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Abstract

We study discrete nonlinear Schrödinger (NLS) equations, which include the cubic NLS lattice with on-site interactions and
the integrable Ablowitz–Ladik lattice. Standing wave solutions are known to exist in the discrete NLS equations outside of the
finite spectral band. We study travelling wave solutions which have nonlinear resonances with unbounded linear spectrum. By
using center manifold and normal form reductions, we show that a continuous NLS equation with the third-order derivative term
is a canonical normal form for the discrete NLS equation near the zero-dispersion limit. Bifurcations of travelling wave solutions
near the zero-dispersion limit are analyzed in the framework of the third-order derivative NLS equation.

We show that there exists a continuous two-parameter family of single-humped travelling wave solutions in the third-order
derivative NLS equation, when it is derived from the integrable Ablowitz–Ladik lattice. On the contrary, there are no single-
humped solutions in the third-order derivative NLS equation, when it is derived from the cubic NLS equation with on-site
interactions. Nevertheless, we show that there exists an infinite discrete set of one-parameter families of double-humped travelling
wave solutions in the latter case. Our results are valid in the neighborhood of the zero-dispersion point on the two-parameter
plane of travelling wave solutions.
© 2005 Published by Elsevier B.V.
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1. Introduction

Discretizations of the nonlinear Schrödinger (NLS) equation occur in many physical applications, including
optical waveguides, periodic optical lattices, Fermi–Pasta–Ulum problems, and numerical finite difference schemes
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[22]. We address here the discrete NLS equation in the general form:

iu̇n = un+1 − 2un + un−1 + ε2f (un, un+1, un−1), (1.1)

whereun = un(t) ∈ C, t ∈ R, n ∈ Z, ε is the step-size parameter, andf : C
3 → C is a nonlinear function, which

satisfies the gauge symmetry:

∀α ∈ R : f (un eiα, un+1 eiα, un−1 eiα) = eiα f (un, un+1, un−1). (1.2)

Cubic discrete NLS equations are of particular interest, since they are derived from the underlying physical problems
by using asymptotic multi-scale expansions[9]. We shall apply our general theory to two most important discrete
NLS equations with cubic nonlinearities: the discrete NLS (dNLS) lattice with on-site interactions[11,23],

f = |un|2un (1.3)

and the Ablowitz–Ladik (AL) lattice[1],

f = |un|2(un+1 + un−1). (1.4)

Standing wave solutions of the formψn(t) = φn e−iωt , wheren ∈ Z, φn ∈ R, and lim|n|→∞ φn = 0, exist for rather
general nonlinearitiesf (un, un+1, un−1), provided thatω ∈ R\[−4,0] [26,21]. We address here existence of the
travelling wave solutions in the form:

un(t) = φ(z) e−iβn−iωt, z = n− vt, (1.5)

whereω, v, andβ are real-valued parameters, whilez ∈ R, φ ∈ C, and lim|z|→∞ φ(z) = 0. Only two parameters
(ω, v) are independent, since the term e−iβn can be included in the definition ofφ(z). Two methods can be used
to normalize parameterβ uniquely. In one method, one can require[14] that the exponential decay ofφ(z) be
real-valued:

lim
|z|→∞

eκ|z| φ(z) = φ∞, (1.6)

whereκ ∈ R andφ∞ ∈ C. In the other method, one can map a double eigenvalue of a linear operator to the origin.
We explain these two methods in more details in Section2.

The tail analysis of the travelling wave solutions(1.5) and (1.6)shows that parametersβ andκ are uniquely
defined in terms ofω andv (see relations(2.8) in Section2). In particular, the travelling wave solutions(1.5) are
exponentially decaying, if they exist, only if

(ω + 2)2 + v2 ≥ 4. (1.7)

The main problem is to study if there exists any travelling wave solutions(1.5) and (1.6)in the domain(1.7). This
problem has been recently attended in literature, where several contradictory results were obtained.

Feddersen and Duncan et al.[13,10] reported numerical results based on the trigonometric approximations and
Newton–Raphson iterations. The numerics showed decaying solutionsφ(z) with v �= 0 in the dNLS lattice(1.3).

Flach et al.[15] developed an “inverse” method, which allowed them to compute the nonlinearity function
f (un, un+1, un−1) from any existing travelling wave solution(1.5)with φ ∈ R. The method recovered the AL lattice
(1.4), which exhibited the travelling wave solutions with real-valuedφ(z) [1]. The method showed a contradiction
for the dNLS lattice(1.3), where travelling wave solutions with real-valuedφ(z) did not exist.

Numerical iterations for a minimization of a nonlinear functional were developed by Flach and Kladko[14]. The
authors showed that there existed a critical point of the nonlinear functional, which corresponded to the travelling
wave solution(1.5)in the dNLS lattice(1.3), but this point was not isolated from a dense set of other critical points.
This numerical picture was very different in the case of standing wave solutions withv = β = 0, where a unique
minimum of the nonlinear functional existed.
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Existence of travelling wave solutions(1.5)in the dNLS lattice(1.3)was considered numerically by Ablowitz et
al. [2,3] with the Petviashvili’s iteration method and the discrete Fourier transform. Iterations of the Petviashvili’s
method converged to a decaying solutionφ(z) in the dNLS lattice(1.3)with v �= 0 but the limit to the continuous
Fourier transform did not converge to a solution. The authors of[3] have conjectured that a true (continuous)
travelling wave solution(1.5)does not exist in the dNLS lattice(1.3), contrary to the previous numerical results.

We analyze this problem near the zero-dispersion point on the boundary of the existence domain(1.7):

ω = −2, v = 2. (1.8)

We use the formalism of center manifold and normal form reductions[18], which was applied recently to the lattice
Klein–Gordon equations by Iooss[17,19]and Mallet-Paret[27]. Methods of dynamical systems allow us to consider
the bifurcations of travelling wave solutions when the nonlinearity termε2f (un, un+1, un−1) is small compared to
the linear difference operator term in the general discrete NLS equation(1.1). We assume therefore thatε2 is a small
parameter of the problem. Contrary to these mathematical motivations, the recent physical applications are found
for non-small values ofε2, where the bifurcation analysis is not applicable[11,23].

It is natural to ask whether the bifurcation analysis can be developed near other general points on the boundary of
the existence domain(1.7). Although the normal form can also be derived in the general case, it is integrable in all
powers ofε2, such that persistence or non-persistence of travelling wave solutions can only be studied by analyzing
exponentially small inε, beyond-all-orders correction terms. In the case of the special point(1.8), however, the
persistence problem can be studied at the third order inε, with the generally non-integrable polynomial normal
form. We shall avoid dealing with exponentiall small, beyond-all-orders corrections terms in this paper.

