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Abstract

Stationary Bloch waves are considered in the Gross-Pitaevskii equation with a periodic
potential for varying strengths of inter-atomic interactions. Upon a sufficient increase of
the inter-atomic interactions one may observe a bifurcation in the number and stability of
stationary states. This bifurcation generates loops in the energy bands of the Bloch waves
near the ends and the center of the Brillouin zone. Using the method of Lyapunov-Schmidt
reductions, the behaviour of stationary states is established close to the linear limit and around
the bifurcation value. In particular, the bifurcation for the lowest energy band is shown to
be a supercritical pitchfork bifurcation. The change in stability of the stationary states is
also examined across the bifurcation point. Analytical results are illustrated by numerical
computations for the lowest and excited energy bands.



1 Introduction

Let us consider the mean-field model for Bose-Einstein condensation, the Gross-Pitaevskii equation,
in the space of one dimension,

i
∂Ψ

∂t
= −∂

2Ψ

∂x2
+ V (x)Ψ + c|Ψ|2Ψ, (1)

where Ψ(x, t) : R × R → C is the wave function of the condensate (with |Ψ|2 being a probability
density of Bose atoms), V (x) : R → R models the trapping mechanism, and c ∈ R models the
strength of the inter-atomic interactions. The one-dimensional equation corresponds to the cigar
shaped Bose-Einstein condensate.

We take the potential to be a 2π-periodic function; V (x + 2π) = V (x). This potential corre-
sponds to an optical lattice used for trapping the condensate. We deal both with the defocusing,
c > 0, and focusing, c < 0, cases. The main interest that draws our attention is the possibility
of loops in the energy bands associated with the nonlinear Bloch waves. This possibility was first
discovered by Wu & Niu (see their review in [3]) and later explored numerically by Machholm,
Pethick, and Smith [4]. The loops were discovered in the defocusing case, c > 0, for the lowest
energy band near the end of the Brillouin zone and for the second energy band near the center
of the Brillouin zone (see Figure 1 in [4]). For V (x) = cos(x), an analytical example of the new
solutions bifurcating from the anti-periodic Bloch waves for the lowest energy band at c = 1 and
existing for c > 1 is constructed by Bronski et al. [2].

More recently, a possibility of loops in the energy bands for Bloch waves were discovered in the
context of atomic Bloch-Zener oscillations in an optical cavity. This problem is modeled by the
system of a linear Schrödinger equation for the atomic wave function and an evolution equation
for the number of photons in the cavity [5]. The stationary Bloch waves satisfy the Schrödinger
equation, where the nonlinear response is captured by the dependence of the coefficient in front of
the periodic potential V from the integral of the squared wave function multiplied by V . Prasanna,
Larson, and O’Dell [6] discovered loops in the energy bands of the Bloch waves, which occur in the
interior of the Brillouin zone and may detach as new energy bands, in a sharp contrast from the
energy bands for Bloch waves in the optically trapped Bose-Einstein condensates.

The comparison between these two examples calls for systematic analysis of the loop bifurcations
in the energy bands of the Bloch waves in periodic potentials. We study the latter phenomenon
here, in the context of the Gross-Pitaevskii equation (1).

Consider now stationary states satisfying the time-independent Gross-Pitaevskii equation,

−ψ′′(x) + V (x)ψ + c|ψ|2ψ = µψ, (2)

with eigenvalue µ. Physically µ is associated with the chemical potential. We consider Bloch waves,
which are quasi-periodic solutions of (2). That is,

ψ(x) = eikxφ(x), x ∈ R, (3)

where φ(x) is a 2π-periodic function and k is the Bloch wavenumber. Therefore,

ψ(x+ 2π) = e2πik+ikxφ(x+ 2π) = e2πikψ(x). (4)

Due to the periodicity of the exponential term in (4) it is sufficient to consider k on the interval
[−1

2
, 1
2
], called the Brillouin zone.
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For k = 0, (4) simplifies to ψ(x + 2π) = ψ(x), a 2π-periodic function. For k = ±1
2
, (4) gives

us ψ(x + 2π) = −ψ(x), a 2π-antiperiodic function or a 4π-periodic function. At either k = 0 or
k = ±1

2
the function ψ can be taken to be purely real because (2) admits a reduction to real-valued

solutions and the boundary conditions in (4) are real valued. We can not generally take ψ purely
real for k 6= {0,±1

2
}, as the boundary conditions in (4) are not real-valued.

We are interested in the qualitative behaviour of these functions, ψ, for varying values of the
parameter c, specifically the appearance of a new solution at some bifurcation value c = c∗. In
particular this analysis will reveal to us the loop structure in the Bloch bands as seen in [3] and [4].

The report is organized as follows. Section 2 deals with the stationary real branch and demon-
strates, for k = ±1

2
, the unique continuation of solutions from c = 0 to some small c 6= 0. Section 3

presents asymptotic and numerical results for continuations of Bloch waves with k = 0 and k = 1
2

as well as the eigenvalues of the linear Schrödinger operators associated with linearization of the
time-independent Gross-Pitaevskii equation. Section 4 contains the main result; analysis of the
bifurcation of the stationary real branch which is revealed to be a pitchfork bifurcation. Section
5 establishes the stability of solutions around the pitchfork bifurcation. Section 6 concludes the
report. Appendix A addresses the validity of the numerical methods.

2 Stationary Real Branch

Let us consider k = 1
2
. Take ψ satisfying (2) defined on the interval [−π, π] subject to antiperiodic

boundary conditions. The natural space for these functions is,

H2
a.p. := {f ∈ H2([−π, π],R) : f(−π) = −f(π), f ′(−π) = −f ′(π)}, (5)

where,

H2([a, b],R) := {f : [a, b]→ R, ‖f‖H2 <∞}, (6)

and

‖f‖H2 :=

(∫ b

a

[(f ′′)2 + (f ′)2 + f 2]dx

) 1
2

. (7)

Here we recall that H2([−π, π],R) is embedded in the space of continuously differentiable functions
C1([−π, π],R). We define the inner product and the induced norm in L2([−π, π],R) by standard
expressions,

< f, g >L2 :=
1

2π

∫ π

−π
f(x)g(x)dx, ‖f‖2L2 :=< f, f >L2 . (8)

where 1
2π

is included for convenience of normalization.
The linear analogue of (2), c = 0, in the space (5), exhibits well studied properties including the

existence of a countable set of eigenvalues {µn}n∈N0 , where N0 := {0, 1, 2, . . .}, at discrete energy
levels, each with a corresponding wave function, ψn ∈ H2

a.p.. We take each ψn to be real and
normalized by ‖ψn‖L2 = 1. The main result of this section is formulated as follows.
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Theorem 1. Fix n ∈ N0. There exists cn > 0 such that for any c ∈ (−cn, cn), the stationary
Gross-Pitaevskii equation, 

−ψ′′ + V (x)ψ + cψ3 = µψ, x ∈ R
ψ(x+ 2π) = −ψ(x), x ∈ R
‖ψ‖L2 = 1

(9)

admits a unique branch of solutions such that

|µ− µn| ≤ D1c, ‖ψ − ψn‖H2 ≤ D2c,

for some D1, D2 > 0.

The proof of the main theorem appears at the end of the section.

2.1 Preliminaries

We assume the existence of some ψn ∈ H2
a.p. and µn satisfying (2) with c = 0. We also assume that

µm 6= µn for all m ∈ N0\{n}. Therefore, Lnψn = 0 where,

Ln := −∂2x + V (x)− µn, (10)

is an unbounded operator from H2
a.p. to L2 which has a one-dimensional kernel in H2

a.p., given by
Ker(Ln) = {ψn}. Since Ln is self-adjoint, its kernel and range are orthogonal so,

Ran(Ln) = {f ∈ L2 : < f, ψn >L2= 0}. (11)

Therefore it is natural to introduce the decomposition, L2 = {ψn} ⊕ Ran(Ln) and define the
projection operator, Pn : L2 → Ran(Ln). The norm ‖PnL−1n Pn‖H2→H2 will become important for
us shortly.

