, the applicability of these coupled-mode equations remains an open issue for
a rigorous analysis. Bloch mode decomposition has been also used in one dimension
for finite-amplitude periodic potentials to derive coupled-mode equations (de Sterke
et al. 1996). The corresponding unperturbed one-dimensional potential, however, has
to be of a special type to admit a finite number of open gaps, such that a new gap is
opened under a small perturbation.

In this paper, we derive coupled-mode equations for wavepackets in narrow band
gaps of a finite-amplitude periodic potential by using the Fourier–Bloch decompo-
sition and the rigorous analysis based on the implicit function theorem in the space
of bounded continuous functions vanishing at infinity. The coupled-mode equations
we derive here take the form of coupled nonlinear Schrödinger (NLS) equations.
These equations differ from the first-order coupled-mode equations exploited earlier
(de Sterke and Sipe 1994). Similar coupled NLS equations have been recently de-
rived in Shi and Yang (2007) near band edges of the well-separated spectral bands
and in Brazhnyi et al. (2007) for tunneling problems. Unlike these works relying on
numerical approximations, we justify the derivation of the coupled-mode equations
and prove the persistence of localized solutions in the full nonlinear problem (1.2).
Although details of our analysis are given only for the bifurcation of the first band
gap in the spectrum of L, a similar analysis can be developed for bifurcations of
other band gaps and for bifurcations of the localized solutions near band edges of the
well-separated spectral bands.

Our derivation is developed for the class of separable potentials

V (x1, x2) = η
[

W(x1) + W(x2)
]

, η ∈ R, (1.3)

where the function W(x) is assumed to be real-valued, bounded, piecewise-
continuous, and 2π -periodic on x ∈ R. To simplify the details of our analysis, we
assume that W(−x) = W(x) on x ∈ R, such that the solution set of the elliptic
problem (1.2) includes functions satisfying one of the following two reversibility
constraints

φ(x1, x2) = s1φ̄(−x1, x2) = s2φ̄(x1,−x2) (1.4)

or
φ(x1, x2) = s1φ̄(x2, x1) = s2φ̄(−x2,−x1), (1.5)

where s1, s2 = ±1.
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Our strategy is to show that there may exist a value η = η0, for which the first band
gap opens due to the resonance of three lowest-order Bloch modes for three spectral
bands of the operator L = −∇2 + V (x). The new small parameter ε := η − η0 is
then used for the bifurcation theory of Bloch modes which results in the algebraic
coupled-mode equations for nonlinear interaction of the three resonant modes. The
Fourier–Bloch decomposition is used for the approximation of localized solutions
and for the derivation of the differential coupled-mode equations with the second-
order derivative terms. The main idea behind our technique is that a differential op-
erator after the Fourier–Bloch decomposition becomes a pseudo-differential opera-
tor whose symbol is the multiple-valued dispersion relation. Then only the relevant
(three) branches of the resonant modes can be taken into account, which leads to a
coupled-mode system.

If the linearization operator of the coupled NLS equations at the localized solu-
tions is nondegenerate, the persistence of the localized symmetric solutions in the
full nonlinear problem (1.2) is proved with the implicit function theorem. Localized
symmetric solutions of the coupled NLS equations are approximated numerically
and the convergence rate for the error of approximation is studied. Finally, we study
time-dependent localized solutions of the Gross–Pitaevskii equation and the coupled-
mode system and control smallness of the distance between the two solutions on a
finite-time interval.

The article is structured as follows. Section 2 reviews elements of the Sturm–
Liouville theory for the separable potentials. Section 3 contains a derivation of the
algebraic coupled-mode equations for three resonant Bloch modes. Section 4 gives
details of the projection technique for the derivation of the differential coupled-mode
equations for localized solutions. The persistence of localized reversible solutions
under a nondegeneracy assumption on the linearization operator is proved in Sect. 5.
Numerical approximations of the localized solutions, the associated linearization op-
erators, and the convergence of the approximation error are obtained in Sect. 6. Sec-
tion 7 extends the results to the time-dependent case for finite time intervals. Section 8
discusses relevant generalizations.

2 Sturm–Liouville Theory for Separable Potentials

It is typically expected that the band gaps in the spectrum of the linear Schrödinger
operator with a two-dimensional periodic potential open at the extremal values of the
Bloch band surfaces (Kuchment 2001). For a general potential, however, the extremal
values may occur anywhere within the first irreducible Brillouin zone B0 in the quasi-
momentum space (k1, k2) (Harrison et al. 2007). We will show here that the extremal
values for a separable potential occur only at the vertex points Γ , X and M on the
boundary ∂B0. Figure 1 shows the irreducible Brillouin zone B0 and the vertex points
for a two-dimensional separable potential V (x).

Let us consider the spectral problem for the linear Schrödinger operator associated
with the separable periodic potential (1.3):

−∇2u(x1, x2) + η
[

W(x1) + W(x2)
]

u(x1, x2) = ωu(x1, x2). (2.1)
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Fig. 1 The first irreducible
Brillouin zone B0 for
a two-dimensional separable
potential

By using the separation of variables u(x1, x2) = f1(x1)f2(x2) and the parametriza-
tion ω = ξ1 + ξ2, we obtain the uncoupled eigenvalue problems

−f ′′
j (xj ) + ηW(xj )fj (xj ) = ξjfj (xj ), j = 1,2. (2.2)

The Bloch modes and the band surfaces for the one-dimensional problems (2.2) are
introduced according to the regular Sturm–Liouville problem

{−u′′(x) + ηW(x)u(x) = ρu(x), 0 ≤ x ≤ 2π,

u(2π) = ei2πku(0),
(2.3)

where k is a quasi-momentum defined on the interval T = [− 1
2 , 1

2 ]. The eigenfunc-
tions of the Sturm–Liouville problem (2.3) are periodic with respect to k with the
period one. By Theorem 2.4.3 in Eastham (1973), there exists a countable infinite set
of eigenvalues {ρn(k)}n∈N for each k ∈ T, which can be ordered as

ρ1(k) ≤ ρ2(k) ≤ ρ3(k) ≤ · · · .
By Theorem 4.2.3 in Eastham (1973), if W(x) is a bounded and 2π -periodic poten-
tial, eigenvalues {ρn(k)}n∈N have a uniform asymptotic distribution on k ∈ T, such
that

C−n2 ≤ ∣
∣ρn(k)

∣
∣ ≤ C+n2, ∀n ∈ N, ∀k ∈ T, (2.4)

for some constants C± > 0.
Let {un(x; k)}l∈N be the corresponding set of eigenfunctions of the Sturm–

Liouville problem (2.3), such that un(x + 2π; k) = un(x; k)e2π ik . By Theo-
rem XIII.89 in Reed and Simon (1978), if W(x) is a bounded, piecewise-continuous
and 2π -periodic potential, then the eigenvalue ρn(k) and the Bloch function un(x; k)

are analytic in k ∈ T\ {0,± 1
2 } and continuous at the points k = 0 and k = ± 1

2 . By
Theorem XIII.95 in Reed and Simon (1978), the eigenvalue ρn(k) is extended on a
smooth Riemann surface in the neighborhood of the points k = 0 and k = 1

2 if the nth
spectral band is disjoint from the adjacent (n ± 1)th spectral bands by a nonempty
band gap.

By Theorem XIII.90 in Reed and Simon (1978), if W(x) is a bounded, piecewise-
continuous and 2π -periodic potential, then the spectrum of L1D = −∂2

x + ηW(x) in
L2(R) is absolutely continuous and consists of the union of the intervals in the range
of the functions ρn(k) on k ∈ T for n ∈ N, where ρn(−k) = ρn(k). Moreover, the
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extremal values of ρn(k) occur only at the points k = 0 and k = ± 1
2 . These points

correspond to an alternating sequence of the maximum and minimum values of the
eigenvalues {ρn(k)}n∈N according to the following formula

arg min
k∈T

ρ2m−1(k) = 0, arg max
k∈T

ρ2m−1(k) = ±1

2
,

arg min
k∈T

ρ2m(k) = ±1

2
, arg max

k∈T

ρ2m(k) = 0,

for all m ∈ N. The Bloch function un(x; k) is 2π -periodic if k = 0 and 2π -anti-
periodic if k = ± 1

2 . Let us denote the periodic and antiperiodic eigenfunctions and
the corresponding eigenvalues by

ψn(x) = un(x;0), λn = ρn(0) and
(2.5)

ϕn(x) = un

(

x;±1

2

)

, μn = ρn

(

±1

2

)

, n ∈ N.

By Theorems 2.3.1 and 3.1.2 in Eastham (1973), these eigenvalues are ordered by
λ1 < λ2 ≤ λ3 ≤ · · · and μ1 < μ2 ≤ μ3 ≤ · · ·, while the corresponding eigenfunc-
tions ψn(x) and ϕn(x) have precisely n − 1 zeros (nodes) on the interval (−π,π). If
W(−x) = W(x), the eigenfunctions ψn(x) and ϕn(x) are even for odd n and odd for
even n. Each set of the eigenfunctions {ψn(x)}n∈Z and {ϕn(x)}n∈Z is orthogonal in
L2([−π,π]).

Eigenvalues of the same one-dimensional operator L1D = −∂2
x + ηW(x) for

4π -periodic eigenfunctions consist of the union of the eigenvalues {λn}n∈N and
{μn}n∈N. Since there are at most two eigenvalues of the second-order operator L1D ,
we obtain that

λ1 < μ1 < μ2 < λ2 ≤ λ3 < μ3 ≤ μ4 < λ4 ≤ λ5 < · · · . (2.6)

In particular, the first band gap is always nonempty for a nonconstant potential W(x)

(see Theorem XIII.91(a) in Reed and Simon 1978). Due to this ordering, the lowest
value of ω = ρn1(k1)+ρn2(k2) for the crossing of the Bloch band surfaces associated
with the two-dimensional separable potential V (x1, x2) occurs at ω = ω0 = λ1 +
μ2 = 2μ1. Using these facts, we obtain the following results.

Lemma 1 Extremal values of the Bloch band surfaces ω = ρn1(k1) + ρn2(k2) for
(k1, k2) ∈ B0 occur only at the vertex points of the boundary ∂B0.

Proof Because ω = ρn1(k1) + ρn2(k2) for a separable potential (1.3), we have ∇ω =
[ρ′

n1
(k1), ρ

′
n2

(k2)]T, where ρn(k) are analytic on k ∈ T\{0,± 1
2 }. If an extremal point

occurs in the interior of the Brillouin zone B0, then ∇ω = 0 at k = k0 ∈ B0. However,
ρ′

n(k) �= 0 for any 0 < |k| < 1
2 and any n ∈ N by Theorem XIII.90 in Reed and Simon

(1978). Similarly, the extremal points cannot occur in the interior of the boundary
∂B0. Therefore, the extremal values of ω occur only at the vertex points Γ , X, and
M on ∂B0. �
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Remark 1 The derivative ρ′
n(k) may be nonzero at k = 0 and k = 1

2 if the nth spec-
tral band touches the adjacent (n± 1)th spectral bands. This happens when the corre-
sponding eigenvalue λn or μn is double degenerate with the equality sign in the order-
ing (2.6). However, λ1, μ1, and μ2 are always simple and, therefore, ∇ω = 0 at least
for the first three spectral bands ω = ρn1(k1) + ρn2(k2) at ω = ω0 = λ1 + μ2 = 2μ1.