When bifurcations of travelling wave solutions are considered in the neighborhood of the zero-dispersion point
(1.8), it is natural to represent the point (ω, v) as follows:

ω = −2 + ε2Ω, v = 2 + ε2V. (1.9)

The main result of this paper is the derivation and analysis of the normal form for bifurcations of travelling wave
solutions near the zero-dispersion point(1.8). We show that the vector normal form reduces to the scalar third-order
differential equation:

i

3ε2
Φ′′′ − iVΦ′ +ΩΦ = h(Φ,Φ′, Φ′′, Φ′′′), (1.10)

whereΦ : R → C andh : C
3 → C, such that

∀α ∈ R : h(Φeiα,Φ′ eiα,Φ′′ eiα,Φ′′′ eiα) = eiα h(Φ,Φ′, Φ′′, Φ′′′). (1.11)

For the dNLS lattice(1.3), the nonlinearity functionh(Φ,Φ′, Φ′′, Φ′′′) takes the explicit form:

h = |Φ|2Φ+ 1

140
(6|Φ|2Φ′′ − 2Φ2Φ̄′′ + (Φ′)2Φ̄− 3|Φ′|2Φ), (1.12)

while for the integrable AL lattice(1.4), it takes the form:

h = −2i|Φ|2Φ′ + i

100
(4ΦΦ′′Φ̄′ − 2ΦΦ′Φ̄′′ − 2Φ′Φ′′Φ̄+ |Φ|2Φ′′′ −Φ2Φ̄′′′). (1.13)

The differential equation(1.10)corresponds to the continuous NLS equation with the third-order derivative term
(referred to as the third-order derivative NLS equation):

iUt + i

3ε2
Uxxx = h(U,Ux,Uxx, Uxxx), (1.14)
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whenU(x, t) is the travelling solitary wave solutions of the form:

U(x, t) = Φ(z) e−iΩt, z = x− Vt. (1.15)

Solitary wave solutions(1.15)of the third-order derivative NLS equation(1.14)are referred to as embedded soli-
tons. Whenh = |U|2U, the embedded solitons of the third-order differential equation(1.10)were recently studied
numerically and analytically[24,16,6,30]. Whenh = −2i|U|2Ux, the third-order equation(1.10)is integrable and
is referred to as the Hirota equation[20,12,29].

Embedded solitons(1.15)of the third-order derivative NLS equation(1.14)correspond to the travelling wave
solutions(1.5)of the discrete NLS equation(1.1). Using the normal form equation(1.10), we show near the zero-
dispersion point(1.8)that there exists a continuous two-parameter family of single-humped travelling wave solutions
for the AL lattice(1.4)and no single-humped solutions in the dNLS lattice(1.3). On the other hand, we show near
the same point that there exists an infinite discrete set of one-parameter families of double-humped travelling wave
solutions in the dNLS lattice(1.3).

Our paper is structured as follows. We study the linear difference operator of the discrete NLS equation(1.1) in
Section2. The dynamical system formalism is reviewed in Section3, in application to the discrete NLS equation
(1.1). Center manifold reductions for the zero-dispersion point(1.8), which corresponds to the zero eigenvalue
of algebraic multiplicitysix and geometric multiplicitytwo, are described in Section4. Vector normal forms for
these center manifold reductions are derived in Section5. Section6 reports results on existence of travelling wave
solutions in the dNLS lattice(1.3), while Section7 reports similar results for the AL lattice(1.4). Open problems
are discussed in Section8. Appendix Adescribes a formal derivation of the third-order differential equation(1.10)
from the discrete NLS equation(1.1).

2. Linear properties of the discrete NLS equations

The ansatz(1.5)for travelling wave solutions reduces the discrete NLS equation(1.1)to the differential advance–
delay equation of the form:

− ivφ′(z) = φ(z+ 1) e−iβ + φ(z− 1) eiβ − (2 + ω)φ(z)

+ ε2f (φ(z), φ(z+ 1) e−iβ, φ(z− 1) eiβ), (2.1)

where we have used the gauge symmetry(1.2). In this section, we setε2 = 0 and study the linear properties of the
problem(2.1), defined by the Fourier modes:

φ(z) = eikz, k ∈ R, (2.2)

where the wavenumberk is related to other parameters by the dispersion relation:

ω = ω(k) = −vk + 2(cos(β − k) − 1). (2.3)

The dispersion curveω = ω(k) is shown inFig. 1 for (a) v = 0 and (b)v = 0.5, whenβ = 0. The wave spectrum
resides on the segmentω ∈ [−4,0] in the casev = 0 and on the lineω ∈ R in the casev �= 0. As a result, travelling
wave solutions withv �= 0 must have resonances with the wave spectrum(2.2) and (2.3).

Bifurcations of travelling wave solutions may occur from quadratic points of the dispersion relationω = ω(k)
[17,19]. Directions of possible bifurcations are shown inFig. 1 by vertical arrows. Choosing appropriate values
of the parameterβ, the quadratic points ofω = ω(k) can be mapped to the zero rootsk = 0. Therefore, we define
the bifurcation point on the parameter plane (ω, v) by the two condition for the double rootk = 0: ω = ω(0) and
ω′(0) = 0. It follows from(2.3) that the bifurcation point (ω, v) is parameterized byβ as follows:

ω = 2(cosβ − 1), v = 2 sin β, β ∈ [0,2π]. (2.4)
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Fig. 1. Dispersion curvesω = ω(k) for (a)v = 0 and (b)v = 0.5, whenβ = 0. The vertical arrows show directions of possible bifurcations of
travelling wave solutions.

The circle(2.4) is nothing but the boundary of the existence domain(1.7). Due to the symmetry, it is sufficient to
consider the half-planev ≥ 0 in the parameter space (ω, v), shown inFig. 2. Forv ≥ 0, there are two bifurcation
curves: (i)ω + 2 = √

4 − v2, whenβ ∈ [0, π/2] and (ii)ω + 2 = −√
4 − v2, whenβ ∈ [π/2, π]. Bifurcations may

occur outward the circle, away of the fundamental spectral band, shown by shaded area inFig. 2. For instance, the
standing wave solutions (v = 0) of the discrete NLS lattice(1.3)bifurcate toω > 0 for ε2 > 0 and toω < −4 for
ε2 < 0 [21].