Lemma 1. There exists N > 0 such that ‖PnL−1n Pn‖H2→H2 ≤ N .

Proof. The norm ‖PnL−1n Pn‖H2→H2 is equivalent to the norm ‖PnL−1n Pn‖L2→L2 defined by,

‖PnL−1n Pn‖L2→L2 = sup
f∈L2,f 6=0

‖PnL−1n Pnf‖L2

‖f‖L2

. (12)

Operator Ln is self-adjoint and so has an orthonormal set of eigenfunctions, {ψm}m∈N0 , that span
L2, for the set of eigenvalues {µm − µn}m∈N0 . Given f ∈ L2 we can decompose f as,

f =
∑
m∈N0

fmψm,

where, fm =< ψm, f >L2 . So,

‖f‖2L2 =
∑
m∈N0

∑
n∈N0

fmfn < ψm, ψn >L2 =
∑
m∈N0

f 2
m,
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since < ψm, ψn >L2= δm,n. The projection operator Pn simply kills the component of f in the
direction of ψn. So,

Pnf =
∑

m∈N0\{n}

fmψm

L−1n Pnf =
∑

m∈N0\{n}

fmL
−1
n ψm =

∑
m∈N0\{n}

1

µm − µn
fmψm + Cψ0,

for any C ∈ R. Applying Pn once more gives us,

PnL
−1
n Pnf =

∑
m∈N0\{n}

1

µm − µn
fmϕm.

Taking the norm yields,

‖PnL−1n Pnf‖2L2 =
∑

m∈N0\{n}

∑
l∈N0\{n}

1

(µm − µn)(µl − µn)
fmfl < ψm, ψl >L2=

∑
m∈N0\{n}

f 2
m

(µm − µn)2

≤ sup
m∈N0\{n}

1

|µm − µn|2
‖f‖2L2 ,

so that,

‖PnL−1n Pn‖L2→L2 = sup
m∈N0\{n}

1

|µm − µn|
=

(
inf

m∈N0\{n}
|µm − µn|

)−1
.

We will also use the following property of H2: for any f , g ∈ H2, there is K > 0 such that,

‖fg‖H2 ≤ K‖f‖H2‖g‖H2 . (13)

This property shows that H2 is a Banach Algebra with respect to pointwise multiplication.

2.2 Lyapunov-Schmidt Reduction

Now take c > 0 and consider a solution of (9), ψ with nonlinear eigenvalue µ. Decompose µ into
µ = µn + δµ. Let us write (9) in the equivalent form,

Lnψ = δµψ − cψ3 ≡ F . (14)

F must be in the range of Ln, so it follows that,

< δµψ − cψ3, ψn >L2= 0 ⇒ δµ = c
< ψ3, ψn >L2

< ψ,ψn >L2

. (15)

Decompose ψ as ψ = aψn + δψ, with a ∈ R, and < ψn, δψ >L2= 0. Then (15) yields, at the leading
order,

δµ =
c

a
< (aψn + δψ)3, ψn >L2≡ f(δψ, c), (16)
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so that,

δµ = c(a2‖ψn‖4L4 +O(a‖δψ‖H2)), (17)

provided ‖δψ‖H � |a|. The normalization of ψ and ψn gives,

1 = a2 + ‖δψ‖2L2 ⇒ a =
√

1− ‖δψ‖2L2 ≡ g(δψ), (18)

So,

a = 1 +O(‖δψ‖2H2), (19)

and,

δµ = c(‖ψn‖4L4 +O(‖δψ‖H2)). (20)

We now turn our attention to δψ. Note that since ψn ∈ Ker(Ln) we have,

F = Lnψ = Ln(ψn + δψ) = Lnδψ. (21)

Then,

δψ = (PnL
−1
n Pn)F

= (PnL
−1
n Pn)(δµ(aψn + δψ)− c(aψn + δψ)3) (22)

≡ A(δψ; c).

The nonlinear operator A depends only on δψ ∈ H2
a.p. and c ∈ R since δµ and a are uniquely

determined by constraint (16) and normalization (18).

Lemma 2. There is cn > 0 such that for any c ∈ (−cn, cn), A(δψ; c), as defined by (16), (18) and
(22), has a unique fixed point, δψ ∈ H2

a.p., in a neighbourhood of 0 ∈ H2
a.p.. Moreover, there exists

D > 0 such that ‖δψ‖H2 ≤ Dc.

Proof. We will apply the Banach Fixed Point Theorem (see Section 1.6 in [1] for a precise statement)
to the proof of existence and uniqueness of a fixed point of A. We must show that A maps a closed
neighbourhood around 0 ∈ H2

a.p. into itself and that A is a contraction map. Take B̄ε ⊂ H2
a.p. with,

B̄ε := {ψ ∈ H2
a.p. : ‖ψ‖H2 ≤ ε}, (23)

a closed neighbourhood around 0 ∈ H2
a.p.. Take δψ ∈ B̄ε and consider the norm of A(δψ; c) for small

c. Note that ψn ∈ H2 gives ‖ψn‖H2 ≤ R for some R > 0, Lemma 1 gives ‖PnL−1n Pn‖H2→H2 ≤ N
and recall the property (13) with ‖fg‖H2 ≤ K‖f‖H2‖g‖H2 . Then we have,

‖A(δψ; c)‖H2 = ‖PnL−1n Pn‖H2→H2‖δµ(aψn + δψ)− c(aψn + δψ)3‖H2

≤ N(R|a||δµ|+ |δµ|ε+ cK2(R3|a|3 + 3R2|a|2ε+ 3R|a|ε2 + ε3)). (24)

Since |δµ| = O(c) from (20) if δψ ∈ B̄ε, there is a cn > 0 such that for all c ∈ (−cn, cn), there is
ε = ε(c) such that ‖A(δψ; c)‖H2 ≤ ε if ‖δψ‖H2 ≤ ε. Hence A maps a closed ball in H2

a.p. into itself.
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Now we show that A is a contraction map for small c. That is, we need to show that there is
cn > 0 such that for all c ∈ (−cn, cn) there is q = q(c) such that q ∈ (0, 1) and,

‖A(δψ1; c)−A(δψ2; c)‖H2 ≤ q‖δψ1 − δψ2‖H2 , (25)

where,

A(δψ1; c)−A(δψ2; c) = PnL
−1
n Pn((δµ1a1 − δµ2a2)ψn + δµ1δψ1 − δµ2δψ2 − c((a31 − a32)ψ3

n

+ 3ψ2
n(a21δψ1 − a22δψ2) + 3ψn(a1δψ

2
1 − a2δψ2

2) + (δψ3
1 − δψ3

2))). (26)

Note that δµ = f(δψ, c) in (16) depends only on c and δψ since we have determined a = g(δψ)
from (18). We also recall δψ1, δψ2 ∈ B̄ε and all bounds used previously. We now treat some terms
in (26). Firstly,