Lemma 2 Assume that the resonant condition λ1 + μ2 = 2μ1 ≡ ω0 for the 2π -
periodic eigenvalue λ1 and the 2π -antiperiodic eigenvalues μ1,μ2 of L1D = −∂2

x +
ηW(x) is satisfied for η = η0. Then there are exactly three resonant Bloch modes at
ω = ω0 and η = η0 in the spectral problem (2.1):

Φ1 = ψ1(x1)ϕ2(x2), Φ2 = ϕ2(x1)ψ1(x2), Φ3 = ϕ1(x1)ϕ1(x2).

The three resonant modes are orthogonal to each other with respect to the 4π -
periodic inner product

(f, g) =
∫ 2π

−2π

∫ 2π

−2π

f̄ (x1, x2)g(x1, x2)dx1 dx2.

Proof There are exactly three resonant modes for any separable potential (1.3) be-
cause λ1 and μ1 are the smallest nondegenerate eigenvalues of the operator L1D

and the double degeneracy λ1 + μ2 = μ2 + λ1 is due to the symmetry with respect
to the interchange of the variables x1 and x2. The eigenfunctions {ψn(x)}n∈N and
{ϕn(x)}n∈N are all orthogonal to each other in L2([−2π,2π]), which leads to the
orthogonality of the three resonant modes. �

Remark 2 We note that the eigenfunctions ψ1(x) and ϕ1(x) are not orthogonal on the
interval [−π,π] since both of them are positive by Theorem 3.1.2 in Eastham (1973).
However, a linear combination of ψ1(x) and ϕ1(x) belongs to the class of 4π -periodic
functions and the two eigenfunctions are orthogonal on the double-length interval
[−2π,2π].

Remark 3 By Theorem 6.10.5 in Eastham (1973), there are finitely many gaps in the
spectral problem (2.1) with a separable potential. (In fact, there are finitely many gaps
for general smooth periodic potentials in dimension 2 or higher (Parnovski 2008).)
Lemma 2 indicates a bifurcation when one of these gaps at the lowest value of ω

may open. It is observed for many examples of the separable potential (1.3) that this
bifurcation leads to the first band gap in the spectrum of L = −∇2 + η[W(x1) +
W(x2)] if η is increased from η = 0.

Example 1 Let W(x) = 1 − cosx. Numerical approximations of the eigenvalues of
the Sturm–Liouville problem (2.3) are computed with the use of the second-order
central difference method. The eigenfunctions ψn(x) and ϕn(x) are plotted in Fig. 2
for n = 1,2,3, while the dependence of the first eigenvalues λn and μn on η is plotted
in Fig. 3(a). Figure 3(b) shows the intersection of 2μ1 and λ1 + μ2 at the bifurcation
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Fig. 2 The 2π -periodic (left) and 2π -antiperiodic (right) eigenfunctions of L1D = −∂2
x + η0W(x) with

W(x) = 1 − cosx

Fig. 3 (a) Eigenvalues of L1D = −∂2
x +η(1−cosx) for 2π -periodic (solid) and 2π -antiperiodic (dashed)

boundary conditions. (b) The lowest resonance occurs at ω = ω0 and η = η0 when λ1 + μ2 = 2μ1

value η = η0 ≈ 0.1745, when λ1 ≈ 0.1595, μ1 ≈ 0.3336, and μ2 ≈ 0.5077, such
that ω0 = λ1 + μ2 = 2μ1 ≈ 0.6672. The perturbation behavior shown in Fig. 3 was
studied analytically in Arnold (1983). Figure 4 illustrates the band structure along
∂B0 of the full spectral problem (2.1) with η = 0.1745 clearly revealing the resonance
at ω ≈ 0.6672 and the two resonant modes at the points X and M . The third resonant
mode lies at X′ because the symmetry V (x1, x2) = V (x2, x1) implies ω(k1, k2) =
ω(k2, k1).

In what follows, we consider the bifurcation of nontrivial solutions of the nonlin-
ear elliptic problem (1.2) with the separable potential (1.3) in the lowest band gap
described by Lemma 2. Let ε = η − η0, ω = ω0 + εΩ , φ(x) = √

εΦ(x) and rewrite
the nonlinear elliptic problem (1.2) in the form

L0Φ(x) = εΩΦ(x) − ε
[

W(x1) + W(x2)
]

Φ(x) − εσ
∣
∣Φ(x)

∣
∣2

Φ(x), (2.7)
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Fig. 4 Band diagram along
∂B0 for the spectral problem
(2.1) with W(x) = 1 − cosx and
η = η0

where Φ : R
2 �→ C and L0 = −∇2 + η0 [W(x1) + W(x2)] − ω0. Two classes of non-

trivial solutions of the bifurcation problem (2.7) are considered for small ε: bounded
4π -periodic solutions (Sect. 3) and bounded decaying solutions (Sects. 4–6).

3 Algebraic Coupled-Mode Equations

We consider here bounded periodic solutions Φ(x) of the bifurcation problem (2.7)
for small ε. Our results depend on the period of the periodic solutions Φ(x). Since
the potential V (x) is separable, the 2π -periodic (2π -antiperiodic) function Φ(x) can
be represented by the series of Bloch modes associated with the eigenvalue prob-
lem (2.3) on x ∈ R for k = 0 (k = ± 1

2 ), while the 4π -periodic functions Φ(x) can be
represented by the series of both 2π -periodic and 2π -antiperiodic Bloch modes. In
what follows, we shall use symbols L2(Pk), Hs(Pk) and C0

b(Pk) to denote the cor-
responding spaces of functions u(x) on the interval [0,2π] satisfying the boundary
conditions u(2π) = ei2πku(0). We shall also use symbol φ to denote the vector of
elements of the sequence {φn}n∈N.

Proposition 1 Let W(x) be a bounded and 2π -periodic function. Let {ρn(k)}n∈N

and {un(x; k)}n∈N be sets of eigenvalues and eigenfunctions of the Sturm–Liouville
problem (2.3) that depends on k ∈ T, such that

〈

un(·; k),un′(·; k)
〉

2π
= δn,n′ , ∀n,n′ ∈ N, ∀k ∈ T, (3.1)

where 〈f,g〉2π = ∫ 2π

0 f̄ (x)g(x)dx and δn,n′ is the Kronecker symbol. For any fixed
k ∈ T, the set of eigenfunctions is complete in L2(Pk), such that there exists a unique
set of coefficients {φn}n∈N in the decomposition

∀φ(x) ∈ L2(Pk) : φ(x) =
∑

n∈N

φnun(x; k), (3.2)

given by φn = 〈un(·; k),φ〉2π .
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Proof The statement of the proposition follows by Theorem XIII.88 of Reed and
Simon (1978). �

Lemma 3 Let φ(x) be defined by the decomposition (3.2), where φ belongs to the
vector space l1

s (N) with the norm

‖φ‖l1s (N) =
∑

n∈N

(1 + n)s |φn| < ∞. (3.3)

If s > 1
2 , then φ(x) is a continuous function on x ∈ R and φ(x) = ψ(x)eikx with

ψ(x + 2π) = ψ(x).

Proof By the triangle inequality, we obtain

‖φ‖C0
b (R) ≤

∑

n∈N

|φn|
∥
∥un(·; k)

∥
∥

C0
b (Pk)

.

By Sobolev’s embedding theorem, there exists a C > 0 such that ‖un(·; k)‖C0
b (Pk)

≤
C‖un(·; k)‖Hs(Pk) for any s > 1

2 , n ∈ N, and k ∈ T. Since W(x) is a bounded poten-
tial, the squared norm ‖un(·; k)‖2

Hs(Pk)
is equivalent to the integral

∫ 2π

0

∣
∣(cη + L1D)s/2un(x; k)

∣
∣
2 dx = (

cη + ρn(k)
)s

,

where cη > −η minx∈R W(x) and (cη + L1D)s/2 is defined using the spectral family
associated with the Sturm–Liouville operator L1D = −∂2

x + ηW(x) in L2(Pk). By
the asymptotic distribution of eigenvalues (2.4), we obtain that

‖φ‖C0
b (Pk)

≤ C
∑

n∈N

|φn|
∥
∥un(·; k)

∥
∥

Hs(Pk)
≤ C̃

∑

n∈N

(1 + n)s |φn|

for some C̃ > 0 and any s > 1
2 . �

If the potential ηW(x) is continued with respect to the parameter η, the perturba-
tion theory for an eigenvalue ρn(k) depends on whether ρn(k) is simple or multiple.
The following lemma is a trivial statement of the perturbation theory, so we omit its
proof.

Lemma 4 Let W(x) be a bounded and 2π -periodic function of x ∈ R. Fix k ∈ T,
η0 ∈ R, and n ∈ N. If ρn−1(k) < ρn(k) < ρn+1(k), then ρn(k) and un(x; k) depend
analytically on η near η = η0, such that

∂ηρn(k)|η=η0 = 〈

un(·; k)|η=η0 ,Wun(·; k)|η=η0

〉

2π
(3.4)

and
∣
∣ρn(k) − ρn(k)|η=η0 − ∂ηρn(k)|η=η0(η − η0)

∣
∣ ≤ C(η − η0)

2 (3.5)

for some C > 0 and sufficiently small |η − η0|.
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Due to the construction of the spectrum of the two-dimensional spectral prob-
lem (2.1), the results of Lemma 4 settle the question of the splitting of the three
resonant bands near the point ω = ω0 described in Lemma 2. Indeed, each Bloch
band surface (the graph of ω = ρn1(k1) + ρn2(k2)) corresponding to the three reso-
nant bands includes a different vertex point (X′, X, and M) at ω = ω0 for different
values of k in the set {(0, 1

2 ); ( 1
2 ,0); ( 1

2 , 1
2 )}. Each eigenvalue of the spectral problem

(2.1) is simple and isolated if k is fixed, such that the continuation of each Bloch
band surface in η near η = η0 is determined by the expression (3.4) and the separa-
tion of variables in ω = ρn1(k1) + ρn2(k2). In other words, bifurcation of the lowest
band gap that occurs at ω = ω0 cannot be studied if the function space is restricted
to L2(Pk1 × Pk2) for a fixed value of (k1, k2) ∈ T

2. To detect the bifurcation, we
shall work in the function space L2

per([−2π,2π] × [−2π,2π]), where all three ver-
tex points X′, X and M correspond to the same 4π -periodic boundary conditions
on the function Φ(x). According to Lemma 2, the three resonant Bloch modes are
orthogonal to each other in this space.

To work with the 4π -periodic eigenfunctions, we shall introduce a number of nota-
tions. Let {νn}n∈N and {vn(x)}n∈N denote the sets of eigenvalues and the correspond-
ing 4π -periodic eigenfunctions of the one-dimensional spectral problem (2.3). These
sets consist of the union of eigenvalues and eigenfunctions defined by (2.5). Suppose
that the eigenvalues are sorted in nondecreasing order, such that ν1 = λ1, ν2 = μ1,
ν3 = μ2, ν4 = λ2, ν5 = λ3 and so on, and that the eigenfunctions v1 = ψ1, v2 =
ϕ1, v3 = ϕ2, v4 = ψ2, v5 = ψ3, etc., are normalized such that 〈vi, vj 〉4π = δi,j , where

〈f,g〉4π = ∫ 2π

−2π
f̄ (x)g(x)dx. The statements of Proposition 1 and Lemma 3 extend

naturally to the new sets of eigenfunctions in space L2
per([−2π,2π]). To develop

the nonlinear analysis of bifurcations of a nontrivial 4π -periodic solution Φ(x) on
x ∈ R

2, we shall study first the nonlinear vector field |Φ(x)|2Φ(x) acting on the
decomposition Φ(x) = ∑

n∈N
φnvn(x), where φ belongs to the vector space l1

s (N).