Let us define a set of roots{kn}Nn=1 as resonances of the travelling wave solutions(1.5)if ω(kn) = ω = ω(0) and
kn �= 0. The resonant rootsk = kn are non-zero real-valued roots of the transcendental equation:

D(k) = cosβ + k sin β − cos(β − k) = 0, β ∈ [0,2π]. (2.5)

The numberNof resonant roots depends on the parameterβ on the bifurcation curve(2.4). Fig. 2shows the segments
of the bifurcation curve, according to the number of resonant rootsN = 1, 3, and 5. The numberN is always odd
and it increases unlimitedly asv → 0+. In the pointv = 0, no resonances exist, such thatN = 0.
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Fig. 2. The bifurcation curve on the parameter plane (ω, v). The shaded area shows the location of the fundamental spectral band, when travelling
wave solutions do not exist. The vertical lines separate the parameter plane by the numberN of resonance points.

The rootk = 0 is a double root ofD(k) = 0, whenβ �= π/2. The special zero-dispersion point(1.8)corresponds
to the particular valueβ = π/2, when the rootk = 0 is a triple root ofD(k) = 0:

β = π

2
: D(k) = k − sin k = 1

6
k3 + O(k5). (2.6)

It is clear from(2.6) that no non-zero resonance roots exist forβ = π/2, such that the only resonance rootk = k1
for β �= π/2 degenerates intok1 = 0 asβ → π/2.

In order to explain why the double rootk = 0 gives the bifurcation point for travelling wave solutions(1.5),
while the non-zero rootsk = kn give resonances, we shall adopt the “tail analysis”, developed in[14]. Assuming
that the travelling wave solutionφ(z) exists, we are looking for the exponentially decaying tails as|z| → ∞:

φ(z) = φ∞ e−κ|z|, κ ∈ R. (2.7)

The tails satisfy the differential advance–delay equation(2.1) for ε2 = 0, provided that the four parameters
(ω, v, β, κ) are related by the two equations:

ω = 2 cosβ coshκ − 2, vκ = 2 sin β sinh κ. (2.8)

The existence domain(1.7)follows from the parametrization(2.8). In the limitκ → 0, the two relations(2.8)recover
the bifurcation conditions(2.4), which is the boundary of the existence domain(1.7). In other words, bifurcations
of the travelling wave solutionφ(z) occur in the critical situation when the double rootk = 0 for the Fourier mode
(2.2)splits into two imaginary valuesk = ±iκ for the exponentially decaying tails(2.7). In parameter space (ω, v),
this bifurcation occurs at the boundary between the linear wave spectrum(2.3) and the nonlinear wave spectrum
(2.8), assuming that the travelling wave solutionsφ(z) exist. If other rootsk = kn are present for the same values of
ω andv, this bifurcation becomes complicated by the fact that the resonant Fourier modes(2.2)with k = kn coexist
with the tail solution(2.7)as|z| → ∞.

In the main part of this paper, we derive and analyze the normal form for this bifurcation in the special case
β = π/2. Normal forms for the general bifurcation in the caseβ �= π/2 will be derived and analyzed elsewhere.
Appendix Apresents a formal asymptotic analysis that is useful to truncate the differential advance–delay equation
(2.1)at the third-order ODE(1.10). Rigorous results based on the Center Manifold and Normal Form Theorems are
reported in Sections3–5.
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3. Formalism of discrete dynamical systems

LetΩ = L2(Z; C) denote the Hilbert space of square-summable bi-infinite complex-valued sequences, such that
u ∈ Ω denotes the sequence{un}n∈Z. Let ζ(u) = {un+1}n∈Z denote the shift operator,T (u) = ū(−t) denote the
reversibility operator, andRα(u) = eiαu denote the rotation byα ∈ R. The three operators are continuous, one-to-
one operators that mapΩ onto itself. Using these notations, the general discrete NLS equation(1.1)can be rewritten
as an evolution equation inΩ:

iu̇ = ζ(u) − 2u+ ζ−1(u) + ε2f (u, ζ(u), ζ−1(u)), (3.1)

wheref : Ω → Ω represents a continuous, shift, reversibility, and rotation invariant function, such that

f ◦ ζ = ζ ◦ f, f ◦ T = T ◦ f, f ◦ Rα = Rα ◦ f. (3.2)

We follow Iooss[17,19] and Mallet-Paret[27] when we rewrite the differential advance–delay equation(2.1)
as a matrix–vector evolution equation. Letp ∈ [−1,1] be a new independent variable andu = u(z, p) =
(u1, u2, u3, u4)T be the vector, defined by:

u1 = φ(z), u2 = φ(z+ p), u3 = φ̄(z), u4 = φ̄(z+ p). (3.3)

Let δ±1 be the difference operators, defined by

δ±1u(z, p) = u(z,±1). (3.4)

LetD be the Banach space for the vectoru(z, p):

D = {u ∈ C
4,u ∈ C1(R, [−1,1]) : u2(z,0) = u1(z), u4(z,0) = u3(z)}. (3.5)

The differential advance–delay equation(2.1) takes the matrix–vector evolution form inD:

− ivJ
du
dz

= Lu+ ε2M(u), (3.6)

whereJ = diag(1,1,−1,−1),L is the linear operator,

L =




−(2 + ω) e−iβ δ+1 + eiβ δ−1 0 0

0 −iv ∂
∂p

0 0

0 0 −(2 + ω) eiβ δ+1 + e−iβ δ−1

0 0 0 iv ∂
∂p


 , (3.7)

andM(u) is the nonlinear operator,

M =



f (u1,e−iβ δ+1u2,eiβ δ−1u2)

0

f̄ (u3,eiβ δ+1u4,e−iβ δ−1u4)

0


 . (3.8)

LetH be the Banach space for the range ofL:

H = {F ∈ C
4, F ∈ C0(R, [−1,1])}. (3.9)
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The linear operatorL mapsD intoH continuously. Spectrum of the operatorL is given by the explicit solution of
the problem(3.6)with ε2 = 0:

u(z, p) = (u1, u1 eλp, u3, u3 eλp)Teλz, (3.10)

whereλ is defined by roots of the characteristic equations:

N(λ) = 2 + ω − ivλ− 2 cos(β + iλ) = 0 (3.11)

N̄(λ) = 2 + ω + ivλ− 2 cos(β − iλ) = 0. (3.12)

It is clear that ifλ is the root of(3.11), thenλ̄ is the root of(3.12). There are infinitely many isolated eigenvalues
λ ∈ C, which are roots of analytic functionN(λ). We prove that all but finite number of roots are isolated away of
the line Re(λ) = 0, such that no accumulation points occur on Re(λ) = 0.