‖(δµ1a1 − δµ2a2)ψn‖H2 ≤ |δµ1a1 − δµ2a2|‖ψn‖H2

≤M1|c|‖δψ1 − δψ2‖H2 , (27)

for some M1 > 0 using (19) and (20). Secondly,

‖δµ1δψ1 − δµ2δψ2‖H2 ≤ ‖δµ1(δψ1 − δψ2)‖H2 + ‖(δµ1 − δµ2)δψ2‖H2

≤M2ε|c|‖δψ1 − δψ2‖H2 , (28)

for some M2 > 0, again with the help of (20). Thirdly,

‖(a31 − a32)ψ3
n‖H2 ≤ K2|a31 − a32|‖ψn‖3H2

≤ K2R3|a1 − a2||a21 + a1a2 + a22|

≤ K3R3 |a21 + a1a2 + a22|
|a1 + a2|

‖δψ1 − δψ2‖H2‖δψ1 + δψ2‖H2

≤M3ε‖δψ1 − δψ2‖H2 , (29)

for some M3 > 0 with the application of (19). Fourthly,

‖δψ3
1 − δψ3

2‖H2 ≤ K‖δψ1 − δψ2‖H2‖δψ2
1 + δψ1δψ2 + δψ2

2‖H2

≤M4ε
2‖δψ1 − δψ2‖H2 , (30)

for some M4 > 0. Finally, the other two terms can be estimated similarly to (29) − (30) and are
bounded as follows,

‖3ψ2
n(a21δψ1 − a22δψ2)‖H2 ≤M5‖δψ1 − δψ2‖H2 , (31)

‖3ψn(a1δψ
2
1 − a2δψ2

2)‖H2 ≤M6ε‖δψ1 − δψ2‖H2 , (32)

for some M5 > 0 and M6 > 0. Putting everything together yields (25) with,

q := |c|N(M1 +M5 + (M2 +M3 +M6)ε+M4ε
2). (33)

It is clear that there exists cn > 0 such that q < 1 for all c ∈ (−cn, cn) and so A is a contraction
mapping. Thus, by the Banach Fixed Point Theorem [1], we have the existence of a unique fixed
point, δψ ∈ H2

a.p., of A for sufficiently small c.
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Now, let us make an estimate on the order of δψ for small c. Expansion of (19), (20) and (22)
gives, at the leading order,

δψ = c(PnL
−1
n Pn)(‖ψn‖4L4ψn − ψ3

n +O(‖δψ‖H2)). (34)

Hence, (34) gives for the unique fixed point δψ ∈ H2
a.p.,

δψ = c(PnL
−1
n Pn)(‖ψn‖4L4ψn − ψ3

n) +O(c2), (35)

so that there is D > 0 such that ‖δψ‖H2 ≤ Dc.

We now prove the main theorem.

Proof of Theorem 1. From (19), (20) and Lemma 2 we have uniquely determined δψ and δµ and
thus, ψ and µ where,

ψ = aψn + δψ, µ = µn + δµ,

with,

‖δψ‖H2 = O(c), |δµ| = O(c), |a− 1| = O(c2).

Hence, |µ− µn| ≤ D1c and ‖ψ − ψn‖H2 ≤ D2c for some D1, D2 > 0, as required.

We refer to this unique continuation as the stationary real branch. Note that the above argument
applies equally well for periodic boundary conditions in (9), that is for, k = 0 with ψ ∈ H2

per where,

H2
per := {f ∈ H2([−π, π],R) : f(−π) = f(π), f ′(−π) = f ′(π)}. (36)

In fact, a more careful treatment of the above yields a unique continuation in c of Bloch waves for
all k ∈ [−1

2
, 1
2
]. Of course the result only holds in a neighbourhood of small c. A further increase

in c may lead to a change in the number of solutions of the stationary equation (2).

3 Perturbative and Numerical Results

Before we start to analyse solutions along the stationary real branch and look for bifurcations we
must first introduce the following linearization operators,

L+ := −∂2x + V (x) + 3cψ2(x)− µ, (37)

L− := −∂2x + V (x) + cψ2(x)− µ, (38)

where ψ is a stationary real solution of (2) corresponding to the nonlinear eigenvalue µ. L+ can be
obtained by differentiating (2) with respect to real ψ. Differentiating (2) with respect to imaginary
ψ yields L−. It is necessary to note that L−ψ = 0 if ψ satisfies (2). Since we are interested in
bifurcations of stationary solutions, we examine the eigenvalues of L± and look for a change in the
number of zero eigenvalues.
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3.1 Asymptotic Approximations

In this section we obtain linear approximations of eigenvalues of L± at c = 0. Let us consider µ(c)
along the branch of real-valued solutions ψ originating from the linear eigenmode ψn, as described
in Section 2. The dependence of µ from c comes from δµ as in (20). So,

dµ

dc

∣∣∣∣
c=0

= lim
c→0

µ− µn
c

= lim
c→0

δµ

c
= ‖ψn‖4L4 . (39)

Now consider L± and their eigenvalues along the branch µ(c). Denote the eigenvalues of L± by

λ
(m)
± , m ∈ N0 and their L2 normalized eigenfunctions ϕ

(m)
± . The Rayleigh quotient gives,

λ
(m)
± (c) =< L±(c)ϕ

(m)
± , ϕ

(m)
± >L2 . (40)

We note that L+(0) = L−(0) = −∂2x +V (x)−µn ≡ Ln, which has eigenvalues λ
(m)
± = µm−µn with

normalized eigenfunctions ϕ
(m)
±
∣∣
c=0

= ψm. We also note that,

L′+(0) = 3ψ2

∣∣∣∣
c=0

− µ′(0) = 3ψ2
n − ‖ψn‖4L4 , (41)

L′−(0) = ψ2

∣∣∣∣
c=0

− µ′(0) = ψ2
n − ‖ψn‖4L4 . (42)

Therefore,

dλ
(m)
−

dc

∣∣∣∣
c=0

=< L′−(0)ψm, ψm >L2=< ψ2
n, ψ

2
m >L2 −‖ψn‖4L4 . (43)

Similarly,

dλ
(m)
+

dc

∣∣∣∣
c=0

= 3 < ψ2
n, ψ

2
m >L2 −‖ψn‖4L4 . (44)

At c = 0, L±(0) = Ln has a simple zero eigenvalue and n negative eigenvalues. The rest of the
purely discrete spectrum of L±(0) is strictly positive. Since,

dλ
(n)
+

dc

∣∣∣∣
c=0

= 2‖ψn‖4L4 > 0, (45)

operator L+ has n negative and no zero eigenvalues for small c > 0 and (n + 1) negative and no
zero eigenvalues for c < 0. Operator L− has n negative and one zero eigenvalue for small c 6= 0.
Indeed,

dλ
(n)
−

dc

∣∣∣∣
c=0

= 0, (46)

and we recall that L−(c)ψ = 0.
We now prove for c > 0 that the number of negative eigenvalues of L+(c) cannot exceed the

number of negative eigenvalues of L−(c).
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Lemma 3. Suppose that the spectrum of L− has κ negative eigenvalues and a simple zero eigen-
value. Then for c > 0 the spectrum of L+ has at most κ negative and zero eigenvalues with the
account of their multiplicity.

Proof. It is clear from (37) and (38) that

L+ = L− + 2cψ2(x).

Note that since L+ and L− are self-adjoint, their eigenfunctions form an orthogonal basis for H2
a.p..

