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Abstract
We study the standing periodic waves in the semidis-
crete integrable system modeled by the Ablowitz–Ladik
(AL) equation. We have related the stability spectrum
to the Lax spectrum by separating the variables and by
finding the characteristic polynomial for the standing
periodic waves. We have also obtained rogue waves on
the background of themodulationally unstable standing
periodic waves by using the end points of spectral bands
and the corresponding eigenfunctions. The magnifica-
tion factors for the rogue waves have been computed
analytically and compared with their continuous coun-
terparts. Themain novelty of this work is thatwe explore
a nonstandard linear Lax system, which is different from
the standard Lax representation of the AL equation.
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1 INTRODUCTION

The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems
related to fluids, plasmas, and optics.1,2 Complicated wave patterns can be expressed analytically
by using exact solutions of the NLS equation for periodic and double-periodic standing waves (see
review in Refs. 3, 4). The standing periodic waves are known to be modulationally unstable5,6 and
roguewaves (localized perturbations in space and time) have been observed on their backgrounds
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148 CHEN and PELINOVSKY

in numerical experiments.7,8 Rogue waves are generated due to modulational instability of the
wave background.9,10 The exact solutions for rogue waves arising on the periodic standing waves
were obtained analytically11–13 and confirmed experimentally for fluids and optics.14
It is natural to ask if the modulational instability and rogue waves persist on the standing periodic

waves in the integrable discretizations of the integrable NLS equation. This question has received
much less attention in the literature. The main purpose of our work is to answer this question for
the Ablowitz–Ladik (AL) equation15 written in the normalized form:

𝑖�̇�𝑛 + (1 + |𝑢𝑛|2)(𝑢𝑛+1 + 𝑢𝑛−1) = 0, (1)

where the dot represents the derivative of {𝑢𝑛(𝑡)}𝑛∈ℤ ∈ ℂℤ with respect to the time variable 𝑡 ∈ ℝ,
and 𝑖 =

√
−1. The continuum limit of the AL equation (1) is obtained for slowly varying wave

packets of small amplitude, the leading order of which can be represented as

𝑢𝑛(𝑡) = 𝜀𝔲(𝜀𝑛, 𝜀2𝑡)e2𝑖𝑡, (2)

where 𝜀 > 0 is a formal small parameter. Substituting (2) into (1) and expanding 𝔲(𝑋 ± 𝜀, 𝑇) with
𝑋 = 𝜀𝑛 and 𝑇 = 𝜀2𝑡 in the Taylor series in 𝜀 yield at the formal order of(𝜀3) the continuous NLS
equation in the form:

𝑖𝔲𝑇 + 𝔲𝑋𝑋 + 2|𝔲|2𝔲 = 0. (3)

Rogue waves on the constant-amplitude wave background have been obtained for the AL
equation (1) and related discrete equations in Refs. 16–19. They have been observed in numeri-
cal experiments.20 Higher-order rogue waves have been studied by using the inverse scattering
method.21 Further generalization of these rogue waves to fully discrete integrable NLS equa-
tionwas recently given inRef. 22.Whatwewill develop in thiswork is the construction of roguewaves
on the background of discrete standing periodic waves. The discrete periodic and double-periodic
waves were obtained previously for the AL equation in Refs. 23–25.
In a series of recent works, we have constructed rogue waves on the background of standing

periodic waves in the continuous integrable models including the NLS equation,11,12 the deriva-
tive NLS equation,26,27 the modified Korteweg–de Vries (KdV) equation,28,29 and the sine-Gordon
equation.30 The latest work in this series was the first construction of such rogue waves in the
discrete modified KdV equation.31 In all works, we used the nonlinearization method32,33 which
allowed us to characterize the standing periodic waves as the restriction of solutions of nonlinear
models as squared eigenfunctions of the linear Lax equations.
However, we have failed to characterize the discrete standing periodic waves by using con-

straints of the nonlinearization method for the AL equation (developed in Refs. 34, 35) because
the constraints generate difference equations which are not satisfied by the standing periodic
waves. As a result, we had to develop new ideas based on separation of variables for the
standing periodic waves in the linear Lax equations. This separation of variables is similar
to the approach in Ref. 5 used to characterize the modulational stability of standing periodic
waves in the continuous NLS equation. With this approach, we can obtain analytically the end
points of spectral bands of the Lax spectrum and the corresponding eigenfunctions, which are
then used to obtain the rogue wave solutions on the background of discrete standing periodic
waves.
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CHEN and PELINOVSKY 149

Integrability of the AL equation can be expressed by using two different Lax formulations. The
standard formulation explored previously in the context of roguewaves on the constant-amplitude
wave background16,18,21 is irrelevant for the modulational stability and rogue waves on the stand-
ing periodic waves due to several issues: (i) the location of the Lax spectrum is different; (ii) there
exists no relation between squared eigenfunctions and the linearized AL equation; and conse-
quently, (iii) the rogue waves are not properly defined. On the other hand, we show here that the
alternative formulation related to integrable symplectic map of the nonlinearization method in
Ref. 34 allows us to fix issues (i), (ii), and (iii) and to describe properties of the rogue waves on the
standing periodic wave background. The main novelty of our work is that our results are derived
from nonstandard Lax formulation of the AL equation.
Among possible applications of our main results, we can mention recent studies of breathers

and rogue waves in nonintegrable discrete settings.36 Many numerical results are based on the
homotopy continuation of breathers and rogue waves from their integrable limits expressed by
the AL equation. With the precise construction of the standing periodic waves and their rogue
waves, we can then utilize these solutions in the homotopy continuation toward the nonintegrable
versions of the discrete NLS equations.
The article is organized as follows. Section 2 presents the main results of our computations.

Section 3 establishes the relation between squared eigenfunctions of the linear Lax equations and
solutions of the linearized AL equation. Section 4 presents analytical and numerical approxi-
mations of the Lax and stability spectra. Section 5 gives construction of nonperiodic solutions
of the linear Lax equations in terms of periodic eigenfunctions. Section 6 explains how the
Darboux transformation (DT) is used to obtain the rogue wave solutions from the nonperi-
odic solutions of the linear Lax equations and to study magnification factors of the rogue
waves.

2 LAX PAIR, STANDING PERIODICWAVES, AND ROGUEWAVES

The AL equation (1) can be represented as the compatibility condition for a Lax pair of linear
equations:

𝜑𝑛+1 = 𝑈(𝑢𝑛, 𝜆)𝜑𝑛, �̇�𝑛 = 𝑉(𝑢𝑛, 𝜆)𝜑𝑛, (4)

defined by the matrices

𝑈(𝑢𝑛, 𝜆) =
1√

1 + |𝑢𝑛|2
(

𝜆 𝑢𝑛

−�̄�𝑛 𝜆−1

)

and

𝑉(𝑢𝑛, 𝜆) = 𝑖
⎛⎜⎜⎝
1

2

(
𝜆2 + 𝜆−2 + 𝑢𝑛�̄�𝑛−1 + �̄�𝑛𝑢𝑛−1

)
𝜆𝑢𝑛 − 𝜆−1𝑢𝑛−1

−𝜆�̄�𝑛−1 + 𝜆−1�̄�𝑛 −
1

2

(
𝜆2 + 𝜆−2 + 𝑢𝑛�̄�𝑛−1 + �̄�𝑛𝑢𝑛−1

)⎞⎟⎟⎠,
where {𝜑𝑛}𝑛∈ℤ ∈ (ℂ2)ℤ depends on time 𝑡, 𝜆 ∈ ℂ is a spectral parameter which is constant in 𝑛

and 𝑡, and �̄�𝑛(𝑡) denotes the complex conjugate of 𝑢𝑛(𝑡).
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150 CHEN and PELINOVSKY

Remark 1. There exists a simpler Lax pair,

𝜑𝑛+1 =

(
𝜆 𝑢𝑛

−�̄�𝑛 𝜆−1

)
𝜑𝑛, (5)

and

�̇�𝑛 = 𝑖

( 1

2

(
𝜆2 + 𝜆−2

)
+ 𝑢𝑛�̄�𝑛−1 𝜆𝑢𝑛 − 𝜆−1𝑢𝑛−1

−𝜆�̄�𝑛−1 + 𝜆−1�̄�𝑛 −
1

2

(
𝜆2 + 𝜆−2

)
− �̄�𝑛𝑢𝑛−1

)
𝜑𝑛, (6)

commutativity of which also yields the AL equation (1). We have found that the stability spectrum
of the standing periodic waves can be characterized from the Lax spectrum associated with the
linear system (4) due to the squared eigenfunction relation, however, we did not find the squared
eigenfunction relation for eigenfunctions of the linear system (5)–(6).

We consider the standing wave solution of the AL equation (1) in the form:

𝑢𝑛(𝑡) = 𝑈𝑛e2𝑖𝜔𝑡, (7)

where {𝑈𝑛}𝑛∈ℤ ∈ ℂℤ and 𝜔 ∈ ℝ is a frequency parameter. The AL equation (1) with the standing
wave reduction (7) becomes the second-order difference equation

(1 + |𝑈𝑛|2)(𝑈𝑛+1 + 𝑈𝑛−1) = 2𝜔𝑈𝑛, 𝑛 ∈ ℤ. (8)

It can be integrated with two conserved quantities as in the following lemma.

Lemma 1. Let {𝑈𝑛}𝑛∈ℤ ∈ ℂℤ be a solution of the difference equation (8). Then, the following real-
valued quantities

𝐹0 ∶= 𝑖(𝑈𝑛�̄�𝑛−1 − �̄�𝑛𝑈𝑛−1) (9)

and

𝐹1 ∶= 𝜔(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1) − |𝑈𝑛|2 − |𝑈𝑛−1|2 − |𝑈𝑛|2|𝑈𝑛−1|2 (10)

are independent of 𝑛 ∈ ℤ.

Proof. By multiplying (8) by �̄�𝑛 and subtracting the complex conjugate, we obtain

(1 + |𝑈𝑛|2)[(𝑈𝑛+1�̄�𝑛 − �̄�𝑛+1𝑈𝑛) − (𝑈𝑛�̄�𝑛−1 − �̄�𝑛𝑈𝑛−1)] = 0,

from which conservation of 𝐹0 follows.
Similarly, multiplying (8) by �̄�𝑛−1 and by �̄�𝑛+1 and adding the complex conjugate yield

(1 + |𝑈𝑛|2)|𝑈𝑛+1|2 − 𝜔(𝑈𝑛�̄�𝑛+1 + �̄�𝑛𝑈𝑛+1) = (1 + |𝑈𝑛|2)|𝑈𝑛−1|2 − 𝜔(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1),

from which conservation of 𝐹1 follows. ■
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CHEN and PELINOVSKY 151

Periodic waves with trivial phase are given by real-valued periodic solutions of the difference
equation (8) with 𝐹0 = 0 in (9). Two families were obtained in Ref. 31 (see also Refs. 24, 25), which
we refer to as the “dnoidal” and “cnoidal” waves. The dnoidal waves are given in the form:

𝑈𝑛 =
sn(𝛼; 𝑘)

cn(𝛼; 𝑘)
dn(𝛼𝑛; 𝑘), 𝜔 =

dn(𝛼; 𝑘)

cn2(𝛼; 𝑘)
, (11)

with two parameters of 𝛼 ∈ (0, 𝐾(𝑘)) and 𝑘 ∈ (0, 1), where 𝑘 is the elliptic modulus.