We prove the statement by contradiction. Let us assume that there exists a sequence of roots{λn = pn + iqn}∞n=1
of the characteristic equations(3.11) and (3.12), such that limn→∞ pn = 0. The values (pn, qn) satisfy the system
of equations:

2 + ω ± vqn − 2 coshpn cos(β ∓ qn) = 0 (3.13)

vpn − 2 sinhpn sin(β ∓ qn) = 0, (3.14)

where the plus-minus signs correspond to the roots ofN(λ) andN̄(λ), respectively. It follows from the system(3.13)
and (3.14)that|qn| is bounded from above:

|qn| ≤ |ω| + 4cosh2(pn/2)

|v| ,

such that the limit limn→∞ λn = λ∗ = iq∗ exists and gives an accumulation point on Re(λ) = 0 and|Im(λ)| < ∞.
However, sinceN(λ) is analytic onλ ∈ C, zeros ofN(λ) cannot accumulate at|λ∗| < ∞, so that the contradiction
holds.

Finitely many eigenvaluesλ, which are located on Re(λ) = 0, define the center manifold of the dynamical
system(3.6) [18]. Since the conditions of the Center Manifold Theorem[5] are satisfied (the operatorL forms a
smooth strongly continuous semi-group and the cubic nonlinearityM(u) mapsD to itself), the center manifold
exists.

When parametersω andv are defined on the bifurcation curve(2.4), thenN(ik) = 2D(k), whereD(k) is given by
(2.5). In this case, the center manifold of the problem(3.6) includes a composition of two double zero eigenvalues
λ = 0 andNpairs of resonance eigenvaluesλ = ±ikn, wherekn are non-zero roots ofD(k). Dimension of the center
manifold changes at different segments of the bifurcation curve(2.4), shown inFig. 2.

The resolvent equation,

(−ivλJ− L)U(λ, p) = F(p), (3.15)

has to be solved for any givenF = (F1, F2(p), F3, F4(p))T ∈ H. Whenλ is not in the spectrum of the operatorL,
the inhomogeneous problem(3.15)can be solved with the exact solution:

U1(λ) = 1

N(λ)

[
F1 + 1

iv

∫ 1

0
F2(p) eλ(1−p)−iβ dp+ 1

iv

∫ −1

0
F2(p) e−λ(1+p)+iβ dp

]
, (3.16)

U2(λ, p) = U1(λ) eλp + 1

iv

∫ p

0
F2(p′) eλ(p−p′) dp′, (3.17)
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U3(λ) = 1

N̄(λ)

[
F3 − 1

iv

∫ 1

0
F4(p) eλ(1−p)+iβ dp− 1

iv

∫ −1

0
F4(p) e−λ(1+p)−iβ dp

]
,

(3.18)

U4(λ, p) = U3(λ) eλp − 1

iv

∫ p

0
F4(p′) eλ(p−p′) dp′. (3.19)

The eigenvaluesλ, defined by roots of the characteristic equations(3.11) and (3.12), appear as poles in the solution
of the resolvent equation(3.15). The center manifold reductions follow from the Laurent expansions of the solutions
(3.16)–(3.19)near the eigenvaluesλ on the line Re(λ) = 0 [17,19]. We shall study the resolvent of the operatorL
and the center manifold reductions near the zero-dispersion point(1.8).

4. Center manifold reductions near the zero-dispersion point

The zero-dispersion point(1.8)corresponds to the valueβ = π/2 on the bifurcation curve(2.4). At this point, the
center manifold of the system(3.6) includes the only zero eigenvalueλ = 0, which has the algebraic multiplicity
sixand the geometric multiplicitytwo. The two eigenvectors of the kernel ofL are

u0 = (1,1,0,0)T, w0 = (0,0,1,1)T. (4.1)

The four eigenvectors of the generalized kernel ofL are

u1 = (0, p,0,0)T, w1 = (0,0,0, p)T (4.2)

and

u2 = 1

2
(0, p2,0,0)T, w2 = 1

2
(0,0,0, p2)T, (4.3)

where the generalized eigenvectors are normalized by the non-homogeneous problems:

Luk = −2iuk−1, Lwk = 2iwk−1, k = 1,2. (4.4)

At the zero-dispersion point(1.8)with β = π/2, the characteristic equationN(λ) has the following Taylor expansion
nearλ = 0:

N(λ) = i

3
λ3
(

1 + λ2

20
+ O(λ4)

)
, (4.5)

while the solution(3.16)–(3.19)of the resolvent equation(3.15)has the following Laurent expansion atλ = 0:

U(λ, p) = a−3u0 + b−3w0

λ3
+ a−2u0 + a−3u1 + b−2w0 + b−3w1

λ2

+

×
(
a−1 − 1

20a−3

)
u0 + a−2u1 + a−3u2

λ(
b−1 − 1

20b−3

)
w0 + b−2w1 + b−3w2

λ
+ U0(λ, p), (4.6)
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whereU0(λ, p) is analytic in the neighborhood ofλ = 0, the projection operatorsa−3, a−2, anda−1 are given
explicitly as

a−3[F1, F2] = −3i

(
F1 − 1

2

∫ 1

0
(F2(p) + F2(−p)) dp

)
, (4.7)

a−2[F1, F2] = 3i

2

∫ 1

0
(1 − p)(F2(p) − F2(−p)) dp, (4.8)

a−1[F1, F2] = 3i

4

∫ 1

0
(1 − p)2(F2(p) + F2(−p)) dp, (4.9)

and the projection operatorsb−3, b−2, andb−1 are given by the transformation:

b−k = −a−k[F3, F4], k = 1,2,3. (4.10)

When parameters (ω, v) are defined near the zero-dispersion point(1.8) according to the representation(1.9), the
nonlinear problem(3.6) takes the explicit form:

− 2iJ
du
dz

= L0u+ ε2N(u), (4.11)

where the operatorL0 and the perturbation vectorN(u) are given explicitly as:

L0 =




0 −iδ+1 + iδ−1 0 0

0 −2i ∂
∂p

0 0

0 0 0 iδ+1 − iδ−1

0 0 0 2i ∂
∂p


 (4.12)

and

N =




f (u1,−iδ+1u2, iδ−1u2) −Ωu1 + iVu′
1(z)

iV
(
∂u2
∂z

− ∂u2
∂p

)
f̄ (u3, iδ+1u4,−iδ−1u4) −Ωu3 − iVu′

3(z)

−iV
(
∂u4
∂z

− ∂u4
∂p

)



. (4.13)

We use the Center Manifold Theorem[18] [Theorem I.4] and apply the decomposition:

u(z) = uc(z) + ε2uh(z), (4.14)

whereuc(z) is the projection to the center manifold:

uc(z) = A(z)u0 + B(z)u1 + C(z)u2 + Ā(z)w0 + B̄(z)w1 + C̄(z)w2, (4.15)

anduh(z) is the projection to the rest of the spectrum of operatorL0. The problem(4.11)is then rewritten in the
equivalent form,