Lemma 5 Let W(x) be a bounded and 2π -periodic function. Let φ(x) =
∑

n∈N
φnvn(x) and |φ(x)|2φ(x) = ∑

n∈N
gnvn(x). If 0 < s < 1, then there exists

a C > 0 such that ‖g‖l1s (N) ≤ C‖φ‖3
l1s (N)

.

Proof We only need to prove that the space l1
s (N) with 0 < s < 1 forms a Banach

algebra in the sense

∀φ,ϕ ∈ l1
s (N) : ‖φ � ϕ‖l1s (N) ≤ C‖φ‖l1s (N)‖ϕ‖l1s (N), (3.6)

for some C > 0, where

(φ � ϕ)n =
∑

i∈N

∑

j∈N

Kn,i,j φiϕj , ∀n ∈ N

and

Kn,i,j = 〈vn, vivj 〉4π , ∀(n, i, j) ∈ N
3.

According to Lemmas A.1 and A.2 of Appendix A of Busch et al. (2006), if
W ∈ L2

per([−2π,2π]) and ‖vn‖2
L2

per([−2π,2π]) = 1 for any n ∈ N, then there exists an
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n-independent constant C > 0, such that

|Kn,i,j | ≤ C

(1 + |n − i − j |)p , ∀(n, i, j) ∈ N
3, (3.7)

for any 0 < p < 2. By explicit computation, we obtain

‖φ � ϕ‖l1s (N)

≤
∑

n∈N

(1 + n)s
∑

i∈N

∑

j∈N

|Kn,i,j ||φi ||ϕj |

≤ C
∑

i∈N

(1 + i)s |φi |
∑

j∈N

(1 + j)s |ϕj |
∑

n∈N

(
1 + n

(1 + i)(1 + j)

)s 1

(1 + |n − i − j |)p

≤ C̃
∑

i∈N

(1 + i)s |φi |
∑

j∈N

(1 + j)s |ϕj |
∑

n∈N

(

1 + ns

(1 + i)s(1 + j)s

)
1

(1 + n)p

for some C̃ > 0. If p > 1 and p − s > 1, the bound is completed as follows

‖φ � ϕ‖l1s (N) ≤ C̃1‖φ‖l1s (N)‖ϕ‖l1s (N) + C̃2‖φ‖l1(N)‖ϕ‖l1(N)

≤ (

C̃1 + C̃2
)‖φ‖l1s (N)‖ϕ‖l1s (N)

for some C̃1, C̃2 > 0. Since 1 < p < 2, the parameter s must satisfy 0 < s < 1. �

By using this construction, we prove the first main result of our analysis.

Theorem 1 Let W(x) be a bounded, even and 2π -periodic function on x ∈ R. The
nonlinear elliptic problem (2.7) has a continuous and 4π -periodic solution Φ(x) for
sufficiently small ε if there exists a solution for (A1,A2,A3) ∈ C

3 of the algebraic
coupled-mode equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ω − β1)A1 = σ [γ1|A1|2A1 + γ2(2|A2|2A1 + A2
2Ā1) + γ3(2|A3|2A1 + A2

3Ā1)]
+ εR1(A1,A2,A3),

(Ω − β1)A2 = σ [γ1|A2|2A2 + γ2(2|A1|2A2 + A2
1Ā2) + γ3(2|A3|2A2 + A2

3Ā2)]
+ εR2(A1,A2,A3),

(Ω − β2)A3 = σ [γ4|A3|2A3 + 2γ3(|A1|2 + |A2|2)A3 + γ3(A
2
1 + A2

2)Ā3]
+ εR3(A1,A2,A3),

(3.8)
where parameters are given by

β1 = 〈ψ1,Wψ1〉4π + 〈ϕ2,Wϕ2〉4π , β2 = 2〈ϕ1,Wϕ1〉4π
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and

γ1 = 〈

ψ2
1 ,ψ2

1

〉

4π

〈

ϕ2
2 , ϕ2

2

〉

4π
, γ2 = ∣

∣
〈

ψ2
1 , ϕ2

2

〉

4π

∣
∣
2
,

γ3 = 〈

ψ2
1 , ϕ2

1

〉

4π

〈

ϕ2
1, ϕ2

2

〉

4π
, γ4 = ∣

∣
〈

ϕ2
1, ϕ2

1

〉

4π

∣
∣
2

and the residual terms R1,2,3(A1,A2,A3) are analytic functions of ε near ε = 0
satisfying the bounds

∀|ε| < ε0 : ∣
∣R1,2,3(A1,A2,A3)

∣
∣ ≤ C1,2,3

(|A1| + |A2| + |A3|
)

,

for some constants C1,2,3 > 0 and sufficiently small ε0. Moreover, there exists an
ε-independent constant C > 0 such that

‖Φ − A1Φ1 − A2Φ2 − A3Φ3‖C0
b (R2) ≤ Cε,

where (Φ1,Φ2,Φ3) are the modes defined by Lemma 2.

Proof 4π -periodic solutions of the nonlinear elliptic problem (2.7) are expanded in
the form

Φ(x) =
∑

(n1,n2)∈N2

Φn1,n2vn1(x1)vn2(x2). (3.9)

Let the vector Φ with the elements of the sequence {Φn1,n2}(n1,n2)∈N2 belong to the
vector space l1

s (N2) equipped with the norm

‖Φ‖l1s (N2) =
∑

(n1,n2)∈N2

(1 + n1)
s(1 + n2)

s |Φn1,n2 | < ∞. (3.10)

Similarly to Lemma 3, it follows that the function Φ(x) is continuous if Φ ∈ l1
s (N

2)

with s > 1
2 . Indeed,

‖Φ‖C0
b (R2) ≤

∑

(n1,n2)∈N2

|Φn1,n2 |‖vn1‖C0
b ([−2π,2π])‖vn2‖C0

b ([−2π,2π])

≤ C
∑

(n1,n2)∈N2

|Φn1,n2 |‖vn1‖Hs
per([−2π,2π])‖vn2‖Hs

per([−2π,2π])

≤ C̃
∑

(n1,n2)∈N2

(1 + n1)
s(1 + n2)

s |Φn1,n2 |

for some C, C̃ > 0 and any s > 1
2 . By construction, the solution Φ(x) is 4π -periodic

in both coordinates of x ∈ R
2. The partial differential equation (2.7) is rewritten in

the lattice form, which is diagonal with respect to the linear terms
[

νn1 + νn2 − ω0 − εΩ
]

Φn = −εσ
∑

(m,i,j)∈N6

Mn,m,i,jΦmΦ̄iΦj ,

∀n = (n1, n2) ∈ N
2, (3.11)
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where νn depend on η = η0 + ε and

Mn,m,i,j = 〈vn1vi1, vm1vj1〉4π 〈vn2vi2, vm2vj2〉4π ,

∀(n1, n2,m1,m2, i1, i2, j1, j2) ∈ N
8.

Since Mn,m,i,j is a product of one-dimensional inner products and the weights in
the norm in l1

s (N2) are separable, Lemma 5 applies and guarantees that the nonlinear
vector field of the lattice equations (3.11) is closed in l1

s (N
2) for 0 < s < 1. Therefore,

solutions of the lattice equations (3.11) can be considered in the space l1
s (N2) for any

1
2 < s < 1.

By Lemma 2, the three resonant modes are isolated from all other 4π -periodic
modes. By Lemma 4, the eigenvalues νn1 +νn2 are then analytic in η near η = η0. The
three resonant modes correspond to the values of n in the set {(1,3); (3,1); (2,2)}.
Therefore, we decompose the solution Φ of the lattice equations (3.11) into

Φ = A1e1,3 + A2e3,1 + A3e2,2 + Ψ , (3.12)

where {e1,3, e3,1, e2,2} are unit vectors on N
2, Span(e1,3, e3,1, e2,2) is the kernel

of the linearized system at the zero solution for ε = 0, and Ψ lies in the orthog-
onal complement of the kernel such that Ψ1,3 = Ψ3,1 = Ψ2,2 = 0. The linearized
operator projected onto the orthogonal complement of the kernel is continuously
invertible for sufficiently small ε. By the implicit function theorem in the space
l1
s (N2) for any 1

2 < s < 1, there exists a unique map Ψ ε(A1,A2,A3) : C
3 �→ l1

s (N
2)

for sufficiently small ε. Moreover, the map is locally analytic in ε near ε = 0,
such that Ψ 0(A1,A2,A3) = 0. In addition, Ψ ε(0,0,0) = 0 for any ε ∈ R and
(∂εΨ ε(A1,A2,A3))|ε=0 is a homogeneous cubic polynomial of (A1,A2,A3). Let
δ ≡ |A1| + |A2| + |A3| < δ0 for a fixed ε-independent δ0 > 0. Then the map
Ψ ε(A1,A2,A3) satisfies the bound

∀|ε| < ε0 : ∥
∥Ψ ε(A1,A2,A3)

∥
∥

l1s (N2)
≤ εC

(|A1| + |A2| + |A3|
)

, (3.13)

where ε0 > 0 is sufficiently small, δ0 > 0 is finite, and the constant C > 0 is indepen-
dent of ε and δ.

We can now consider the three equations of the system (3.11) for n = {(1,3);
(3,1); (2,2)}. After the Taylor expansion of (3.11) in ε the formula (3.4) yields the
coefficients β1, β2 since ∂η = ∂ε . Note that the 2π -inner product in (3.4) is replaced
by the 4π -inner product. Although the Bloch modes vn(x) are now normalized over
the 4π -long interval, the value of (3.4) is unchanged. Using the bound (3.13) and the
fact that the lattice equations are closed in l1

s (N2), we derive the algebraic coupled-
mode equations in Theorem 1. The coefficients of these equations can be simpli-
fied due to the fact that W(x) is even on x ∈ R, such that the eigenfunctions ψ1(x)

and ϕ1(x) are even while ϕ2(x) is odd on x ∈ R. As a result, many coefficients
of the coupled-mode system are identically zero, for instance, 〈ψ1ϕ2, ϕ

2
1〉4π = 0,

〈ϕ2
1 , ϕ1ϕ2〉4π = 0 and so on. The residual terms R1,2,3(A1,A2,A3) are estimated

from the map Ψ ε(A1,A2,A3) with the bound (3.13). The last estimate in the state-
ment of Theorem 1 is obtained from (3.13) and Lemma 3. �
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We shall refer to the system (3.8) without remainder terms εR1,2,3(A1,A2,A3) as
to the truncated coupled-mode system.

Corollary 1 There exist five invariant reductions of the truncated coupled-mode sys-
tem, namely (i) A1 = A2 = 0, (ii) A1 = A3 = 0, (iii) A2 = A3 = 0, (iv) A1 = 0, and
(v) A2 = 0, which persist in the full lattice equations (3.11).