∙ As 𝑘 → 0, the dnoidal wave degenerates to the constant-amplitude wave

𝑈𝑛 = tan(𝛼), 𝜔 = 𝑠𝑒𝑐2(𝛼), 𝛼 ∈
(
0,

𝜋

2

)
. (12)

∙ As 𝑘 → 1, the dnoidal wave degenerates into the solitary wave

𝑈𝑛 = sinh(𝛼)sech(𝛼𝑛), 𝜔 = cosh(𝛼), 𝛼 ∈ (0,∞). (13)

The cnoidal waves are given in the form:

𝑈𝑛 =
𝑘sn(𝛼; 𝑘)

dn(𝛼; 𝑘)
cn(𝛼𝑛; 𝑘), 𝜔 =

cn(𝛼; 𝑘)

dn
2
(𝛼; 𝑘)

, (14)

with two parameters of 𝛼 ∈ (0, 2𝐾(𝑘)) and 𝑘 ∈ (0, 1). The limit 𝑘 → 0 gives the trivial solution,
whereas the limit 𝑘 → 1 gives the same solitary wave (13).
The standing waves in the limit 𝛼 → 0 recover the asymptotic approximation (2) with 𝜀 = 𝛼.

Since

sn(𝛼; 𝑘) = 𝛼 + (𝛼3), cn(𝛼; 𝑘) = 1 −
1

2
𝛼2 + (𝛼4), dn(𝛼; 𝑘) = 1 −

1

2
𝑘2𝛼2 + (𝛼4),

the dnoidal and cnoidal waves of the AL equation (1) yield solutions

𝔲(𝑋, 𝑇) = e𝑖(2−𝑘2)𝑇dn(𝑋; 𝑘), 𝔲(𝑋, 𝑇) = e𝑖(2𝑘2−1)𝑇𝑘cn(𝑋; 𝑘),

which are the dnoidal and cnoidal waves of the continuous NLS equation (3).

Remark 2. Since the continuous NLS equation (3) also has a family of the standing periodic waves
with nontrivial phase,12,5 we conjecture that there exist complex-valued periodic solutions of the
difference equation (8)with𝐹0 ≠ 0 in (9). However, such solutions are not considered in ourwork.

Figures 1 and 2 present the main results which are the rogue waves on the dnoidal and cnoidal
wave backgrounds. We have obtained the rogue waves by using analytical methods with the
following steps:

(i) characterizing end points of the spectral bands associated with standing periodic waves,
(ii) computing the corresponding periodic eigenfunctions for the end-point eigenvalues,
(iii) representing the second solutions of the linear system for the end-point eigenvalues,
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152 CHEN and PELINOVSKY

F IGURE 1 New solutions on the background of the dnoidal wave (11). Left: profiles of 𝑢𝑛 and 𝑣𝑛 ∶= �̂�𝑛

versus 𝛼𝑛 obtained from the onefold Darboux transformation (DT) with the periodic eigenfunctions. Right:
solution surface |�̂�𝑛(𝑡)| versus 𝛼𝑛 and 𝑡 obtained from the onefold DT with the nonperiodic eigenfunctions. Top
and bottom panels show rogue waves for two different end-point eigenvalues of the Lax spectrum.

F IGURE 2 The same as on Figure 1 but for the cnoidal wave (14) for one end-point eigenvalue of the Lax
spectrum.

(iv) performing the onefoldDT on the standing periodic waveswith the periodic and nonperiodic
eigenfunctions in (ii) and (iii).

Numerical approximations are only used to represent the rogue waves graphically.
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CHEN and PELINOVSKY 153

Figure 1 shows the new solutions obtained by using the onefold DT on the background of the
dnoidal wave (11). The top panels correspond to the choice of 𝜆 = 𝜆1 and the bottom panels cor-
respond to the choice of 𝜆 = 𝜆2, see (37) and (38) below. The left panels show the profiles of 𝑢𝑛

and 𝑣𝑛 versus 𝛼𝑛, where 𝑢𝑛 is the dnoidal wave (11) and 𝑣𝑛 is a new solution obtained with the
periodic eigenfunctions after the onefold DT. The new solution is a half-period translation of the
original dnoidal wave with the sign flip for 𝜆 = 𝜆2 and with no sign flip for 𝜆 = 𝜆1. The right pan-
els show the solution surface of |�̂�𝑛(𝑡)| versus 𝛼𝑛 and 𝑡, where �̂�𝑛 is a new solution obtained with
the nonperiodic eigenfunctions after the onefold DT. The new solution is an isolated rogue wave
on the background of the half-period translated dnoidal wave.
As a practical outcome of the exact solutions, we can compute the magnification factor of the

rogue waves as the quotient between the maximal amplitude of the rogue wave and the maximal
amplitude of the dnoidal wave background. We have seen from Figure 1 that the maximal ampli-
tude of the rogue wave is attained at 𝑛 = 0 and 𝑡 = 0, where we have computed analytically the
magnification factor in the closed form:

𝑀dn(𝛼, 𝑘) = 1 +
1 − 𝜎1

√
1 − 𝑘2

dn(𝛼; 𝑘)
, (15)

with 𝜎1 = −1 for 𝜆 = 𝜆1 and 𝜎1 = +1 for 𝜆 = 𝜆2. In the continuum limit 𝛼 → 0, it converges to
𝑀dn(𝛼, 𝑘) → 2 − 𝜎1

√
1 − 𝑘2, which reproduces the correct expression for themagnification factor

of the dnoidal wave in the continuous NLS equation (3) obtained in Ref. 11.
The rogue wave associated with 𝜆1 has a bigger magnification factor than the one associated

with 𝜆2. Since eigenvalues satisfy the order

0 < 𝜆1 < 𝜆2 < 1 < 𝜆−1
2 < 𝜆−1

1 ,

we associate this difference with the fact that 𝜆1 is located further from the unit circle compared
to 𝜆2 in the Lax spectrum of the dnoidal wave, see Section 4. The same rogue waves are computed
from reflected eigenvalues 𝜆−1

1 and 𝜆−1
2 and from negative eigenvalues−𝜆1,−𝜆2,−𝜆−1

1 , and−𝜆−1
2 ,

which exist due to the symmetry of the Lax system (4).
Figure 2 shows the new solutions obtained by using the onefold DT on the background of the

cnoidal wave (14). The profiles of |𝑢𝑛| and |𝑣𝑛| versus 𝛼𝑛 on a single period are shown on the left
panel, where 𝑣𝑛 is a new solution obtained with the periodic eigenfunctions after the onefold DT.
The new solution is a quarter-period translation of the original cnoidal wave with a phase factor.
The solution surface of |�̂�𝑛(𝑡)| versus 𝛼𝑛 and 𝑡 is shown on the right panel, where �̂�𝑛 is a new
solution obtained with the nonperiodic eigenfunctions after the onefold DT. The new solution is
an isolated rogue wave on the background of the quarter-period translated cnoidal wave. Rogue
waves associated with the reflected eigenvalues due to complex conjugation, reflection about the
unit circle, and the sign reflection are displayed by similar solution surfaces since the complex
phase is neglected in plotting of |�̂�𝑛(𝑡)|.
Wehave observed fromFigure 2 that themaximal value of |�̂�𝑛(𝑡)| is not attained at𝑛 = 0 and 𝑡 =

0. However, it is attained at a point located very close to the origin, therefore, a good approximation
of the magnification factor can still be computed at 𝑛 = 0 and 𝑡 = 0, where we have computed
analytically the magnification factor for the rogue wave in the closed form:

𝑀cn(𝛼, 𝑘) = 1 +
1

dn(𝛼; 𝑘)
. (16)
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154 CHEN and PELINOVSKY

In the continuum limit 𝛼 → 0, it converges to 𝑀cn(𝛼, 𝑘) → 2, which reproduces the double
magnification factor of the cnoidal wave in the continuous NLS equation (3) obtained in
Ref. 11.
Note that the magnification factors of the dnoidal and cnoidal waves for the continuous

NLS equation (3) have been verified experimentally in Ref. 14. These main results suggest new
experiments in the discrete setting modeled by the AL equation (1) and other nonintegrable
discretizations of the NLS equation (3).
Among othermain results of thiswork,wemention the squared eigenfunction relation between

solutions of the linearized AL equation and the linear Lax equations (see Lemma 2). This allows
us to connect the Lax spectrum and the stability spectrum and to characterize the periodic eigen-
functions of the linear Lax system from the standing periodic waves (see Corollaries 1 and 2, and
Lemma 3). The Lax spectrum and the stability spectrum for the constant-amplitude wave are
obtained analytically (see Lemma 4). However, we have to approximate the Lax spectrum numer-
ically for the dnoidal and cnoidal waves. It follows from these numerical approximations that both
the dnoidal and cnoidal waves aremodulationally unstable. Finally, we give analytical expressions
for the nonperiodic eigenfunctions in Lemmas 5 and 6 andwe present the onefoldDT in the closed
form in Lemma 7.

3 SPECTRAL STABILITY OF STANDING PERIODICWAVES

Here we will set up the spectral stability problem for the standing periodic waves and relate its
eigenfunctions with squared eigenfunctions of the linear system (4).
The spectral stability of the standing waves of the form (7) in the time evolution of the AL

equation (1) can be studied by adding a perturbation of the form

𝑢𝑛(𝑡) = e2𝑖𝜔𝑡[𝑈𝑛 + 𝑣𝑛(𝑡)]. (17)

Substituting (17) into the AL equation (1) and truncating at the linear terms in 𝑣𝑛 gives rise to the
linearized AL equation

𝑖�̇�𝑛 − 2𝜔𝑣𝑛 + (1 + |𝑈𝑛|2)(𝑣𝑛+1 + 𝑣𝑛−1) + (𝑈𝑛+1 + 𝑈𝑛−1)(𝑈𝑛𝑣𝑛 + �̄�𝑛𝑣𝑛) = 0 (18)

and its complex conjugate equation

−𝑖 ̇̄𝑣𝑛 − 2𝜔𝑣𝑛 + (1 + |𝑈𝑛|2)(𝑣𝑛+1 + 𝑣𝑛−1) + (�̄�𝑛+1 + �̄�𝑛−1)(�̄�𝑛𝑣𝑛 + 𝑈𝑛𝑣𝑛) = 0.