Denote the negative and zero eigenvalues of L− by,

L−un = λnun, 0 ≤ n ≤ κ, (47)

where, λ0 = 0 > λ1 ≥ . . . ≥ λk including eigenvalues with multiplicity greater than one. Similarly,
for L+ write,

L+wn = γnwn, 1 ≤ n ≤ m, (48)

where, γm ≤ γm−1 ≤ . . . ≤ γ1 ≤ 0. We claim that m ≤ κ. Suppose m > κ and derive a
contradiction. For f ∈ span{w1, . . . wm}, we write,

f =
m∑
n=1

cnwn, (49)

for coefficients cn and note that,

< L+f, f >L2=
m∑
n=1

|cn|2γn ≤ 0, (50)

because of the orthogonality of wn. Now let us write wn as an orthogonal decomposition over
eigenfunctions of L−,

wn =
κ∑
l=1

an,lul + w̃n, w̃n ⊥ span{u1, . . . , uκ}, (51)

with < L−w̃n, w̃n >L2≥ 0. Consider,

g =
m∑
n=1

bnwn + g̃ =
κ∑
l=1

(
m∑
n=1

an,lbn

)
ul + g̃ +

m∑
n=1

bnw̃n, (52)

with, g̃ ⊥ span{u1, . . . , uκ} and upon substituting our decomposition for wn. In particular, if g = 0
then, (52) represents a decomposition of 0 over eigenfunctions of L−, so that,

g̃ = −
m∑
n=1

bnw̃n = −
m∑
n=1

bnwn, (53)

and,

m∑
n=1

an,lbn = 0, 1 ≤ l ≤ κ. (54)
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If m > κ then there exists a non-zero solution for {b1, . . . , bm} in the under-determined linear
system (54). So g̃ in (53) is a non-zero vector. Since g̃ ∈ span{w1, . . . , wm}, (50) gives,

< L+g̃, g̃ >L2=
m∑
n=1

|bn|2γm ≤ 0. (55)

On the other hand, since g̃ ∈ span{w̃1, . . . , w̃m} ⊥ span{u1, . . . , uκ} and g̃ 6= 0, we have
< L−g̃, g̃ >L2≥ 0 and,

< L+g̃, g̃ >L2=< L−g̃, g̃ >L2 +2c < ψ2, g̃2 >L2> 0. (56)

This gives the desired contradiction and so we conclude that m ≤ κ.

Corollary 1. Assume that κ = 0. Then, as c > 0 increases, L− acquires an additional zero
eigenvalue before L+ acquires a first zero eigenvalue.

Corollary 1 is applied to the lowest energy band, for which κ = 0 at least for small values of c.

3.2 Numerical Results

We would like to construct numerical approximations of the real Bloch waves (for k = 0 and
k = 1

2
) as well as eigenvalues of the operators L+ and L−. Numerically we solve the second-order

differential equation,

−φ′′(x) + V (x)φ± φ3 = µφ, x ∈ [−π, π] (57)

with continuous parameter µ. We solve (57) using a shooting method by taking advantage of the
boundary conditions: φ(x + 2π) = −φ(x) for k = 1

2
or φ(x + 2π) = φ(x) for k = 0. Once we have

φ for a given value of µ, we compute c and ψ in the stationary Gross-Pitaevskii equation (2) by,

ψ =
1√
N
φ, c = ±N, (58)

where N = ‖φ‖2L2 . Once we have determined c and ψ we have operators L± and can numerically
approximate their eigenvalues. In the figures that follow we use V (x) = cos(x) as the potential.
Note that in Figure 1(c) the bifurcation at c = 1 is exactly the loop bifurcation mentioned in [3].

The most interesting aspect of Figures 1-6 are the values of c for which the number of negative
eigenvalues of L− changes. This phenomenon is seen in Figure 1c (at c = 1), Figure 3c (around
c = 0.05), and Figure 5c (around c = 0.4) for positive c and in 6c (around c = −0.3) for negative c.

No change in the number of negative eigenvalues is observed for operator L+. The change in
the number of negative eigenvalues of L− leads to a bifurcation in the stationary real branch in the
space of complex functions. We analyse this bifurcation in the next section.

4 Pitchfork Bifurcation along the Real Branch

Here we consider only k = 1
2

for simplicity. Pick a real branch of stationary solutions ψ(x; c), as
in Theorem 1, for some fixed n ∈ N0. Recall that for small c, L+ is invertible and L− has a one
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Figure 1: Numerical results for k = 1
2
n = 0. Dashes lines denote linear approximations as

calculated in section 3.1. Astrix give numerical results. (a) values µ for various c on the stationary
real branch. (b) Wave function ψ close to c = 0. (c) Eigenvalues for L−. Note the change in sign
of eigenvalue m = 1 at c = 1. (d) Eigenvalues for L+.
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Figure 2: Similar to Figure 1 but with k = 1
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and n = 1.
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Figure 3: Similar to Figure 1 but with k = 1
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and n = 2. Note the change in sign of eigenvalue
m = 3 of L− at c ≈ 0.05.
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Figure 4: Similar to Figure 1 but with k = 0 and n = 0.
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Figure 5: Similar to Figure 1 but with k = 0 and n = 1. Note the change in sign of eigenvalue
m = 2 of L− at c ≈ 0.4.

15



−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

c

µ

c vs. µ−real branch; numerically

 

 

Numerical Result
Asymptotic Prediction

(a)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

x

ψ
(x

)

ψ(x) for c ≈ 0

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

c

E
ig

en
va

lu
e

First Three Eigenvalues of L−

 

 

m=0
m=1
m=2
m−3

(c)

−1.5 −1 −0.5 0 0.5 1 1.5
−8

−6

−4

−2

0

2

4

6

c

E
ig

en
va

lu
e

First Three Eigenvalues of L+

 

 

m=0
m=1
m=2
m−3

(d)

Figure 6: Similar to Figure 1 but with k = 0 and n = 2. Note the change in sign of eigenvalue
m = 1 of L− at c ≈ −0.3.
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dimensional kernel spanned by ψ∗. We assume that L+ remains invertible for small values of c
but the kernel of L− becomes two dimensional for a particular value of c. Examples of this occur
in Figure 1 and Figure 3 for k = 1

2
. Call this special value of c by c∗. Denote µ∗ := µn(c∗),

ψ∗(x) := ψ(x; c∗) and,

L∗+ := −∂2x + V (x) + 3c∗ψ
2
∗(x)− µ∗, (59)

L∗− := −∂2x + V (x) + c∗ψ
2
∗(x)− µ∗. (60)

Recall that L∗−ψ∗ = 0. We then define the bifurcation at c = c∗ according to the following two
conditions,

(A1) L∗+ is invertible

(A2) ∃ϕ∗ ∈ H2
a.p. such that L∗−ϕ∗ = 0 and < ϕ∗, ψ∗ >L2= 0.

We now formulate the main theorem for this section. The proof appears at the end of the section.

Theorem 2. Assume that (A1) and (A2) hold. Suppose that,

S0 ≡< ψ∗, (L
∗
+)−1ψ∗ >L2 6= 0

P0 ≡ − < ψ2
∗, ϕ

2
∗ >L2 +2c∗ < ψ∗ϕ

2
∗, (L

∗
+)−1ψ3

∗ >L2 +α0(1− 2c∗ < ψ∗ϕ
2
∗, (L

∗
+)−1ψ∗ >L2) 6= 0,

Q0 ≡ c∗(2c∗ < ψ∗ϕ
2
∗, (L

∗
+)−1ϕ2

∗ψ∗ >L2 −‖ϕ∗‖4L4) + β0(1− 2c∗ < ψ∗ϕ
2
∗, (L

∗
+)−1ψ∗ >L2) 6= 0,

R0 ≡ 2 < ψ′∗, ϕ∗ >L2 6= 0,

where,

α0 ≡
< ψ∗, (L

∗
+)−1ψ3

∗ >L2

< ψ∗, (L∗+)−1ψ∗ >L2

, β0 ≡
2c∗ < ψ∗, (L

∗
+)−1ϕ2

∗ψ∗ >L2 −1

2 < ψ∗, (L∗+)−1ψ∗ >L2

.