Proof Any of the five invariant reductions implies symmetry constraints on the
function Φ(x) at the leading order of the decomposition (3.12). For instance, if
A1 = A2 = 0, then Φ(x) is 2π -antiperiodic with respect to both x1 and x2; if A1 = 0,
then Φ(x) is 2π -antiperiodic in x1 and 4π -periodic in x2, and so on. By the complete-
ness results of Proposition 1, all other terms of the decomposition (3.9) which violate
the symmetry constraints on the solution Φ(x) can be set to be identically zero. By
the implicit function theorem, the zero solution is unique near ε = 0. Therefore, the
series (3.9) shrinks to fewer terms, the reduction persists for sufficiently small ε, and
the proof of Theorem 1 applies. �

Remark 4 The invariant reduction A3 = 0 of the truncated coupled-mode system may
not satisfy the full lattice equations (3.11) since the solution Φ(x) with A3 = 0 is still
a 4π -periodic function of both x1 and x2 and the series (3.9) cannot be shrunk to
fewer terms for A3 = 0.

Remark 5 The Fourier–Bloch decomposition needed in Theorem 1 can be alterna-
tively developed for φ in the vector space l2

s (N) equipped with the squared norm

‖φ‖2
l2s (N)

=
∑

n∈N

(

1 + n2)s |φn|2 < ∞. (3.14)

Indeed, the squared norm ‖φ‖2
Hs(Pk)

is equivalent to the integral

∫ 2π

0

∣
∣(cη + L1D)s/2φ(x)

∣
∣
2 dx =

∑

n1∈N

∑

n2∈N

φn1 φ̄n2

(

cη + ρn(k)
)s 〈

un1(·; k),un2(·; k)
〉

2π

=
∑

n∈N

(

cη + ρn(k)
)s |φn|2,

where we have used the orthogonality relation (3.1). By the asymptotic distribu-
tion (2.4), ‖φ‖2

Hs(Pk)
is thus equivalent to ‖φ‖2

l2s (N)
. By Sobolev’s embedding the-

orem, ‖φ‖C0
b (Pk)

≤ C‖φ‖Hs(Pk) for some C > 0 and any s > 1
2 . Therefore, the de-

composition (3.2) produces a continuous function φ(x) on x ∈ R if φ ∈ l2
s (N) with

s > 1
2 . Furthermore, using Lemma 3.4 in Busch et al. (2006), one can prove that the

nonlinear term maps l2
s (N) to l2

s (N) for any s > 1
2 , such that the arguments of the

Lyapunov–Schmidt reductions of Theorem 1 will work in the space l2
s (N) for any

s > 1
2 . Note that this approach would lift the upper bound on the index s in Theo-

rem 1, where 1
2 < s < 1.
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Example 2 For W(x) = 1 − cosx and η = η0 ≈ 0.1745, the parameters of the alge-
braic coupled-mode equations (3.8) are approximated numerically as follows:

β1 ≈ 2.2835, β2 ≈ 0.9183

and

γ1 ≈ 9.4829 × 10−3, γ2 ≈ 4.5196 × 10−3,

γ3 ≈ 3.7942 × 10−3, γ4 ≈ 1.5981 × 10−2.

The algebraic coupled-mode equations describe both linear and nonlinear correc-
tions to the eigenvalues ω = ρn1(k1)+ρn2(k2) for fixed values of (k1, k2) at the vertex
points X, X′ and M . In particular, these corrections show how the band edges of the
three resonant bands split for ε �= 0 and deform due to nonlinear interactions between
resonant Bloch modes. We skip further analysis of the algebraic coupled-mode equa-
tions and proceed with the decaying solutions of the nonlinear elliptic problem (2.7)
described by the differential coupled-mode equations.

4 Differential Coupled-Mode Equations

We consider here bounded and decaying solutions Φ(x) of the bifurcation problem
(2.7) for small ε. The decomposition of the decaying solution Φ(x) depends now
on the completeness of the Bloch modes of the one-dimensional Sturm–Liouville
problem (2.3) in L2(R), where all Bloch modes for all k ∈ T must be incorporated in
the Fourier–Bloch decomposition.

Proposition 2 Let W(x) be a bounded and 2π -periodic function. Let {ρn(k)}n∈N

and {un(x; k)}n∈N be sets of eigenvalues and eigenfunctions of the Sturm–Liouville
problem (2.3) on k ∈ T, such that

〈

un(·; k),un′
(·; k′)〉

R
= δn,n′δ

(

k − k′), ∀n,n′ ∈ N, ∀k, k′ ∈ T, (4.1)

where 〈f,g〉R = ∫

R
f̄ (x)g(x)dx and δ(x) is the Dirac’s delta function in the distri-

bution sense. Then there exists a unitary transformation T : L2(R) �→ l2(N,L2(T))

given by

∀φ ∈ L2(R) : φ̂(k) = T φ, φ̂n(k) =
∫

R

ūn(y; k)φ(y)dy, ∀n ∈ N, ∀k ∈ T,

(4.2)
where l2(N,L2(T)) is equipped with the squared norm

∥
∥φ̂

∥
∥2

l2
(

N,L2(T)
) =

∑

n∈N

∫

T

∣
∣φ̂n(k)

∣
∣
2 dk.

The inverse transformation is given by

∀φ̂ ∈ l2(
N,L2(T)

) : φ(x) = T −1φ̂ =
∑

n∈N

∫

T

φ̂n(k)un(x; k)dk, ∀x ∈ R. (4.3)
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Proof The original proof of the proposition can be found in Gelfand (1950).
Orthogonality and completeness of the Bloch wave functions {un(x; k)}n∈N on k ∈ T

is summarized in Theorems XIII.97 and XIII.98 on pp. 303–304 in Reed and Simon
(1978). �

Lemma 6 Let φ(x) be defined by the decomposition (4.3), where φ̂ belongs to the
vector space l1

s (N,L1(T)) with the norm

∥
∥φ̂

∥
∥

l1s (N,L1(T))
=

∑

n∈N

(1 + n)s
∥
∥φ̂n

∥
∥

L1(T)
=

∑

n∈N

(1 + n)s
∫

T

∣
∣φ̂n(k)

∣
∣dk < ∞. (4.4)

If s > 1
2 , then φ(x) is a continuous function on x ∈ R such that φ(x) → 0 as

|x| → ∞.

Proof The proof is similar to that of Lemma 3 since the asymptotic bound (2.4) is
uniform on k ∈ T. Therefore,

‖φ‖C0
b (R) ≤

∑

n∈N

∫

T

∣
∣φ̂n(k)

∣
∣
∥
∥un(·; k)

∥
∥

C0
b (Pk)

dk

≤ C
∑

n∈N

∫

T

∣
∣φ̂n(k)

∣
∣
∥
∥un(·; k)

∥
∥

Hs(Pk)
dk ≤ C̃

∥
∥φ̂

∥
∥

l1s (N,L1(T))
,

for some C, C̃ > 0 and any s > 1
2 . The decay of φ(x) as |x| → ∞ follows from

the Riemann–Lebesgue lemma applied to the Fourier–Bloch transform. Indeed, the
summation in n ∈ N of the integrals on k ∈ T can be written as an integral on k ∈ R

in the form

φ(x) =
∫

R

φ̂(k)v(x; k)dk,

where v(x; k) for k ∈ R is related to the Bloch functions un(x; k) for k ∈ T (see
Busch et al. 2006 for details). Since v(x; k) = eikxw(x; k), where w(x; k) is periodic
in x with period 2π and is uniformly bounded in C0

b(R) with respect to both x and
k, the Riemann–Lebesque lemma applies to the Fourier–Bloch transform in the same
manner as it applies to the standard Fourier transform if φ̂ ∈ L1(R). �

Lemma 7 Let W(x) be a bounded, piecewise-continuous and 2π -periodic function.
Let ρn(k0) be the extremal value of ρn(k) for either k0 = 0 or k0 = ± 1

2 and assume
that the adjacent bands are bounded away from the value ρn(k0). Then ρn(k) is an
analytic function at the point k = k0, such that

ρ′(k0) = 0, ρ′′
n(k0) �= 0,

∣
∣
∣
∣
ρn(k)−ρn(k0)− 1

2
ρ′′

n(k0)(k −k0)
2
∣
∣
∣
∣
≤ C(k −k0)

4

(4.5)
for some C > 0 uniformly in k ∈ T.

Proof By Theorem XIII.95 in Reed and Simon (1978), the function ρn(k) for an
isolated spectral band can be extended onto a smooth Riemann surface which has no
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singularities other than square root branch points at k = 0 and k = ± 1
2 . Therefore,

the function ρn(k) is expanded in even powers of (k − k0) for k0 = 0 or k0 = ± 1
2 and

ρ′′
n(k0) �= 0. �

Lemma 8 Let W(x) be a bounded and 2π -periodic function. Let φ̂ = T φ and
ĝ = T (|φ|2φ). If 0 < s < 1, then there exists a C > 0 such that ‖ĝ‖l1s (N,L1(T)) ≤
C‖φ̂‖3

l1s (N,L1(T))
.

Proof The proof is similar to that of Lemma 5 since the asymptotic bound (3.7) is
uniform on k ∈ T (Busch et al. 2006) and the length of T is finite. The Banach algebra
property (3.6) holds in space l1

s (N,L1(T)) for any 0 < s < 1. Indeed, let

(

φ̂ � ϕ̂
)

n
(k) =

∑

j1∈N

∑

j2∈N

∫

T

∫

T

Kn,j1,j2(k, k1, k2)φ̂j1(k1)ϕ̂j2(k2)dk1 dk2,

n ∈ N, k ∈ T,

where Kn,j1,j2(k, k1, k2) = 〈un(·; k),uj1(·; k1)uj2(·; k2)〉R1 for all (n, j1, j2) ∈ N
3

and (k, k1, k2) ∈ T
3. By an explicit computation, we obtain

∥
∥φ̂ � ϕ̂

∥
∥

l1s (N,L1(T))

≤
∑

n∈N

(1 + n)s
∑

j1∈N

∑

j2∈N

∫

T

∫

T

∫

T

∣
∣Kn,j1,j2(k, k1, k2)

∣
∣
∣
∣φ̂j1(k1)

∣
∣
∣
∣ϕ̂j2(k2)

∣
∣dk dk1 dk2

≤ C
∑

j1∈N

∑

j2∈N

(1 + j1)
s(1 + j2)

s

∫

T

∫

T

∣
∣φ̂j1(k1)

∣
∣
∣
∣ϕ̂j2(k2)

∣
∣dk1 dk2

×
∑

n∈N

(
1 + n

(1 + j1)(1 + j2)

)s 1

(1 + |n − j1 − j2|)p

for some C > 0 and any 0 < p < 2. The last sum is finite if p > 1 and p − s > 1 (that
is 0 < s < 1), similarly to the proof of Lemma 5. �

We shall now define the coupled-mode system, which is a central element of our
paper. Let A1,2,3(y) be functions of y = √

εx on x ∈ R
2 which satisfy the differential

coupled-mode equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ω − β1)A1 + (α1∂
2
y1

+ α2∂
2
y2

)A1 = σ [γ1|A1|2A1 + γ2(2|A2|2A1 + A2
2Ā1)

+ γ3(2|A3|2A1 + A2
3Ā1)],

(Ω − β1)A2 + (α2∂
2
y1

+ α1∂
2
y2

)A2 = σ [γ1|A2|2A2 + γ2(2|A1|2A2 + A2
1Ā2)

+ γ3(2|A3|2A2 + A2
3Ā2)],

(Ω − β2)A3 + α3(∂
2
y1

+ ∂2
y2

)A3 = σ [γ4|A3|2A3 + 2γ3(|A1|2 + |A2|2)A3

+ γ3(A
2
1 + A2

2)Ā3],

(4.6)
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where parameters β1,2 and γ1,2,3,4 are the same as in Theorem 1, while

α1 = 1

2
ρ′′

1 (0), α2 = 1

2
ρ′′

2

(
1

2

)

, α3 = 1

2
ρ′′

1

(
1

2

)

.