Separation of variables with 𝑣𝑛(𝑡) = 𝑉𝑛eΛ𝑡 and 𝑣𝑛(𝑡) = �̃�𝑛eΛ𝑡, where �̃�𝑛 is no longer a complex
conjugate of 𝑉𝑛 if Λ ∉ ℝ, gives the spectral stability problem in the form:{

𝑖Λ𝑉𝑛 − 2𝜔𝑉𝑛 + (1 + |𝑈𝑛|2)(𝑉𝑛+1 + 𝑉𝑛−1) + (𝑈𝑛+1 + 𝑈𝑛−1)(𝑈𝑛�̃�𝑛 + �̄�𝑛𝑉𝑛) = 0,

−𝑖Λ�̃�𝑛 − 2𝜔�̃�𝑛 + (1 + |𝑈𝑛|2)(�̃�𝑛+1 + �̃�𝑛−1) + (�̄�𝑛+1 + �̄�𝑛−1)(�̄�𝑛𝑉𝑛 + 𝑈𝑛�̃�𝑛) = 0.
(19)

Solutions of the spectral stability problem (19) are computed by using the squared eigenfunctions
of the linear system (4).
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CHEN and PELINOVSKY 155

Let us separate the variables for solutions 𝜑𝑛 = (𝑝𝑛, 𝑞𝑛)
T of the linear system (4) by using

𝑝𝑛(𝑡) = 𝑃𝑛(𝑡)e𝑖𝜔𝑡, 𝑞𝑛(𝑡) = 𝑄𝑛(𝑡)e−𝑖𝜔𝑡. (20)

Substituting (7) and (20) into (4) yields the following linear system:(
𝑃𝑛+1

𝑄𝑛+1

)
=

1√
1 + |𝑈𝑛|2

(
𝜆 𝑈𝑛

−�̄�𝑛 𝜆−1

)(
𝑃𝑛

𝑄𝑛

)
, (21)

and

𝑑

𝑑𝑡

(
𝑃𝑛

𝑄𝑛

)
= 𝑖

(
𝑊𝑛 − 𝜔 𝜆𝑈𝑛 − 𝜆−1𝑈𝑛−1

−𝜆�̄�𝑛−1 + 𝜆−1�̄�𝑛 𝜔 − 𝑊𝑛

)(
𝑃𝑛

𝑄𝑛

)
, (22)

where𝑊𝑛 ∶=
1

2
(𝜆2 + 𝜆−2 + 𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1).

The following lemma presents the squared eigenfunction relation between solutions of the
linearized AL equation (18) and the squared eigenfunctions of the linear system (21)–(22).

Lemma 2. Let {(𝑃𝑛(𝑡), 𝑄𝑛(𝑡))
T}𝑛∈ℤ be a classical solution of the linear system (21)–(22) with an

arbitrary 𝜆 ∈ ℂ and a solution {𝑈𝑛}𝑛∈ℤ of the difference equation (8). Then, {𝑣𝑛(𝑡)}𝑛∈ℤ given by

𝑣𝑛 = 𝜆𝑃2
𝑛 − �̄�−1�̄�2

𝑛 + 𝑈𝑛(𝑃𝑛𝑄𝑛 + �̄�𝑛�̄�𝑛), 𝑛 ∈ ℤ (23)

is a classical solution of the linearized AL equation (18).

Proof. It follows from (21) that(
𝑃𝑛−1

𝑄𝑛−1

)
=

1√
1 + |𝑈𝑛−1|2

(
𝜆−1 −𝑈𝑛−1

�̄�𝑛−1 𝜆

)(
𝑃𝑛

𝑄𝑛

)
. (24)

By using (22) and (23), we obtain

𝑖�̇�𝑛 = 2𝜔𝑣𝑛 − 𝑃2
𝑛(𝜆

3 + 𝜆−1 + 𝜆�̄�𝑛𝑈𝑛−1 + 𝜆−1|𝑈𝑛|2) − 𝑄2
𝑛(𝜆𝑈

2
𝑛 − 𝜆−1𝑈𝑛𝑈𝑛−1)

+ 𝑃𝑛𝑄𝑛

[
−2𝜆2𝑈𝑛 + 𝑈𝑛−1 − 𝑈𝑛+1 − |𝑈𝑛|2(𝑈𝑛+1 + 𝑈𝑛−1)

]
+ �̄�2

𝑛(�̄�
−1𝑈2

𝑛 − �̄�𝑈𝑛𝑈𝑛−1) + �̄�2
𝑛

(
�̄� + �̄�−3 + �̄�−1�̄�𝑛𝑈𝑛−1 + �̄�|𝑈𝑛|2)

+ �̄�𝑛�̄�𝑛

[
−2�̄�−2𝑈𝑛 + 𝑈𝑛−1 − 𝑈𝑛+1 − |𝑈𝑛|2(𝑈𝑛+1 + 𝑈𝑛−1)

]
.

By using (21) and (24), we obtain

(1 + |𝑈𝑛|2)𝑣𝑛+1 = 𝑃2
𝑛(𝜆

3 − 𝜆𝑈𝑛+1�̄�𝑛) + 𝑃𝑛𝑄𝑛

[
2𝜆2𝑈𝑛 + 𝑈𝑛+1(1 − |𝑈𝑛|2)]

+ 𝑄2
𝑛(𝜆𝑈

2
𝑛 + 𝜆−1𝑈𝑛𝑈𝑛+1) − �̄�2

𝑛(�̄�
−1𝑈2

𝑛 + �̄�𝑈𝑛𝑈𝑛+1)

+ �̄�𝑛�̄�𝑛

[
2�̄�−2𝑈𝑛 + 𝑈𝑛+1(1 − |𝑈𝑛|2)] + �̄�2

𝑛(�̄�
−1𝑈𝑛+1�̄�𝑛 − �̄�−3)
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156 CHEN and PELINOVSKY

and

𝑣𝑛−1 = 𝜆−1𝑃2
𝑛 − �̄��̄�2

𝑛 − 𝑈𝑛−1(𝑃𝑛𝑄𝑛 + �̄�𝑛�̄�𝑛).

By using (23), we obtain

𝑈𝑛𝑣𝑛 + �̄�𝑛𝑣𝑛 = 𝜆�̄�𝑛𝑃
2
𝑛 − 𝜆−1𝑈𝑛𝑄

2
𝑛 + �̄�𝑈𝑛�̄�

2
𝑛 − �̄�−1�̄�𝑛�̄�

2
𝑛 + 2|𝑈𝑛|2(𝑃𝑛𝑄𝑛 + �̄�𝑛�̄�𝑛).

When these expressions are substituted into the linearized AL equation (18), all terms cancel out
after direct computations. ■

Two corollaries follow from the result of Lemma 2.

Corollary 1. If the linear system (21)–(22) is solved with the separation of variables as

𝑃𝑛(𝑡) = �̂�𝑛eΩ𝑡, 𝑄𝑛(𝑡) = �̂�𝑛eΩ𝑡, (25)

where {(�̂�𝑛, �̂�𝑛)
T} is 𝑡-independent, then the spectral stability problem (19) is solved with

𝑉𝑛 = 𝜆�̂�2
𝑛 + 𝑈𝑛�̂�𝑛�̂�𝑛, �̃�𝑛 = −𝜆−1�̂�2

𝑛 + �̄�𝑛�̂�𝑛�̂�𝑛, Λ = 2Ω, (26)

where �̃�𝑛 is no longer a complex conjugate of 𝑉𝑛 if Λ ∉ ℝ.

Proof. It follows from (23) that the squared eigenfunction relation yields{
𝑣𝑛 = 𝜆𝑃2

𝑛 − �̄�−1�̄�2
𝑛 + 𝑈𝑛(𝑃𝑛𝑄𝑛 + �̄�𝑛�̄�𝑛),

𝑣𝑛 = �̄��̄�2
𝑛 − 𝜆−1𝑄2

𝑛 + �̄�𝑛(𝑃𝑛𝑄𝑛 + �̄�𝑛�̄�𝑛).

Substituting (25) into these expressions yields a linear superposition of two solutions in the form

𝑣𝑛(𝑡) = 𝑉𝑛eΛ𝑡, 𝑣𝑛(𝑡) = �̃�𝑛eΛ𝑡.

One solution is given by (26) for Λ = 2Ω and another solution is given by

𝑉𝑛 = −�̄�−1 ̄̂𝑄2
𝑛 + 𝑈𝑛

̄̂𝑃𝑛
̄̂𝑄𝑛, �̃�𝑛 = �̄� ̄̂𝑃2

𝑛 + �̄�𝑛
̄̂𝑃𝑛

̄̂𝑄𝑛

for Λ = 2Ω̄. ■

Corollary 2. The spectral parametersΩ and 𝜆 are related by the algebraic equation

Ω2 + 𝑄(𝜆) = 0, (27)

where

𝑄(𝜆) ∶=
1

4

(
𝜆2 + 𝜆−2

)2
− 𝜔

(
𝜆2 + 𝜆−2

)
+ 𝜔2 +

𝑖

2
𝐹0

(
𝜆2 − 𝜆−2

)
−

1

4
𝐹2
0 − 𝐹1.
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CHEN and PELINOVSKY 157

Proof. After separation of variables with (25), the time-evolution problem (22) becomes a linear
algebraic system, which admits a nonzero solution if and only if the determinant of the coefficient
matrix is zero: ||||||

𝑊𝑛 − 𝜔 + 𝑖Ω 𝜆𝑈𝑛 − 𝜆−1𝑈𝑛−1

−𝜆�̄�𝑛−1 + 𝜆−1�̄�𝑛 𝑖Ω + 𝜔 − 𝑊𝑛

|||||| = 0.

Expanding the determinant and using the conserved quantities (9) and (10) yields the algebraic
equation for Ω in the form (27). ■

Remark 3. Corollaries 1 and 2 relate the spectral parameters Λ,Ω, and 𝜆. As a result, the stability
spectrum Λ of the spectral stability problem (19) is fully determined in terms of the Lax spectrum
𝜆 of the spectral problem (21), for which eigenfunctions {(𝑉𝑛, �̃�𝑛)

T}𝑛∈ℤ and {(�̂�𝑛, �̂�𝑛)
T}𝑛∈ℤ are

required to be bounded in 𝑛 ∈ ℤ.

Remark 4. Solving (27) for 𝐹0 = 0, we obtain

Ω = ±
𝑖

2𝜆2

√
𝑃(𝜆), (28)

where

𝑃(𝜆) = 4𝜆4𝑄(𝜆) = 𝜆8 − 4𝜔𝜆6 + 2(1 + 2𝜔2 − 2𝐹1)𝜆
4 − 4𝜔𝜆2 + 1 (29)

is the same polynomial as in our previous work31 up to the definition of𝜔 and 𝐹1. The polynomial
𝑃(𝜆) was obtained in Ref. 31 by using the nonlinearization method, for which a certain relation
between squared eigenfunctions {(𝑃𝑛, 𝑄𝑛)

T}𝑛∈ℤ of the linear system (21)–(22) with some 𝜆 = 𝜆1

and the potential {𝑈𝑛}𝑛∈ℤ is imposed. After the relation is imposed for the discrete modified
KdV equation, the Lax system becomes nonlinear and the potential satisfies a second-order differ-
ence equation (8) which is satisfied by the periodic waves with trivial phase. Integrability of both
the nonlinear Lax system and the difference equation results in the construction of the polynomial
𝑃(𝜆) with 𝜆1 being a root of 𝑃(𝜆).31

Remark 5. We were not able to recover the standing periodic waves by using the nonlinearization
method for the Lax system (21)–(22) associated with the AL equation (1), which was developed in
Ref. 34. The relation between the squared eigenfunctions and the potential imposes constraints
which do not recover the second-order difference equation (8) for the standing periodic waves
of the AL equation. Consequently, we have obtained the polynomial 𝑃(𝜆) by using separation of
variables for the standing periodic waves without relation to the nonlinearization method. Note
that the separation of variables does not work for the discrete modified KdV equation considered
in Ref. 31.

