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A B S T R A C T

The Benjamin–Ono (BO) equation describes long internal waves of small amplitude in deep
fluids. Compared to its counterpart for shallow fluids, the Korteweg–de Vries (KdV) equation,
the BO equation admits exact solutions for the traveling periodic and solitary waves as well as
their interactions expressed in elementary (trigonometric and polynomial) functions. Motivated
by a recent progress for the KdV equation, we discover here two scenarios of the soliton-
periodic wave interactions which result in the propagation of either elevation (bright) or
depression (dark) breathers (periodic in time coherent structures). The existence of two different
breathers is related to the band-gap spectrum of the Lax operator associated with the traveling
periodic wave. Given a simple structure of the exact solutions in the BO equation, we obtain a
closed-form expression for multi-solitons interacting with the traveling periodic wave.

. Introduction

Two limiting cases of long internal waves of small amplitude can be described within the integrable evolution equations:
he Korteweg–de Vries (KdV) equation for shallow fluids and the Benjamin–Ono (BO) equation for deep fluids [1]. These
ntegrable equations have a large class of exact solutions describing spatially periodic and solitary traveling waves as well as their
nteractions [2].

Exact solutions for the time-periodic interactions of a single solitary wave with the spatially periodic traveling wave were
onstructed recently for the KdV equation in [3,4] after much earlier work [5,6]. Such periodic in time coherent structures were
eferred to as breathers. Two families of breathers were constructed as elevation (bright) breathers and depression (dark) breathers.
he two families correspond to two scenarios of a more complicated interaction of a solitary wave with dispersive shock waves
DSWs), see a recent review in [7]. Bright breathers describe a transmission of a solitary wave overtaking DSWs and dark breathers
escribe a trapping of a solitary wave in DSWs. The exact bright and dark breather solutions of the KdV equation expressed in terms
f the Jacobi theta functions were used for comparison with numerical and laboratory experiments of soliton-DSW interactions in
hallow fluids [8–10].

Similar breathers of the defocusing nonlinear Schrödinger equation were obtained in different solution forms in [11–14].
ecently, breathers of the defocusing modified KdV equation were elaborated in [15] by analyzing properties of the Jacobi theta

unctions.
The purpose of this work is to obtain breather solutions for the BO equation which covers applications of soliton-DSW interactions

n deep fluids. See [16,17] for two particular examples where the DSWs of the BO equation arise in various physical applications.
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Fig. 1. Left: bright breather with 𝑘 = 1, 𝜙 = 3, and 𝑐 = 𝑐0 + 1.5𝑘. Right: dark breather with 𝑘 = 1, 𝜙 = 0.5, and 𝑐 = 𝑐0 − 1.5𝑘.

We take the BO equation in the standard normalized form:

𝑢𝑡 + 2𝑢𝑢𝑥 +𝐻(𝑢𝑥𝑥) = 0, 𝐻(𝑓 ) ∶= 1
𝜋
p.v.∫

∞

−∞

𝑓 (𝑦)𝑑𝑦
𝑦 − 𝑥

. (1)

The traveling periodic wave is expressed in terms of elementary functions:

𝑢(𝑥, 𝑡) =
𝑘 sinh𝜙

cos(𝑘𝜉) + cosh𝜙
, (2)

where 𝜉 = 𝑥 − 𝑐0𝑡 − 𝜉0 is the traveling wave coordinate, 𝑘, 𝜙 > 0 are arbitrary parameters, 𝜉0 ∈ R is an arbitrary phase, and
𝑐0 = 𝑘 coth𝜙. The solitary wave corresponds to the limit 𝜙 → 0 with 𝑘 = 𝑐0 tanh𝜙 → 0 uniquely determined by fixed 𝑐0 > 0. After
phase transformation 𝜉 → 𝜉 + 𝜋𝑘−1, the periodic wave solution (2) reduces to the solitary wave solution written in the form:

𝑢(𝑥, 𝑡) =
2𝑐0

1 + 𝑐20𝜉
2
. (3)

The main result of this work is that the BO equation admits two families of breather solutions similar to the KdV equation.
However, the breather solutions of the BO equation are expressed in terms of elementary (trigonometric and power) functions
instead of the Jacobi theta functions. The new exact solutions are given by

�̂�(𝑥, 𝑡) =
2(𝑐 + 𝑘𝛽) cosh𝜙 + [𝑘(1 + 𝛽2 + 𝑐2𝜂2) + 2𝛽𝑐] sinh𝜙 + 2𝑐 cos(𝑘𝜉)

(1 + 𝛽2 + 𝑐2𝜂2) cosh𝜙 + 2𝛽 sinh𝜙 + (1 − 𝛽2 + 𝑐2𝜂2) cos(𝑘𝜉) + 2𝛽𝑐𝜂 sin(𝑘𝜉)
, (4)

where 𝜂 = 𝑥 − 𝑐𝑡 − 𝜂0 is the traveling wave coordinate, 𝜂0 ∈ R is an arbitrary phase, 𝛽 is uniquely defined by

𝛽 = 2𝑐𝑘
(𝑐 − 𝑐0)2 − 𝑘2

, (5)

and 𝑐 > 0 is an arbitrary speed of the solitary wave defined in two disjoint regions:

(BB) 𝑐 − 𝑐0 > 𝑘 and (DB) 𝑐 − 𝑐0 < −𝑘. (6)

The bright breathers (BB) correspond to 𝑐 > 𝑐0+𝑘 and the dark breathers (DB) correspond to 0 < 𝑐 < 𝑐0−𝑘, hence the former overtakes
the periodic wave and the latter is trapped in the periodic wave, similarly to the KdV equation [4]. As 𝜂 → ±∞, �̂�(𝑥, 𝑡) → 𝑢(𝑥, 𝑡)
given by (2) so that no phase shift arises in the interactions between the solitary wave and the periodic wave, contrary to the KdV
equation [4]. The localization of the solitary wave is defined by its speed 𝑐: the larger 𝑐 is, the smaller is the width of the solitary
wave.