If sign(P0Q0) = −1, there exists ε0 > 0, δ > 0 and η > 0 such that the stationary Gross-Pitaevskii
equation (2) with c = c∗ + ε admits a unique Bloch wave solution (4) for all ε ∈ (−ε0, 0] and

|k − 1
2
| < δ and three Bloch wave solutions (4) for all ε ∈ (0, ε0) and |k − 1

2
| < ηε

3
2 .

Remark 1. If sign(P0, Q0) = +1, the ε neighbourhoods are reversed in Theorem 2. That is, (2)
admits a unique Bloch wave solution for ε ∈ [0, ε0) and three Bloch wave solutions for ε ∈ (−ε0, 0).

4.1 Analysis Around k = 1
2

In order to study loops in the Bloch energy band we must consider k slightly perturbed from k = 1
2

and so take,

k =
1

2
+ p, (61)

for small p. Consider ψ(x) satisfying (2). ψ can then be expressed as,

ψ(x) = eikxφ(x) = eipxe
ix
2 φ(x) ≡ eipxψ̃(x), (62)
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where φ(x + 2π) = φ(x) as in (3). Then our newly defined ψ̃ satisfies anti-periodic boundary
conditions since,

ψ̃(x+ 2π) = e
ix
2 eiπφ(x+ 2π) = −e ix

2 φ(x) = −ψ̃(x). (63)

Substituting (62) into (2) and replacing ψ̃ with just ψ gives,
−ψ′′ + V (x)ψ + cψ3 = (µ− p2)ψ + 2ipψ′, x ∈ R
ψ(x+ 2π) = −ψ(x), x ∈ R
‖ψ‖L2 = 1

(64)

our equation of study for this section.
Now consider a neighbourhood of the bifurcation point. Take,

c = c∗ + ε, µ = µ∗ +M + p2, (65)

where ε and M are small parameters. c and µ (and so ε and M) are related along the branch
ψ(x; c) of real-valued stationary solutions. Let us decompose ψ(x) into,

ψ(x) = ψ∗(x) + iaϕ∗(x) + u(x) + iW (x), (66)

with u,W : [−π, π] → R, a ∈ R and < W,ϕ∗ >L2= 0. Here we take ‖ψ∗‖L2 = ‖ϕ∗‖L2 = 1, so our
normalization condition, ‖ψ‖L2 = 1, gives,

0 = 2 < ψ∗, u >L2 +‖u‖2L2 + a2 + ‖W‖2L2 . (67)

Operator L∗− has a two dimensional kernel, Ker(L∗−) = {ψ∗, ϕ∗}. This motivates us to make the
following decomposition, L2 = {ψ∗, ϕ∗} ⊕ Ran(L∗−) where,

Ran(L∗−) = {f ∈ L2 : < f, ψ∗ >L2=< f, ϕ∗ >L2= 0}. (68)

We again introduce the projection operator P− : L2 → Ran(L∗−) and again will need the norm
‖P−(L∗−)−1P−‖H2→H2 as well as ‖(L∗+)−1‖H2→H2 .

Lemma 4. There exists N± > 0 such that,

‖P−(L∗−)−1P−‖H2→H2 ≤ N−, ‖(L∗+)−1‖H2→H2 ≤ N+.

Proof. The norms ‖P−(L∗−)−1P−‖H2→H2 and ‖(L∗+)−1‖H2→H2 are computed in the same manner as
the norm in Lemma 1.

Substituting (66) into (64) and equating the real and imaginary parts yields,

(L∗+ + 3εψ2
∗ −M)u = H+ +N+(u,W ) +K+(W ′; p), (69)

(L∗− + εψ2
∗ −M)W = H− +N−(u,W ) +K−(u′; p), (70)

where,

H+ := Mψ∗ − εψ3
∗,

N+ := −(ε+ c∗)((3u
2 + (aϕ∗ +W )2)ψ∗ + (u2 + (aϕ∗ +W )2)u),

K+ := −2p(aϕ′∗ +W ′),

H− := Maϕ∗ − εaψ2
∗ϕ∗,

N− := −(ε+ c∗)(2ψ∗u+ u2 + (aϕ∗ +W )2)(aϕ∗ +W ).

K− := 2p(ψ′∗ + u′).
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A further examination of u and W is in order. If each function ψ∗, ϕ∗, u and W have definite parity,
then H+, N+ and K+ have the same parity as ψ∗, u, W ′ and ϕ′∗ where as H−, N− and K− have the
same parity as ϕ∗, W , u′ and ψ′∗. In addition, L± preserves parity. Hence, a unique solution for u,
if it exists, must have the same parity as ψ∗, ϕ

′
∗ and W ′. Similarly, if a unique solution for W exists

then it must have the same parity as ϕ∗, ψ
′
∗ and u′. Note that ψ∗ and ϕ∗ have opposite parities,

which suggests that u and W should continue to have the same parity as ψ∗ and ϕ∗ respectively.
Expand u as the following,

u = Mu1 + εu2 + a2u3 + apu4 + U, (71)

where,

u1 := (L∗+)−1ψ∗, u2 := −(L∗+)−1ψ3
∗, u3 := −c∗(L∗+)−1ϕ2

∗ψ∗, u4 := −2(L∗+)−1ϕ′∗.

The normalization condition (67) is further expanded as,

0 = 2M < ψ∗, u1 >L2 +2ε < ψ∗, u2 >L2 +2a2 < ψ∗, u3 >L2 +a2 + 2ap < ψ∗, u4 >L2

+O(‖U‖L2 , ‖W‖2L2). (72)

Assuming that < ψ∗, u1 >L2=< ψ∗, (L
∗
+)−1ψ∗ >L2 6= 0, then there is a unique solution of (72) for

M,

M = α0ε+ β0a
2 + γ0ap+O(‖U‖L2 , ‖W‖2L2), (73)

where,

α0 := −< ψ∗, u2 >L2

< ψ∗, u1 >L2

, β0 := −1 + 2 < ψ∗, u3 >L2

2 < ψ∗, u1 >L2

, γ0 := −< ψ∗, u4 >L2

< ψ∗, u1 >L2

.

We shall see later that the O(ap) term is small enough to ignore. Using (71), we rewrite (69) in
the following way,

U = (L∗+)−1(N+ + c∗a
2ϕ2
∗ψ∗ +Mu− 3εψ2

∗u− 2pW ′) ≡ A+(U ;W, ε, a, p). (74)

Note that (73) gives us M = M(ε, a2, ap, ‖U‖L2 , ‖W‖2L2).

Lemma 5. A+(U ;W, ε, a, p) : H2
a.p. → H2

a.p. has a unique fixed point in a neighbourhood of 0 ∈ H2
a.p.

for small (W, ε, a, p) ∈ H2
a.p. × R× R× R and there exists D > 0 such that

‖U‖H2 ≤ D(ε2 + a4 + a2p2 + |a|‖W‖H2). (75)

Proof. Again, we appeal to the Banach Fixed Point Theorem [1] by considering a neighbourhood
of 0 ∈ H2

a.p.,

B̄r := {U ∈ H2
a.p. : ‖U‖H2 ≤ r}. (76)

One can show, similarly to the proof of Lemma 2, that if (W, ε, a, p) ∈ H2
a.p.×R×R×R are small

then A+ maps B̄r into itself and that A+ is a contraction mapping.
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Now consider the equation for W and rewrite (70) with (71) and (75) as,

L∗−W = (M − εψ2
∗)W +H− +N− +K− ≡ G(ε, a, p,W ). (77)

