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Abstract

We study discrete nonlinear Séidinger (NLS) equations, which include the cubic NLS lattice with on-site interactions and
the integrable Ablowitz—Ladik lattice. Standing wave solutions are known to exist in the discrete NLS equations outside of the
finite spectral band. We study travelling wave solutions which have nonlinear resonances with unbounded linear spectrum. By
using center manifold and normal form reductions, we show that a continuous NLS equation with the third-order derivative term
is a canonical normal form for the discrete NLS equation near the zero-dispersion limit. Bifurcations of travelling wave solutions
near the zero-dispersion limit are analyzed in the framework of the third-order derivative NLS equation.

We show that there exists a continuous two-parameter family of single-humped travelling wave solutions in the third-order
derivative NLS equation, when it is derived from the integrable Ablowitz—Ladik lattice. On the contrary, there are no single-
humped solutions in the third-order derivative NLS equation, when it is derived from the cubic NLS equation with on-site
interactions. Nevertheless, we show that there exists an infinite discrete set of one-parameter families of double-humped travelling
wave solutions in the latter case. Our results are valid in the neighborhood of the zero-dispersion point on the two-parameter
plane of travelling wave solutions.
© 2005 Published by Elsevier B.V.

Keywords:Discrete NLS lattice; Ablowitz—Ladik lattice; Travelling waves; Bifurcations and persistence; Center manifold reductions; Normal
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1. Introduction

Discretizations of the nonlinear Séinger (NLS) equation occur in many physical applications, including
optical waveguides, periodic optical lattices, Fermi—Pasta—Ulum problems, and numerical finite difference schemes
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[22]. We address here the discrete NLS equation in the general form:
iu, = Uptl — 2Up +Up_1 + Ezf(unv Up+1, un—1)7 (11)

whereu, = u,(t) € C,t € R, n € Z, € is the step-size parameter, afid C3 — C is a nonlinear function, which
satisfies the gauge symmetry:

VeeR: f(uy, g, Un+1 €% u,_1 e"") = Sy, upy1, up—1). 1.2)

Cubic discrete NLS equations are of particular interest, since they are derived from the underlying physical problems
by using asymptotic multi-scale expansig@k We shall apply our general theory to two most important discrete
NLS equations with cubic nonlinearities: the discrete NLS (dNLS) lattice with on-site interatibj23],

f = lunlPup (1.3)
and the Ablowitz—Ladik (AL) latticg1],
f = |un|2(un+1 + Mn—l)- (14)

Standing wave solutions of the fori, (1) = ¢, e 1! 'wheren € Z, ¢n € R, and lim, -« ¢, = 0, exist for rather
general nonlinearitieg (u,, u,+1, uy,—1), provided thatw € R\[—4, 0] [26,21] We address here existence of the
travelling wave solutions in the form:

un(t) = pz) e r=n—ut, (1.5)

whereow, v, and g are real-valued parameters, while R, ¢ € C, and lim . ¢(z) = 0. Only two parameters
(w, v) are independent, since the term®& can be included in the definition gf{z). Two methods can be used
to normalize parametes uniquely. In one method, one can requjiel] that the exponential decay @fz) be
real-valued:
lim € ¢z) = ¢oo, (1.6)
|z]—>o00
wherekx € R and¢, € C. In the other method, one can map a double eigenvalue of a linear operator to the origin.
We explain these two methods in more details in Secion
The tail analysis of the travelling wave solutiofis5) and (1.6shows that parametefsand« are uniquely
defined in terms of» andv (see relation$2.8) in Section2). In particular, the travelling wave solutioli$.5) are
exponentially decaying, if they exist, only if

(0 + 2 +0v° > 4. (1.7)

The main problem is to study if there exists any travelling wave solutibry and (1.6)n the domain(1.7). This
problem has been recently attended in literature, where several contradictory results were obtained.

Feddersen and Duncan et[dI3,10]reported numerical results based on the trigonometric approximations and
Newton—Raphson iterations. The numerics showed decaying solgiignaith v # 0 in the dNLS latticg1.3).