The following lemma presents relations between the squared eigenfunctions {(𝑃𝑛, 𝑄𝑛)
T}𝑛∈ℤ of

the linear system (21)–(22)with 𝜆 = 𝜆1 being a root of𝑃(𝜆) and the potential {𝑈𝑛}𝑛∈ℤ satisfying (8),
(9), and (10) with 𝐹0 = 0. In the case of the real-valued potentials (e.g., for the standing periodic
waves with trivial phase), these relations recover those obtained in Ref. 31 with the nonlineariza-
tion method. Since the nonlinearization method does not work for the AL equation (1), we have
established these relations by using substitutions.
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158 CHEN and PELINOVSKY

Lemma 3. Let {𝑈𝑛}𝑛∈ℤ ∈ ℂℤ be a solution of (8), (9), and (10) with 𝐹0 = 0. Let 𝜆1 ∈ ℂ be a root of
the polynomial 𝑃(𝜆) in (29) and define

𝜔 =
1

2
(𝜆2

1 + 𝜆−2
1 ) + 𝜎1

√
𝐹1 (30)

with 𝜎1 = ±1. Then, the eigenfunction {(𝑃𝑛, 𝑄𝑛)
T}𝑛∈ℤ of the linear system (21)–(22) with 𝜆 = 𝜆1 is

given up to a multiplicative constant by

⎧⎪⎨⎪⎩
𝑃2
𝑛 = 𝜆1𝑈𝑛 − 𝜆−1

1 𝑈𝑛−1,

𝑄2
𝑛 = 𝜆1�̄�𝑛−1 − 𝜆−1

1 �̄�𝑛,

𝑃𝑛𝑄𝑛 = 𝜎1

√
𝐹1 −

1

2
(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1).

(31)

Proof. Relation (30) is found by solving 𝑃(𝜆1) = 0 in 𝜔 and picking one of the two squared roots.
Since the root of 𝑃(𝜆) corresponds to Ω = 0, it follows from (22) with 𝜆 = 𝜆1 that 𝑃𝑛 and 𝑄𝑛 are
related by

1

2
(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1 − 2𝜎1

√
𝐹1)𝑃𝑛 + (𝜆1𝑈𝑛 − 𝜆−1

1 𝑈𝑛−1)𝑄𝑛 = 0.

Multiplying this relation by 𝑃𝑛 and by 𝑄𝑛 verifies the relations (31) in view of (9) with 𝐹0 = 0

and (10). The relations (31) are compatible with the spectral problem (21), which results in the
constraints

(1 + |𝑈𝑛|2)𝑃2
𝑛+1 = 𝜆2

1𝑃
2
𝑛 + 2𝜆1𝑈𝑛𝑃𝑛𝑄𝑛 + 𝑈2

𝑛𝑄
2
𝑛,

(1 + |𝑈𝑛|2)𝑄2
𝑛+1 = �̄�2

𝑛𝑃
2
𝑛 − 2𝜆−1

1 �̄�𝑛𝑃𝑛𝑄𝑛 + 𝜆−2
1 𝑄2

𝑛,

(1 + |𝑈𝑛|2)𝑃𝑛+1𝑄𝑛+1 = −𝜆1�̄�𝑛𝑃
2
𝑛 + (1 − |𝑈𝑛|2)𝑃𝑛𝑄𝑛 + 𝜆−1

1 𝑈𝑛𝑄
2
𝑛.

Substituting (31) into these relations yields identities by using (8) and (30). ■

Remark 6. Both 𝑈𝑛 and (𝑃𝑛, 𝑄𝑛)
T in Lemma 3 are independent of time 𝑡. Although the dnoidal

and cnoidalwaves have real-valued profile {𝑈𝑛}𝑛∈ℤ ∈ ℝℤ, Lemma3 also holds for complex-valued
profiles with 𝐹0 = 0.

Remark 7. The eigenfunction {(𝑃𝑛, 𝑄𝑛)
T}𝑛∈ℤ in Lemma 2 is defined for an arbitrary value of 𝜆 ∈ ℂ.

The eigenfunction {(𝑃𝑛, 𝑄𝑛)
T}𝑛∈ℤ in Lemma 3 is defined for the root 𝜆 = 𝜆1 of the polynomial

𝑃(𝜆) in (29). The latter eigenfunction generates solutions of the spectral stability problem (19) by
Corollaries 1 and 2 with Λ = 0.

4 LAX AND STABILITY SPECTRA FOR PERIODICWAVESWITH
TRIVIAL PHASE

Here we construct the Lax spectrum and the stability spectrum for the constant-amplitude wave
(12), the dnoidal wave (11), and the cnoidal wave (14). The stability result for the constant-
amplitude wave (12) is obtained with the band-limited Fourier transform. The stability results
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CHEN and PELINOVSKY 159

for the dnoidal and cnoidal waves are obtained with the assistance of numerical approximations
of the Lax spectrum from the spectral problem (21).

4.1 Constant-amplitude wave

We set𝑈𝑛 = 𝐴with𝐴 = tan(𝛼) and𝜔 = sec2(𝛼) for 𝛼 ∈ (0,
𝜋

2
) as follows from (12). The following

lemma gives the exact location of the Lax spectrum and the stability spectrum for the constant-
amplitude wave.

Lemma 4. The Lax spectrum 𝜆 of the spectral problem (21) with 𝑈𝑛 = tan(𝛼) and 𝜔 = sec2(𝛼)

consists of the unit circle in ℂ and two segments on the real axis:

[−
√

𝜔 −
√

𝜔 − 1,−
√

𝜔 +
√

𝜔 − 1] ∪ [
√

𝜔 −
√

𝜔 − 1,
√

𝜔 +
√

𝜔 − 1].

The stability spectrum Λ of the spectral problem (19) consists of the segment [−2(𝜔 − 1), 2(𝜔 − 1)]

on the real axis and the segment [−4𝑖
√

𝜔, 4𝑖
√

𝜔] on the purely imaginary axis.

Proof. We solve the spectral problem (21) with constant𝑈𝑛 = 𝐴 by using the band-limited Fourier
transform

𝑃𝑛 =
1

2𝜋 ∫
2𝜋

0

�̂�(𝜃)e𝑖𝜃𝑛𝑑𝜃, 𝑄𝑛 =
1

2𝜋 ∫
2𝜋

0

�̂�(𝜃)e𝑖𝜃𝑛𝑑𝜃.

A nontrivial solution for (�̂�(𝜃), �̂�(𝜃))T exists if and only if the following characteristic equation is
satisfied: ||||||

√
1 + 𝐴2e𝑖𝜃 − 𝜆 −𝐴

𝐴
√

1 + 𝐴2e𝑖𝜃 − 𝜆−1

|||||| = 0.

This yields √
1 + 𝐴2e𝑖𝜃

[
2
√

1 + 𝐴2 cos(𝜃) − 𝜆 − 𝜆−1
]
= 0,

which is equivalent to 𝑧 ∶= 𝜆 + 𝜆−1 = 2
√

1 + 𝐴2 cos(𝜃) = 2
√

𝜔 cos(𝜃). When 𝜃 = 0, two roots of
the quadratic equation 𝜆 + 𝜆−1 = 2

√
𝜔 are given by 𝜆 =

√
𝜔 +

√
𝜔 − 1 and 𝜆 =

√
𝜔 −

√
𝜔 − 1.

When 𝜃 changes in the interval [0, 2𝜋], the two roots of the quadratic equation cover the two
segments on the real axis and the unit circle in ℂ.
The stability spectrum (19) with constant 𝑈𝑛 = 𝐴 is written in the form:{

𝑖Λ𝑉𝑛 − 2𝜔𝑉𝑛 + (1 + 𝐴2)(𝑉𝑛+1 + 𝑉𝑛−1) + 2𝐴2(𝑉𝑛 + �̃�𝑛) = 0,

−𝑖Λ�̃�𝑛 − 2𝜔�̃�𝑛 + (1 + 𝐴2)(�̃�𝑛+1 + �̃�𝑛−1) + 2𝐴2(𝑉𝑛 + �̃�𝑛) = 0.

Using the band-limited Fourier transform with parameter 2𝜃 instead of 𝜃, we obtain a
nontrivial solution for (�̂�(𝜃), ̂̃𝑉(𝜃))T if and only if the following characteristic equation is
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160 CHEN and PELINOVSKY

satisfied:

|||||2(1 + 𝐴2) cos(2𝜃) − 2𝜔 + 2𝐴2 + 𝑖Λ 2𝐴2

2𝐴2 2(1 + 𝐴2) cos(2𝜃) − 2𝜔 + 2𝐴2 − 𝑖Λ

||||| = 0,

which implies for Λ = 2Ω that

Ω = ±𝑖
√

((1 + 𝐴2) cos(2𝜃) + 𝐴2 − 𝜔)2 − 𝐴4. (32)

Since 𝜔 = 1 + 𝐴2, we obtain that

Ω = ±2𝑖
√

𝜔 sin(𝜃)
√

1 − 𝜔 cos2(𝜃).

When 𝜃 ∈ [0, arccos(𝜔−1∕2)], the values of Ω cover the segment [−(𝜔 − 1), (𝜔 − 1)] on the real
axis, where the maximal value is found from the extremal value of 𝜃 ↦ sin(𝜃)

√
𝜔 cos2(𝜃) − 1

located at 𝜃0 =
1

2
arccos(𝜔−1), for which

sin 𝜃0 =

√
𝜔 − 1√
2𝜔

, cos 𝜃0 =

√
𝜔 + 1√
2𝜔

.

When 𝜃 ∈ [arccos(𝜔−1∕2),
𝜋

2
], the values of Ω cover the segment [−2𝑖

√
𝜔, 2𝑖

√
𝜔] on the purely

imaginary axis, where the maximal value is attained at 𝜃 =
𝜋

2
. This yields the result for Λ since

Λ = 2Ω. ■

Remark 8. The explicit expression (32) for Ω is consistent with the representation (28) for 𝐹1 =

𝐴4 = (1 − 𝜔)2 and 𝑧 = 𝜆 + 𝜆−1 = 2
√

𝜔 cos(𝜃) since

Ω = ±
𝑖

2

√
𝜆4 − 4𝜔𝜆2 + 2(1 + 2𝜔2 − 2𝐹1) − 4𝜔𝜆−2 + 𝜆−4

= ±
𝑖

2

√
𝑧4 − 4(1 + 𝜔)𝑧2 + 4(1 + 2𝜔 + 𝜔2 − 𝐹1)

= ±2𝑖
√

𝜔
√

𝜔 cos4(𝜃) − (1 + 𝜔) cos2(𝜃) + 1

= ±2𝑖
√

𝜔 sin(𝜃)
√

1 − 𝜔 cos2(𝜃),

which recovers (32).