Fig. 1 show the solution surfaces computed from the exact solution (4) with two choices of 𝑐 in (6). The left panel shows
propagation of a bright (elevation) breather with the speed exceeding the speed of the background periodic wave. The right panel
shows propagation of a dark (depression) breather with the speed being smaller that the speed of the background periodic wave.

By generalizing the breather solution (4) in the determinant form [18], we present the general multi-breather solution on the
traveling periodic wave (2) as the following theorem.

Theorem 1. The BO equation (1) admits the following general multi-breather solution on the traveling periodic wave (2) in the form

𝑢(𝑥, 𝑡) = 𝑖𝜕𝑥 log
det(𝐹 ′)

, (7)
2

det(𝐹 )
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Fig. 2. Left: bright–bright breather with 𝑘 = 1, 𝜙 = 3, 𝑐1 = 𝑐0 + 1.5𝑘, and 𝑐2 = 𝑐0 + 3𝑘. Middle: bright–dark breather with 𝑘 = 1, 𝜙 = 0.5, 𝑐1 = 𝑐0 − 1.5𝑘, and
𝑐2 = 𝑐0 + 3𝑘. Right: dark–dark breather with 𝑘 = 1, 𝜙 = 0.5, 𝑐1 = 𝑐0 − 1.75𝑘, and 𝑐2 = 𝑐0 − 1.25𝑘.

with

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝑒𝑖𝑘𝜉+𝜙 2𝑘
𝑘 + 𝑐0 − 𝑐1

… 2𝑘
𝑘 + 𝑐0 − 𝑐𝑁

2𝑐1
𝑘 + 𝑐1 − 𝑐0

−𝑖𝑐1𝜂1 − 1 −
2𝑘𝑐1

(𝑐0 − 𝑐1)2 − 𝑘2
…

2𝑐1
𝑐1 − 𝑐𝑁

⋮ ⋮ ⋱ ⋮
2𝑐𝑁

𝑘 + 𝑐𝑁 − 𝑐0

2𝑐𝑁
𝑐𝑁 − 𝑐1

… −𝑖𝑐𝑁𝜂𝑁 − 1 −
2𝑘𝑐𝑁

(𝑐0 − 𝑐𝑁 )2 − 𝑘2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

𝐹 ′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝑒𝑖𝑘𝜉−𝜙 2𝑘
𝑘 + 𝑐0 − 𝑐1

… 2𝑘
𝑘 + 𝑐0 − 𝑐𝑁

2𝑐1
𝑘 + 𝑐1 − 𝑐0

−𝑖𝑐1𝜂1 + 1 −
2𝑘𝑐1

(𝑐0 − 𝑐1)2 − 𝑘2
…

2𝑐1
𝑐1 − 𝑐𝑁

⋮ ⋮ ⋱ ⋮

2𝑐𝑁
𝑘 + 𝑐𝑁 − 𝑐0

2𝑐𝑁
𝑐𝑁 − 𝑐1

… −𝑖𝑐𝑁𝜂𝑁 + 1 −
2𝑘𝑐𝑁

(𝑐0 − 𝑐𝑁 )2 − 𝑘2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where for 1 ≤ 𝑗 ≤ 𝑁 , we have defined 𝜂𝑗 = 𝑥 − 𝑐𝑗 𝑡 − 𝑥𝑗 with arbitrary 𝑥𝑗 ∈ R and arbitrary distinct 𝑐𝑗 > 0 satisfying |𝑐𝑗 − 𝑐0| > 𝑘. The
solution (7) is real-valued and bounded for every (𝑥, 𝑡) ∈ R × R.

The solution in Theorem 1 corresponds to 𝑁 solitary waves propagating on the traveling periodic wave (2) with the speeds
𝑐1,… , 𝑐𝑁 . For 𝑁 = 2, Fig. 2 shows the top views of three solution surfaces computed from the exact solution (7) with 𝑁 = 2
for three choices of 𝑐1 and 𝑐2. Phase parameters 𝜉0, 𝑥1, and 𝑥2 are all set to zero. The left panel shows propagation of two bright
breathers for 𝑐1, 𝑐2 > 𝑐0 + 𝑘. The middle panel shows propagation of one bright and one dark breather for 𝑐1 < 𝑐0 − 𝑘 and 𝑐2 > 𝑐0 + 𝑘.
The right panel shows propagation of two dark breathers for 𝑐1, 𝑐2 < 𝑐0 − 𝑘.

Our work relies on several recent advances in the literature devoted to the periodic and solitary wave solutions of the BO
equation (1).

(1) Dispersive shock waves (DSWs) in the BO equation were studied with the Whitham modulation theory in [19–22]. The
Whitham equations for the BO equation reduce to the Hopf (inviscid Burgers) equations. The breather solutions equivalent
to the solution form (4) were obtained in Appendix B of [20] but it was missed that two families of bright and dark breathers
coexist on the background of the traveling periodic wave. These earlier results have motivated many recent works [23–26],
where the DSWs have been studied in the nonlocal generalizations of the BO equation.