Since λ1 = ρ1(0), μ1 = ρ1
( 1

2

)

, and μ2 = ρ2
( 1

2

)

are nondegenerate eigenvalues in the
ordering (2.6), the values of α1,2,3 are nonzero according to Lemma 7.

Example 3 For W(x) = 1 − cosx and η = η0 = 0.1745, the parameters of the differ-
ential coupled-mode equations are approximated numerically as follows:

α1 ≈ 0.9422, α2 ≈ 6.7813, α3 ≈ −4.7890.

Let Â1,2,3(p) on p ∈ R
2 denote the Fourier transforms of the functions A1,2,3(y)

on y ∈ R
2 such that

A1,2,3(y) = 1

2π

∫

R2
Â1,2,3(p)eip·y dp, Â1,2,3(p) = 1

2π

∫

R2
A1,2,3(y)e−ip·y dy.

(4.7)
We shall use the standard norm in L1

q(R2) for the Fourier transforms Â1,2,3(p) with
any q ≥ 0:

∥
∥Â

∥
∥

L1
q (R2)

=
∫

R2

(

1 + |p|2)q/2∣
∣Â(p)

∣
∣dp. (4.8)

The differential coupled-mode equations (4.6) are converted to the equivalent integral
form

⎧

⎪⎨

⎪⎩

(Ω − β1 − α1p
2
1 − α2p

2
2)Â1(p) = σN̂1[Â1, Â2, Â3](p),

(Ω − β1 − α2p
2
1 − α1p

2
2)Â2(p) = σN̂2[Â1, Â2, Â3](p),

(Ω − β2 − α3p
2
1 − α3p

2
2)Â3(p) = σN̂3[Â1, Â2, Â3](p),

(4.9)

where N̂1,2,3[Â1, Â2, Â3](p) denote the Fourier transform of the cubic nonlinear
terms of the differential coupled-mode equations. We now prove the second main
result of our analysis.

Theorem 2 Let W(x) be a bounded, piecewise-continuous, even and 2π -periodic
function on x ∈ R. Let 1

4 < r < 1
2 . The nonlinear elliptic problem (2.7) has a contin-

uous and decaying solution Φ(x) for sufficiently small ε > 0 if there exists a solution
(B̂1, B̂2, B̂3) ∈ L1(Dε,C

3), compactly supported on the disk Dε = {p ∈ R
2 : |p| <

εr− 1
2 } ⊂ R

2, which satisfies the extended coupled-mode equations in the integral form

⎧

⎪⎨

⎪⎩

(Ω − β1 − α1p
2
1 − α2p

2
2)B̂1(p) − σQ̂1(p) = εr̃ R̂1(p),

(Ω − β1 − α2p
2
1 − α1p

2
2)B̂2(p) − σQ̂2(p) = εr̃ R̂2(p),

(Ω − β2 − α3p
2
1 − α3p

2
2)B̂3(p) − σQ̂3(p) = εr̃ R̂3(p),

(4.10)
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where r̃ = min(4r − 1,1 − 2r), Q̂1,2,3(p) denote the cubic nonlinear terms
N̂1,2,3[B̂1, B̂2, B̂3](p) truncated on p ∈ Dε , and R̂1,2,3(p) are bounded by

∀0 < ε < ε0 : ∥
∥R̂1,2,3

∥
∥

L1(Dε)
≤ C1,2,3

(∥
∥B̂1

∥
∥

L1(Dε)
+ ∥

∥B̂2
∥
∥

L1(Dε)
+ ∥

∥B̂3
∥
∥

L1(Dε)

)

,

(4.11)

for some constants C1,2,3 > 0 and sufficiently small ε0. Moreover, there exists an
ε-independent constant C > 0 such that

‖Φ − B1Φ1 − B2Φ2 − B3Φ3‖C0
b (R2) ≤ Cε1−2r , (4.12)

where Φ1,2,3(x) are modes defined by Lemma 2 and B1,2,3(y) are defined by the
Fourier transform (4.7).

Proof Solutions of the nonlinear elliptic problem (2.7) are expanded in the form

Φ(x) =
∑

(n1,n2)∈N2

∫

T2
Φ̂n1,n2(k1, k2)un1(x1; k1)un2(x2; k2)dk1 dk2. (4.13)

Let Φ̂ denote the union of functions Φ̂n1,n2(k1, k2) for all (n1, n2) ∈ N
2 and

(k1, k2) ∈ T
2 and consider the vector space l1

s (N
2,L1(T2)) equipped with the norm

∥
∥Φ̂

∥
∥

l1s (N2,L1(T2))
=

∑

(n1,n2)∈N2

(1 + n1)
s(1 + n2)

s

∫

T

∫

T

∣
∣Φ̂n1,n2(k1, k2)

∣
∣dk1 dk2 < ∞.

(4.14)
One can show similarly to the proof of Theorem 1 that the statements of Lemmas 6
and 8 extend in two dimensions to the vector space with the norm (4.14). There-
fore, we convert the partial differential equation (2.7) to the integral form, which is
diagonal with respect to the linear terms

[

ρn1(k1) + ρn2(k2) − ω0 − εΩ
]

Φ̂n(k)

= −εσ
∑

(m,i,j)∈N6

∫

T6
Mn,m,i,j (k, l, κ, λ)Φ̂m(l)

¯̂
Φi(κ)Φ̂j (λ)dl dκ dλ (4.15)

for all n = (n1, n2) ∈ N
2 and k = (k1, k2) ∈ T

2, where

Mn,m,i,j (k, l, κ, λ) = 〈

un1(·; k1)ui1(·;κ1), um1(·; l1)uj1(·;λ1)
〉

R

× 〈

un2(·; k2)ui2(·;κ2), um2(·; l2)uj2(·;λ2)
〉

R
,

for all (n1, n2,m1,m2, i1, i2, j1, j2) ∈ N
8 and (k1, k2, l1, l2, κ1, κ2, λ1, λ2) ∈ T

8. In
view of Lemmas 6 and 8 we consider solutions of the integral equations (4.15) in the
space l1

s (N2,L1(T2)) for any 1
2 < s < 1.

When η = η0, the multiplication operator ρn1(k1) + ρn2(k2) − ω0 vanishes at the
points X′, X, and M , where the values of k are given by

{(

0,
1

2

)

;
(

1

2
,0

)

;
(

1

2
,

1

2

)}

⊂ T
2, (4.16)
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Fig. 5 Decomposition of the
k-space

with n ∈ {(1,3); (3,1); (2,2)} ⊂ N
2 resp. Therefore, we apply the method of

Lyapunov–Schmidt reductions (Golubitsky and Schaeffer 1985) and decompose the
solution Φ̂ of the integral equations (4.15) into

Φ̂(k) = Û1(k)χD1(k)e1,3 + Û2(k)χD2(k)e3,1 + Û3(k)χD3(k)e2,2 + Ψ̂ (k), (4.17)

where {e1,3, e3,1, e2,2} are unit vectors on N
2, D1,2,3 are disks of radius εr centered at

the points k of the set (4.16), see Fig. 5. Since k ∈ T
2, where T

2 is the first Brillouin
zone, we map D on T

2 by periodic continuation and denote the resulting object by
D ∩ T

2. In the representation (4.17), χD(k) is the characteristic function on k ∈ T
2

(χD(k) = 1 if k ∈ D ∩ T
2 and χD(k) = 0 if k /∈ D ∩ T

2), and Ψ̂ (k) is zero identically
on k ∈ D1,2,3 for the corresponding values of n:

Ψ̂(1,3) = 0 on D1, Ψ̂(3,1) = 0 on D2, Ψ̂(2,2) = 0 on D3.

For any of the three resonant points of k, it follows by Lemma 7 that ρ′
nj

(kj ) = 0
and ρ′′

nj
(kj ) �= 0 for j = 1,2 with the n corresponding to the resonance point k. As a

result, there exists a constant C > 0 such that

min
(k1,k2)∈supp(Ψ̂ )

(n1,n2)∈N
2

∣
∣ρn1(k1)|η=η0 + ρn2(k2)|η=η0 − ω0

∣
∣ ≥ Cε2r . (4.18)

Note that the minimal values of the multiplication operator occur for the three res-
onant bands with the indices n in the set {(1,3); (3,1); (2,2)}. For all other non-
resonant bands, the multiplication operator is continuously invertible for sufficiently
small ε. If 2r < 1, the lower bound (4.18) is still larger than the perturbation terms
of order ε. By the implicit function theorem in the space l1

s (N2,L1(T2)) for any 1
2 <

s < 1, there exists a unique map Ψ̂ε(Û1, Û2, Û3) : L1(D1) × L1(D2) × L1(D3) �→
l1
s (N2,L1(T2)) for sufficiently small ε > 0. The right-hand side of the integral equa-

tion (4.15) is a homogeneous cubic polynomial of Ψ̂ (k) and Û1, Û2, Û3 multiplied
by ε. Let δ ≡ ‖Û1‖L1(D1)

+ ‖Û2‖L1(D2)
+ ‖Û3‖L1(D3)

< δ0 for a fixed ε-independent

δ0 > 0. The map Ψ̂ε(Û1, Û2, Û3) satisfies the bound
∥
∥Ψ̂ε

(

Û1, Û2, Û3
)∥
∥

l1s (N2,L1(T2))
≤ ε1−2rC

(∥
∥Û1

∥
∥

L1(D1)
+ ∥

∥Û2
∥
∥

L1(D2)
+ ∥

∥Û3
∥
∥

L1(D3)

)

,

(4.19)
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for sufficiently small 0 < ε < ε0, finite 0 < δ < δ0, and the (ε, δ)-independent con-
stant C > 0.

We shall now map the disks D1,2,3 to the same disk Dε ⊂ R
2 in the stretched

variable p centered at the origin. To do so, we apply the scaling transformation

B̂j (p) = εÛj (k), p = k − k0

ε1/2
, ∀k ∈ Dj ∩ T

2, j = 1,2,3, (4.20)

where k0 is the corresponding point of the set (4.16). The new disk Dε is now Dε =
{p ∈ R

2 : |p| < εr− 1
2 } and it covers the entire plane p ∈ R

2 in the limit ε → 0 if
2r < 1. Note that the L1-norm of Ûj (k) on k ∈ Dj ∩ T

2 is invariant with respect
to the transformation (4.20) in the new variable B̂j (p) on p ∈ Dε ⊂ R

2, such that
‖Ûj‖L1(Dj ) = ‖B̂j‖L1(Dε)

for any j = 1,2,3.
When the integral equation (4.15) are considered on the compact domains D1, D2,

D3 for the three resonant modes and the scaling transformation (4.20) is applied to
map these domains into the domain Dε , we obtain the extended coupled-mode system
(4.10), where remainder terms occur due to three different sources. The first source
comes from the component Ψ̂ = Ψ̂ε(Û1, Û2, Û3) and it is estimated with the bound
(4.19). The remainder terms have the order of ε1−2r and are small if 2r < 1. The
second source comes from the expansion of ρn(k) and Mn,m,i,j (k, l, κ, λ) in powers
of ε and it is estimated with Lemma 4. The remainder terms have the order of ε1. The
third source comes from the expansion of ρn(k) and Mn,m,i,j (k, l, κ, λ) in powers of
k−k0 and it is estimated with Lemma 7. The remainder terms have the order of ε4r−1

because of the following estimate:

ε
∥
∥|p|4B̂j

∥
∥

L1(Dε)
= ε

∫

Dε

|p|4∣∣B̂j (p)
∣
∣dp ≤ ε4r−1

∥
∥B̂j

∥
∥

L1(Dε)
, j = 1,2,3.