Remark 9. It follows from Lemma 4 that the constant-amplitude wave (12) is modulationally
unstable with the maximal growth rate being Λ0 = 2(𝜔 − 1) = 2𝐴2. The maximal growth rate
coincides exactly with themaximal growth rateΛ0 = 2 of the constant-amplitude wave𝔲(𝑋, 𝑇) =

e2𝑖𝑇 of the continuous NLS equation (3), where the parameter 𝐴 > 0 is included in the formal
scaling 𝜖 = 𝐴.
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CHEN and PELINOVSKY 161

F IGURE 3 Lax spectrum (left) and its zoom (right) for the dnoidal wave with 𝛼 = 𝐾(𝑘)∕𝑀 with𝑀 = 20 for
𝑘 = 0.8. Red dots show roots of 𝑃(𝜆).

4.2 Dnoidal wave

We set𝑈𝑛 = 𝐴dn(𝛼𝑛; 𝑘) according to (11) with𝐴 = sn(𝛼; 𝑘)∕cn(𝛼; 𝑘) and look for nontrivial solu-
tions of the spectral problem (21) for which {(𝑃𝑛, 𝑄𝑛)

T}𝑛∈ℤ is a bounded sequence as |𝑛| → ∞.
Using the equivalent spectral problem (24) with real 𝑈𝑛, we rewrite the spectral problem in the
symmetric form:

⎧⎪⎨⎪⎩
√

1 + 𝑈2
𝑛𝑃𝑛+1 +

√
1 + 𝑈2

𝑛−1𝑃𝑛−1 − (𝑈𝑛 − 𝑈𝑛−1)𝑄𝑛 = 𝑧𝑃𝑛,√
1 + 𝑈2

𝑛𝑄𝑛+1 +
√

1 + 𝑈2
𝑛−1𝑄𝑛−1 + (𝑈𝑛 − 𝑈𝑛−1)𝑃𝑛 = 𝑧𝑄𝑛,

(33)

where 𝑧 ∶= 𝜆 + 𝜆−1.
The dnoidal function dn(𝜉; 𝑘) has the period of 2𝐾(𝑘). If 𝛼 = 𝐾(𝑘)∕𝑀 for integer 𝑀, then

𝑈𝑛+2𝑀 = 𝑈𝑛 so that we can use the discrete Floquet theory and set

𝑃𝑛 = �̂�𝑛(𝜃)e𝑖𝜃𝑛, 𝑄𝑛 = �̂�𝑛(𝜃)e𝑖𝜃𝑛, (34)

with periodic �̂�𝑛+2𝑀(𝜃) = �̂�𝑛(𝜃), �̂�𝑛+2𝑀(𝜃) = �̂�𝑛(𝜃) for fixed Floquet parameter 𝜃 ∈ [0, 𝜋∕𝑀].
Solving the 4𝑀 × 4𝑀 matrix eigenvalue problem numerically gives the spectrum of 4𝑀

eigenvalues 𝑧 which are then traced by changing 𝜃 in [0, 𝜋∕𝑀].
The Lax (Floquet) spectrum of the spectral problem (33) for 𝑘 = 0.8 and 𝑀 = 20 is shown in

Figure 3 on the 𝜆-plane. The admissible values of 𝜆 are found from invertion of 𝑧 = 𝜆 + 𝜆−1 with
two roots

𝜆 =
𝑧 ±

√
𝑧2 − 4

2
. (35)

The red dots on the 𝜆-plane show zeros {±𝜆1, ±𝜆−1
1 , ±𝜆2, ±𝜆−1

2 } of the polynomial 𝑃(𝜆) in (29) with

𝜔 =
dn(𝛼; 𝑘)

cn2(𝛼; 𝑘)
and 𝐹1 = (1 − 𝑘2)

sn4(𝛼; 𝑘)

cn4(𝛼; 𝑘)
. (36)
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162 CHEN and PELINOVSKY

F IGURE 4 Left: Stability spectrum in the Ω plane for the dnoidal wave with 𝛼 = 𝐾(𝑘)∕𝑀 with𝑀 = 20 for
𝑘 = 0.8. Right: Ω0∕𝛼

2 versus parameter 𝛼 for fixed 𝑘 = 0.8 (dots) and the constant value
√

1 − 𝑘2 (dotted line).

Applying the ordering 0 < 𝜆1 < 𝜆2 < 1, the two roots 𝜆1 and 𝜆2 were obtained in Ref. 31 in the
explicit form:

𝜆1 =

√
(1 − sn(𝛼; 𝑘))

(
dn(𝛼; 𝑘) −

√
1 − 𝑘2sn(𝛼; 𝑘)

)
cn(𝛼; 𝑘)

, 𝜎1 = −1 (37)

and

𝜆2 =

√
(1 − sn(𝛼; 𝑘))

(
dn(𝛼; 𝑘) +

√
1 − 𝑘2sn(𝛼; 𝑘)

)
cn(𝛼; 𝑘)

, 𝜎1 = +1. (38)

The choice of 𝜎1 refers to the relation (30) when either 𝜆1 or 𝜆2 are taken in place of 𝜆1. The left
panel suggests that the Lax spectrum consists of the unit circle and four segments on the real axis
between the eight real roots of 𝑃(𝜆). The right panel shows the zoomed version to indicate that
the spectral bands are connected between the roots.
The left panel of Figure 4 shows the stability spectrum in theΩ plane, where we recall thatΛ in

the spectral stability problem (19) is given byΛ = 2Ω in Corollary 1. We relate the values ofΩ and
𝑧 by using (28)–(29) with the substitution 𝑧2 = 𝜆2 + 𝜆−2 + 2. This yields the explicit expression

Ω = ±
𝑖

2

√
𝑧4 − 4(1 + 𝜔)𝑧2 + 4(1 + 2𝜔 + 𝜔2 − 𝐹1). (39)

The values of 𝑧 are obtained from the Lax spectrum computed numerically from the spectral prob-
lem (33). Since the stability spectrum include the band on the positive real axis of Ω, the dnoidal
wave is modulationally unstable similar to the constant-amplitude wave in Remark 8.
The right panel of Figure 4 shows Γ ∶= Ω0∕𝛼

2 versus 𝛼, where Ω0 is the maximal positive Ω

of the stability spectrum in theΩ plane. The numerically obtained values are shown by blue dots.
The red dashed line shows the constant value

√
1 − 𝑘2 which is the maximal positive Ω of the

dnoidal waves in the continuous NLS equation (3).12 As 𝑘 → 0, this limiting value agrees with the
value Ω0 = Λ0∕2 = 1 in Remark 9.
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CHEN and PELINOVSKY 163

F IGURE 5 Lax spectrum (left) and stability spectrum on the Ω plane (right) for the cnoidal wave with
𝛼 = 𝐾(𝑘)∕𝑀 with𝑀 = 20 for 𝑘 = 0.8 (top) and 𝑘 = 0.95 (bottom).

4.3 Cnoidal wave

We set𝑈𝑛 = 𝐴cn(𝛼𝑛; 𝑘) according to (14) with𝐴 = 𝑘sn(𝛼; 𝑘)∕dn(𝛼; 𝑘) and look for bounded solu-
tions of the spectral problem (33) in the form (34). Figure 5 shows the Lax spectrum (left) and the
stability spectrum (right) for the cnoidal wave with 𝑘 = 0.8 (top) and 𝑘 = 0.95 (bottom). The red
dots on the 𝜆-plane show again zeros {±𝜆1, ±𝜆−1

1 , ±�̄�1, ±�̄�−1
1 } of the polynomial 𝑃(𝜆) in (29) with

𝜔 =
cn(𝛼; 𝑘)

dn
2
(𝛼; 𝑘)

, 𝐹1 = −𝑘2(1 − 𝑘2)
sn4(𝛼; 𝑘)

dn
4
(𝛼; 𝑘)

. (40)

The complex value of 𝜆1 was obtained in Ref. 31 in the explicit form:

𝜆1 =

√
(1 − 𝑘sn(𝛼; 𝑘))(cn(𝛼; 𝑘) + 𝑖

√
1 − 𝑘2sn(𝛼; 𝑘))

dn(𝛼; 𝑘)
, 𝜎1 = +1. (41)

The numerical results suggest that the Lax spectrum consists of the unit circle and four com-
plex bands which are either connected across the unit circle for 𝑘 = 0.8 or connected away from
the unit circle for 𝑘 = 0.95. The stability spectrum in both cases displays the figure-eight insta-
bility bands in addition to two finite segments along the imaginary axis, boundary of which are
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164 CHEN and PELINOVSKY

beyond the margins of the right panels. The segments on the imaginary axis intersect the figure-
eight bands for 𝑘 = 0.8 and avoid intersection for 𝑘 = 0.95. Because the figure-eight instability
bands intersect the origin, the cnoidal wave is also declared to be modulationally unstable with a
different instability pattern compared to the dnoidal wave.
We admit that the resolution of numerical data is poor near the origin on the right panels of

Figure 5 because resolution of the Lax spectrum is poor near the points ±1 on the left panels. It is
likely that sensitivity of numerical detected eigenvalues is related to evaluating the square roots
in (35) and (39) near 𝑧 = ±2.

5 NONPERIODIC SOLUTIONS OF LINEAR EQUATIONS

Since the dnoidal and cnoidal waves are modulationally unstable, as is shown in Section 4
based on numerical approximations of the Lax spectrum, we expect the existence of rogue waves
(spatially and temporally localized solutions) on the modulationally unstable background. Such
solutions were obtained for the continuous NLS equation in Refs. 11–13 and for other related
continuous equations in Refs. 26, 29, 30, 37.
To obtain the rogue waves, as we do in Section 6 by using the analytical theory, we will consider

here eigenfunctions of the linear system (21)–(22) for the eigenvalue 𝜆 = 𝜆1 given by a root of the
polynomial 𝑃(𝜆) in (29). Since any root of 𝑃(𝜆) is suitable, this notation for 𝜆1 is abstract and is
not related to the particular choices in (37), (38), or (41).
According to the relations (31), the squared eigenfunctions corresponding to the eigenvalue 𝜆 =

𝜆1 are periodic. In addition to the periodic eigenfunctions, we construct here the second solution
of the linear equations (21)–(22) which are unbounded both in 𝑛 ∈ ℤ and 𝑡 ∈ ℝ.
The following lemma gives a construction of the second solution of the linear equations (21)–

(22) for an eigenvalue 𝜆 = 𝜆1.