(2) Lax spectrum associated with traveling periodic waves was rigorously justified only recently in [27] and was generalized
to other periodic potentials [28,29]. In our notations, the Lax spectrum of the traveling periodic wave (2) is located at
[𝜆0, 𝜇0] ∪ [0,∞), where

𝜆0 = −1
2
(𝑐0 + 𝑘), 𝜇0 = −1

2
(𝑐0 − 𝑘). (8)

The two families of the bright (dark) breathers (6) are associated with the semi-infinite (finite) spectral gap in the Lax
spectrum:

(BB) − 1
2
𝑐 ∈ (−∞, 𝜆0) and (DB) − 1

2
𝑐 ∈ (𝜇0, 0), (9)

where 𝜆 = − 1
2 𝑐 is the eigenvalue of the Lax spectrum associated with the single solitary wave [30,31]. The division of

breathers into two families related to the choice of eigenvalue 𝜆 in the semi-infinite versus finite spectral gaps of the Lax
spectrum is very similar to the KdV equation [4].
3
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(3) Modulational stability of traveling periodic waves of the BO equation was studied with the explicit computations of
eigenfunctions of the linearized BO equation [32] and the asymptotic reduction of the BO equation to the nonlocal defocusing
NLS equation for long perturbations of the small-amplitude waves [33]. Modulational stability was later confirmed for the
BO equation with a rigorous analysis of the spectral stability problem [34]. Breather solutions like the one given by (4) may
only propagate on the modulationally stable traveling periodic wave background in agreement with these stability results.

(4) Particle dynamics of the Calogero–Moser system has been studied in relation to poles of the meromorphic solutions of the
BO equation [35]. In this context and in the presence of a harmonic potential, an interaction of a single solitary wave with
𝑁 solitary waves for large 𝑁 was studied in [36] (see their Fig. 1). Interactions of solitary waves via the particle dynamics
were also considered for the BO equation and its modifications in [37,38]. Poles of the exact solution (4) describe the exact
trajectories of particles of the Calogero–Moser system for such interactions in the BO equation (1).

We note that the KdV equation and the BO equation do not admit conventional breather solutions which are localized in space and
eriodic in time. The proof of non-existence of breathers in these equations was recently given in [39,40]. The breather wave packets
erived here and in [3,4] are obtained as a result of periodic interaction of solitary waves and the traveling periodic wave. Both the
dV and BO equations are the limiting cases of the integrable intermediate long-wave (ILW) equation [41]. Similar breathers are
xpected to exist in the ILW equation but expressed in the Jacobi theta functions. Only the BO equation describes such complicated
ave interactions in elementary functions.

The rest of this paper is organized as follows. The derivation of the single-breather solutions (4) is given in Section 2. The relation
etween the existence region (6) and the Lax spectrum of the traveling periodic wave is explained in Section 3. The exact solution
7) for multi-breather solutions is derived in Section 4.

. Derivation of the single-breather solutions

In order to obtain the breather solutions (4), we follow the multi-periodic solutions obtained in the bilinear method [42].
quivalently the same solutions can be obtained by the Bäcklund–Darboux transformation of the BO equation [43] with an
igenvalue 𝜆 = − 1

2 𝑐 in either of the two intervals (9).
The class of multi-periodic and multi-soliton solutions of the BO equation can be obtained in the form:

𝑢(𝑥, 𝑡) = 𝑖𝜕𝑥 log
𝑓 ′(𝑥, 𝑡)
𝑓 (𝑥, 𝑡)

, (10)

where 𝑓 (𝑓 ′) has zeros only in the upper (lower) half-plane of 𝑧 ∶= 𝑥 + 𝑖𝑦 and satisfies the bilinear equation

𝑖(𝑓 ′
𝑡 𝑓 − 𝑓 ′𝑓𝑡) = 𝑓 ′

𝑥𝑥𝑓 − 2𝑓 ′
𝑥𝑓𝑥 + 𝑓

′𝑓𝑥𝑥. (11)

Let us now consider the simplest solutions of the bilinear equation (11).

1-periodic solutions. The traveling periodic wave (2) is obtained from (10) by using the following solution of the bilinear
equation (11):

{

𝑓 (𝑥, 𝑡) = 1 + 𝑒𝑖𝑘𝜉+𝜙,

𝑓 ′(𝑥, 𝑡) = 1 + 𝑒𝑖𝑘𝜉−𝜙,
(12)

where 𝜉 = 𝑥 − 𝑐0𝑡 − 𝜉0, 𝑘, 𝜙 > 0, 𝜉0 ∈ R, and 𝑐0 = 𝑘 coth𝜙 > 0.

2-periodic solutions. The 2-periodic solutions are generated from the following solution of the bilinear equation (11):
{

𝑓 (𝑥, 𝑡) = 1 + 𝛼𝑒𝑖𝑘𝜉+𝜙 + 𝛼𝑒𝑖𝜅𝜂+𝜓 + 𝑒𝑖𝑘𝜉+𝑖𝜅𝜂+𝜙+𝜓 ,

𝑓 ′(𝑥, 𝑡) = 1 + 𝛼𝑒𝑖𝑘𝜉−𝜙 + 𝛼𝑒𝑖𝜅𝜂−𝜓 + 𝑒𝑖𝑘𝜉+𝑖𝜅𝜂−𝜙−𝜓 ,
(13)

here 𝜉 = 𝑥 − 𝑐0𝑡 − 𝜉0, 𝜂 = 𝑥 − 𝑐𝑡 − 𝜂0, 𝑘𝜙 > 0, 𝜅𝜓 > 0, 𝜉0, 𝜂0 ∈ R, 𝑐0 = 𝑘 coth𝜙 > 0, 𝑐 = 𝜅 coth𝜓 > 0, and

𝛼 =

√

(𝑐 − 𝑐0)2 − (𝜅 + 𝑘)2
√

(𝑐 − 𝑐0)2 − (𝜅 − 𝑘)2
.