To have G ∈ Ran(L∗−) we set the constraints,

< G, ϕ∗ >L2= 0, < G, ψ∗ >L2= 0, (78)

since {ϕ∗, ψ∗} = Ker(L∗−). Constraint < G, ψ∗ >L2= 0 is satisfied trivially because ψ∗ and G have
opposite parities. By expanding constraint < G, ϕ∗ >L2= 0 we obtain,

0 =Ma(1− 2c∗ < ψ∗ϕ
2
∗, u1 >L2)− c∗a3(2 < ψ∗ϕ

2
∗, u3 >L2 +‖ϕ∗‖4L4)

− εa(< ψ2
∗, ϕ

2
∗ >L2 +2c∗ < ψ∗ϕ

2
∗, u2 >L2) + 2p < ψ′∗, ϕ∗ >L2

+O(ε2a, a5, p2a, pε, a‖U‖L2 , ε‖W‖L2), (79)

where ‖U‖L2 is controlled by (75) and M is controlled by (73). As a result, we obtain a relationship
between ε, a, p and W :

εaP0 + a3Q0 + pR0 +O(ε2a, a5, ε‖W‖L2) = 0, (80)

with,

P0 := − < ψ2
∗, ϕ

2
∗ >L2 −2c∗ < ψ∗ϕ

2
∗, u2 >L2 +α0(1− 2c∗ < ψ∗ϕ

2
∗, u1 >L2),

Q0 := −c∗(2 < ψ∗ϕ
2
∗, u3 >L2 +‖ϕ∗‖4L4) + β0(1− 2c∗ < ψ∗ϕ

2
∗, u1 >L2),

R0 := 2 < ψ′∗, ϕ∗ >L2 .

Note that (80) does not provide a unique solution for a (examples will be seen shortly in Sections
4.2-4.4). We want p to be as small as the other terms in (80). Therefore |p| = O(a3) = O(aε).
Thus, |ap| = O(a4) and is negligible in (73). Assuming that < ψ′∗, ϕ∗ >L2 6= 0 we can solve (80)
uniquely for p and eliminate p from further computations.

Now we can solve (77),

W = (P−(L∗−)−1P−)G ≡ A−(W ; ε, a), (81)

since p is now controlled by (80).

Lemma 6. A−(W ; ε, a) : H2
a.p. → H2

a.p. has a unique fixed point in a neighbourhood 0 ∈ H2
a.p. for

(ε, a) ∈ R× R and there exists D > 0 such that,

‖W‖H2 ≤ D(|εa|+ |a|3). (82)

Proof. The proof is similar to the proofs of Lemma 2 and Lemma 5.

We are now equipped to prove the main theorem.

Proof of Theorem 2. Expansion (73) tells us that the number of branches for µ, as in (65), will
depend on the number of admissible values for a in (80). For p = 0, the assumption of sign(P0Q0) =
−1 implies that for each ε ∈ (−ε0, 0] (for some ε0) (80) admits only one solution for a, a = 0 and for
each ε ∈ (0, ε0) (80) admits three solutions for a, a = 0 and a = ±

√
−εP0/Q0 . Now consider p 6= 0
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but small. Note that the p2 term in (65) is negligible since |p| = O(a3). For a fixed ε ∈ (−ε0, ε0)
consider the discriminant of (80) given by,

∆ = ∆(p) = −4Q0(εP0)
3 − 27(Q0pP0)

2. (83)

∆ < 0 for each ε ∈ (−ε0, 0] since sign(P0Q0) = −1. This is the condition required for (80) to admit
one (real) solution in a. For a fixed ε ∈ (0, ε0) define,

p0(ε) :=

√
−4ε3P0

27Q0

, (84)

so that ∆(p0(ε)) = 0 and ∆(p) > 0, ∀p < p0(ε). Therefore, for all ε ∈ (0, ε0) (80) admits three
solutions for a providing |k − 1

2
| = p < p0(ε). Since different solutions for a in (80) correspond to

different Bloch wave solutions in (2), the proof is complete.

We remark that the arguments in the proof of Theorem 2 could be repeated around k = 0 simply
by changing the boundary condition in (64) to ψ(x+ 2π) = ψ(x) and working with ψ ∈ H2

per. Such
is the case in Figure 5 whose configuration satisfies the conditions for bifurcation of the stationary
real branch for c∗ > 0. As for c∗ < 0 as in Figure 6 the analysis can be repeated as above with
c = c∗ + ε and µ = µ∗ + M so that a loop in the Bloch band will appear when ε < 0 but now
under the assumption sign(P0Q0) = +1. The difference for c∗ < 0 is that this loop will appear
upside down when compared to the loops with c∗ > 0. We note that the side of ε, either ε > 0
or ε < 0, for which we have one or three Bloch wave solutions near k = 0 or k = 1

2
is dependent

on the sign of P0Q0. We evaluate this sign numerically in Sections 4.2-4.4 and do in fact see the
correct orientation of the solution branches. We first present a result pertaining to the sign of P0.

Lemma 7. Take k = 0 or k = 1
2
. For P0 defined in (80) the following identity holds,

dλ
(n)
−

dc

∣∣∣∣
c=c∗

= −P0, (85)

where λ
(n)
− is the nth eigenvalue of L− such that λ

(n)
− = 0 for c = c∗ and the corresponding eigen-

function at c = c∗ is ϕ∗.

Proof. Take,

c = c∗ + ε, µ = µ∗ +M, (86)

as in (65). Consider,

L− = −∂2x + V (x) + cψ2 − µ, (87)

for purely real ψ. Decompose ψ as in (66) but keep only the real parts,

ψ = ψ∗ +Mu1 + εu2 +O(ε2 +M2), (88)

with u1 and u2 defined by (71). Substituting (88) to (87) yields at the leading order,

L− = L∗− + εψ2
∗ + 2c∗(ψ∗Mu1 + ψ∗εu2)−M +O(ε2 +M2). (89)
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The Rayleigh quotient (40) now gives us,

λ
(n)
− =< L−ϕ

(n)
− , ϕ

(n)
− >L2

= ε < ψ2
∗, ϕ

2
∗ >L2 +2c∗M < ψ∗ϕ

2
∗, u1 >L2 −M + 2c∗ε < ψ∗ϕ

2
∗, u2 >L2 +O(ε2 +M2), (90)

once we note that L∗−ϕ∗ = 0. We have determined M as a function of ε in (73). Since we are only
concerned with real solutions we take here M = α0ε+O(ε2). Hence,

dλ
(n)
−

dc

∣∣∣∣
c=c∗

=< ψ2
∗, ϕ

2
∗ >L2 +α0(2c∗ < ψ∗ϕ

2
∗, u1 >L2 −1) + 2c∗ < ψ∗ϕ

2
∗, u2 >L2= −P0, (91)

the desired result.

Corollary 2. If λ
(n)′
− (c∗) < 0, that is, the eigenvalue λ

(n)
− crosses 0 from positive to negative values

as c increases, then P0 > 0.

4.2 Example with k = 1
2, n = 0 and c∗ > 0

We now illustrate the results of Section 4.1 using the simplest example; the Bloch wave for the
lowest energy band, n = 0, around k = 1

2
(Figure 1). For this case, if V (x) = cos(x), then c∗ = 1

and µ∗ = 5
4
. As well, ψ∗ and ϕ∗ admit closed form solutions [3],

ψ∗(x) =
√

2 sin
(x

2

)
, ϕ∗(x) =

√
2 cos

(x
2

)
. (92)

We evaluate coefficients S0, P0, Q0, R0 numerically,

S0 ≈ 0.3647, P0 ≈ 0.7419, Q0 ≈ −1.4838, R0 = −1.