Lemma 5. Let {(𝑃𝑛(𝑡), 𝑄𝑛(𝑡))
T}𝑛∈ℤ be the eigenfunction of the linear system (21)–(22) for an eigen-

value 𝜆 = 𝜆1. The second solution {(�̂�𝑛(𝑡), �̂�𝑛(𝑡))
T}𝑛∈ℤ of the linear system (21)–(22) for the same

eigenvalue 𝜆 = 𝜆1 can be represented in the form

�̂�𝑛(𝑡) = 𝑃𝑛(𝑡)𝜃𝑛(𝑡) −
�̄�𝑛(𝑡)|𝑃𝑛(𝑡)|2 + |𝑄𝑛(𝑡)|2 , �̂�𝑛(𝑡) = 𝑄𝑛(𝑡)𝜃𝑛(𝑡) +

�̄�𝑛(𝑡)|𝑃𝑛(𝑡)|2 + |𝑄𝑛(𝑡)|2 , (42)

where 𝜃𝑛(𝑡) is a solution of the linear equations

𝜃𝑛+1 − 𝜃𝑛 =
(|𝜆1|2 − 1)(�̄�1𝑈𝑛�̄�

2
𝑛 − 𝜆1�̄�𝑛�̄�

2
𝑛 − (1 + |𝜆1|2)�̄�𝑛�̄�𝑛)

(|𝑃𝑛|2 + |𝑄𝑛|2)Δ𝑛
(43)

and
𝑑𝜃𝑛

𝑑𝑡
=

𝑖(|𝜆1|2 − 1)Σ𝑛|𝜆1|2(|𝑃𝑛|2 + |𝑄𝑛|2)2 (44)

with

Δ𝑛 ∶= |𝜆1|4|𝑃𝑛|2 + |𝑄𝑛|2 + |𝜆1|2|𝑈𝑛|2(|𝑃𝑛|2 + |𝑄𝑛|2) + (|𝜆1|2 − 1)(�̄�1𝑈𝑛�̄�𝑛𝑄𝑛 + 𝜆1�̄�𝑛𝑃𝑛�̄�𝑛),

Σ𝑛 ∶= (𝜆1𝑈𝑛 + �̄�1𝑈𝑛−1)�̄�
2
𝑛 + (�̄�1�̄�𝑛 + 𝜆1�̄�𝑛−1)�̄�

2
𝑛 − (1 + |𝜆1|−2)(𝜆2

1 − �̄�2
1)�̄�𝑛�̄�𝑛.
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CHEN and PELINOVSKY 165

Proof. We obtain from (21) that

|𝑃𝑛+1|2 + |𝑄𝑛+1|2 =
|𝜆1𝑃𝑛 + 𝑈𝑛𝑄𝑛|2 + |𝜆−1

1 𝑄𝑛 − �̄�𝑛𝑃𝑛|2
1 + |𝑈𝑛|2 . (45)

If (𝑃𝑛, 𝑄𝑛)
T and (�̂�𝑛, �̂�𝑛)

T satisfy the linear equation (21), then expression (42) implies that {𝜃𝑛}𝑛∈ℤ

is a solution of

(𝜆1𝑃𝑛 + 𝑈𝑛𝑄𝑛)(𝜃𝑛+1 − 𝜃𝑛) =
𝑈𝑛�̄�𝑛 − 𝜆1�̄�𝑛|𝑃𝑛|2 + |𝑄𝑛|2 −

𝑈𝑛�̄�𝑛 − �̄�−1
1 �̄�𝑛|𝑃𝑛+1|2 + |𝑄𝑛+1|2 .

Substituting (45) and dividing by (𝜆1𝑃𝑛 + 𝑈𝑛𝑄𝑛) yield (43) after simplifications.
We obtain from (22) that

𝑑

𝑑𝑡
(|𝑃𝑛|2 + |𝑄𝑛|2) = 𝑖(𝑊𝑛 − �̄�𝑛)(|𝑃𝑛|2 − |𝑄𝑛|2)

+ 𝑖
[
(𝜆1 − �̄�−1

1 )𝑈𝑛 + (�̄�1 − 𝜆−1
1 )𝑈𝑛−1

]
�̄�𝑛𝑄𝑛

− 𝑖
[
(�̄�1 − 𝜆−1

1 )�̄�𝑛 + (𝜆1 − �̄�−1
1 )�̄�𝑛−1

]
𝑃𝑛�̄�𝑛. (46)

If (𝑃𝑛, 𝑄𝑛)
T and (�̂�𝑛, �̂�𝑛)

T satisfy the linear equation (22), then substituting (42) and (46) into (22)
and dividing by 𝑃𝑛 yield (44) after simplifications. ■

Remark 10. The result of Lemma 5 does not use the relations (31). In other words, 𝜆1 in Lemma 5
does not have to be a root of 𝑃(𝜆) in (29).

If we use the relations (31) as inRemark 10, thenwe can simplify the relations (43) and (44). This
is done separately for the case of dnoidal and cnoidal waves. The following lemma summarizes
the results of these computations.

Lemma 6. Let {𝑈𝑛}𝑛∈ℤ be either the dnoidal or cnoidal waves given by (11) or (14) and 𝜆1 be a root
of the polynomial 𝑃(𝜆) in (29). Then, 𝜃𝑛(𝑡) = Θ𝑛 + 𝑖𝑡 in the representation (42) with {Θ𝑛}𝑛∈ℤ being
a time-independent solution of the difference equations:

𝜃𝑛+1 − 𝜃𝑛 =
(𝜆1 + 𝜆−1

1 )(|𝑈𝑛|2 − 𝜎1

√
𝐹1)

(𝜆1 − 𝜆−1
1 )(𝐹1 + 2(1 + 𝜔)|𝑈𝑛|2 + |𝑈𝑛|4) (47)

or

𝜃𝑛+1 − 𝜃𝑛 =
(|𝜆1|2 − 1)(�̄�1𝜆

−1
1 + �̄�−2

1 )|𝑈𝑛|2 +
√

𝐹1(|𝜆1|2 − |𝜆1|−2)

Γ𝑛
, (48)

with

Γ𝑛 = |𝑈𝑛|2(|𝜆1|4 + |𝜆1|−4 + 2|𝑈𝑛−1|2 − 2|𝑈𝑛|2) + 2|𝑈𝑛−1|2
+ (|𝜆1|2 + |𝜆1|−2)

(|𝑈𝑛|4 − 𝐹1 − �̄�1𝜆
−1
1 �̄�𝑛𝑈𝑛−1 − 𝜆1�̄�

−1
1 𝑈𝑛�̄�𝑛−1

)
where (47) and (48) correspond to the dnoidal or cnoidal waves, respectively.
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166 CHEN and PELINOVSKY

Proof. For the cnoidal wave, we assume that 𝜆1 ∈ ℂ is given by (41), whereas 𝜔 > 0 and 𝐹1 < 0

are given by (40). It follows from (30) with 𝜎1 = 1 and 𝐹1 < 0 that

𝜆2
1 + 𝜆−2

1 + �̄�2
1 + �̄�−2

1 = 4𝜔,

𝜆2
1 + 𝜆−2

1 − �̄�2
1 − �̄�−2

1 = −4
√

𝐹1.
(49)

It follows from (31) with 𝜎1 = 1, 𝐹0 = 0, and 𝐹1 < 0 that

(|𝑃𝑛|2 + |𝑄𝑛|2)2 = |𝜆1𝑈𝑛 − 𝜆−1
1 𝑈𝑛−1|2 + |𝜆1�̄�𝑛−1 − 𝜆−1

1 �̄�𝑛|2 +
1

2
(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1)

2 − 2𝐹1

= (|𝜆1|2 + |𝜆1|−2)(|𝑈𝑛|2 + |𝑈𝑛−1|2) − 2𝜆−1
1 �̄�1�̄�𝑛𝑈𝑛−1 − 2𝜆1�̄�

−1
1 𝑈𝑛�̄�𝑛−1

+ 2|𝑈𝑛|2|𝑈𝑛−1|2 − 2𝐹1.

Similarly, we obtain from (31) that

(1 − |𝜆1|−2)Σ𝑛 = (|𝜆1|2 − 2 + |𝜆1|−2)(|𝑈𝑛|2 + |𝑈𝑛−1|2) + 2�̄�1(�̄�1 − 𝜆−1
1 )�̄�𝑛𝑈𝑛−1

+ 2�̄�−1
1 (�̄�−1

1 − 𝜆1)𝑈𝑛�̄�𝑛−1 +
1

2
(𝜆2

1 + 𝜆−2
1 − �̄�2

1 − �̄�−2
1 )(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1 + 2

√
𝐹1),

where we have used that
√

𝐹1 ∈ 𝑖ℝ. By using 𝐹0 = 0 and (49), we can simplify the previous
expression to the form:

(1 − |𝜆1|−2)Σ𝑛 = (|𝜆1|2 − 2 + |𝜆1|−2)(|𝑈𝑛|2 + |𝑈𝑛−1|2) − 2�̄�1𝜆
−1
1 �̄�𝑛𝑈𝑛−1 − 2�̄�−1

1 𝜆1𝑈𝑛�̄�𝑛−1

+
1

2
(𝜆2

1 + 𝜆−2
1 − �̄�2

1 − �̄�−2
1 )(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1 + 2

√
𝐹1)

= (|𝜆1|2 − 2 + |𝜆1|−2)(|𝑈𝑛|2 + |𝑈𝑛−1|2) − 2�̄�1𝜆
−1
1 �̄�𝑛𝑈𝑛−1 − 2�̄�−1

1 𝜆1𝑈𝑛�̄�𝑛−1

+ 2𝜔(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1) − 4𝐹1.

Due to the conservation (10), this implies that (1 − |𝜆1|−2)Σ𝑛 = (|𝑃𝑛|2 + |𝑄𝑛|2)2 and hence
(44) becomes a trivial equation �̇�𝑛 = 𝑖, with the solution 𝜃𝑛(𝑡) = Θ𝑛 + 𝑖𝑡, where Θ𝑛 is 𝑡-
independent. To get {Θ𝑛}𝑛∈ℤ, we substitute (31) into (43) and simplify the result with a
lengthy but direct computation to the form (48), where we have used that 𝜎1 = 1, 𝐹0 = 0, and√

𝐹1 ∈ 𝑖ℝ.
For the dnoidal wave, we assume that 𝜆1 ∈ ℝ is given by either (37) or (38), whereas 𝜔 > 0 and

𝐹1 > 0 are given by (36). Without loss of generality, we consider (37) with 𝜎1 = −1. It follows from
(31) with 𝜎1 = −1 that

(|𝑃𝑛|2 + |𝑄𝑛|2)2 = (𝜆2
1 + 𝜆−2

1 )(|𝑈𝑛|2 + |𝑈𝑛−1|2) + 1

2
(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1 + 2

√
𝐹1)

2

− 2(𝑈𝑛�̄�𝑛−1 + �̄�𝑛𝑈𝑛−1)

= (𝜆2
1 + 𝜆−2

1 − 2)(�̄�𝑛𝑈𝑛−1 + 𝑈𝑛�̄�𝑛−1 + |𝑈𝑛|2 + |𝑈𝑛−1|2)
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CHEN and PELINOVSKY 167

and

(1 − 𝜆−2
1 )Σ𝑛 = (𝜆2

1 + 𝜆−2
1 − 2)(|𝑈𝑛|2 + |𝑈𝑛−1|2) + 2(𝜆2

1 − 1)�̄�𝑛𝑈𝑛−1 − 2(1 − 𝜆−2
1 )𝑈𝑛�̄�𝑛−1

= (𝜆2
1 + 𝜆−2

1 − 2)(�̄�𝑛𝑈𝑛−1 + 𝑈𝑛�̄�𝑛−1 + |𝑈𝑛|2 + |𝑈𝑛−1|2),
where we have used (9) and (10) with 𝐹0 = 0 and 𝐹1 > 0 and (30) with 𝜎1 = −1. Thus, we have
(1 − 𝜆−2

1 )Σ = (|𝑃𝑛|2 + |𝑄𝑛|2)2 so that (44) becomes again a trivial equation �̇�𝑛 = 𝑖. Again, we have
𝜃𝑛(𝑡) = Θ𝑛 + 𝑖𝑡, where the 𝑡-independent Θ𝑛 is obtained from the difference equation (43). After
long but straightforward computations, we have simplified the expression to the form (47), where
we have used (30) and restored the value of 𝜎1 for either (37) or (38). ■

6 CONSTRUCTION OF ROGUEWAVES

Here we construct the rogue waves on the background of the standing periodic waves. To do so,
we use the onefold DT. The onefold DT has already been constructed for the AL equation (1) in
Ref. 38 but the formulas used eigenfunctions of the Lax system (5)–(6), which is not suitable for
the standing periodic waves as in Remark 1. Therefore, our first task is to extend the onefold DT to
the eigenfunctions of the Lax system (4). We achieve the task with direct computations similarly
to computations in Ref. 39.
The following lemma presents the 1-fold DT for the AL equation (1) in terms of solutions of the

linear system (5).