Since

𝑓 ′(𝑥, 𝑡) = 𝑒𝑖𝑘𝜉+𝑖𝜅𝜂−𝜙−𝜓𝑓 (𝑥, 𝑡),

with bar being the complex conjugation, the transformation (10) with 𝑓 , 𝑓 ′ in (13) generates a real solution 𝑢(𝑥, 𝑡) of the BO
equation (1). Moreover, it was shown in [42] that the solution 𝑢(𝑥, 𝑡) is bounded for every (𝑥, 𝑡) ∈ R×R and the assumption on zeros
of 𝑓 (𝑓 ′) in the upper (lower) half-plane is satisfied if parameters 𝑐, 𝑐0, 𝜅, and 𝑘 satisfy the constraint

(𝑐 − 𝑐0)2 > (|𝑘| + |𝜅|)2. (14)
4
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Breather solutions. In the limit 𝜅 → 0, there are two ways to satisfy the constraint (14): 𝑐 − 𝑐0 > 𝑘 or 𝑐 − 𝑐0 < −𝑘 with 𝑘 > 0
assumed here. This choice leads to the two disjoint solution families (6). The breather solution (4) arises in the limit 𝜓 → 0 with
𝜅 = 𝑐 tanh𝜓 → 0 uniquely defined for fixed 𝑐 > 0. Expanding 𝛼 yields

𝛼 = 1 − 2𝑘𝜅
(𝑐 − 𝑐0)2 − 𝑘2

+ 2𝑘2𝜅2

[(𝑐 − 𝑐0)2 − 𝑘2]2
+ (𝜅3)

= 1 − 𝛽𝜓 + 1
2
𝛽2𝜓2 + (𝜓3),

where 𝛽 > 0 is given by (5). Using the transformation 𝜂 → 𝜂 + 𝜋𝜅−1 and expanding as 𝜓 → 0 yield at the leading order:
{

𝑓 (𝑥, 𝑡) = 𝛽𝜓(1 − 𝑒𝑖𝑘𝜉+𝜙) − 𝜓(1 + 𝑖𝑐𝜂)(1 + 𝑒𝑖𝑘𝜉+𝜙) + (𝜓2),

𝑓 ′(𝑥, 𝑡) = 𝛽𝜓(1 − 𝑒𝑖𝑘𝜉−𝜙) + 𝜓(1 − 𝑖𝑐𝜂)(1 + 𝑒𝑖𝑘𝜉−𝜙) + (𝜓2).
(15)

sing (10) with the leading (𝜓) order of 𝑓 and 𝑓 ′ yields the breather solutions (4) which are obviously real. To show that the
reather solutions (4) are bounded for every (𝑥, 𝑡) ∈ R ×R and the assumption on zeros of 𝑓 (𝑓 ′) in the upper (lower) half-plane is
atisfied, we consider the zeros of 𝑓 (𝑥, 𝑡) at the leading (𝜓) order in (15), that is,

𝛽(1 − 𝑒𝑖𝑘𝜉+𝜙) − (1 + 𝑖𝑐𝜂)(1 + 𝑒𝑖𝑘𝜉+𝜙) = 0.

eros are defined from

𝑒𝑖𝑘𝜉+𝜙 =
𝛽 − 1 − 𝑖𝑐𝜂
𝛽 + 1 + 𝑖𝑐𝜂

or which

Im(𝜉) = 𝑘−1(𝜙 + 𝑞), 𝑞 ∶= 1
2
log

(𝛽 + 1)2 + 𝑐2𝜂2

(𝛽 − 1)2 + 𝑐2𝜂2
.

ince 𝑘, 𝛽, 𝜙, 𝑞 > 0, zeros of 𝑓 are located in the upper half-plane away from the real axis.

2-soliton solutions. The 2-soliton solutions arise from the breather solutions in the limit 𝜙→ 0 with 𝑘 = 𝑐0 tanh𝜙→ 0 uniquely
defined for fixed 𝑐0 > 0. After the transformation 𝜉 → 𝜉 + 𝜋𝑘−1, the expansion (15) is further reduced to the form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 (𝑥, 𝑡) =
[

(1 + 𝑖𝑐0𝜉)(1 + 𝑖𝑐𝜂) +
4𝑐𝑐0

(𝑐 − 𝑐0)2

]

𝜙𝜓 + (𝜙2𝜓2),

𝑓 ′(𝑥, 𝑡) =
[

(1 − 𝑖𝑐0𝜉)(1 − 𝑖𝑐𝜂) +
4𝑐𝑐0

(𝑐 − 𝑐0)2

]

𝜙𝜓 + (𝜙2𝜓2).

The 2-soliton solutions are well-known from [42–44]. After the limiting transition 𝑘 → 0 in (6), the bright breathers correspond
to 𝑐 > 𝑐0 and the dark breathers correspond to 0 < 𝑐 < 𝑐0, where 𝑐0 and 𝑐 are wave speeds of the two distinct solitary waves.
This agrees with the property that the wave amplitudes are proportional to the wave speeds. The new soliton’s speed 𝑐 exceeds the
background soliton’s speed 𝑐0 for a bright breather which degenerates into a larger soliton overtaking the background soliton. The
ew soliton’s speed 𝑐 is smaller than the background soliton’s speed 𝑐0 for a dark breather which degenerates into a smaller soliton

staying behind the background soliton.