We can now solve (80) for a in terms of ε for a fixed value of p. A plot with p = 0 and small p > 0
is shown in Figure 7. Once we solve for a in terms of ε we can solve for M in terms of ε in (73).
Using (65), we plot solution branches on the (c, µ) diagram in Figure 8. Since we have found the
relationship between M and ε we can now solve for M as a function of p in (80) and so µ as a
function of k from (65) and (61). In this way Figure 9 shows the Bloch bands around k = 1

2
for

values of c close to c∗ (small ε).
Let us define,

c+(p) = c∗ + ε+(p), (93)

where, according to (84),

ε+(p) ≈ 3

√
−27Q0p2

4P0

. (94)

Then for c > c+(p) and for a fixed p, three solution branches exist in (2) according to Theorem 2.
In Figure 7 we see clearly the pitchfork bifurcation of the stationary real branch. Parameter a

here represents the magnitude of the imaginary component of ψ. For p = 0, red in Figure 7, and
ε < 0 we see the only solution has a = 0 and so is purely real. For ε > 0 we see the persistence of
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the real solution (a = 0) and the appearance of two new solution branches with a 6= 0. However,
the values of a are equal in magnitude and so they represent complex-conjugate solutions with
the same eigenvalue, µ. For p 6= 0 solutions cannot be purely real. The behaviour described in
Theorem 2 is observed as we have one solution branch for ε < ε+(p) and three solution branches
for ε > ε+(p).

In Figure 8 a similar behaviour is observed. For p = 0 the stationary real branch, as seen
numerically in Figure 1a, persists for c > c∗ and the appearance of the new (complex) branch is
seen at c = c∗. For p 6= 0 there is one solution branch for c < c+(p) and three solution branches for
c > c+(p).

Now on to Figure 9. With c < c∗ we have a single solution for each k close to k = 1
2
. At c = c∗

the band forms a cusp at k = 1
2

after which, c > c∗, we see the appearance of a loop. To show that
k = 1

2
is a cusp point for the band at c = c∗ (ε = 0), we note from (65), (73) and (80) that,

dµ

dk

∣∣∣∣
k= 1

2

=
dM

dp

∣∣∣∣
p=0

= 2β0a
da

dp

∣∣∣∣
p=0

=
2β0
3

(
R0

Q0

) 2
3 1

p
1
3

∣∣∣∣
p=0

=∞. (95)

From Figure 8 one observes that the real solution has a larger eigenvalue, µ, than the complex
solution at k = 1

2
(p = 0). So, the solution at the top of the loop corresponds to the real solution.

The complex-conjugate solutions are located at the bottom of the loop where the loop intersects
itself. The degeneracy stems from the two solutions having the same magnitude of a in Figure 7.

4.3 Example with k = 0, n = 1 and c∗ > 0

For this configuration (Figure 5) there is no closed form solution for c∗, µ∗, ψ∗ or ϕ∗. We must
therefore approximate these values and functions numerically as in Section 3.2. We implement a
root finding scheme on the third eigenvalue of L− (m = 2 in Figure 5c) to find the value c = c∗
where this eigenvalue crosses zero. Numerically we compute c∗ ≈ 0.3943 and µ∗ ≈ 1.5155. Then,
ψ∗ and ϕ∗ are given as the eigenfunctions of the two zero eigenvalues of L− at c = c∗. Once we
approximate ψ∗ and ϕ∗ numerically we can compute the normal form coefficients,

S0 ≈ 0.8600, P0 ≈ 0.8993, Q0 ≈ −0.7873, R0 ≈ 1.7575.

Indeed sign(P0Q0) = −1 as desired. The validity of our numerical computations is addressed in
Appendix A.

We plot the bifurcation diagram in Figure 10, the solution branches around the bifurcation
point c = c∗ in Figure 11 and the Bloch bands in Figure 12. These figures are qualitatively similar
to Figures 7-9. Note that the sign of R0 only changes the bifurcation diagram a versus ε and does
not change the actual behaviour of the solution branches.

4.4 Example with k = 0, n = 2 and c∗ < 0

For this configuration (Figure 6), we compute, c∗ ≈ −0.3237 and µ∗ ≈ 0.7531. When the values
of c are reduced, it is the second eigenvalue of L− that crosses zero (m = 1 in Figure 6c). Normal
form coefficients are found to be,

S0 ≈ −0.8733, P0 ≈ 1.3177, Q0 ≈ 0.7787, R0 ≈ −1.8283.
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Figure 7: The dependence of a versus ε for k = 1
2
, n = 0 and two values of p = k− 1

2
. Here we see a

pitchfork bifurcation when p = 0. When p > 0 the symmetry is broken and the unfolded pitchfork
bifurcation is observed.

Note that sign(P0Q0) = +1 which gives three solution branches for ε < 0 or c < c∗ < 0. Figures
13, 14 and 15 characterize the relevant bifurcation. The Bloch bands as seen on the µ versus k
plot in Figure 15 have similar characteristics to Figures 9 and 12, the difference being that the loop
appears upside down.

5 Stability of the Pitchfork Bifurcation

Stability of the stationary solutions of (2) will be studied using the same Lyapunov-Schmidt re-
duction method as in Section 4.1. We keep the discussion brief and only show main results of
these computations. To expose the stability of the above stationary solutions we must consider the
time-dependent Gross-Pitaevskii equation and so take Ψ(x, t) solving (1). If Ψ is taken in the form,

Ψ(x, t) = e−iµtψ(x), (96)

then ψ(x) solves the stationary equation (2). Take,

c = c∗ + ε, µ = µ∗ +M(t), k =
1

2
+ p, (97)

with ε, M(t) and p small as in the stationary case. We have absorbed the p2 term into M ; it will
again be negligible. Decompose Ψ(x, t) as,

Ψ(x, t) = e−iµ∗t−i
∫ t
0 M(τ)dτ (ψ∗(x) + ia(t)ϕ∗(x) + u(x, t) + iW (x, t)). (98)

Substituting (98) to (64) and equating the real and imaginary parts gives,

(L∗+ + 3εψ2
∗ −M)u = −ȧϕ∗ −Wt +H+ +N+(u,W ) +K+(W ′; p), (99)

(L∗− + εψ2
∗ −M)W = ut +H− +N−(u,W ) +K−(u′; p). (100)
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2
. For p = 0

we see the stationary real branch (green), as seen numerically in Figure 1a. The appearance of a
new (complex) solution is observed at c = c∗ = 1. The red curve gives solutions branches for p 6= 0.
One solution branch is seen for c < c+(p), where c+(p) > c∗. Three solution branches are observed
in a neighbourhood of c > c+(p) > c∗.
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Figure 9: The dependence of µ versus k for n = 0 and three values of c = c∗ + ε. The transition of
the Bloch band through the bifurcation is seen. For c < c∗ the curve is smooth. At c = c∗ a cusp
point forms. Beyond the bifurcation value c > c∗ a loop forms in the Bloch band.
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Figure 10: The dependence of a versus ε for k = 0, n = 1 and two values of p = k. Behaviour is
similar to Figure 7.
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26



−3 −2 −1 0 1 2 3

x 10
−3

1.485

1.49

1.495

1.5

1.505

1.51

1.515

1.52

1.525

1.53

k

µ

k vs. µ

 

 
ε=0.01
ε=0
ε=−0.01

Figure 12: The dependence of µ versus k for n = 1 and three values of c = c∗ + ε. Behaviour is
similar to Figure 9.
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Figure 13: The dependence of a versus ε for k = 0, n = 2 and two values of p = k. Behaviour is
similar to Figure 7 just with orientation reversed.
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Figure 14: The dependence of µ versus c for k = 0, n = 2 and two values of p = k − 1
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is similar to Figure 8 just with orientation reversed.
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have one Bloch band. At the bifurcation value c = c∗ a cusp forms in the Bloch band. When c < c∗
we see the appearance of a loop structure.
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Decompose u as in (71) but with one additional term,

u = Mu1 + εu2 + a2u3 + apu4 + ȧu5 + U, (101)

where,

u5 := −(L∗+)−1ϕ∗.