Flach et al.[15] developed an “inverse” method, which allowed them to compute the nonlinearity function
Sf(un, unt1, u,—1) fromany existing travelling wave solutig¢f.5)with ¢ € R. The method recovered the AL lattice
(1.4), which exhibited the travelling wave solutions with real-valydd) [1]. The method showed a contradiction
for the dNLS latticg(1.3), where travelling wave solutions with real-valugft) did not exist.

Numerical iterations for a minimization of a nonlinear functional were developed by Flach and Kiajkdhe
authors showed that there existed a critical point of the nonlinear functional, which corresponded to the travelling
wave solution(1.5)in the dNLS latticg1.3), but this point was not isolated from a dense set of other critical points.
This numerical picture was very different in the case of standing wave solutions with = 0, where a unique
minimum of the nonlinear functional existed.
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Existence of travelling wave solutio.5)in the dNLS latticg1.3)was considered numerically by Ablowitz et
al. [2,3] with the Petviashvili’s iteration method and the discrete Fourier transform. Iterations of the Petviashvili’'s
method converged to a decaying solutia) in the dNLS latticg(1.3) with v # 0 but the limit to the continuous
Fourier transform did not converge to a solution. The authorf8phave conjectured that a true (continuous)
travelling wave solutiorf1.5) does not exist in the dNLS lattidd.3), contrary to the previous numerical results.

We analyze this problem near the zero-dispersion point on the boundary of the existence (dofain

w=-2 v=2 (1.8)

We use the formalism of center manifold and normal form reduc{ib8ls which was applied recently to the lattice
Klein—Gordon equations by loofk7,19]and Mallet-Parg27]. Methods of dynamical systems allow us to consider

the bifurcations of travelling wave solutions when the nonlinearity t€if(u,,, Un+1, Un—1) is small compared to

the linear difference operator term in the general discrete NLS equatibnWe assume therefore thatis a small
parameter of the problem. Contrary to these mathematical motivations, the recent physical applications are found
for non-small values of2, where the bifurcation analysis is not applicall&, 23]

Itis natural to ask whether the bifurcation analysis can be developed near other general points on the boundary o
the existence domaifl.7). Although the normal form can also be derived in the general case, it is integrable in all
powers ofe2, such that persistence or non-persistence of travelling wave solutions can only be studied by analyzing
exponentially small ire, beyond-all-orders correction terms. In the case of the special (loB) however, the
persistence problem can be studied at the third order with the generally non-integrable polynomial normal
form. We shall avoid dealing with exponentiall small, beyond-all-orders corrections terms in this paper.

When bifurcations of travelling wave solutions are considered in the neighborhood of the zero-dispersion point
(1.8), it is natural to represent the poind,(v) as follows:

w=—2+ €8, v=2+€%V. (1.9)

The main result of this paper is the derivation and analysis of the normal form for bifurcations of travelling wave
solutions near the zero-dispersion pdih8). We show that the vector normal form reduces to the scalar third-order
differential equation:

i .
32®" — 1V + Q0 = h(@, &' 2", 2"), (1.10)
€

where® : R — C andh : C3 — C, such that

VaeR: h(@dY @'Y @"dY @" ") =e*n(d, &', ", d"). (1.11)
For the dNLS lattic€1.3), the nonlinearity functioi(®, @', @, @) takes the explicit form:

1 — —

h=|®P%® + 1—40(6|¢|2§b“ —20°D" + (9)°P — 3|/ 2D), (1.12)

while for the integrable AL lattic€1.4), it takes the form:
i _ _ _ _
h = —2i|®)%d + ﬁ)(4q>qf>”q§’ —200'D" —20' D" + | D2 — ?D"). (1.13)

The differential equatioril.10) corresponds to the continuous NLS equation with the third-order derivative term
(referred to as the third-order derivative NLS equation):
iU,

i
+ 3_€2Uxxx = h(U, Uy, Uyy, Uxxx)v (114)
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whenU(x, t) is the travelling solitary wave solutions of the form:
Ulx,1) = d(z)e ™, z=x- V. (1.15)