Lemma 7. Let {𝑢𝑛(𝑡)}𝑛∈ℤ be a solution of the AL equation (1), {(𝑝𝑛(𝑡), 𝑞𝑛(𝑡))
T}𝑛∈ℤ be a nontrivial

solution to the linear system (4) with 𝜆 = 𝜆1, and {𝜑𝑛(𝑡)}𝑛∈ℤ be any solution to the linear system (4)
with arbitrary 𝜆 ∈ ℂ. Then, {�̂�𝑛(𝑡)}𝑛∈ℤ given by

�̂�𝑛 = −
𝜆1(|𝑝𝑛|2 + |𝜆1|2|𝑞𝑛|2)
�̄�1(|𝜆1|2|𝑝𝑛|2 + |𝑞𝑛|2)𝑢𝑛 +

𝜆1(1 − |𝜆1|4)𝑝𝑛�̄�𝑛

�̄�2
1(|𝜆1|2|𝑝𝑛|2 + |𝑞𝑛|2) (50)

is a new solution of the AL equation (1) and {�̂�𝑛(𝑡)}𝑛∈ℤ given by �̂�𝑛 = 𝑀𝑛(𝜆)𝜑𝑛 is a new solution to
the linear system (4) with arbitrary 𝜆, where

𝑀𝑛(𝜆) =

√|𝑝𝑛|2 + |𝜆1|2|𝑞𝑛|2√|𝜆1|2|𝑝𝑛|2 + |𝑞𝑛|2
(
𝜆 + 𝜆−1𝑎𝑛 𝑏𝑛

−�̄�𝑛 𝜆�̄�𝑛 + 𝜆−1

)

with

𝑎𝑛 = −
𝜆1(|𝜆1|2|𝑝𝑛|2 + |𝑞𝑛|2)
�̄�1(|𝑝𝑛|2 + |𝜆1|2|𝑞𝑛|2) , 𝑏𝑛 =

𝜆1(1 − |𝜆1|4)𝑝𝑛�̄�𝑛|𝜆1|2(|𝑝𝑛|2 + |𝜆1|2|𝑞𝑛|2) .
Proof. We need to show validity of the Darboux equations

𝑈(�̂�𝑛, 𝜆)𝑀𝑛(𝜆) = 𝑀𝑛+1(𝜆)𝑈(𝑢𝑛, 𝜆) (51)

and
𝑉(�̂�𝑛, 𝜆)𝑀𝑛(𝜆) = �̇�𝑛(𝜆) + 𝑀𝑛(𝜆)𝑉(𝑢𝑛, 𝜆). (52)
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168 CHEN and PELINOVSKY

Substituting 𝑈(𝑢𝑛, 𝜆) and𝑀𝑛(𝜆) into (51) and collecting different powers with respect to 𝜆 yields
the system of equations

⎧⎪⎪⎨⎪⎪⎩

�̄�𝑛�̂�𝑛 + 𝑏𝑛 − 𝑢𝑛 = 0,

�̂�𝑛 − 𝑎𝑛+1𝑢𝑛 − 𝑏𝑛+1 = 0,

𝑎𝑛+1 − 𝑎𝑛 − 𝑏𝑛+1�̄�𝑛 + �̄�𝑛�̂�𝑛 = 0,

𝑎𝑛+1(1 + |𝑢𝑛|2) − 𝑎𝑛(1 + |�̂�𝑛|2) = 0.

(53)

It follows from 𝜑𝑛+1 = 𝑈(𝑢𝑛, 𝜆)𝜑𝑛 that

|𝑝𝑛+1|2 + |𝜆1|2|𝑞𝑛+1|2 = |𝜆1|2|𝑝𝑛|2 + |𝑞𝑛|2,
(1 + |𝑢𝑛|2)(|𝜆1|2|𝑝𝑛+1|2 + |𝑞𝑛+1|2) = (|𝜆1|4 + |𝑢𝑛|2)|𝑝𝑛|2 + 𝑢𝑛�̄�𝑛𝑞𝑛(�̄�1|𝜆1|2 − 𝜆−1

1 )

+ �̄�𝑛𝑝𝑛�̄�𝑛(𝜆1|𝜆1|2 − �̄�−1
1 ) + (|𝜆1|2|𝑢𝑛|2 + |𝜆1|−2)|𝑞𝑛|2,

and

(1 + |𝑢𝑛|2)𝑝𝑛+1�̄�𝑛+1 = −𝜆1𝑢𝑛|𝑝𝑛|2 + 𝜆1�̄�
−1
1 𝑝𝑛�̄�𝑛 − 𝑢2

𝑛�̄�𝑛𝑞𝑛 + �̄�−1
1 𝑢𝑛|𝑞𝑛|2.

By using the previous expressions and the definitions of 𝑎𝑛 and 𝑏𝑛, we have verified that the first
two equations in system (53) are equivalent to each other and yield the transformation formula
(50). The third equation in system (53) transforms to the relation

|𝑎𝑛|2 + |𝑏𝑛|2 − �̄�𝑛𝑎𝑛+1 + �̄�𝑛�̄�𝑛𝑏𝑛+1 − 𝑢𝑛�̄�𝑛 = 0,

which holds true after straightforward computations. Finally, the fourth equation in system (53)
is consistent with the first three equations after substitutions.
Substituting𝑉(𝑢𝑛, 𝜆) and𝑀𝑛(𝜆) into (52) and collecting different powerswith respect to 𝜆 yields

the system of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�̄�𝑛�̂�𝑛 + 𝑏𝑛 − 𝑢𝑛 = 0,

�̂�𝑛−1 − 𝑎𝑛𝑢𝑛−1 − 𝑏𝑛 = 0,

�̇�𝑛 − 𝑖𝑎𝑛

(
𝑢𝑛�̄�𝑛−1 + �̄�𝑛𝑢𝑛−1 − �̂�𝑛

̄̂𝑢𝑛−1 − ̄̂𝑢𝑛�̂�𝑛−1 − 2𝑏𝑛�̄�𝑛−1 + 2�̄�𝑛�̂�𝑛

)
= 0,

�̇�𝑛 − 𝑖
[
𝑎𝑛(�̂�𝑛

̄̂𝑢𝑛−1 + ̄̂𝑢𝑛�̂�𝑛−1 − 𝑢𝑛�̄�𝑛−1 − �̄�𝑛𝑢𝑛−1) + 2�̄�𝑛�̂�𝑛−1 − 2𝑏𝑛�̄�𝑛

]
= 0,

�̇�𝑛 − 𝑖
[
(1 + |𝑏𝑛|2)�̂�𝑛 + 𝑏𝑛(𝑢𝑛�̄�𝑛−1 + �̄�𝑛𝑢𝑛−1) − 𝑏2

𝑛�̄�𝑛−1 − �̄�𝑛�̂�𝑛−1 − 𝑎𝑛𝑢𝑛 + 𝑢𝑛−1

]
= 0.

(54)

It is obvious that the first two equations in system (54) repeat the first two equations in system
(53), while the third and the fourth equations in system (54) are identical to each other. The third
and fifth equations in system (54) are further reduced to the form:

�̇�𝑛 = 𝑖
[
𝜆2
1�̄�

−2
1 �̄�𝑛(𝑢𝑛 − 𝑏𝑛) + 𝑎𝑛(𝑢𝑛−1�̄�𝑛 − 𝑏𝑛�̄�𝑛−1) − 𝑏𝑛(�̄�𝑛 − �̄�𝑛)

]
,
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CHEN and PELINOVSKY 169

and

�̇�𝑛 = 𝑖[�̄�−1
𝑛 (1 + |𝑏𝑛|2)(𝑢𝑛 − 𝑏𝑛) + 𝑏𝑛(𝑢𝑛�̄�𝑛−1 + �̄�𝑛𝑢𝑛−1)

− (1 + |𝑎𝑛|2)𝑢𝑛−1 − 𝑏2
𝑛�̄�𝑛−1 − 𝑎𝑛𝑢𝑛 − �̄�𝑛𝑏𝑛].

It follows from �̇�𝑛 = 𝑉(𝑢𝑛, 𝜆)𝜑𝑛 that

𝑑

𝑑𝑡
(|𝜆1|2|𝑝𝑛|2 + |𝑞𝑛|2) =

𝑖

2
(𝜆2

1 + 𝜆−2
1 − �̄�2

1 − �̄�−2
1 )(|𝜆1|2|𝑝𝑛|2 − |𝑞𝑛|2)

+ 𝑖(|𝜆1|4 − 1)(�̄�−1
1 𝑢𝑛�̄�𝑛𝑞𝑛 − 𝜆−1

1 �̄�𝑛𝑝𝑛�̄�𝑛),

𝑑

𝑑𝑡
(|𝑝𝑛|2 + |𝜆1|2|𝑞𝑛|2) =

𝑖

2
(𝜆2

1 + 𝜆−2
1 − �̄�2

1 − �̄�−2
1 )(|𝑝𝑛|2 − |𝜆1|2|𝑞𝑛|2)

+ 𝑖(|𝜆1|4 − 1)(𝜆−1
1 𝑢𝑛−1�̄�𝑛𝑞𝑛 − �̄�−1

1 �̄�𝑛−1𝑝𝑛�̄�𝑛),

and

𝑑

𝑑𝑡
(𝑝𝑛�̄�𝑛) = 𝑖(�̄�1𝑢𝑛−1 − �̄�−1

1 𝑢𝑛)|𝑝𝑛|2 + 𝑖(𝜆1𝑢𝑛 − 𝜆−1
1 𝑢𝑛−1)|𝑞𝑛|2

+
𝑖

2
(𝜆2

1 + 𝜆−2
1 + �̄�2

1 + �̄�−2
1 + 2(𝑢𝑛�̄�𝑛−1 + �̄�𝑛𝑢𝑛−1))𝑝𝑛�̄�𝑛).

We have verified with the help of the Wolfram’s Mathematica that the two equations for �̇�𝑛 and
�̇�𝑛 are satisfied by using the previous expressions and the definitions of 𝑎𝑛 and 𝑏𝑛. ■

The following two remarks report applications of the onefold DT with the periodic eigenfunc-
tions of the dnoidal and cnoidal waves. As expected from similar applications in Refs. 11, 12, the
onefold DT recovers the same dnoidal and cnoidal waves after translations in space and complex
phase.