3. Existence of breathers and the Lax spectrum of the periodic wave

The BO equation (1) arises as a compatibility condition of the following system of Lax equations [30,31]:
{

𝑖𝜑+
𝑥 + 𝜆(𝜑+ − 𝜑−) + 𝑢𝜑+ = 0,

𝑖𝜑±
𝑡 − 2𝑖𝜆𝜑±

𝑥 + 𝜑±
𝑥𝑥 − [±𝑖𝑢𝑥 +𝐻(𝑢𝑥)]𝜑± = 0,

(16)

where 𝜑± are analytic functions in C±. If 𝑢(𝑥 + 𝐿) = 𝑢(𝑥) is periodic in 𝑥 with period 𝐿 = 2𝜋
𝑘 as in (2), then Lax spectrum can be

defined from admissible values of the linear operator acting on 𝜑+:

𝐿𝑢 ∶= −𝑖𝜕𝑥 − 𝑃+(𝑢 ⋅), (17)

where 𝑃+ = 1
2 (1 − 𝑖𝐻) is the projection operator acting on functions defined on the real line and returning functions which can be

nalytically continued in C+.
As is shown in Proposition 2.2 of [27], the Lax spectrum of 𝐿𝑢 on the periodic domain consists of simple eigenvalues enumerated

as {𝜆𝑛}∞𝑛=0 such that 𝜆𝑛+1 ≥ 𝜆𝑛 + 𝑘 for 𝑛 ≥ 0, where 𝑘 = 2𝜋
𝐿 (𝑘 = 1 was used in [27] with 𝐿 = 2𝜋). On the other hand, as is

shown in Proposition C.2 of [27], the Lax spectrum of 𝐿𝑢 on the real line is absolutely continuous and consists of a union of bands
∞

5

∪𝑛=0[𝜆𝑛, 𝜆𝑛 + 𝑘].
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The traveling periodic wave (2) corresponds to a particular case of the one-gap potential for which 𝜆𝑛+1 = 𝜆𝑛+𝑘 for every 𝑛 ∈ N.
As follows from the computations in Appendix B of [27] (generalized in our notations), that 𝜆0 is given by (8) and 𝜆𝑛 = 𝑛 − 1 for
𝑛 ∈ N. Then, 𝜇0 = 𝜆0 + 𝑘 is defined in (8) in agreement with formula (1.19) in [19], as well as Proposition C.2 in [27].

To summarize, the Lax spectrum for the traveling periodic wave (2) on the real line is located in [𝜆0, 𝜇0] ∪ [0,∞). The
existence region (6) of the breather solutions (4) corresponds to the two choices in (9) for 𝜆 = − 1

2 𝑐, the eigenvalue of
the point spectrum associated to the breather.

The rest of this section contains computations of the explicit expressions for eigenfunctions of the Lax system (16), which visualize
he general results above. As an interesting new feature, we discover the following properties:

(P1) Eigenvalues {𝜆𝑛}∞𝑛=0 are defined from the zero-mean condition on 𝜑− among the 𝐿-periodic and C±-analytic eigenfunctions
𝜑±.

(P2) Eigenvalues {𝜇𝑛}∞𝑛=0 with 𝜇𝑛 = 𝜆𝑛 + 𝑘 is defined from the zero-mean condition on 𝜑+ among the 𝐿-periodic and C±-analytic
eigenfunctions 𝜑±.

(P3) The 𝐿-periodic and C±-analytic eigenfunctions 𝜑± without the zero-mean conditions exist for every 𝜆 ∈ R.

There exist two general solutions of the linear system (16). The first solution has 𝜑− ≡ 0 and the second solution has both
omponents 𝜑+ and 𝜑− nonzero.

If 𝜑− ≡ 0, the exact solution of the linear system (16) exists in the form:

𝜑+(𝑥, 𝑡) = 𝑒𝑖𝜆𝑥+𝑖𝜆
2𝑡 1 + 𝑒𝑖𝑘𝜉+𝜙

1 + 𝑒𝑖𝑘𝜉−𝜙
=∶ 𝑒𝑖𝜆𝑥+𝑖𝜆

2𝑡𝑝+(𝜉, 𝑡), (18)

here 𝑝+(⋅, 𝑡) is an 𝐿-periodic and C+-analytic function with period 𝐿 = 2𝜋
𝑘 for every 𝑡 ∈ R. If we require that 𝜑+(⋅, 𝑡) be bounded

as Im(𝑥) → +∞ for every 𝑡 ∈ R, then we must take 𝜆 ≥ 0. The function 𝜑+(⋅, 𝑡) is 𝐿-periodic if and only if 𝜆 ∈ {𝜆𝑛}∞𝑛=1 with 𝜆𝑛 ∶= 𝑛
for 𝑛 ∈ N. It has zero mean if and only if 𝜆 ∈ {𝜇𝑛}∞𝑛=1 with 𝜇𝑛 ∶= 𝑛+ 1 for 𝑛 ∈ N. This proves (P1) and (P2) for {𝜆𝑛}∞𝑛=1 and {𝜇𝑛}∞𝑛=1.

If both components 𝜑+ and 𝜑− are nonzero, we can separate the variables as

𝜑±(𝑥, 𝑡) = 𝑚±(𝜉)𝑒−𝑖𝛺𝑡.

he system (16) is rewritten in ordinary derivatives:
{

𝑖(𝑚+)′ + 𝜆(𝑚+ − 𝑚−) + 𝑢𝑚+ = 0,

−(𝑚±)′′ + 𝑖(𝑐0 + 2𝜆)(𝑚±)′ + [±𝑖𝑢′ +𝐻(𝑢′)]𝑚± = 𝛺𝑚±,
(19)

where 𝑢 = 𝑢(𝜉) is given by (2). Since the second equation of the system (19) is the second-order ODE, a general solution can be
obtained as a superposition of two linearly independent solutions:

𝑚+(𝜉) = 𝑒𝑖(𝜃+𝜆+
1
2 𝑐0)𝜉

(2𝜃 + 𝑘) + (2𝜃 − 𝑘)𝑒𝑖𝑘𝜉−𝜙

1 + 𝑒𝑖𝑘𝜉−𝜙
𝐴1 + 𝑒

𝑖(−𝜃+𝜆+ 1
2 𝑐0)𝜉

(2𝜃 − 𝑘) + (2𝜃 + 𝑘)𝑒𝑖𝑘𝜉−𝜙

1 + 𝑒𝑖𝑘𝜉−𝜙
𝐴2

nd

𝑚−(𝜉) = 𝑒𝑖(𝜃+𝜆+
1
2 𝑐0)𝜉

(2𝜃 + 𝑘) + (2𝜃 − 𝑘)𝑒𝑖𝑘𝜉+𝜙

1 + 𝑒𝑖𝑘𝜉+𝜙
𝐵1 + 𝑒

𝑖(−𝜃+𝜆+ 1
2 𝑐0)𝜉

(2𝜃 − 𝑘) + (2𝜃 + 𝑘)𝑒𝑖𝑘𝜉+𝜙

1 + 𝑒𝑖𝑘𝜉+𝜙
𝐵2,

here 𝜃 > 0 is found from 𝜃2 = 𝛺+ (𝜆+ 1
2 𝑐0)

2 and the constants 𝐴1,2, 𝐵1,2 are arbitrary. Substituting the expressions for 𝑚± into the
irst equation of the system (19) only defines the following equations between the constants:

2𝜆𝐵1 = −(2𝜃 + 𝑐0)𝐴1, 2𝜆𝐵2 = (2𝜃 − 𝑐0)𝐴2,

whereas 𝜆 and 𝜃 are left arbitrary.
If we require 𝜑±(⋅, 𝑡) to be bounded as Im(𝑥) → ±∞, then we must set uniquely 𝜃 = |𝜆 + 1

2 𝑐0| which yields 𝛺 = 0 and
𝜑±(𝑥, 𝑡) = 𝑚±(𝜉). For this choice of 𝜃, the linear superposition of two solutions yields only one solution in the form (after taking
1,2 = −1):

𝑚+(𝜉) =
(2𝜆 + 𝑐0 − 𝑘) + (2𝜆 + 𝑐0 + 𝑘)𝑒𝑖𝑘𝜉−𝜙

1 + 𝑒𝑖𝑘𝜉−𝜙
(20)

and

𝑚−(𝜉) =
(2𝜆 + 𝑐0 − 𝑘) + (2𝜆 + 𝑐0 + 𝑘)𝑒𝑖𝑘𝜉+𝜙

1 + 𝑒𝑖𝑘𝜉+𝜙
. (21)

arameter 𝜆 is left arbitrary, whereas we can see that 𝜑±(⋅, 𝑡) are 𝐿-periodic and C±-analytic for every 𝑡 ∈ R and every 𝜆 ∈ R. This
proves (P3).

It remains to confirm (P1) and (P2) for 𝜆0 and 𝜇0. If 𝜆 = 𝜆0 = −(𝑐0 + 𝑘)∕2, then the eigenfunction (up to a norming factor) is
found from (20) and (21) as

𝑚+(𝜉) = 1 , 𝑚−(𝜉) = 1 = 𝑒−𝑖𝑘𝜉−𝜙 . (22)
6

1 + 𝑒𝑖𝑘𝜉−𝜙 1 + 𝑒𝑖𝑘𝜉+𝜙 1 + 𝑒−𝑖𝑘𝜉−𝜙
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It follows from (22) that the mean-value of 𝑚− is zero. If 𝜆 = 𝜇0 = −(𝑐0 − 𝑘)∕2, then the eigenfunction (up to a norming factor) is
found from (20) and (21) as

𝑚+(𝜉) = 𝑒𝑖𝑘𝜉−𝜙

1 + 𝑒𝑖𝑘𝜉−𝜙
, 𝑚−(𝜉) = 𝑒𝑖𝑘𝜉+𝜙

1 + 𝑒𝑖𝑘𝜉+𝜙
= 1

1 + 𝑒−𝑖𝑘𝜉−𝜙
. (23)

It follows from (23) that the mean-value of 𝑚+ is zero. For other values of 𝜆 ∈ R, the mean values of 𝑚+ and 𝑚− defined by (20)
and (21) are nonzero. This proves (P1) and (P2) for 𝜆0 and 𝜇0. Note that (20) and (21) agree with (1.11) and (1.22) in [19].

4. Derivation of the multi-breather solutions

To obtain the multi-breather solutions of the BO equation (1) on the background of the traveling wave (2), we define solutions
in the form (10) with 𝑓 = det(𝐹 ) and 𝑓 ′ = det(𝐹 ′) being determinants of the square matrices 𝐹 and 𝐹 ′ with the following elements:

𝐹𝑗𝑚 = 1
𝑘𝑗

exp

(

𝑖𝑘𝑗𝜉𝑗 + 𝜙𝑗 +
1
2
∑

𝑚≠𝑗
𝐴𝑗𝑚

)

𝛿𝑗𝑚 + 2
𝑘𝑗 + 𝑘𝑚 + 𝑐𝑗 − 𝑐𝑚

, (24)

𝐹 ′
𝑗𝑚 = 1

𝑘𝑗
exp

(

𝑖𝑘𝑗𝜉𝑗 − 𝜙𝑗 +
1
2
∑

𝑚≠𝑗
𝐴𝑗𝑚

)

𝛿𝑗𝑚 + 2
𝑘𝑗 + 𝑘𝑚 + 𝑐𝑗 − 𝑐𝑚

, (25)

here 𝜉𝑗 = 𝑥 − 𝑐𝑗 𝑡 − 𝑥𝑗 , 𝑘𝑗𝜙𝑗 > 0, 𝑥𝑗 ∈ R, 𝑐𝑗 = 𝑘𝑗 coth𝜙𝑗 > 0, and

𝑒𝐴𝑗𝑚 =
(𝑐𝑗 − 𝑐𝑚)2 − (𝑘𝑗 − 𝑘𝑚)2

(𝑐𝑗 − 𝑐𝑚)2 − (𝑘𝑗 + 𝑘𝑚)2
. (26)