Solitary wave solution§l.15)of the third-order derivative NLS equatidh.14)are referred to as embedded soli-
tons. Wher = |U|?U, the embedded solitons of the third-order differential equgtioh0)were recently studied
numerically and analyticallj24,16,6,30] Whenh = —2i|U|2Uy, the third-order equatiofL.10)is integrable and
is referred to as the Hirota equatif20,12,29]

Embedded solitongl.15) of the third-order derivative NLS equatidf.14) correspond to the travelling wave
solutions(1.5) of the discrete NLS equatiofi.1). Using the normal form equatiqii.10) we show near the zero-
dispersion poinfl.8)that there exists a continuous two-parameter family of single-humped travelling wave solutions
for the AL lattice(1.4) and no single-humped solutions in the dNLS lat{ite3). On the other hand, we show near
the same point that there exists an infinite discrete set of one-parameter families of double-humped travelling wave
solutions in the dNLS latticé€l.3).

Our paper is structured as follows. We study the linear difference operator of the discrete NLS edualion
Section2. The dynamical system formalism is reviewed in SecBpim application to the discrete NLS equation
(1.1). Center manifold reductions for the zero-dispersion p¢la8), which corresponds to the zero eigenvalue
of algebraic multiplicitysix and geometric multiplicitgtwo, are described in Sectich Vector normal forms for
these center manifold reductions are derived in Se&i@ection6 reports results on existence of travelling wave
solutions in the dNLS latticél.3), while Section7 reports similar results for the AL latticg..4). Open problems
are discussed in Secti@ Appendix Adescribes a formal derivation of the third-order differential equgtloh0)
from the discrete NLS equatidg.1).

2. Linear properties of the discrete NLS equations

The ansatz1.5)for travelling wave solutions reduces the discrete NLS equétidrto the differential advance—
delay equation of the form:

—ivg/(2) = plz + 1) eP + Pz — 1) €F — 2+ w)¢(z)
+Ef(z). ¢z + 1) e, gz — 1) €P), 2.1)

where we have used the gauge symmétrg). In this section, we sef = 0 and study the linear properties of the
problem(2.1), defined by the Fourier modes:

o) =6, keR, (2.2)
where the wavenumbdris related to other parameters by the dispersion relation:
o = w(k) = —vk + 2(cos@ — k) — 1). (2.3)

The dispersion curve = w(k) is shown inFig. 1for (a) v = 0 and (b)v = 0.5, wheng = 0. The wave spectrum
resides on the segmeante [—4, 0] in the case = 0 and on the lin@ € R in the case # 0. As a result, travelling
wave solutions withv # 0 must have resonances with the wave speci2i2) and (2.3)

Bifurcations of travelling wave solutions may occur from quadratic points of the dispersion relaton(k)
[17,19] Directions of possible bifurcations are shownFig. 1 by vertical arrows. Choosing appropriate values
of the parameteg, the quadratic points ab = w(k) can be mapped to the zero roéts- 0. Therefore, we define
the bifurcation point on the parameter plaag ¢) by the two condition for the double roét= 0: w = w(0) and
«'(0) = 0. It follows from (2.3) that the bifurcation point4, v) is parameterized bg as follows:

w = 2(cosp — 1), v=2sinp, B €0, 2x]. (2.4)
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Fig. 1. Dispersion curves = w(k) for (a) v = 0 and (b)v = 0.5, wheng = 0. The vertical arrows show directions of possible bifurcations of
travelling wave solutions.

The circle(2.4)is nothing but the boundary of the existence don{ai). Due to the symmetry, it is sufficient to
consider the half-plane > 0 in the parameter space,(v), shown inFig. 2 Forv > 0, there are two bifurcation
curves: (iw + 2 = +/4 — v2, wheng € [0, n/2] and (i) + 2 = —+/4 — v2, wheng € [r/2, x]. Bifurcations may
occur outward the circle, away of the fundamental spectral band, shown by shadedFige&.ifor instance, the
standing wave solutions (= 0) of the discrete NLS latticél.3) bifurcate tow > 0 for €2 > 0 and tow < —4 for
€ < 0[21].

