Bargmann transform and its applications to partial differential equations

Nabil AL ASMER

Supervisor: Prof. Dmitry PELINOVSKY
The Department of Mathematics & Statistics
McMaster University

April 13, 2021

Outline of the thesis

The thesis consists of two main parts:

- ▶ Part 1: Fock space and Bargmann transform and some of its properties.
- Part 2: Some applications to partial differential equations:
 - 1. Evolution of the linear Schrödinger equation.
 - 2. Evolution of the linear diffusion equation.
 - 3. Evolution of the linear KdV equation.
 - 4. Well-posedness of the Gross–Pitaevskii equation at the Lowest Landau Level equation.

Fock space

Let $z=x-i\xi\in\mathbb{C}$ be an extension of $x\in\mathbb{R}$ to $z\in\mathbb{C}$. Let $\alpha>0$ be fixed arbitrarily and define $L^2_\rho(\mathbb{C})$ by its weight

$$\rho(z) := \frac{\alpha}{\pi} e^{-\alpha|z|^2}$$

and the standard inner product

$$\langle f, g \rangle_{L^2_{\rho}(\mathbb{C})} := \frac{\alpha}{\pi} \iint_{\mathbb{R}^2} f(z) \overline{g(z)} e^{-\alpha |z|^2} dx d\xi.$$

The L^2 -based Fock space denoted by \mathcal{F} is the space of all entire functions in $L^2_{\rho}(\mathbb{C})$:

$$\mathfrak{F}=\left\{f\in L^2_
ho(\mathbb{C}):\quad f(z) \text{ is entire in } z\in\mathbb{C}
ight\}$$

Bargmann transform

Bargmann transform is defined by:

$$(\mathcal{B}\varphi)(z) := \left(\frac{2\alpha}{\pi}\right)^{\frac{1}{4}} e^{\frac{\alpha}{2}z^2} \int_{-\infty}^{\infty} e^{-\alpha(z-y)^2} \varphi(y) dy, \quad z \in \mathbb{C},$$

provided that the integral is finite. It can be shown that if $\varphi \in L^2(\mathbb{R})$, then the integral is finite and $\mathcal{B}\varphi \in \mathcal{F}$, moreover, it is a unitary transformation which preserves the norm.

The adjoint Bargmann transform \mathcal{B}^*

▶ The adjoint transform of B is a transformation which satisfies:

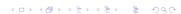
$$\langle f, \mathcal{B}\varphi\rangle_{L^2_\rho(\mathbb{C})} = \langle \mathcal{B}^*f, \varphi\rangle_{L^2(\mathbb{R})}, \quad \text{for every} \quad f \in L^2_\rho(\mathbb{C}), \ \ \varphi \in L^2(\mathbb{R}).$$

After some computations we get that this transformation given by:

$$(\mathcal{B}^*f)(y) = \frac{2^{\frac{1}{4}}\alpha^{\frac{5}{4}}}{\pi^{\frac{5}{4}}} \iint_{\mathbb{R}^2} e^{\frac{\alpha}{2}\overline{z}^2 - \alpha(y - \overline{z})^2 - \alpha|z|^2} f(z) dx d\xi,$$

where $\mathcal{B}^*: L^2_{\rho}(\mathbb{C}) \mapsto L^2(\mathbb{R})$.

- ▶ \mathcal{B}^* is the left inverse of \mathcal{B} , so that $\mathcal{B}^*\mathcal{B}\varphi = \varphi$ for every $\varphi \in L^2(\mathbb{R})$.
- \mathcal{B}^* is not the right inverse of \mathcal{B} , since $\mathcal{B}^*\bar{z}=0$ and by the same reason we get \mathcal{B}^* is not an isometry and so is not a unitary transformation from $L^2_{\rho}(\mathbb{C})$ to $L^2(\mathbb{R})$.
- $\blacktriangleright \ \Pi := \mathcal{BB}^* : L^2_{\rho}(\mathbb{C}) \mapsto \mathcal{F} \subset L^2_{\rho}(\mathbb{C})$



Embedding of Fock spaces

▶ Fock spaces can be extended to the L^p -Lebesgue spaces,

$$\mathfrak{F}_p = \left\{ f \in L^p_
ho(\mathbb{C}) : \quad f(z) \text{ is entire in } z \in \mathbb{C} \right\}.$$

▶ Fix $0 . For every <math>z \in \mathbb{C}$ and every $f \in \mathcal{F}_p$,

$$|f(z)| \leq ||f||_{L^p_\rho} e^{\frac{1}{2}\alpha|z|^2}.$$

Fix $0 . Then, <math>\mathcal{F}_p \subsetneq \mathcal{F}_q$ and the inclusion is continuous,

$$\|f\|_{L^q_
ho} \leq \left(rac{q}{
ho}
ight)^{rac{1}{q}} \|f\|_{L^p_
ho},$$

1. Applications to Schrödinger equation

We shall now express the Cauchy problem for the time-dependent Schrödinger equation:

$$\begin{cases} i\frac{\partial\Phi}{\partial t} = L\Phi \\ \Phi|_{t=0} = \varphi \in L^2(\mathbb{R}), \end{cases}$$