The remainder terms are small if 4r > 1. Thus, the statement is proved if 1
4 < r < 1

2
and the largest remainder terms have the order εr̃ with r̃ = min(4r − 1,1 − 2r). �

Remark 6 If r = 1
3 , then r̃ = r = 1

3 and both remainder terms of the extended
coupled-mode equations are of the same order in ε. The fastest convergence rate
of the remainder terms is ε1/3 because maxr∈(1/4,1/2)(r̃) = 1/3.

The differential coupled-mode system on A1,2,3(y) has invariant reductions when
one or two components of A1,2,3 are identically zero. In particular, the reduction
A3 = 0 recovers coupled-mode equations near the band edge C derived in Shi and
Yang (2007), while the reduction A1 = A2 = 0 recovers coupled-mode equations near
the band edge B in Shi and Yang (2007). However, these reductions do not generally
persist in the extended coupled-mode equations near η = η0 since the reductions do
not imply any symmetry constraints on the function Φ(x).

The coupled-mode equations (4.9) linearized at the zero solution describe the ex-
pansions of the function ω = ρn1(k1)+ρn2(k2) near the vertex points X′, X, and M in
terms of the perturbation parameter ε = η−η0 and the small deviation of k = (k1, k2)
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from the value k0 = (k1,0, k2,0) in the set (4.16)

ω = ω0 + ε∂ηω|η=η0,k=k0 + 1

2
ρ′′

n1
(k1,0)(k1 − k1,0)

2 + 1

2
ρ′′

n2
(k2,0)(k2 − k2,0)

2

+ O
(|k − k0|4

)

. (4.21)

We note that the values of ∂ηω|η=η0 are equal for the vertex points X and X′, while
the values of ρ′′

n1
(k1,0) and ρ′′

n2
(k2,0) have the same sign for all points X, X′, and M .

Moreover, sign(ρ′′
nj

(Xj )) = sign(ρ′′
nj

(X′
j )), j = 1,2. A simple analysis of (4.21)

shows that the band gap between the three resonant Bloch band surfaces exists if

ρ′′
n1

(k1)|X > 0, ρ′′
n1

(k1)|M < 0, for ε∂ηω|X > ε∂ηω|M
or

ρ′′
n1

(k1)|X < 0, ρ′′
n1

(k1)|M > 0, for ε∂ηω|X < ε∂ηω|M.

Examples 2 and 3 show that the first case occurs for the particular potential
W(x) = 1 − cosx if η > η0, such that the band gap opens for ε > 0 in the interval
β2 < Ω < β1, in a correspondence with a narrow band gap for η > η0 in Fig. 3(b).

5 Persistence of Localized Reversible Solutions

The coupled-mode system in the integral form (4.9) is different from the extended
coupled-mode system (4.10) in two aspects. First, the convolution integrals are trun-

cated in (4.10) on the domain Dε for |p| < εr− 1
2 , where 1

4 < r < 1
2 . Second, the

remainder terms of order εr̃ with r̃ = min(4r − 1,1 − 2r) are present in (4.10). The
first source is small if solutions of the coupled-mode system are considered on p ∈ R

2

in the space L1
q(R2) for all q ≥ 0. The second source is handled with the implicit

function theorem. We shall consider here a special class of decaying solutions of the
coupled-mode system (4.9) on p ∈ R

2 which lead to the corresponding solutions of
the extended coupled-mode system (4.10) on p ∈ Dε .

Definition 1 A solution (A1,A2,A3) of the differential coupled-mode system (4.6)
on y ∈ R

2 is called reversible if it satisfies one of the two constraints (1.4) and (1.5)
for each function A1(y), A2(y), and A3(y).

For notational simplicity, we write the differential coupled-mode equations (4.6)
in the form F(A) = 0, where F is a nonlinear operator on (A1,A2,A3) ∈ C2(R2,C

3)

with the range in C0(R2,C
3). The Jacobian of the operator F(A) denoted by DAF(A)

is a matrix differential operator, which is diagonal with respect to the unbounded dif-
ferential part and full with respect to the local potential part. In many cases, the Ja-
cobian operator DAF(A) can be block-diagonalized and simplified, but we can work
with a general operator to prove the third main result of our analysis.

Theorem 3 Let W(x) satisfy the same assumptions as in Theorem 2. Let Ω be-
long to the interior of the band gap of the coupled-mode system F(A) = 0. Let
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(A1,A2,A3) on y ∈ R
2 be a reversible solution of the differential coupled-mode sys-

tem F(A) = 0 in the sense of Definition 1 such that their Fourier transforms satisfy
Â ∈ L1

q(R2,C
3) for all q ≥ 0. Assume that the Jacobian operator DAF(A) has a

three-dimensional kernel with the eigenvectors {∂y1 A, ∂y2 A, iA}. Then there exists a
solution (B̂1, B̂2, B̂3) ∈ L1(Dε,C

3) of the extended coupled-mode system (4.10) such
that

∀0 < ε < ε0 : ∥
∥B̂j − Âj

∥
∥

L1(Dε)
≤ Cjε

r̃ , ∀j = 1,2,3, (5.1)

for some ε-independent constant Cj > 0 and sufficiently small ε0.

Proof First, we consider system (4.10) on the entire plane p ∈ R
2 in the space

L1
q(R2) for a fixed q ≥ 0 by extending the right-hand side functions R̂1,2,3(p) on

R
2 with a compact support on Dε . Thanks to the assumption on the existence of a

solution Â of F̂(Â) = 0 and its fast decay in L1
q(R2) for all q ≥ 0, we decompose the

solution of the extended system F̂(B̂) = εr̃ R̂(B̂) on p ∈ R
2 into B̂ = Â + b̂, where b̂

solves the nonlinear problem in the form

Ĵ b̂ = N̂
(

b̂
)

, Ĵ = DÂF̂
(

Â
)

, N̂
(

b̂
) = εr̃ R̂

(

Â + b̂
) − [

F̂
(

Â + b̂
) − Ĵ b̂

]

, (5.2)

where Ĵ is a linearized operator, F̂(Â + b̂) − Ĵ b̂ is quadratic in b̂, and R̂(Â + b̂)

maps an element L1
q(R2) to itself. The kernel of the Jacobian operator J = DAF(A)

is exactly three-dimensional, by the assumption, and it is generated by the two-
dimensional group of translations in y ∈ R

2 and a one-dimensional gauge invariance
in arg(A). If Ω belongs to the interior of the band gap of the coupled-mode system,
the continuous spectrum of DAF(A) is bounded away from zero and the triple zero
eigenvalue is isolated from other eigenvalues of the discrete spectrum of DAF(A).
The nonlinear elliptic problem (1.2) with a real-valued symmetric potential V (x)

admits the gauge invariance φ(x) → eiαφ(x) for any α ∈ R and the reversibility
symmetries (1.4) and (1.5). The extended coupled-mode system (4.10) obtained from
the integral system (4.15) after the Lyapunov–Schmidt decomposition (4.17) and the
scaling transformation (4.20) inherits all the symmetries, such that after restriction
of B to functions satisfying (1.4) or (1.5) and after setting uniquely the phase, e.g.,
by B(0) ∈ R, system (5.2) is formulated in the orthogonal complement of the ker-
nel of Ĵ . Therefore, the linearized operator is continuously invertible for sufficiently
small ε > 0 under this restriction. By the implicit function theorem, there exists a
unique reversible solution in the form b̂ = Ĵ−1N̂(b̂) such that ‖b̂‖L1

q (R2,C3) ≤ Cεr̃

for some C > 0 and q ≥ 0. This result implies the desired bound (5.1) for B̂j as a
solution of (4.10) on p ∈ R

2.
Next, we consider the error between system (4.10) on the disk p ∈ Dε and the

same system on the plane p ∈ R
2. The error comes from the terms ‖b̂‖L1

q+2(D
⊥
ε ,C3)

and ‖b̂‖L1
q (D⊥

ε ,C3), where D⊥
ε = R

2 \Dε , since Â ∈ L1
q(R2,C

2) for all q ≥ 0 and

the cubic nonlinear terms N̂j (b̂) of the coupled-mode system (4.9) map elements
of L1

q(R2) to elements of L1
q(R2). Since b̂ = Ĵ−1N̂(b̂) and Ĵ−1 is a map from
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L1
q(R2,C

3) to L1
q+2(R

2,C
3) for a fixed q ≥ 0, we obtain that

∀b̂ = Ĵ−1N̂
(

b̂
) ∈ L1

q

(

R
2,C

3) :
∥
∥b̂

∥
∥

L1
q+2(D

⊥
ε ,C3)

≤ ∥
∥b̂

∥
∥

L1
q+2(R

2,C3)
≤ C

∥
∥N̂

(

b̂
)∥
∥

L1
q (R2,C3)

≤ C̃εr̃

for some C, C̃ > 0. Since ‖b̂‖L1
q (D⊥

ε ,C3) ≤ ‖b̂‖L1
q (R2,C3) ≤ Cεr̃ , the error between

system (4.10) on the disk p ∈ Dε and the same system on the plane p ∈ R
2 is of the

same order as the right-hand side terms of system (4.10), such that the desired bound
(5.1) holds on p ∈ Dε . �

Corollary 2 The solution Φ(x) constructed in Theorems 2 and 3 is a reversible lo-
calized solution of the bifurcation problem (2.7) satisfying one of the two constraints
(1.4) and (1.5) on x ∈ R

2.

Proof Since the modes Φ1,2,3(x) of Lemma 2 and the solution B1,2,3(y) of Theo-
rem 3 satisfy one of the two reversibility constraints (1.4) and (1.5), the leading-order
part of the representation (4.17) produces a solution Φ(x) which satisfies the same
constraint. Since the symmetry is also preserved in the integral equation (4.15), the
map Ψ̂ε(Û1, Û2, Û3) constructed in Theorem 2 inherits the symmetry and produces
the remainder term in the decomposition (4.17) satisfying the same reversibility con-
straint. �

There are several classes of localized reversible solutions of the differential
coupled-mode equations which satisfy the assumptions of Theorem 3. These solu-
tions are numerically approximated in Sect. 6. According to Theorem 3, all these so-
lutions persist as localized reversible solutions of the nonlinear elliptic problem (1.2).

Corollary 3 The solution Φ(x) constructed in Theorems 2 and 3 satisfy the bound:

‖Φ − A1Φ1 − A2Φ2 − A3Φ3‖C0
b (R2) ≤ Cεr̃ , r̃ = min(4r − 1,1 − 2r), (5.3)

where 1
4 < r < 1

2 . The fastest convergence rate is ε1/3, which is obtained at r = 1
3 .