− 2iJ
duh
dz

− L0uh = Fh ≡ 1

ε2

[
2iJ

duc
dz

+ L0uc

]
+N(uc + ε2uh), (4.16)
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where the right-hand side functionFh mapsWa
0(H) to itself, whereWa

0(H) is the space of functions which are
exponentially decaying (a > 0) and growing (a < 0) at infinity:

Wa
j (H) =

{
F ∈ Cj(R,H) : ‖F‖j = max

0≤k≤j
sup
z∈R

e−a|z| |DkF(z)|
}
. (4.17)

When the pole singularities atλ = 0 are removed from the Laurent expansion(4.6)by the conditions:

a−3[Fh1, Fh2] = a−2[Fh1, Fh2] = a−1[Fh1, Fh2] = 0, (4.18)

the operator
(
L0 + 2iJ d

dz

)
can be inverted and, by the Center Manifold Theorem[5,18], there exists a continuous

mapAε from uc ∈ Wa
1(H) to uh ∈ Wa

1(D) ∩Wa
1(H), such thatuh = Aεuc. By explicit computations, we have

uc1 = A(z), uc2 = A(z) + pB(z) + 1

2
p2C(z), (4.19)

and, therefore, the projection equations(4.18)are expanded as follows:

a−3 = − 1

ε2

dC

dz
− 3ig(A,B,C) + O(ε2‖g‖ + ε2‖uh‖), (4.20)

a−2 = − 1

ε2

(
dB

dz
− C

)
+ O(ε2‖g‖ + ε2‖uh‖), (4.21)

a−1 = − 1

ε2

(
dA

dz
− B + 1

20

dC

dz

)
+ O(ε2‖g‖ + ε2‖uh‖), (4.22)

where

g(A,B,C) = f

(
A,−i

(
A+ B + 1

2
C

)
, i

(
A− B + 1

2
C

))
−ΩA+ iVB.

(4.23)

The functiong(A,B,C) can be computed explicitly for the dNLS lattice(1.3):

g(A,B,C) = |A|2A−ΩA+ iVB, (4.24)

and for the integrable AL lattice(1.4):

g(A,B,C) = −2i|A|2B −ΩA+ iVB. (4.25)

When the truncation error of order O(ε2‖g‖ + ε2‖uh‖) is neglected, the center manifold reductions(4.20)–(4.22)
can be rewritten in the vector form:

d

dz

(
x
x̄

)
= Lc

(
x
x̄

)
+ ε2

(
R(x)
R̄(x)

)
, (4.26)

wherex = (A,B,C)T ∈ C
3, the vector functionR : C

3 �→ C
3 is given by

R(x) = 3i

(
1

20
,0,−1

)T

(gnl(x1, x2, x3) −Ωx1 + iVx2) (4.27)

and

gnl(x1, x2, x3) = f

(
x1,−i

(
x1 + x2 + 1

2
x3

)
, i

(
x1 − x2 + 1

2
x3

))
, (4.28)
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and the linear operatorLc corresponds to the center manifold, defined by the zero eigenvalue of geometric multiplicity
two and algebraic multiplicity six:

Lc =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0



. (4.29)

The normal form for bifurcations of travelling wave solutions near the zero-dispersion point(1.8) is derived from
the center manifold reductions(4.26).

5. Normal form equations near the zero-dispersion point

Equations(4.26) for center manifold reductions can be reduced to the normal form by using nearly identical
transformations:

x = ξ + ε2�(ξ), (5.1)

whereξ ∈ C
3 is a new vector,� : C

3 �→ C
3 is a nearly identical transformation, andξ(z) satisfy the normal form

equations:

d

dz

(
ξ

ξ̄

)
= Lc

(
ξ

ξ̄

)
+ ε2

(
P(ξ)
P̄(ξ)

)
. (5.2)

The nonlinear vector functionP : C
3 �→ C

3 is referred to as the normal form. WhenR(x) is a polynomial function
of x, thenP(ξ) is also a polynomial function ofξ. By the Normal Form Theorem[18] [Theorem I.7], the normal
formP(ξ) must satisfy the system of partial differential equations,

DP(ξ)L∗
cξ = L∗

cP(ξ), (5.3)

whereL∗
c is the adjoint operator andD is the Jacobian. The case of zero eigenvalue of algebraic multiplicity six

and geometric multiplicity two is not included in the list of previously known examples, described in the book[18].
Therefore, we develop a general characterization of the normal formP(ξ) in this case. Let

D∗ = ξ1
∂

∂ξ2
+ ξ2

∂

∂ξ3
+ ξ̄1

∂

∂ξ̄2
+ ξ̄2

∂

∂ξ̄3
. (5.4)

Then, equations(5.3)are rewritten explicitly as

D∗P1 = 0, D∗P2 = P1, D∗P3 = P2. (5.5)

The homogeneous equationD∗u = 0 is satisfied for the following five quadratic variables:

u1 = ξ2
1, u2 = |ξ1|2, u3 = i(ξ1ξ̄2 − ξ̄1ξ2), u4 = ξ2

2 − 2ξ1ξ3,

u5 = |ξ2|2 − ξ1ξ̄3 − ξ̄1ξ3. (5.6)

Let u = (u1, u2, u3, u4, u5). In new variables, the polynomial normal formsP(ξ), which satisfy equations(5.5),
take the following general form:

P1 = iξ1ϕ1(u) + iξ̄1ψ1(u), (5.7)
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P2 = ξ1ϕ2(u) + ξ̄1ψ2(u) + iξ2ϕ1(u) + iξ̄2ψ2(u), (5.8)

P3 = iξ1ϕ3(u) + iξ̄1ψ3(u) + ξ2ϕ2(u) + ξ̄2ψ2(u) + iξ3ϕ1(u) + iξ̄3ψ1(u), (5.9)

whereϕ1,2,3(u) andψ1,2,3(u) are polynomial functions in their variables. By the reversibility invariance(3.2), the
normal form equations(5.2)must be invariant under the reversibility transformation:

z �→ −z, ξ1 �→ ξ̄1, ξ2 �→ −ξ̄2, ξ3 �→ ξ̄3. (5.10)

This symmetry is preserved when the polynomial functionsϕ1,2,3(u) andψ1,2,3(u) are real-valued. By the gauge
invariance(3.2), the normal form equations(5.2)must be also invariant under the gauge transformation:

∀α ∈ R : ξ1 �→ ξ1 eiα, ξ2 �→ ξ2 eiα, ξ3 �→ ξ3 eiα. (5.11)

This symmetry is preserved when the polynomial functionsϕ1,2,3(u) andψ1,2,3(u) include the following zero and
quadratic terms:

ϕj(u) = αj + βj|ξ1|2 + iγj(ξ1ξ̄2 − ξ̄1ξ2) + δj(|ξ2|2 − ξ1ξ̄3 − ξ̄1ξ3), (5.12)

ψj(u) = β̃jξ
2
1 + εj(ξ

2
2 − 2ξ1ξ3), (5.13)

whereαj, βj, γj, δj, andεj are independent parameters, while the terms withβ̃j are the same as the terms withβj.
Therefore, we set̃βj = 0 without loss of generality.