The normalization condition, ‖Ψ(·, t)‖L2 = 1, now reads,

0 = 2M < ψ∗, u1 >L2 +2ε < ψ∗, u2 >L2 +2a2 < ψ∗, u3 >L2 +a2 + 2ap < ψ∗, u4 >L2

+O(‖U‖L2 , ‖W‖2L2), (102)

noting that < ψ∗, u5 >L2= − < ψ∗, (L
∗
+)−1ϕ∗ >L2= 0, thanks to the opposite parity of ψ∗ and ϕ∗.

This condition gives the same M as before,

M = α0ε+ β0a
2 +O(|ap|, ‖U‖L2 , ‖W‖2L2). (103)

The equation for W (100) now reads,

L∗−W = G(ε, a, p,W ) + Ṁu1 + 2aȧu3 + ȧpu4 + äu5 + Ut ≡ E , (104)

where G is as defined in (77). In order to have E ∈ Ran(L∗−) we require,

d

dt
< ψ∗, u >L2 = − < ψ∗,G >L2 (105)

d

dt
< ϕ∗, u >L2 = − < ϕ∗,G >L2 . (106)

The first constraint (105) is already satisfied because the normalization condition, ‖Ψ(·, t)‖L2 = 1,
is constant in time. The second constraint (106) gives,

ä < ϕ∗, u5 >L2 + < ϕ∗,G >L2= − d

dt
< ϕ∗, U >L2 . (107)

Once we note that, < ϕ∗, u1 >L2=< ϕ∗, u3 >L2=< ϕ∗, u4 >L2= 0. Expanding at the highest order
yields the time-dependent normal form equation,

äN0 + εaP0 + a3Q0 + pR0 +O(ε2a, a5, a‖U‖L2 , ε‖W‖L2 , ‖Ut‖L2) = 0, (108)

where P0, Q0 and R0 are as in (80) and,

N0 :=< ϕ∗, u5 >L2= − < ϕ∗, (L
∗
+)−1ϕ∗ >L2 .

The justification of (108) hinges on the smallness of a‖U‖L2 , ε‖W‖L2 and ‖Ut‖L2 , the proof of
which is beyond the scope of this project. See [7] for a recent treatment of time-dependent normal
forms in the context of nonlinear Schrödinger equations.

Phase portraits for the truncated normal form equation (108) can be obtained by plotting the
level curves of the energy equation,

E =
ȧ2N0

2
+
εa2P0

2
+
a4Q0

4
+ paR0, (109)
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for various values of E. Note that N0 < 0 if (L∗+)−1 is positive definite (as for the lowest energy
band, n = 0). Indeed, for n = 0, k = 1

2
and c∗ > 0, the configuration in Section 4.2, we find the

numerical value: N0 ≈ −1.3480.
Plots for p = 0 are seen in Figure 17. Figure 18 shows phase portraits for p 6= 0 but small. In

Figure 17a, ε < 0, we see that the one equilibrium point at (0, 0) is a center; a stable configuration.
In Figure 17b, ε > 0, three equilibrium solutions are present. The solution with a = 0 is a saddle
point and therefore unstable. The two new solutions, each with the same magnitude of a, are centers
and so stable. In Figure 18 we see similar dynamics even though the symmetry of the problem is
broken. For ε < 0, Figure 18a, shows one center, so a stable equilibrium. For ε > ε+(p) > 0 as
seen in Figure 18b, there is again one unstable saddle point and two stable centers, providing p is
sufficiently small.

At k = 1
2

the behaviour observed is exactly that of a supercritical pitchfork bifurcation. The
stationary real branch is stable before the bifurcation but loses its stability after the bifurcation as
the stable complex-conjugate solutions appear. Away from k = 1

2
the single branch which exists

for c < c∗ is stable and remains stable for c > c∗. Of the two new branches that appear, as a result
of the saddle-node bifurcation, one is stable and the other is unstable. In Figure 7 the branch with
the smallest |a| is the unstable branch. This corresponds to the branch in Figure 8 with the largest
value for µ. So in Figure 9 the top of the loop is unstable while the bottom of the loop and branch
leading up to the loop are stable. Figure 16 illustrates the stability of the Bloch wave solutions at
a loop of the energy band.

Figure 16: A loop in the energy band for Bloch waves. Red indicates unstable solutions while blue
represents stable solutions.

For n = 1, k = 0 and c∗ > 0 as in Section 4.3 we numerically compute N0 ≈ −2.4679 < 0.
Hence phase portraits for this configuration will be qualitatively the same as Figures 17 and 18
and so the stability of the stationary branches will be identical to the case when n = 0, k = 1

2
and

c∗ > 0.
For n = 2, k = 0 and c∗ < 0, the configuration in Section 4.4, we find numerically N0 ≈ 2.5291.

The reversed signs of N0 > 0 and sign(P0Q0) = +1 gives behaviour similar to Figures 17a and
18a before the bifurcation, for ε > 0, as well as similar behaviour to Figures 17b and 18b after
the bifurcation for, ε < 0. The stability of the solution branches therefore remains the same. The
stationary real branch is stable prior to the bifurcation point c > c∗ but becomes unstable for
c < c∗. The new complex-conjugate branches are stable when they appear.

6 Conclusion

To summarize, stationary Bloch waves of the Gross-Pitaevskii equation were studied in a periodic
potential. It was proved that the stationary real solutions are uniquely continued from from the
linear limit. Numerical and asymptotic results indicated that the stationary real branch will under-
take a bifurcation when an eigenvalue of the linearization operator L− changes sign. The spectrum
of L− was computed numerically to observe this behaviour.
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Figure 17: Phase portraits for p = 0. (a) ε < 0: one equilibrium; center. (b) ε > 0: three equilibria;
two centers and one saddle.
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Figure 18: Phase portraits for p 6= 0. (a) ε < 0: one equilibrium; center. (b) ε > 0: three equilibria;
two centers and one saddle.
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The bifurcation of the stationary real branch was studied analytically using the Lyapunov-
Schmidt reduction method and was revealed to be a pitchfork bifurcation. The analysis led to a
normal form equation which exposed the qualitative behaviour of the system around the bifurcation
point. This behaviour was illustrated numerically in specific examples.

Finally, the stability of the stationary states was examined. The stationary real branch was
found to be stable before the bifurcation point after which it loses its stability. The new complex-
conjugate solutions were found to be stable as they appeared. The stability of solutions along a
loop in the energy band was also established.

A Numerical Error

The analytical solutions for c∗, µ∗, ψ∗ and ϕ∗ when k = 1
2

and n = 0 as outlined in Section 4.2
present an excellent opportunity to check our numerical methods. Bifurcation values c∗ and µ∗
are approximated numerically from roots of the second eigenvalue of operator L− on Figure 1c, for
varying step sizes. The distance of these numerical values cnum and µnum from the exact values
c∗ = 1 and µ∗ = 5

4
is shown on Figure 19. We can observe a slow (linear) convergence of numerical

approximations.
We can also compare the numerical approximations of the solution ψnum (computed from the

shooting method) and the eigenfunction of L∗−, ϕnum (computed with an eigenfunction solver) with
the exact functions ψ∗ and ϕ∗. Figure 20 shows the errors in the supremum `∞ norms. We again see
the linear convergence of numerical approximations. Note that the error is smaller for the output
of the shooting method when compared to the eigenfunction solver.
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