These determinant representations were derived in [18, Eqs. (2.16)] based on the determinant formulas used in [19]. They are
particularly useful in the derivation of multi-soliton solutions by degeneration of 𝑘𝑗 → 0 with 𝑐𝑗 being fixed, see [18, Eqs. (2.48)].
It also follows from the representation, see [18, Eq. (2.29), Appendix A],

𝑓 ′ = det(𝐹 ′) = exp

(

∑

𝑗
𝑖𝑘𝑗𝜉𝑗 − 𝜙𝑗

)

det(𝐹 ) = exp

(

∑

𝑗
𝑖𝑘𝑗𝜉𝑗 − 𝜙𝑗

)

𝑓 (27)

that the solution 𝑢(𝑥, 𝑡) in the form (10) is a real quantity given by

𝑢 = −
∑

𝑗
𝑘𝑗 + 𝑖𝜕𝑥 log

det(𝐹 )
det(𝐹 )

,

where the bar denotes the complex conjugation. Moreover, it was shown in Lemma 1.1 of [19] that the solution 𝑢(𝑥, 𝑡) is bounded
for every (𝑥, 𝑡) ∈ R×R and the assumption on zeros of 𝑓 (𝑓 ′) in the upper (lower) half-plane is satisfied if parameters of the solution
atisfy the constraints

(𝑐𝑗 − 𝑐𝑚)2 > (|𝑘𝑗 | + |𝑘𝑚|)2, 𝑗 ≠ 𝑚. (28)

onstraints (28) ensure that the Lax spectrum of the multiperiodic solutions is located on

∪𝑗 [𝜆𝑗 , 𝜇𝑗 ] ∪ [0,∞), 𝜆𝑗 = −
𝑐𝑗 + |𝑘𝑗 |

2
, 𝜇𝑗 = −

𝑐𝑗 − |𝑘𝑗 |
2

with the spectral band [𝜆𝑗 , 𝜇𝑗 ] being disjoint from the other spectral bands [19,27]. See the upper panel of Fig. 3 for illustration.

Multi-breather solutions. For multi-breather solutions, we consider the square matrices 𝐹 and 𝐹 ′ of size (𝑁 + 1) × (𝑁 + 1) and
reserve the first element for the traveling periodic wave (2) with 𝜉 = 𝑥 − 𝑐0𝑡 − 𝜉0, 𝑘0 = 𝑘 > 0, and 𝜙0 = 𝜙 > 0. For the remaining 𝑁
lements, we use enumeration 1 ≤ 𝑗 ≤ 𝑁 , add the phase transformations 𝑥𝑗 → 𝑥𝑗 + 𝜋𝑘−1𝑗 , denote 𝜂𝑗 = 𝑥− 𝑐𝑗 𝑡− 𝑥𝑗 , and take the limit
𝑗 → 0, 𝜙𝑗 → 0 with 𝑐𝑗 = 𝑘𝑗 coth𝜙𝑗 > 0 being fixed. This degeneration procedure transforms elements of 𝐹 and 𝐹 ′ to the form:

𝐹00 =
1
𝑘
[

1 + 𝑒𝑖𝑘𝜉+𝜙
]

, 𝐹0𝑚 = 2
𝑘 + 𝑐0 − 𝑐𝑚

, 𝐹𝑚0 =
2

𝑘 + 𝑐𝑚 − 𝑐0
,

𝐹 ′
00 =

1
𝑘
[

1 + 𝑒𝑖𝑘𝜉−𝜙
]

, 𝐹 ′
0𝑚 = 2

𝑘 + 𝑐0 − 𝑐𝑚
, 𝐹 ′

𝑚0 =
2

𝑘 + 𝑐𝑚 − 𝑐0
,

and for 1 ≤ 𝑗 ≠ 𝑚 ≤ 𝑁 :

𝐹𝑗𝑗 = −𝑖𝜂𝑗 −
1
𝑐𝑗

− 2𝑘
(𝑐0 − 𝑐𝑗 )2 − 𝑘2

, 𝐹𝑗𝑚 = 2
𝑐𝑗 − 𝑐𝑚

,

𝐹 ′
𝑗𝑗 = −𝑖𝜂𝑗 +

1
𝑐𝑗

− 2𝑘
(𝑐0 − 𝑐𝑗 )2 − 𝑘2

, 𝐹 ′
𝑗𝑚 = 2

𝑐𝑗 − 𝑐𝑚
.

he terms with 𝑒𝐴𝑗𝑚 with 1 ≤ 𝑗, 𝑚 ≤ 𝑁 do not contribute to the limit because of the power expansion:

𝑒𝐴𝑗𝑚 = 1 +
4𝑘𝑗𝑘𝑚

2
+ (𝑘2𝑗𝑘

2
𝑚).
7

(𝑐𝑗 − 𝑐𝑚)
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Fig. 3. The degeneration procedure used to obtain multi-breather solutions. Top: three finite bands in the Lax spectrum associated with the three-periodic
solutions. Bottom: two eigenvalues and one finite band in the Lax spectrum associated with the two-breather solution on the periodic wave.

The terms with 𝑒𝐴0𝑗 with 1 ≤ 𝑗 ≤ 𝑁 do not contribute to the limit for 𝐹00 but contribute to the limit for 𝐹𝑗𝑗 because of the power
expansion:

𝑒𝐴0𝑗 = 1 +
4𝑘𝑘𝑗

(𝑐0 − 𝑐𝑗 )2 − 𝑘2
+ (𝑘2𝑗 ).