At the linear and cubic nonlinear terms, the transformation function�(ξ) satisfies the system of equations:

D�(ξ)Lcξ − Lc�(ξ) = R(ξ) − P(ξ). (5.14)

Let

D = −ξ2 ∂

∂ξ1
− ξ3

∂

∂ξ2
− ξ̄2

∂

∂ξ̄1
− ξ̄3

∂

∂ξ̄2
. (5.15)

Then, the system(5.14)can be rewritten explicitly:

Φ2 +DΦ1 = P1 − 3i

20
(gnl(ξ1, ξ2, ξ3) −Ωξ1 + iVξ2), (5.16)

Φ3 +DΦ2 = P2, (5.17)

DΦ3 = P3 + 3i(gnl(ξ1, ξ2, ξ3) −Ωξ1 + iVξ2). (5.18)

Removing the linear terms from the system of equations(5.16)–(5.18), we recursively define the transformation
�(ξ) as

Φ1 = −3V

20
ξ1, (5.19)

Φ2 = −2iα1ξ1, (5.20)

Φ3 = (3V − α2)ξ1 − iα1ξ2, (5.21)

where numerical parameters for the zero-order terms in(5.12)are found to be:

α1 = −Ω

20
, α2 = 3V

2
, α3 = 3Ω. (5.22)
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In the case of the cubic dNLS lattice(4.24), we havegnl(ξ1, ξ2, ξ3) = |ξ1|2ξ1. Removing the cubic terms from the
system(5.16)–(5.18), we find that some parameters for quadratic terms in(5.12) and (5.13)are zero:

γ1 = δ1 = ε1 = β2 = δ2 = ε2 = γ3 = 0, (5.23)

while the transformation�(ξ) is recursively defined as follows:

Φ1 = 0, (5.24)

Φ2 = i(δ3 − γ2)|ξ1|2ξ1, (5.25)

Φ3 = i(δ3 − β1 + 2ε3)|ξ1|2ξ2 + iδ3ξ
2
1ξ̄2. (5.26)

Once the representation(5.24)–(5.26)is substituted into the system(5.16)–(5.18), we find thatβ3 = −3, whileβ1,
γ2, δ3, andε3 satisfy the linear system:

− β1 + γ2 + 4δ3 + 2ε3 = 0, (5.27)

− β1 − γ2 + δ3 + 3ε3 = 0, (5.28)

2β1 − 3γ2 + δ3 − 2ε3 = 0, (5.29)

β1 + γ2 − δ3 = 3

20
. (5.30)

The linear system(5.27)–(5.30)has the unique solution:

β1 = 3

28
, γ2 = 1

28
, δ3 = − 1

140
, ε3 = 1

20
. (5.31)

In the case of the integrable AL lattice(4.25), we havegnl(ξ1, ξ2, ξ3) = −2i|ξ1|2ξ2. Removing the cubic terms from
the system(5.16)–(5.18), we find that some parameters for quadratic terms in(5.12) and (5.13)are zero:

β1 = δ1 = ε1 = γ2 = β3 = δ3 = ε3 = 0, (5.32)

while the transformation�(ξ) is recursively defined as follows:

Φ1 =
(

2γ1

3
+ 2δ2

)
|ξ1|2ξ1, (5.33)

Φ2 =
(
−γ1

3
+ 2δ2

)
|ξ1|2ξ2 +

(γ1

3
+ 2δ2 + 4ε2

)
ξ2

1ξ̄2, (5.34)

Φ3 = γ3|ξ1|2ξ1 + γ1

3

(
|ξ1|2ξ3 − ξ2

1ξ̄3 + 2|ξ2|2ξ1 − 2ξ2
2ξ̄1

)
+ δ2(ξ1ξ̄3 + ξ̄1ξ3 − |ξ2|2)ξ1 + ε2(2ξ1ξ3 − ξ2

2)ξ̄1. (5.35)

Once the representation(5.33)–(5.35)is substituted into the system(5.16)–(5.18), we find two linear systems for
β2, γ3:

β2 + 3γ3 = −6, (5.36)

β2 − γ3 = 0, (5.37)

and forγ1, δ2, ε2:

−2γ1 + 8δ2 + 4ε2 = 0, (5.38)
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2γ1 + 2δ2 + 6ε2 = 0, (5.39)

2γ1 + 2δ2 − 4ε2 = 3

10
. (5.40)

The two linear systems have unique solutions:

β2 = −3

2
, γ3 = −3

2
(5.41)

and

γ1 = 3

50
, δ2 = 3

100
, ε2 = − 3

100
. (5.42)

The normal-form equations for the cubic dNLS and integrable AL lattices are studied separately in Sections6 and
7.

6. Bifurcations of travelling wave solutions in the dNLS lattice

Combining the linear and cubic nonlinear terms in the normal forms(5.7)–(5.9), we rewrite explicitly the normal
form equations for the cubic dNLS lattice(1.3):

da

dz
= b+ iε2(α1a+ β1|a|2a), (6.1)

db

dz
= c + ε2(iα1b+ α2a+ iβ1|a|2b+ iγ2(ab̄− āb)a) (6.2)

dc

dz
= ε2(iα1c + α2b+ iα3a+ iβ1|a|2c + iγ2(ab̄− āb)b− 3i|a|2a)

+ ε2(iδ3(|b|2 − ac̄ − āc)a+ iε3(b2 − 2ac)ā), (6.3)

where numerical values forα1, α2, α3, β1, γ2, δ3, and ε3 are given by(5.22) and (5.31), and we have used
the representationξ = (a, b, c)T ∈ C

3. The normal form equations(6.1)–(6.3)can be simplified, by using the
transformation:

(a, b, c) = (ã, b̃, c̃) exp

(
iε2α1z+ iε2β1

∫ z

0
|ã|2(z′) dz′

)
, (6.4)

and the representation:

ã = Φ(z), b̃ = Φ′(z), c̃ = Φ′′(z) − ε2α2Φ− iε2γ2
(
ΦΦ̄′ − Φ̄Φ′)Φ.