Let us define a set of roots,,}fl\’zl as resonances of the travelling wave soluti¢ins)if w(k,) = » = »(0) and
k, # 0. The resonant roofs= k, are non-zero real-valued roots of the transcendental equation:

D(k) =cosB+ ksing—cosB—k)=0, pBe]lO0,2n]. (2.5)

The numbeN of resonant roots depends on the paramgter the bifurcation curv€.4). Fig. 2shows the segments
of the bifurcation curve, according to the number of resonant yots 1, 3, and 5. The numbé\ is always odd
and it increases unlimitedly as— O*. In the pointv = 0, no resonances exist, such that= 0.
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Fig. 2. The bifurcation curve on the parameter planey). The shaded area shows the location of the fundamental spectral band, when travelling
wave solutions do not exist. The vertical lines separate the parameter plane by the Nushbesonance points.

The rootk = 0 is a double root oD(k) = 0, wheng # 7/2. The special zero-dispersion poffit8) corresponds
to the particular valug = /2, when the root = 0 is a triple root ofD(k) = O:

B = g . D)=k —sink = %k3 + O®). (2.6)

Itis clear from(2.6) that no non-zero resonance roots existfet /2, such that the only resonance réct k1
for 8 # n/2 degenerates into = 0 asg — 7/2.

In order to explain why the double roét= 0 gives the bifurcation point for travelling wave solutiofis5),
while the non-zero rootk = k, give resonances, we shall adopt the “tail analysis”, develop§tiih Assuming
that the travelling wave solutiog)(z) exists, we are looking for the exponentially decaying tailgas> oo:

$(:) = poo€ . keR. 2.7)

The tails satisfy the differential advance—delay equat@ri) for €2 = 0, provided that the four parameters
(w, v, B, k) are related by the two equations:

w = 2 cospcoshk — 2, vk = 2sin Bsinhk. (2.8)

The existence domaifi.7)follows from the parametrizatiof2.8). In the limitx — 0, the two relation§2.8)recover
the bifurcation condition§2.4), which is the boundary of the existence domdirv). In other words, bifurcations
of the travelling wave solutiot(z) occur in the critical situation when the double réot O for the Fourier mode
(2.2) splits into two imaginary valuels = +ix for the exponentially decaying taif2.7). In parameter space(v),
this bifurcation occurs at the boundary between the linear wave spe€r@jrand the nonlinear wave spectrum
(2.8), assuming that the travelling wave soluti@#(g) exist. If other root% = k, are present for the same values of
o andv, this bifurcation becomes complicated by the fact that the resonant Fourier (2o2)egith k£ = k,, coexist
with the tail solution(2.7)as|z| — oc.

In the main part of this paper, we derive and analyze the normal form for this bifurcation in the special case
B = /2. Normal forms for the general bifurcation in the cgbg /2 will be derived and analyzed elsewhere.
Appendix Apresents a formal asymptotic analysis that is useful to truncate the differential advance—delay equation
(2.1)at the third-order ODK1.10) Rigorous results based on the Center Manifold and Normal Form Theorems are
reported in Section3-5.
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3. Formalism of discrete dynamical systems

Let 2 = L?(Z; C) denote the Hilbert space of square-summable bi-infinite complex-valued sequences, such that
u € 2 denotes the sequen¢e,},cz. Let ¢(u) = {u,+1},e7 denote the shift operator,(u) = u(—r) denote the
reversibility operator, an®, (x) = €« denote the rotation by € R. The three operators are continuous, one-to-
one operators that map onto itself. Using these notations, the general discrete NLS equatibytan be rewritten
as an evolution equation if2:

i = ¢(u) — 2u + ¢ M) + €2 £ (u, £ (), £ M), (3-1)
wheref : 2 — 2 represents a continuous, shift, reversibility, and rotation invariant function, such that
fot=¢of foT=Tof foRy=Ryof (3.2)