Consequently, the solution φ(x) = √
εΦ(x) of the nonlinear elliptic problem (1.2)

is O(εr̃+1/2) accurate to the approximation φ(1)(x) = √
ε(A1Φ1 + A2Φ2 + A3Φ3),

with the fastest convergence rate being ε5/6.

Proof Using the triangle inequality and the bound (4.12), we obtain

‖Φ − A1Φ1 − A2Φ2 − A3Φ3‖C0
b (R2) ≤ C1ε

1−2r + C2

3
∑

j=1

‖Aj − Bj‖C0
b (R2),

for some C1,C2 > 0. By the Hölder inequality, we have

‖Aj − Bj‖C0
b (R2) ≤ ∥

∥Âj − B̂j

∥
∥

L1(R2)
= ∥

∥Âj − B̂j

∥
∥

L1(Dε)
+ ∥

∥Âj

∥
∥

L1(R2\Dε)
,
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with the last equality due to a compact support of B̂1,2,3(p) on p ∈ Dε . The first term
in the upper bound is O(εr̃ ) by the bound (5.1) and the second term is smaller than
any power of ε if Â ∈ L1

q(R2,C
3) for all q ≥ 0. �

6 Numerical Approximations of Localized Reversible Solutions

We approximate here several classes of localized reversible solutions of the differen-
tial coupled-mode system (4.6) numerically. We use the same potential as in Exam-
ples 1–3, i.e., W(x) = 1 − cos(x) so that the bifurcation takes place for η0 ≈ 0.1745.
For selected representative cases, we also verify the convergence rate of Corollary 3
and the conditions of Theorem 3 on the Jacobian operator, which guarantees persis-
tence of these solutions in the full system (1.2). We limit our attention to the following
classes of reversible solutions:

(A) defocusing case σ = 1: A1 = A2 = 0, A3 = R(r)eimθ , r = 1√
α3

√

y2
1 + y2

2 ,

θ = arg(y1 + iy2)

m = 0 . . . radially symmetric positive soliton
m = 1 . . . vortex of charge one

(B) focusing case σ = −1: A3 = 0

(i) A2 = 0, A1 = R(r)eimθ , r =
√

y2
1

α1
+ y2

2
α2

, θ = arg(α2y1 + iα1y2)

m = 0 . . . ellipsoidal positive soliton
m = 1 . . . ellipsoidal vortex of charge one

(ii) A1(y1, y2) = ±A2(y2, y1) ∈ R, A1(y1, y2) = A1(−y1, y2)

= A1(y1,−y2) . . . symmetric real coupled soliton
(iii) A1(y1, y2) = ±iA2(y2, y1) ∈ iR,A1(y1, y2) = A1(−y1, y2)

= A1(y1,−y2) . . . π/2-phase delay coupled soliton
(iv) A1(y1, y2) = ±iĀ2(y2, y1) ∈ C, A1(y1, y2) = −Ā1(−y1, y2)

= Ā1(y1,−y2) . . . coupled vortex of charge one

We will see that the localized solutions with A3 = 0 bifurcate at σ = −1 from the
upper edge Ω = β1 of the band gap and the localized solutions with A1 = A2 = 0
bifurcate at σ = +1 from the lower edge Ω = β2 of the band gap. All solutions
above satisfy the reversibility condition of Definition 1. Provided the assumptions of
Theorem 3 are satisfied, Corollary 2 then guarantees that these solutions correspond
to reversible solutions of the nonlinear elliptic problem (1.2). Using the symmetries of
ψ1, ϕ1, and ϕ2, we can see that the function φ(x) satisfies the following symmetry:

(A) φ(x1, x2) = φ(−x1, x2) = φ(x1,−x2) ∈ R (m = 0)

φ(x1, x2) = −φ̄(−x1, x2) = φ̄(x1,−x2) ∈ C (m = 1)

(B-i) φ(x1, x2) = φ(−x1, x2) = −φ(x1,−x2) ∈ R (m = 0)
φ(x1, x2) = −φ̄(−x1, x2) = −φ̄(x1,−x2) ∈ C (m = 1)

(B-ii) φ(x1, x2) = ±φ(x2, x1) = ∓φ(−x2,−x1) ∈ R

(B-iii) φ(x1, x2) = ±iφ̄(x2, x1) = ∓iφ̄(−x2,−x1) ∈ C

(B-iv) φ(x1, x2) = ±iφ̄(x2, x1) = ±iφ̄(−x2,−x1) ∈ C
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Note that (B-iii) and (B-iv) agree with the reversibility constraint (1.5) after multipli-
cation by e−iπ/4.

The above solutions do not include any three-component gap solitons with all
A1,A2, and A3 nonzero. Such solutions do not bifurcate from either upper or lower
edge Ω = β1 or Ω = β2, respectively, and it is thus hard to capture such solutions
numerically. It is, nevertheless, possible that the three-component solitons still exist
in the interior of the gap β2 < Ω < β1 but we do not attempt here to locate these
special solutions.

6.1 One-Component Solutions

One-component solutions correspond to classes (A) and (B-i). The function R(r) for
class (A) satisfies the ODE

R′′ + 1

r
R′ + (Ω − β2)R − m2

r2
R − σγ4R

3 = 0, (6.1)

where R(0) > 0, R′(0) = 0 for m = 0 and R(0) = 0, R′(0) > 0 for m = 1. For m �= 0,
the initial-value problem for the ODE (6.1) is ill-posed but can be turned into a well-
posed one via the transformation Q = r−mR(r) leading to

Q′′ + 2m + 1

r
Q′ + (Ω − β2)Q − σγ4r

2mQ3 = 0, (6.2)

with Q(0) > 0, such that R(r) ∼ r |m| as r → 0. Similarly, the function R(r) for class
(B-i) satisfies the ODE

R′′ + 1

r
R′ + (Ω − β1)R − m2

r2
R − σγ1R

3 = 0. (6.3)

We solve these equations numerically via a shooting method searching for R(r) van-
ishing at infinity as r → ∞.

Figure 6 shows the solution families in the frequency-amplitude space for both
solutions with m = 0 and m = 1. Class (A) families bifurcate from the lower edge
Ω = β2 and class (B-i) families from the upper edge Ω = β1. Examples of the gap
solitons (m = 0) are in Fig. 7 and of the vortices (m = 1) in Fig. 8. As expected, the
class (A) solutions are radially symmetric and the class (B) solutions ellipsoidal.

For the case of one-component solutions, the coupled-mode equations reduce to
a scalar two-dimensional NLS equation. Conditions of Theorem 3 on the kernel of
the Jacobian operator are known to be satisfied for m = 0 (Weinstein 1986) and,
therefore, do not need to be checked numerically.

Figure 9 presents the computed ε-convergence of the error term φ(x) − φ(1)(x)

described by Corollary 3 for the solution classes (A) and (B-i) with m = 0. The con-
vergence rate is seen around ε1.07 and ε1.08, which is higher than the fastest conver-
gence rate ε5/6 predicted by Corollary 3. The observed rate is close to ε1, which is the
rate predicted by a formal multiple scales asymptotic expansion of φ(x), for which
φ(1)(x) is the leading order term.
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Fig. 6 Continuation curves of
one-component solutions (A)
and (B-i). The marked points P,
Q, R, and S at Ω ≈ 1.6, 1.22,
2.1, and 1.4 correspond to the
profiles in Figs. 7 and 8

Fig. 7 Profiles of the
one-component real gap soliton
(m = 0). (a) A3 at point P in
Fig. 6; (b) the corresponding
leading-order term
A3(y1, y2)Φ3(x1, x2) for
ε = 0.1; (c) A1 at point Q in
Fig. 6; (d) the corresponding
leading-order term
A1(y1, y2)Φ1(x1, x2) for
ε = 0.02

6.2 Two-Component Solutions

The following algorithm is used to compute two-component solutions of classes
(B-ii), (B-iii), and (B-iv). First, α1 and α2 are replaced by ᾱ = 1

2 (α1 + α2) so that
the first two equations of the coupled-mode system (4.6) admit a reduction A1 = A2,
where A1 = R(r)eimθ solves a one-component problem. The function R(r) is then
computed as in Sect. 6.1. Next, homotopy in the coefficients α1 and α2 is employed
to gradually deform the computed solution with α1 = α2 = ᾱ into the one with the



J Nonlinear Sci (2009) 19: 95–131 123

Fig. 8 Profiles of the one-component vortex (m = 1). (a) |A3| at point R in Fig. 6; (b) and (c) the mod-
ulus and phase, respectively, of the corresponding leading-order term A3(y1, y2)Φ3(x1, x2) for ε = 0.1;
(d) |A1| at point S in Fig. 6; (e) and (f) the modulus and phase, respectively, of the corresponding lead-
ing-order term A1(y1, y2)Φ1(x1, x2) for ε = 0.1

Fig. 9 ε-convergence of the
error term for the gap soliton
(m = 0) corresponding to (A) at
Ω ≈ 1.22 and (B-i) at Ω ≈ 1.25

original values of α1 and α2. In this homotopy continuation, the full coupled-mode
system needs to be solved numerically and this is done via Newton’s method on a
central finite-difference discretization with zero Dirichlet boundary conditions.
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Fig. 10 Continuation curves of
two-component solutions (B-ii),
(B-iii), and (B-iv). The marked
points T and U at Ω ≈ 2.04
correspond to the profiles in
Figs. 11 and 12, while the point
V at Ω ≈ 1.4 corresponds to the
profiles in Fig. 13

Fig. 11 Two-component real gap soliton (B-ii) at point T in Fig. 10. (a) A1; (b) A2; (c) the leading-order
term A1(y1, y2)Φ1(x1, x2) + A2(y1, y2)Φ2(x1, x2) for ε = 0.1

Figure 10 shows the solution families of classes (B-ii), (B-iii), and (B-iv) as curves
in the frequency-amplitude space. Profiles of examples of these solutions correspond-
ing to the marked points in Fig. 10 appear in Figs. 11, 12, and 13. Note that the
coupled vortex in Fig. 13 has been obtained via the above described homotopy con-
tinuation from a vortex of charge one with α1 = α2. As the phase plots of A1 and A2
show, the resulting coupled vortex is also of charge one.

In order to verify the persistence conditions of Theorem 3 for the two-component
solutions, the kernel of the Jacobian operator J has to be studied numerically. When
rewritten in the real variables (for real and imaginary part) the first two equations of
the coupled-mode system (4.6) give rise to a Jacobian operator J . For the cases (B-ii)
and (B-iii), the Jacobian operator can be block-diagonalized to the form

(
J+ 0

0 J−

)
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.

Fig. 12 Two-component π/2-phase delay gap soliton (B-iii) at point U in Fig. 10. (a) A1; (b) −iA2;
(c) and (d) modulus and phase, respectively, of the leading-order term A1(y1, y2)Φ1(x1, x2)+A2(y1, y2)

Φ2(x1, x2) for ε = 0.1

Fig. 13 Two-component vortex (B-iv) at point V in Fig. 10. (a) and (b) modulus and phase of A1;
(c) and (d) modulus and phase of A2; (e) and (f) modulus and phase of the leading-order term
A1(y1, y2)Φ1(x1, x2) + A2(y1, y2)Φ2(x1, x2) for ε = 0.1

such that dim(Ker(J )) = dim(Ker(J+)) + dim(Ker(J−)). The elements of Ker(J )

can, moreover, be easily reconstructed from the elements of Ker(J+) and Ker(J−).
This diagonalization reduces the expense of the eigenvalue solver.