The choice of 𝑐𝑗 for 1 ≤ 𝑗 ≤ 𝑁 is arbitrary as long as |𝑐𝑗 − 𝑐0| > 𝑘 and all 𝑐𝑗 are distinct. These constraints follow from (28). After
the degeneration, the Lax spectrum of the breather solutions consist on

∪𝑁𝑗=1𝜆𝑗 ∪ [𝜆0, 𝜇0] ∪ [0,∞), 𝜆0 = −
𝑐0 + 𝑘

2
, 𝜇0 = −

𝑐0 − 𝑘
2

, 𝜆𝑗 = −
𝑐𝑗
2
,

where simple eigenvalues {𝜆𝑗}𝑁𝑗=1 are located either in (−∞, 𝜆0) or in (𝜇0, 0). See the lower panel of Fig. 3 for illustration. The
degeneration procedure has been used for the KdV equation in [3]. It has been widely used to obtain multi-soliton solutions from
the multi-periodic solutions of the BO equation [18,42].

Multiplying the rows of 𝐹 and 𝐹 ′ by 𝑘, 𝑐1,… , 𝑐𝑁 respectively yields the solution formula (7) in Theorem 1. The solution 𝑢(𝑥, 𝑡)
is real which follows from (27) in the same degeneration limit as

𝑓 ′ = det(𝐹 ′) = (−1)𝑁𝑒𝑖𝑘𝜉−𝜙 det(𝐹 ) = (−1)𝑁𝑒𝑖𝑘𝜉−𝜙𝑓. (29)

Since (24), (25), (26), and (28) yield roots of 𝑓 = det(𝐹 ) (𝑓 ′ = det(𝐹 ′)) in the upper (lower) half-plane for every 𝑘𝑗 > 0, as proven
n Lemma 1.1 of [19], the roots can only approach the real line but cannot cross the real line in the limit 𝑘𝑗 → 0. It follows from
29) that the roots of 𝑓 and 𝑓 ′ on the real line coincide up to their multiplicities and the quotient in the solution form (10) can be
sed to redefine 𝑓 and 𝑓 ′ free of roots on the real line. This proves that the solution 𝑢(𝑥, 𝑡) arising in the limit 𝑘𝑗 → 0 is bounded
or every (𝑥, 𝑡) ∈ R × R.

Similar to Lemma 1.1 in [19], it should be possible to represent the solution of the Lax equations (16) for the multi-breather
olutions of Theorem 1 and prove rigorously that the individual determinants of the matrices 𝐹 and 𝐹 ′ given below (7) do not
anish for every (𝑥, 𝑡) ∈ R × R. This would rule out the possibility of coalescence of roots of 𝑓 and 𝑓 ′ at the real axis in the limit
𝑗 → 0. The proof of the above fact is left out for further work.

Example with 𝑁 = 1. Expanding the determinants in Theorem 1 for 𝑁 = 1, we obtain

det(𝐹 ) = −(1 + 𝑒𝑖𝑘𝜉+𝜙)(𝑖𝑐𝜂 + 1 + 𝛽) + 2𝛽,
8
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det(𝐹 ′) = −(1 + 𝑒𝑖𝑘𝜉−𝜙)(𝑖𝑐𝜂 − 1 + 𝛽) + 2𝛽,

where 𝛽 is given by (5) and 𝜂 = 𝑥 − 𝑐𝑡 − 𝜂0 is defined with 𝑐1 = 𝑐. These expressions for 𝑓 = det(𝐹 ) and 𝑓 ′ = det(𝐹 ′) are equivalent
to those in (15) and lead to the exact solution (4) shown on Fig. 1 for either 𝑐 > 𝑐0 + 𝑘 or 𝑐 < 𝑐0 − 𝑘. The explicit expressions for
det(𝐹 ) and det(𝐹 ′) agree with (29) with 𝑁 = 1.

Example with 𝑁 = 2. Expanding the determinants in Theorem 1 for 𝑁 = 2 and simplifying the answers, we obtain

det(𝐹 ) = (1 + 𝑒𝑖𝑘𝜉+𝜙)
[

(1 + 𝑖𝑐1𝜂1)(1 + 𝑖𝑐2𝜂2) +
4𝑐1𝑐2

(𝑐1 − 𝑐2)2
+ 𝛽1𝛽2

]

+ (𝑒𝑖𝑘𝜉+𝜙 − 1)
[

𝛽1(1 + 𝑖𝑐2𝜂2) + 𝛽2(1 + 𝑖𝑐1𝜂1)
]

,

det(𝐹 ′) = (1 + 𝑒𝑖𝑘𝜉−𝜙)
[

(1 − 𝑖𝑐1𝜂1)(1 − 𝑖𝑐2𝜂2) +
4𝑐1𝑐2

(𝑐1 − 𝑐2)2
+ 𝛽1𝛽2

]

+ (1 − 𝑒𝑖𝑘𝜉−𝜙)
[

𝛽1(1 − 𝑖𝑐2𝜂2) + 𝛽2(1 − 𝑖𝑐1𝜂1)
]

,

here

𝛽𝑗 ∶=
2𝑘𝑐𝑗

(𝑐𝑗 − 𝑐0)2 − 𝑘2
, 1 ≤ 𝑗 ≤ 2.

The explicit expressions for det(𝐹 ) and det(𝐹 ′) agree with (29) with 𝑁 = 2. By using these formulas in (7), we obtain three different
solutions for three choices of 𝑐1 and 𝑐2: a bright–bright breather if 𝑐1, 𝑐2 > 𝑐0 +𝑘, a bright-dark breather if 𝑐1 < 𝑐0 −𝑘 and 𝑐2 > 𝑐0 +𝑘,
and a dark-dark breather if 𝑐1, 𝑐2 < 𝑐0 − 𝑘. The top views of the solution surfaces for these breather solutions are shown on Fig. 2.
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