(6.5)

Neglecting the terms of order O(ε4) beyond the normal form, we derive the scalar third-order derivative equation
(1.10)from the vector normal form(6.1)–(6.3), whereh(Φ,Φ′, Φ′′, Φ′′′) is given by(1.12).

There exists three roots in the linear part of the scalar normal form(1.10):

Φ(z) = Φ∞ e−κ|z| :
iκ3

3ε2
− iVκ −Ω = 0. (6.6)

One root is always purely imaginary and it corresponds to the resonant Fourier mode(2.2). Two roots are complex-
valued, with positive and negative real parts, when (Ω,V ) gives the perturbed point (ω, v) in the existence domain
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(1.7). For example, the two roots are real-valued forΩ = 0 andV > 0. These two roots correspond to exponentially
decaying tails(2.7)of the travelling wave solutionφ(z), if it exists. Since all three roots are small, of order O(ε), when
Ω = O(ε) andV = O(1), we can rescale the third-order derivative NLS equation(1.10). Assuming thatΦ ∈ C3(R)
for a smooth homoclinic orbit, if it exists, we apply the scaling transformation:

Φ(z) = ε1/2S(ζ), ζ = εz, V = ν, Ω = εµ. (6.7)

The functionS(ζ) satisfies the re-scaled third-order equation:

i

3
S′′′ − iνS′ + µS = |S|2S + ε2

140
(6|S|2S′′ − 2S2S̄′′ + (S′)2S̄ − 3|S′|2S). (6.8)

Let us consider the truncated equation(6.8):

i

3
S′′′ − iνS′ + µS = |S|2S. (6.9)

This equation can be reduced to the standard form, by using the scaling transformation:

S = 3k
√

|k|R(η) e
i
3η, η = 3kζ, k ∈ R, (6.10)

whereR = R(η) satisfies the equation:

R′′ − λR+ σ|R|2R = i(R′′′ − λR′), σ = sign(k), (6.11)

and the two parameters (µ, ν) are related to new parameters (λ, k) as follows:

µ = 6k3λ+ 2

3
k3, ν = −k2 + 3λk2. (6.12)

In the standard form(6.11), exponentially decaying and oscillatory tails are scaled as follows:R(η) = R∞ e−√
λ|η|

andR(η) = R0 e−iη. Since exponentially decaying solutions forR(η) have real-valued decay rate, we match scaling
transformations(6.7) and (6.10)with the travelling wave solution anzats(1.5) and (1.6), such that the parameters
(β, κ) are given at the leading order:

κ = 3εk
√
λ, β = π

2
− εk, λ > 0. (6.13)

Additionally, the transformations(1.9), (6.7), and (6.12)define the leading-order expansions of parameters (ω, v)
in the travelling wave solution(1.5):

ω + 2 = εkv+ ε3µ = 2εk + ε3(kν + µ) = 2εk + ε3k3
(

9λ− 1

3

)
, (6.14)

v− 2 = ε2ν = ε2k2(3λ− 1), (6.15)

wherek ∈ R andλ > 0. The leading-order expansion(6.14) and (6.15)agree with the relations(2.8) and (6.13).
The truncated equation(6.11)was studied in the focusing caseσ = +1 (k > 0). It was proved analytically in

[16] that no single-humped homoclinic orbits exists in the truncated equation(6.11)with σ = +1 for any value of
λ. Therefore, no single-humped homoclinic orbits exists in the full normal form(6.8) for smallε2 �= 0.

On the other hand, it was proved with the same method in[6] that double-humped and multi-humped homoclinic
orbits exist in the truncated equation(6.11)with σ = +1 for special values of parameterλ. These multi-humped
homoclinic orbits are associated with a positive Birkhoff signature in the normal form computations[25]. It was
proved in[28,7] that such multi-humped homoclinic orbits persist in the full normal form(6.8), even beyond all
orders inε.
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Fig. 3. Asymptotic approximations of the bifurcation curves for two-humped travelling wave solutions of the dNLS lattice(1.3)on the parameter
plane (ω, v). The four curves are shown for four values ofλn, according to the expansions(6.14) and (6.15). SeeFig. 2for other notations.

Numerical approximations of the double-humped homoclinic orbits were reported in[24,30]. The discrete infinite
set of values ofλ = {λn}∞n=1 starts with the first values:λ1 = 0.0668,λ2 = 0.0480,λ3 = 0.0397,λ4 = 0.0345 and
extends to limn→∞ λn = 0. Different solutions from the setR = {Rn(η)}∞n=1 are characterized by the different
distances between the two humps, such that the solutions with largernhave larger distance between the two humps.
Fig. 3 plots families of the doubled-humped solutions on the parameter plane (ω, v), predicted from the leading-
order expansions(6.14) and (6.15). It is expected that double-humped travelling wave solutions in the discrete NLS
lattice(1.3)exist in a neighborhood of these curves. Numerical search for double-humped travelling wave solutions
in the dNLS lattice(1.3) is beyond the scope of this paper. We also mention that no results exist in the literature
on the double-humped homoclinic orbit in the defocusing caseσ = −1 (k < 0), which corresponds to the lower
semi-circle onFig. 3. Additional studies of the truncated equation(6.11)with σ = −1 need to be developed in the
context of bifurcations of travelling wave solutions in the dNLS lattice(1.3).

7. Bifurcations of travelling wave solutions in the AL lattice

The normal form equations for the integrable AL lattice(1.4)are rewritten explicitly as

da

dz
= b+ ε2(iα1a− γ1(ab̄− āb)a), (7.1)

db

dz
= c + ε2(iα1b+ α2a− γ1(ab̄− āb)b+ β2|a|2a) + ε2(δ2(|b|2 − ac̄ − āc)a

+ ε2(b2 − 2ac)ā) (7.2)

dc

dz
= ε2(iα1c + α2b+ iα3a− γ1(ab̄− āb)c + β2|a|2b) + ε2(δ2(|b|2 − ac̄ − āc)b

+ ε2(b2 − 2ac)b̄− γ3(ab̄− āb)a), (7.3)
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where numerical values forα1, α2, α3, γ1, β2, δ2, ε2, andγ3 are given by(5.22), (5.41), and (5.42). The normal
form equations(7.1)–(7.3)can be simplified, by using the transformation:

(a, b, c) = (ã, b̃, c̃) exp

(
iε2α1z− ε2γ1

∫ z

0
(ã¯̃b− ¯̃ab̃)(z′) dz′

)
, (7.4)

and the representation ˜a = Φ(z), b̃ = Φ′(z), and

c̃ = Φ′′(z) − ε2(α2Φ+ β2|Φ|2Φ+ δ2(|Φ′|2 −ΦΦ̄′′ − Φ̄Φ′′)Φ

+ ε2((Φ′)2 − 2ΦΦ′′)Φ̄). (7.5)

Neglecting the terms of order O(ε4) beyond the normal form, we derive the scalar third-order derivative equation
(1.10)from the vector normal form(7.1)–(7.3), whereh(Φ,Φ′, Φ′′, Φ′′′) is given by(1.13).