Figure 14 shows the four smallest (in modulus) eigenvalues λJ1, . . . , λJ4 of the
4th order central finite-difference approximation of J for examples of solutions
(B-ii) and (B-iii) as functions of D, where D is the size of the computational box
[−D,D]×[−D,D] ⊂ R

2 with the step sizes dy1 = dy2 ≈ 0.14 and with zero Dirich-
let boundary conditions. Clearly, the three smallest eigenvalues converge to zero as
D grows while the fourth eigenvalue converges to a nonzero value. Therefore, the
assumptions of Theorem 3 are verified for these solutions. We have also checked that
the corresponding eigenvectors of the three zero eigenvalues are approximations of
∂y1 A, ∂y2 A, and iA.

For the case (B-iv) the Jacobian operator J has to be treated in full because it can-
not be block-diagonalized for complex-valued solutions. Figure 15 shows the four
smallest eigenvalues of the discretized Jacobian operator for an example of the so-
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Fig. 14 The four smallest eigenvalues of the Jacobian operator J for (a) the two-component real gap
soliton (B-ii) and (b) the two-component π/2-phase delay gap soliton (B-iii) for Ω ≈ 1.19

Fig. 15 The four smallest
eigenvalues of the Jacobian
operator J for the
two-component vortex (B-iv) at
Ω ≈ 1.2

lution (B-iv). The fourth-order central finite-difference discretization was used once
again with the step sizes dy1 = dy2 ≈ 0.12. The fourth eigenvalue λJ4 converges
approximately to 0.005 as D grows, while the second and third eigenvalues λJ2,3

converge to 0.0002. We have checked that the limit of λJ2,3 decreases as dy1 = dy2 is
decreased while the limit of λJ4 remains practically unchanged.

Finally, Fig. 16 verifies the ε-convergence of the error term φ(x) − φ(1)(x) de-
scribed by Corollary 3 for the gap soliton of class (B-ii) at Ω ≈ 0.944. The observed
convergence rate is ε0.95, which is once again, close to ε1 expected from the formal
asymptotic expansion. The ε-convergence has not been checked for any complex-
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Fig. 16 ε-convergence of the
error term for the gap soliton
(B-ii) with Ω ≈ 0.94

valued solutions of classes (B-iii) and (B-iv) due to four times larger memory re-
quirements compared to the real case. The memory use grows rapidly as ε decreases
since domains of the size (2D/

√
ε) × (2D/

√
ε) need to be discretized to compute

the solution φ(x) of the elliptic problem (1.2) and each period [0,2π] × [0,2π] of
the potential function V (x) requires about 100 grid points.

7 The Time-Dependent Case

We show here that dynamics of nonstationary localized solutions of the Gross–
Pitaevskii equation (1.1) are close to the dynamics of the time-dependent coupled-
mode equations for finite time intervals. These results are similar to the ones in Busch
et al. (2006), Schneider and Uecker (2001) and they give a rigorous basis for formal
asymptotic results in Brazhnyi et al. (2007), Shi and Yang (2007). According to a
formal asymptotic multiple scales expansion, solutions of the Gross–Pitaevskii equa-
tion (1.1) in the form

Eans(x, t) = [√
εE1(x, t) + O(ε)

]

eiω0t ,

where

E1 = A1
(√

εx, εt
)

ψ1(x1)ϕ2(x2) + A2
(√

εx, εt
)

ϕ2(x1)ψ1(x2)

+ A3
(√

εx, εt
)

ϕ1(x1)ϕ1(x2),

are approximated by solutions of the time-dependent coupled-mode equations
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i∂T − β1)A1 + (α1∂
2
y1

+ α2∂
2
y2

)A1 = σ [γ1|A1|2A1 + γ2(2|A2|2A1 + A2
2Ā1)

+ γ3(2|A3|2A1 + A2
3Ā1)],

(i∂T − β1)A2 + (α2∂
2
y1

+ α1∂
2
y2

)A2 = σ [γ1|A2|2A2 + γ2(2|A1|2A2 + A2
1Ā2)

+ γ3(2|A3|2A2 + A2
3Ā2)],

(i∂T − β2)A3 + α3(∂
2
y1

+ ∂2
y2

)A3 = σ [γ4|A3|2A3 + 2γ3(|A1|2 + |A2|2)A3

+ γ3(A
2
1 + A2

2)Ā3],
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where y = √
εx and T = εt . The following theorem states the approximation result

on the time-dependent solutions.

Theorem 4 Let s > 1, s∗ ≥ max{3, s}. Then for all C1 > 0 and T0 > 0, there exist
ε0 > 0 and C2 > 0 such that for all solutions A1,A2,A3 ∈ C([0, T0],H s∗(R2)) of
the time-dependent coupled-mode system with

sup
T ∈[0,T0]

∥
∥A(·, T )

∥
∥

Hs∗ (R2)
≤ C1,

there exist solutions E ∈ C([0, T0/ε],H s(R2)) of the Gross–Pitaevskii equation (1.1)
with

sup
t∈[0,T0/ε]

∥
∥E(·, t) − Eans(·, t)

∥
∥

Hs(R2)
≤ C2ε

3/2.

for all ε ∈ (0, ε0).

Proof The proof is very similar to the one given for a scalar nonlinear Schrödinger
equation in the one-dimensional case in Busch et al. (2006). No nonresonance condi-
tions are needed thanks to the gauge invariance of the Gross–Pitaevskii equation (1.1).
Due to the fact that we are working here on x ∈ R

2, we lose ε−1/2 due to the scaling
of the L2-norm in contrast to Busch et al. (2006), where we would only lose ε−1/4

on x ∈ R with the same scaling. The O(ε) terms in Eans can be chosen in such a way
that all terms up to order O(ε5/2) in the residual

Res(Eans) = −iEt − ∇2E + V (x)E + σ |E|2E
can be eliminated. By (Busch et al. 2006, Lemma 3.3) Bloch transform is an isomor-
phism between Hs(R2) and l2

s (N2,L2(T2)). Hence, similarly to (Busch et al. 2006,
Lemma 3.4) the nonlinearity E �→ |E|2E maps l2

s (N2,L2(T2)) in Bloch space, or
Hs(R2) in physical space, into itself for s > 1 due to Sobolev’s embedding theo-
rem in two dimensions. Moreover, L = −∇2 + V (x) generates a uniformly bounded
semigroup in l2

s (N2,L2(T2)), or respectively in Hs(R2), according to Busch et al.
(2006, p. 927). Hence, the error function R = ε−3/2(E − Eans) satisfies an equation
of the form

∂tR = LR + O(ε).

Using the variation of constant formula and Gronwall’s inequality gives the required
O(1) bound for R. For more details see Busch et al. (2006, Sect. 4.2). �

8 Various Generalizations

We have given a detailed justification of the three coupled-mode equations which
describe gap solitons bifurcating in the first band gap of a two-dimensional separable
periodic potential. These equations are generic (structurally stable) for the considered
bifurcation, but they can be modified for other relevant bifurcation problems. We
review here several examples of other bifurcations, where the justification analysis is
expected to be applicable in a similar manner.
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Bifurcations from band edges. If the band edge separates the existing band gap
of finite length and a single or double-degenerate spectral band, the coupled-mode
equations persist without any modifications. A formal derivation is given in the recent
paper (Shi and Yang 2007), where a scalar NLS equation is derived for a single band
and two coupled NLS equations are derived for a double band. Note that the coupled
NLS equations for a double band may have terms destroying the reduction A1 = 0
or A2 = 0 in the truncated system of equations. This happens, for instance, at the
band edge E in the second band gap of a separable symmetric potential (Shi and
Yang 2007). Since the analysis of separable potentials relies on the construction of
one-dimensional Bloch modes and one-dimensional spectral bands, the same analysis
is valid for bifurcations from band edges in one-dimensional problems. The formal
derivation of the NLS equation for a band edge of a single spectral band in the one-
dimensional GP equation was reported in Pelinovsky et al. (2004).

Bifurcations in the higher-order band gaps. With larger values of the parameter η

in the separable potential (1.3), more band gaps open, although the number of band
gaps is always finite for finite η, see Theorem 6.10.5 in Eastham (1973). Since the
bifurcation of new band gaps occurs due to the resonance of finitely many Bloch
modes in the separable potential, a system of finitely-many coupled-mode equations
can be derived similarly in the higher-order band gaps. For instance, the bifurcation of
the second band gap in the symmetric separable potential may occur for a resonance
of either three modes when λ2 +μ1 = 2μ2 < λ1 +λ3 or four modes when λ2 +μ1 =
λ1 + λ3 > 2μ2 or five modes when λ2 + μ1 = λ1 + λ3 = 2μ2.

Bifurcations in asymmetric separable potentials. If the separable potential is asym-
metric, such that

V (x) = η
(

W1(x1) + W2(x2)
)

,

where W1 and W2 are two different functions on x ∈ R, the degeneracy of spectral
bands is broken and bifurcations of the band gaps occur with a smaller number of
resonant Bloch modes. Our analysis remains valid but the spectrum of two differ-
ent one-dimensional Sturm–Liouville problems must be incorporated in the Fourier–
Bloch decomposition. In this case, two coupled-mode equations occur generally for
the bifurcation of the first band gap in the anisotropic separable potential.

Bifurcations in finite-gap potentials. Finite-gap potentials lead to the degeneracy
of eigenvalues of the one-dimensional Sturm–Liouville problem and nonzero deriv-
atives of the functions ρn(k) at the extremal points k = 0 and k = ± 1

2 . Adding a
generic potential breaks the symmetry of the finite-gap potential and leads to the
bifurcation of narrow band gaps in the space of one dimension. The corresponding
coupled-mode equations may have first-order than second-order derivative operators.
A formal derivation of such coupled-mode equations from the Bloch mode decom-
position was considered in de Sterke et al. (1996). Our analysis provides a rigorous
justification of these coupled-mode equations.
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Bifurcation in super-lattices. Let the potential V (x) be represented in the form

V (x) = η0
(

W(x1) + W(x2)
) + ε

(

W̃ (x1) + W̃ (x2)
)

,

where W(x) and η0 are the same as in the separable potential (1.3) and W̃ (x) is a 4π -
periodic potential. The perturbation term W̃ (x) couples resonant Bloch modes of the
potential W(x) by linear terms and destroys reductions A1 = 0, A2 = 0 and A3 = 0
in the differential coupled-mode system. The system is still formulated in the form of
the coupled NLS equations with various (linear and nonlinear) coupling terms.

Bifurcations in three-dimensional periodic problems. The same analysis holds in
three-dimensional separable potentials, since the spectral bands are still enumerated
by a countable number of spectral bands of the one-dimensional potentials. Bifurca-
tions of new band gaps occur again due to a resonance of finitely many Bloch modes
of the one-dimensional potentials.

Bifurcations in nonseparable periodic potentials. At the present time, the general-
ization of the analysis for non-separable periodic potentials meets a technical obstacle
that the bound (3.7) obtained in Busch et al. (2006) is needed to be extended to prob-
lems with two-dimensional periodic potentials.
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