Remark 11. Let {𝑢𝑛(𝑡)}𝑛∈ℤ be the dnoidal wave in the form (7) and (11), and {(𝑝𝑛(𝑡), 𝑞𝑛(𝑡))
T}𝑛∈ℤ be

the eigenfunction of the linear system (4) associated with 𝜆 = 𝜆1 in the form (20) and (31). Since
𝑈𝑛 and 𝜆1 are real, the onefold DT (50) yields

�̂�𝑛 =

[
−
|𝑃𝑛|2 + 𝜆2

1|𝑄𝑛|2
𝜆2
1|𝑃𝑛|2 + |𝑄𝑛|2𝑈𝑛 −

(𝜆3
1 − 𝜆−1

1 )𝑃𝑛�̄�𝑛

𝜆2
1|𝑃𝑛|2 + |𝑄𝑛|2

]
e2𝑖𝜔𝑡

= −
𝜎1

√
𝐹1

𝑈𝑛
e2𝑖𝜔𝑡,

where we have used (31) after multiplying the numerator and the denominator by �̄�𝑛𝑄𝑛. By using
(11) and (36), we obtain

�̂�𝑛 = −𝜎1
sn(𝛼; 𝑘)

cn(𝛼; 𝑘)

√
1 − 𝑘2

dn(𝛼𝑛; 𝑘)
e2𝑖𝜔𝑡
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170 CHEN and PELINOVSKY

= −𝜎1
sn(𝛼; 𝑘)

cn(𝛼; 𝑘)
dn(𝛼𝑛 + 𝐾(𝑘); 𝑘)e2𝑖𝜔𝑡

= −𝜎1𝑢𝑛(𝛼𝑛 + 𝐾(𝑘)).

The new solution �̂�𝑛 is a half-period translation of the dnoidal wave 𝑢𝑛 with sign flip for 𝜎1 = +1

in case of eigenvalue (38). There is no sign flip for 𝜎1 = −1 in case of eigenvalue (37).

Remark 12. Let {𝑢𝑛(𝑡)}𝑛∈ℤ be the cnoidal wave in the form (7) and (14), and {(𝑝𝑛(𝑡), 𝑞𝑛(𝑡))
T}𝑛∈ℤ

be the eigenfunction of the linear system (4) associated with 𝜆 = 𝜆1 in the form (20) and (31). The
onefold DT (50) yields:

�̂�𝑛 =

[
−

𝜆1(|𝑃𝑛|2 + |𝜆1|2|𝑄𝑛|2)
�̄�1(|𝜆1|2|𝑃𝑛|2 + |𝑄𝑛|2)𝑈𝑛 +

𝜆1(1 − |𝜆1|4)𝑃𝑛�̄�𝑛

�̄�2
1(|𝜆1|2|𝑃𝑛|2 + |𝑄𝑛|2)

]
e2𝑖𝜔𝑡

=
𝜆2
1

[
−𝐹1(1 − |𝜆1|4) − 2�̄�2

1

√
𝐹1𝑈

2
𝑛 +

√
𝐹1(|𝜆1|4 + 1)𝑈𝑛𝑈𝑛−1

]
�̄�2
1

[√
𝐹1(|𝜆1|4 + 1)𝑈𝑛 − 2𝜆2

1

√
𝐹1𝑈𝑛−1 + (1 − |𝜆1|4)𝑈2

𝑛𝑈𝑛−1

]e2𝑖𝜔𝑡

=
(�̄�−2

1 + 𝜆2
1)𝑈𝑛𝑈𝑛−1 − 2𝑈2

𝑛 −
√

𝐹1(�̄�
−2
1 − 𝜆2

1)

(�̄�2
1 + 𝜆−2

1 )𝑈𝑛 − 2𝑈𝑛−1 + (
√

𝐹1)−1(𝜆−2
1 − �̄�2

1)𝑈
2
𝑛𝑈𝑛−1

e2𝑖𝜔𝑡,

where we have used (31) after multiplying the numerator and the denominator by �̄�𝑛𝑄𝑛. Inserting
(14), (40), and (41) into this formula yields

�̂�𝑛 =
𝑘
√

1 − 𝑘2sn(𝛼; 𝑘)(cn(𝛼; 𝑘) + 𝑖
√

1 − 𝑘2sn(𝛼; 𝑘))

dn(𝛼; 𝑘)(cn(𝛼; 𝑘) − 𝑖
√

1 − 𝑘2sn(𝛼; 𝑘))
Υ𝑛e2𝑖𝜔𝑡,

where

Υ𝑛 =
cn(𝛼𝑛; 𝑘)cn(𝛼𝑛 − 𝛼; 𝑘) − cn(𝛼; 𝑘)cn2(𝛼𝑛; 𝑘) − 𝑖

√
1 − 𝑘2sn(𝛼; 𝑘)sn2(𝛼𝑛; 𝑘)√

1 − 𝑘2(cn(𝛼𝑛; 𝑘) − cn(𝛼; 𝑘)cn(𝛼𝑛 − 𝛼; 𝑘)) − 𝑖sn(𝛼; 𝑘)cn(𝛼𝑛 − 𝛼; 𝑘)dn
2
(𝛼𝑛; 𝑘)

=
𝑖(cn(𝛼; 𝑘) − 𝑖

√
1 − 𝑘2sn(𝛼; 𝑘))sn(𝛼𝑛; 𝑘)

dn(𝛼; 𝑘)dn(𝛼𝑛; 𝑘)
.

After simplification, we obtain

�̂�𝑛 =
𝑖𝑘
√

1 − 𝑘2sn(𝛼; 𝑘)(cn(𝛼; 𝑘) + 𝑖
√

1 − 𝑘2sn(𝛼; 𝑘))sn(𝛼𝑛; 𝑘)

dn
2
(𝛼; 𝑘)dn(𝛼𝑛; 𝑘)

e2𝑖𝜔𝑡

= −
𝑖𝑘sn(𝛼; 𝑘)(cn(𝛼; 𝑘) + 𝑖

√
1 − 𝑘2sn(𝛼; 𝑘))

dn
2
(𝛼; 𝑘)

cn(𝛼𝑛 + 𝐾(𝑘); 𝑘)e2𝑖𝜔𝑡

= −
𝑖(cn(𝛼; 𝑘) + 𝑖

√
1 − 𝑘2sn(𝛼; 𝑘))

dn(𝛼; 𝑘)
𝑢𝑛(𝛼𝑛 + 𝐾(𝑘)).

 14679590, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12634 by M
cm

aster U
niversity L

ibrary, W
iley O

nline L
ibrary on [12/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEN and PELINOVSKY 171

Since the amplitude factor has the unit modulus, the new solution is a quarter-period translation
of the cnoidal wave (14) with a suitable phase factor.

Remarks 11 and 12 are used to generate the left panels on Figures 1 and 2. For the right panels,
we use the onefold DT with the nonperiodic solutions computed in the form (42) with 𝜃𝑛(𝑡) =

Θ𝑛 + 𝑖𝑡, whereΘ𝑛 is computed numerically from (47) and (48) for the dnoidal and cnoidal waves,
respectively. The integration constant inΘ𝑛 is chosen from the conditionΘ0 = 0 so that 𝜃0(0) = 0.
To compute the magnification factors (15) and (16) for the rogue waves on the dnoidal and

cnoidal backgrounds, respectively, we substitute the second solution in the form (42) with 𝜃 = 0

(attained at 𝑛 = 0 and 𝑡 = 0) into the onefold DT in the form (50). This yields

�̂�𝑛(𝑡) = �̂�𝑛(𝑡)e2𝑖𝜔𝑡

with

�̂�𝑛 = −
𝜆1(|𝜆1|2|𝑃𝑛|2 + |𝑄𝑛|2)
�̄�1(|𝑃𝑛|2 + |𝜆1|2|𝑄𝑛|2)𝑈𝑛 −

𝜆1(1 − |𝜆1|4)𝑃𝑛�̄�𝑛

�̄�2
1(|𝑃𝑛|2 + |𝜆1|2|𝑄𝑛|2) . (55)

Multiplying the numerator and the denominator in (55) by �̄�𝑛𝑄𝑛 and using (31) yields the explicit
relation between the new solution �̂�𝑛 and the standing wave 𝑈𝑛 for 𝑛 = 0 and 𝑡 = 0:

�̂�𝑛 = −
𝜆1

�̄�1

|𝜆1|2(�̄�1𝑈𝑛 − �̄�−1
1 𝑈𝑛−1)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1) + (𝜆1𝑈𝑛−1 − 𝜆−1

1 𝑈𝑛)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1)

(�̄�1𝑈𝑛 − �̄�−1
1 𝑈𝑛−1)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1) + |𝜆1|2(𝜆1𝑈𝑛−1 − 𝜆−1

1 𝑈𝑛)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1)

𝑈𝑛

+
𝜆1

�̄�2
1

(|𝜆1|4 − 1)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1)

(�̄�1𝑈𝑛 − �̄�−1
1 𝑈𝑛−1)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1) + |𝜆1|2(𝜆1𝑈𝑛−1 − 𝜆−1

1 𝑈𝑛)(𝜎1

√
𝐹1 − 𝑈𝑛𝑈𝑛−1)

,

where we have used that 𝑈𝑛 is real-valued for both dnoidal and cnoidal waves.
In the case of the dnoidal wave (11), we use the fact that 𝜆1 ∈ ℝ and 𝐹1 > 0 to simplify the

expression for �̂�𝑛 to the form

�̂�𝑛 = −
𝑈2

𝑛 + 𝑈𝑛𝑈𝑛−1 − 𝜎1

√
𝐹1

𝑈𝑛−1

which together with (11) and (36), and (37) yields

|�̂�0(0)| = sn(𝛼; 𝑘)(1 + dn(𝛼; 𝑘) − 𝜎1

√
1 − 𝑘2)

cn(𝛼; 𝑘)dn(𝛼; 𝑘)
.

Dividing this formula to 𝐴 = sn(𝛼; 𝑘)∕cn(𝛼; 𝑘) yields the magnification factor for the dnoidal
wave in the form (15).
In the case of the cnoidal wave (14), we use the fact that 𝜆1 ∈ ℂ∖ℝ, 𝐹1 < 0, and 𝜎1 = 1 to

simplify the expression for �̂�𝑛 to the form

�̂�0(0) =
𝑘sn(𝛼; 𝑘)(dn(𝛼; 𝑘) + 1)(cn(𝛼; 𝑘) + 𝑖

√
1 − 𝑘2sn(𝛼; 𝑘))

dn(𝛼; 𝑘)[𝑘2cn2(𝛼; 𝑘) + (1 − 𝑘2)]
,
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172 CHEN and PELINOVSKY

where we have used (14), (40), and (41). This yields

|�̂�0(0)| = 𝑘sn(𝛼; 𝑘)(dn(𝛼; 𝑘) + 1)

dn
2
(𝛼; 𝑘)

.

Dividing by 𝐴 = 𝑘sn(𝛼; 𝑘)∕dn(𝛼; 𝑘) yields the magnification factor for the cnoidal wave in the
form (16).
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