Where $L: D(L) \subset L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$ is the Schrödinger operator defined by:

$$L := -\partial_y^2 + y^2 - 1$$

Where the domain

$$D(L):=\big\{\varphi\in L^2(\mathbb{R}):\quad \partial_y^2\varphi\in L^2(\mathbb{R}),\quad y^2\varphi\in L^2(\mathbb{R})\big\}.$$

Orthonormal basis in the Fock space

▶ Eigenfunctions of the Schrödinger operator are given by the Gauss–Hermite functions, which form orthonormal basis in $L^2(\mathbb{R})$.

$$u_n(y) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(y) e^{-\frac{1}{2}y^2}, \quad n \in \mathbb{N}_0 = \{0, 1, 2, ...\},$$

To be precise, we know that

$$Lu_n = (2n)u_n, \quad n \in \mathbb{N}_0.$$

- $\{f_n\}_{n\in\mathbb{N}_0}$ is an orthonormal basis in $\mathcal{F}\subset L^2_{\rho}(\mathbb{C})$ where $f_n:=\mathcal{B}u_n=\frac{z^n}{\sqrt{2^nn!}},\quad n\in\mathbb{N}_0,\ \alpha=\frac{1}{2}.$
- $f(z) = \sum_{n=0}^{\infty} \langle f, f_n \rangle_{L^2_{\rho}(\mathbb{C})} f_n(z).$

The transformation of L under the Bargmann transform

If
$$\mathcal{L}:=\mathbb{B}L\mathbb{B}^*:D(\mathcal{L})\subset \mathcal{F}\mapsto \mathcal{F}$$
, then

$$(\mathcal{L}f)(z) = 2z\frac{df}{dz}, \quad f \in D(\mathcal{L}),$$

After the Bargmann transform \mathcal{B} , the Cauchy problem is rewritten in the form:

$$\begin{cases} i\frac{\partial F}{\partial t} = \mathcal{L}F = 2z\frac{\partial F}{\partial z} \\ F|_{t=0} = f \in \mathcal{F}, \end{cases}$$

where $f = \mathcal{B}\varphi$ and $F(t, \cdot) = \mathcal{B}\Phi(t, \cdot)$.

The transformation of L under the Bargmann transform

If
$$\mathcal{L}:=\mathbb{B}L\mathbb{B}^*:D(\mathcal{L})\subset \mathcal{F}\mapsto \mathcal{F}$$
, then

$$(\mathcal{L}f)(z) = 2z\frac{df}{dz}, \quad f \in D(\mathcal{L}),$$

After the Bargmann transform \mathcal{B} , the Cauchy problem is rewritten in the form:

$$\begin{cases} i\frac{\partial F}{\partial t} = \mathcal{L}F = 2z\frac{\partial F}{\partial z} \\ F|_{t=0} = f \in \mathcal{F}, \end{cases}$$

where $f = \mathcal{B}\varphi$ and $F(t, \cdot) = \mathcal{B}\Phi(t, \cdot)$.

For every $f \in \mathcal{F}$, there exists the unique solution to the \mathcal{B} -Cauchy problem which can be written in the form:

$$F(t,z) = f\left(ze^{-2it}\right).$$

The main question

If $h \in L^{\infty}(\mathbb{R})$, does $H(t,\cdot)$ remain in $L^{\infty}(\mathbb{R})$ for t > 0?

If $\Phi(t,y) = H(t,y)e^{-\frac{1}{2}y^2}$ and $\varphi(y) = h(y)e^{-\frac{1}{2}y^2}$, then the envelope function H(t,y) is a solution to the Cauchy problem:

$$\begin{cases} i\frac{\partial H}{\partial t} = -\partial_y^2 H + 2y\partial_y H, \\ H|_{t=0} = h. \end{cases}$$

We have answered this question negatively according to the following lemma.

Lemma

There exists $h \in L^{\infty}(\mathbb{R}) \ \&t_0 > 0$, s.t. $H(t,\cdot) \notin L^{\infty}(\mathbb{R}) \ \forall t \in (0,t_0)$.

2. Applications to linear diffusion equation

The linear diffusion equation:

$$\frac{\partial \Phi}{\partial t} = \frac{\partial^2 \Phi}{\partial y^2} + (1 - y^2) \Phi.$$

Bargmann transform with $F(t,\cdot)=\mathfrak{B}\Phi(t,\cdot)$ maps it to the following transport equation

$$\frac{\partial F}{\partial t} + 2z \frac{\partial F}{\partial z} = 0.$$

the Cauchy problem associated with the transport equation is solved in the form

$$F(t,z) = f(ze^{-2t}).$$

The main question

If $h \in L^{\infty}(\mathbb{R})$, does $H(t,\cdot)$ remain in $L^{\infty}(\mathbb{R})$ for t > 0?