We follow looss[17,19] and Mallet-Pare{27] when we rewrite the differential advance—delay equatii)
as a matrix—vector evolution equation. Lpte [—1,1] be a new independent variable and= u(z, p) =
(u1, u2, u3, us)'" be the vector, defined by:

up=¢@), uz=¢+p. uz=¢@). ws=¢E+p). (3.3)
Let 5 be the difference operators, defined by

sz, p) = u(z, £1). (3.4)
Let D be the Banach space for the veaidz, p):

D={ueC*ueCYR,[-1,1]) : uz(z, 0) = u1(z), ua(z, 0) = ua(z)}. (3.5)

The differential advance—delay equati@l)takes the matrix—vector evolution form b

. d
- |vjd—s — LU+ EM(U), (3.6)
whereJ = diag(l 1, —1, —1), £ is the linear operator,
—2+w) elfstlpdhsl 0 0
e 0 —ivg 0 0 37
B 0 0 —(2+w) &fstlyefsl | S
)
0 0 0 Wy,
and M(u) is the nonlinear operator,
flug, €5 1uy, &P 57 1uy)
0
M= fus, €F 8t Lug, &7 57 1uy) (38)
0

Let H be the Banach space for the rangeCof
H={(FeC* FeC'R,[-1 1)) (3.9)
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The linear operatof mapsD into H continuously. Spectrum of the operaiis given by the explicit solution of
the problem(3.6)with €2 = 0:

U@z, p) = (u1, u1 €7, uz, uz&r)Te, (3.10)
wherea is defined by roots of the characteristic equations:

N(A) =24+w—ivA—2cosB+ir) =0 (3.11)

N(A\) =2+ w+ivi —2cosB —ir) = 0. (3.12)

Itis clear that ifA is the root of(3.11) thena is the root 0f(3.12) There are infinitely many isolated eigenvalues
A € C, which are roots of analytic functioN (1). We prove that all but finite number of roots are isolated away of
the line Reg) = 0, such that no accumulation points occur on)gef O.

We prove the statement by contradiction. Let us assume that there exists a sequencef rFeQis + ig, }o>
of the characteristic equatiofi3.11) and (3.12)such that lim_, .« p, = 0. The valuesg,, g,) satisfy the system
of equations:

2+ w =+ vg, —2costp, cosB Fq,) =0 (3.13)
vp, — 2 sinhp, sin(8 ¥ ¢g,) = 0, (3.14)

where the plus-minus signs correspond to the roodé(aj andN (1), respectively. It follows from the systef8.13)
and (3.14xhat|q,| is bounded from above:

|| + 4cost(p,/2)
] ’

lgn| <

such that the limit lim_ -, A, = A, = ig, exists and gives an accumulation point on/Bef 0 and|Im(})| < co.
However, sinceV (1) is analytic onk € C, zeros ofN (i) cannot accumulate §..| < oo, so that the contradiction
holds.

Finitely many eigenvalues, which are located on RE( = 0, define the center manifold of the dynamical
system(3.6) [18] Since the conditions of the Center Manifold Theorghare satisfied (the operatdrforms a
smooth strongly continuous semi-group and the cubic nonlinearify) mapsD to itself), the center manifold
exists.

When parameters andv are defined on the bifurcation curi@4), thenN(ik) = 2D(k), whereD(k) is given by
(2.5). In this case, the center manifold of the problé6)includes a composition of two double zero eigenvalues
A = 0 andN pairs of resonance eigenvalues- +ik,, wherek, are non-zero roots dp(k). Dimension of the center
manifold changes at different segments of the bifurcation c(@w8, shown inFig. 2

The resolvent equation,

(=ivag = LU, p) = F(p), (3.15)

has to be solved for any givéh= (F1, Fo(p), F3, F4(p))" € H. Whena is not in the spectrum of the operatfy
the inhomogeneous proble®.15)can be solved with the exact solution:

1 1t i 17t i
Ul(x)=m[ﬂ+5 fo Fa(p) &P dp 4 — fo Fz(p)e—““p)*'f’dp] (3.16)

Uz, p) = Ur(x) €7 + % /0” Fa(p') €=V dp/, 3.17)
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1 ) 1 .
Vi) = o [ Fa— o [ Fp) @8 ap— = [ Ry iein-itap|
N(A) v Jo v Jo