Using the same assumption thatΦ ∈ C3(R) for a smooth homoclinic orbit, if it exists, we apply the scaling
transformation:

Φ(z) = S(ζ), ζ = εz, V = ν, Ω = εµ, (7.6)

where the functionS(ζ) satisfies the re-scaled third-order equation:

i

3
S′′′ − iνS′ + µS

= −2i|S|2S′ + iε2

100
(4SS′′S̄′ − 2SS′S̄′′ − 2S′S′′S̄ + |S|2S′′′ − S2S̄′′′). (7.7)

Let us consider the truncated equation(7.7):

i

3
S′′′ − iνS′ + µS = −2i|S|2S′. (7.8)

This equation can be reduced to the standard form, by using the scaling transformation:

S = R(ζ) eikζ, k ∈ R, (7.9)

whereR(η) satisfies the equation:

3k(R′′ − λR+ 2|R|2R) = i(R′′′ − λR′ + 6|R|2R′), (7.10)

and the two parameters (µ, ν) are related to new parameters (λ, k) as follows:

µ = 2

3
k(λ+ k2), ν = −k2 + 1

3
λ. (7.11)

The standard form(7.10)has the exact solution for single-humped homoclinic orbits:

R =
√
λ sech(

√
λη), λ > 0. (7.12)

The exact solution(7.12)corresponds to the exact single-humped travelling wave solution of the integrable AL
lattice(1.4):

φ(z) = ε−1 sinh(κ) sech(κz), (7.13)

whereκ defines the asymptotic tail at infinity(1.6), such that parameters (β, κ) are related to parameters (ω, v)
by virtue of the transformation(2.8). The single-humped solutions(7.13)exist everywhere in the domain(1.7),
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outside the shaded area onFig. 2. The exact solutions(7.12) and (7.13)agree asymptotically asε → 0, with the
correspondence:

κ = ε
√
λ, β = π

2
− εk (7.14)

and

ω + 2 = 2εk + ε3k

(
λ− 1

3
k2
)
, (7.15)

v− 2 = ε2k2
(

1

3
λ− k2

)
, (7.16)

wherek ∈ R andλ > 0. Since the exact solution for single-humped travelling wave(7.13) is well-known for the
integrable AL lattice(1.4), we do not consider the problem of persistence of the single-humped homoclinic orbit
(7.9) and (7.12)within the full normal form(7.7). Whenk = 0 (µ = 0), the exact solution(7.12)satisfies(7.7)
identically. Whenk �= 0 (µ �= 0), corrections to(7.12)appear due to the perturbation terms, which are of the same
order as the order of truncation of the vector normal form(7.1)–(7.3). Therefore, the persistence problem would
involve higher-order and beyond-all-orders asymptotic expansions, where all resonances (Stokes constants) are
supposed to vanish due to the existence of the exact solution(7.13).

8. Discussions

We have applied central manifold and normal form reductions for derivation of the third-order differential equa-
tion (1.10)from the differential advance–delay equation(2.1). These reductions allowed us to analyze bifurcations
of travelling wave solutions in the dNLS and AL lattices(1.3) and (1.4). In particular, we showed that no single-
humped travelling wave solutions exist in the dNLS lattice(1.3)near the zero-dispersion limit, while two-parameter
single-humped travelling wave solutions exist in the AL lattice(1.4). On the other hand, an infinite discrete set
of one-parameter double-humped travelling wave solutions may exist in the dNLS lattice near the zero-dispersion
limit.

Similar but numerical results show existence of an infinite discrete set of one-parameter families of multi-humped
travelling kinks in the Frenkel–Kontorova lattices[8]. Numerical computations of the full discrete problem show that
the families extend in the existence domain withN = 1 but terminate in the domains withN > 1 [4]. Following to
these connections, one can study two open problems: (i) derivation and analysis of a normal form for the special point
(c = 1, γ = 0) of the travelling kink problem in the Frenkel–Kontorova lattices and (ii) numerical approximations
of one-parameter families of double-humped travelling wave solutions in the discrete NLS equation(1.1).

In addition, we mention that Kevrekidis[22] constructed recently various discretizations of the NLS and Klein–
Gordon equations that possess an additional momentum conserved quantity in spite of the broken translational
invariance. He also conjectured that the single-humped travelling wave solutions should exist in the systems with
the momentum conservation. The integrable AL lattice(1.4) satisfies the latter class of equations and it has the
travelling wave solutions(7.13). The proof of this conjecture is left open for further studies.
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Appendix A. Formal derivation of the third-order ODEs (1.10)

Here we show that the truncated third-order ODEs(6.9) and (7.8)can be derived from the differential advance–
delay equation(2.1)with the formal asymptotic multi-scale expansion methods.

Let β = π/2 and (ω, v) be defined by(1.9). Then, equation(2.1) takes the form:

i(φ(z+ 1) − φ(z− 1) − 2φ′(z))

= ε2(f (φ(z),−iφ(z+ 1), iφ(z− 1)) −Ωφ(z) + iVφ′(z)). (A.1)

Assuming the slow variations ofφ(z), we can reduce(A.1) to a differential equation in the Taylor series approxima-
tion. The order of the asymptotic truncation of the Taylor series depends on the form of the nonlinearity function
f = f (φ(z),−iφ(z+ 1), iφ(z− 1)).

Let us consider the dNLS lattice(1.3), such thatf = |φ(z)|2φ(z). Then, we apply the scaling transformation,

φ(z) = √
εS(ζ), ζ = εz, V = ν, Ω = εµ, (A.2)

and reduce the problem(A.1) to the form:

i

3
S′′′ − iνS′ + µS = |S|2S + O(ε2), (A.3)

which is nothing but the normal form(6.8).
Let us now consider the AL lattice(1.3), such thatf = −i|φ(z)|2(φ(z+ 1) − φ(z− 1)). Then, we apply the

scaling transformation,

φ(z) = S(ζ), ζ = εz, V = ν, Ω = εµ, (A.4)

and reduce the problem(A.1) to the form:

i

3
S′′′ − iνS′ + µS = −2i|S|2S′ + O(ε2), (A.5)

which is nothing but the normal form(7.7).
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