If $\Phi(t,y) = H(t,y)e^{-\frac{1}{2}y^2}$, then the envelope of the Gaussian function H(t,y) satisfies the linear diffusion equation in self-similar variables:

$$\begin{cases} \frac{\partial H}{\partial t} = \partial_y^2 H - 2y \partial_y H, \\ H|_{t=0} = h. \end{cases}$$

The unique solution of this Cauchy problem is given in the integral form:

$$H(t,y) = \frac{1}{\sqrt{\pi(1-e^{-4t})}} \int_{\mathbb{R}} e^{-\frac{(y'-ye^{-2t})^2}{1-e^{-4t}}} h(y') dy'.$$

Lemma

For every $h \in L^{\infty}(\mathbb{R})$, the unique solution to the diffusion equation with H(0,y) = h(y) satisfies $H(t,\cdot) \in L^{\infty}(\mathbb{R})$ for every $t \in \mathbb{R}_+$.

3. Applications to the linear KdV equation

This is a modification of the linear KdV equation:

$$\begin{cases} \frac{\partial \Phi}{\partial t} = (\partial_y - y) L \Phi, \\ \Phi|_{t=0} = \varphi \in L^2(\mathbb{R}). \end{cases}$$

In order to reformulate the Cauchy problem in \mathcal{F} , we need to see how the Bargmann transform \mathcal{B} is applied to the derivative ∂_y and to the multiplication by y.

Lemma

Fix $f \in \mathcal{F}$. Then,

$$(\mathcal{B}\partial_y\mathcal{B}^*f)(z)=f'(z)-\frac{1}{2}zf(z)$$

and

$$(\mathcal{B}y\mathcal{B}^*f)(z)=f'(z)+\frac{1}{2}zf(z).$$

The solution of the Cauchy problem

We use the Bargmann transform and rewrite the Cauchy problem in the equivalent form:

$$\begin{cases} \frac{\partial F}{\partial t} = -2z^2 \partial_z F, \\ F|_{t=0} = f \in \mathcal{F}, \end{cases}$$

This Cauchy problem is solved in the form:

$$F(t,z)=f\left(\frac{z}{1+2tz}\right).$$

Since f is entire and $\frac{z}{1+2tz}$ has a pole at $z=-\frac{1}{2t}$ for every $t\neq 0$, $F(t,\cdot)$ is entire if and only if $|f(\infty)|<\infty$. However, by Liouville's theorem, the only entire and bounded function is the constant function.

Lemma

The Cauchy problem is ill-posed in $L^2(\mathbb{R})$.

4. Applications to Gross-Pitaevskii equation

$$i\frac{\partial u}{\partial t} = -\Delta u + 2i(x\partial_y - y\partial_x)u + (x^2 + y^2)u + |u|^2u - 2u,$$

With the use of complex variable z = x + iy, the Gross–Pitaevskii equation (15) can be rewritten in the form

$$i\frac{\partial u}{\partial t} = \left(\bar{z} - 2\frac{\partial}{\partial z}\right)\left(z + 2\frac{\partial}{\partial \bar{z}}\right)u + |u|^2u$$

We will use the Bargmann transform particularly the projection operator acting on functions of the form $u(z) = f(z)e^{-\frac{1}{2}|z|^2}$ is given by:

$$(\widehat{\Pi}u)(z) = \frac{1}{\pi}e^{-\frac{|z|^2}{2}} \iint_{\mathbb{D}^2} e^{z\overline{z}' - \frac{|z'|^2}{2}} u(z') dx' dy' = (\Pi u e^{\frac{1}{2}|z|^2})(z) e^{-\frac{1}{2}|z|^2}$$

We decompose u into the sum of two terms: the leading-order term satisfying the following closed initial-value problem

$$\begin{cases}
i\frac{\partial u}{\partial t} = \widehat{\Pi}(|u|^2 u) \\
u(0, z) = u_0(z).
\end{cases}$$
(1)

and the error term which satisfies the residual equation. (1) is called the lowest Landau level (LLL) equation.

Lemma

The initial-value problem (1) is locally well-posed in $L^p(\mathbb{C})$ for any $p \geq 1$. Moreover it is globally well-posed in $L^2(\mathbb{C})$ if $u_0 \in L^2(\mathbb{C})$, and for every $t \in \mathbb{R}$, $||u(t,\cdot)||_{L^2} = ||u_0||_{L^2}$.

Summary

- ► The linear evolution is greatly simplified after the Bargmann transform, so that the three equations reduced to transport equation.
- We answered positively to the main question for diffusion equation and negatively for the Schrödinger equation.
- ► We considered a linear KdV equation with this method and we showed it has no solution unless it is constant.
- ▶ Bargmann transform is also useful in the well-posedness analysis of the Gross-Pitaevskii equation in two dimensions.

THANK YOU