(3.18)

Us(h. p) = UsG) &7 — = / " E(p) @ dy. (3.19)
v Jo

The eigenvalues, defined by roots of the characteristic equati(®41) and (3.12)appear as poles in the solution

of the resolvent equatigi8.15) The center manifold reductions follow from the Laurent expansions of the solutions
(3.16)—(3.19near the eigenvalugson the line ReX) = 0[17,19] We shall study the resolvent of the operafor

and the center manifold reductions near the zero-dispersion {do#)t

4. Center manifold reductions near the zero-dispersion point

The zero-dispersion poifit.8)corresponds to the valye= 7/2 on the bifurcation curvé2.4). At this point, the
center manifold of the syste(8.6) includes the only zero eigenvalae= 0, which has the algebraic multiplicity
sixand the geometric multiplicitywo. The two eigenvectors of the kernel 6fare

up=(1,1,00)7, wy=(0011)". (4.1)
The four eigenvectors of the generalized kernef afre

ur=(0,p, 0,07,  w;=(0,00,p)T (4.2)
and

up = ;(o, 720,007,  wy= %(o, 0,0, p?)T, (4.3)
where the generalized eigenvectors are normalized by the non-homogeneous problems:

LU = —2iug_1, LW, = 2iwg_1, k=12 (4.4)

Atthe zero-dispersion poiift.8)with 8 = 7/2, the characteristic equatiaf{)) has the following Taylor expansion
neari = 0O:

_l 3 )‘_2 4
NG = 32 (1+ 55100 )), (4.5)

while the solution(3.16)—(3.19)f the resolvent equatiof8.15)has the following Laurent expansionjat= O:

a_3Up+b_3wWo a_Up+a_3ui+b_oWo+ b_3w;

U, p) = 3 2

(afl - %073) Up + a—2U1 + a—_3u2

A
(b—l - 2—1019—3) Wo + b_oW1 + b_3W»

A

X

+

+ Uo(%, p). (4.6)
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whereUp(%, p) is analytic in the neighborhood af = 0, the projection operatois_3, a_», anda_1 are given
explicitly as

1 1
a_3[F1, Fo] = —3i (Fl — §/ (F2(p) + F2(—p)) dP) , (4.7)
0
H 1
adr F =5 [ Q=P - - o @9
3 [t )
a4mﬁﬂ=zﬁﬂ—MUMm+&meh (4.9)

and the projection operatobs 3, b_», andb_1 are given by the transformation:
b_p=—a_y[F3, F4], k=1,23. (4.10)

When parametersy( v) are defined near the zero-dispersion p¢in8) according to the representati¢h9), the
nonlinear problen{3.6) takes the explicit form:

. du
— 217 = Lou+ €M), (4.11)
Z
where the operatof and the perturbation vectdv(u) are given explicitly as:
0 —istt+is™t 0 0
0 —2ig 0 0
Lo = 412
*“lo 0 0 it —is (412
9
0 0 0 2%
and
f(u1, —isT1uy, i5_1u2) — Qu1 +iVu!(2)
T d
v (%2 - 4e)
fus, 18T ug, =6~ ug) — Qusz — iVuy(z)
: ou ou
v (- %)
We use the Center Manifold Theord8] [Theorem 1.4] and apply the decomposition:
u(z) = Uc(2) + €up(2), (4.14)
whereu.(z) is the projection to the center manifold:
Ue(z) = A(2)Uo + B)U1 + C()uz + A(2)Wo + B(x)W1 + C(z)w2, (4.15)

anduy(z) is the projection to the rest of the spectrum of oper#lgrThe problem(4.11)is then rewritten in the
equivalent form,

. duy 17, du
—2|Jd—z—£0Uh—Fh:E—2|:2|jd

<4 L‘ouc} + Muc + €2up), (4.16)
Z
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where the right-hand side functidf, mapsW{(H) to itself, whereW((H) is the space of functions which are
exponentially decayingu(> 0) and growing ¢ < 0) at infinity:

WH(H) = { Fe C/(R,H): |IFl; = [nax supe —a2l | DFE(Z)| ¢ (4.17)
J zeR
When the pole singularities at= 0 are removed from the Laurent expans{dré) by the conditions:
a_3[Fp1, Fp2] = a_2[Fu1, Fi2] = a_1[Fp1, Fr2] =0, (4.18)

the operato(ﬁo + 2ijadz) can be inverted and, by the Center Manifold TheofBrh8], there exists a continuous
mapA. fromu, € W{(H) tou, € Wj(D) N W{(H), such that, = Acu.. By explicit computations, we have

1
ucr =A@, ue =A@+ pBE) + 3 P*C(2), (4.19)
and, therefore, the projection equatigdsi8)are expanded as follows:
1dC
a-3= == = 3ig(A, B.C) + Ollgll + €lunll). (4.20)
1
=72 ( ) + O(lgll + €llunll). (4.21)
-3 + O gl + €llunll). (4.22)
e 20 d gl eitn :
where

1 1
g(A,B,C):f(A,—i <A+B+§C>,i(A—B+§C>>—.QA—i—iVB.

(4.23)
The functiong(A, B, C) can be computed explicitly for the dNLS latti¢e.3):
g(A, B,C) = |A?PA — QA +iVB, (4.24)
and for the integrable AL lattic€l.4).
g(A, B,C) = —2i|A|?B — QA +iVB. (4.25)

When the truncation error of order €( g|| + €2||u,||) is neglected, the center manifold reductigd20)—(4.22)
can be rewritten in the vector form:

d (x\ _ X 2 (R(X¥)
d?(i) _E"<>?>+€ (R(x) ’ (4.26)
wherex = (A, B, C)T e C3, the vector functiomR : C3 — C3 is given by
1 T
R(x) = 3i <2—O, 0, —1) (gni(x1, x2, x3) — 2x1 +1Vx2) (4.27)

and

) 1 1
gni(x1, x2,x3) = f <X1, —i <x1 +x2+ 2x3> <x1 —x2+ zxs)) (4.28)
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andthe linear operatdr, corresponds to the center manifold, defined by the zero eigenvalue of geometric multiplicity
two and algebraic multiplicity six:

01 000

(4.29)

o O O O
O O O O
O O O -
o O O O
O B O O
O O O

0 0 OO0 0O

The normal form for bifurcations of travelling wave solutions near the zero-dispersion(fidis derived from
the center manifold reductiorf$.26)

5. Normal form equations near the zero-dispersion point

Equations(4.26) for center manifold reductions can be reduced to the normal form by using nearly identical
transformations:

X =&+ 2(E), (5.1)

whereg e C2 is a new vector® : C3 — C2 is a nearly identical transformation, aég) satisfy the normal form
equations:

£(9)-<(9)-(3)

The nonlinear vector functioR : C3 — C2 is referred to as the normal form. Whe(x) is a polynomial function
of x, thenP(€) is also a polynomial function df. By the Normal Form Theorefi8] [Theorem 1.7], the normal
form P(&) must satisfy the system of partial differential equations,

DP(§)L}E = LIP(E), (5.3)

where L} is the adjoint operator an® is the Jacobian. The case of zero eigenvalue of algebraic multiplicity six
and geometric multiplicity two is not included in the list of previously known examples, described in th§l&)ok
Therefore, we develop a general characterization of the normalPg§)rin this case. Let

ad d - 0 - 0
D' =81—+&—+&—+Eb—. (5.4)
0&2 €3 062 0€3
Then, equationés.3) are rewritten explicitly as
D*P; =0, D*P; = P, D*P3 = P;. (5.5)

The homogeneous equatidiuz = 0 is satisfied for the following five quadratic variables:
uy = &2, uz = |€1/%, uz = i(£182 — £182), ug = &5 — 2%1£3,
us = |&2l® — £183 — Eatz. (5.6)

Let u = (u1, up, us, us4, us). In new variables, the polynomial normal forrRét), which satisfy equationéb.5),
take the following general form:

P = i€1¢1(u) + i&1ya(u), (5.7)
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Py = E1¢2(U) + E1972(U) + iE2001(u) + i&292(u), (5.8)
P3 = ig1¢3(U) + iE193(U) + &202(U) + E292(u) + iE3¢1(u) + iEaPa(u), (5.9)

whereg1 2 3(u) andyr1 2 3(u) are polynomial functions in their variables. By the reversibility invariaf&), the
normal form equation&.2) must be invariant under the reversibility transformation:

> —z, £ > £, 2> —&2, £ > &. (5.10)

This symmetry is preserved when the polynomial functigns z(u) andvr1 2 3(u) are real-valued. By the gauge
invariance(3.2), the normal form equation®.2) must be also invariant under the gauge transformation:

Vo eR: & > £6€%, £ > Ep6d?, £3 > £3€. (5.11)

This symmetry is preserved when the polynomial functigns 3(u) and+r1 2 3(u) include the following zero and
guadratic terms:

0i(U) = aj + B,lE11% + iyj(E182 — £182) + 8;(162)? — E153 — E183), (5.12)
¥i(U) = BjES + ¢(85 — 261£3), (5.13)

wherea;, B, v;, §;, ande; are independent parameters, while the terms Wjtare the same as the terms with
Therefore, we sef; = 0 without loss of generality.
At the linear and cubic nonlinear terms, the transformation funabi(}) satisfies the system of equations:

DO(§)LcE — Lo P(E) = R(§) — P(8). (5.14)
Let

0 0 — 0 - 0
D=t — g0 5L g o 5.15
& %, &3 % & ™ & % (5.15)

Then, the syster(b.14)can be rewritten explicitly:

3i .
&3+ DP1 = P — Zl)(gm(%l, &2, &3) — $261 + V&), (5.16)
&3+ DP2 = Py, (5.17)
D@3 = P3+ 3i(gni(£1, &2, £3) — 2E1 +1VE). (5.18)

Removing the linear terms from the system of equati@n$6)—(5.18) we recursively define the transformation
® (&) as

3V
Q1 = —%51, (5.19)
@y = —2iar£1, (5.20)
@3 = (3V — az)é1 — 12, (5.21)

where numerical parameters for the zero-order terngS.it2)are found to be:

2 3V

E)’ o2 = 7, a3 = 39. (522)

a1 = —
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In the case of the cubic dNLS latti¢d.24) we havegn(£1, &2, £3) = |£1/%61. Removing the cubic terms from the
system(5.16)—(5.18)we find that some parameters for quadratic term®ih2) and (5.13%re zero:

n=di=ea=pf=n=a=y3=0, (5.23)
while the transformatio® (&) is recursively defined as follows:

@1 =0, (5.24)

B2 = (83 — y2)I€1l%1, (5.25)

B3 = (83 — P1 + 203)[61/%62 + 183858. (5.26)

Once the representati@B.24)—(5.26)s substituted into the systefh.16)—(5.18)we find that8s = —3, while 81,
y2, 83, andeg satisfy the linear system:

—B1+y2+ 453+ 2e3 =0, (5.27)
—B1—y2+83+3e3=0, (5.28)
281 —3y2+83—263=0, (5.29)
3
— 3= —. .
BL+v2—383 20 (5.30)
The linear systents.27)—(5.30has the unique solution:
3 1 1 1
Pi=zg 12T BT Tp 873 (5-31)

In the case of the integrable AL latti¢é.25) we haveg, (&1, &2, £3) = —2i|£1|2£2. Removing the cubic terms from
the systen{5.16)—(5.18)we find that some parameters for quadratic tern($ih2) and (5.13are zero:

Br=d81=e1=y2=B3=383=¢3=0, (5.32)

while the transformatio (&) is recursively defined as follows:

2
D1 = (% + 252) 6121, (5.33)
2 = (=5 +252) 16162 + (5 + 262 + 4e2) £z, (5.34)

@3 = yaléalér + 5 (161173 — £36a + 2leal®er — 26351 )

+ 82(5183 + E183 — 1621981 + £2(26183 — £D)81. (5.35)

Once the representati@b.33)—(5.35)s substituted into the syste(B.16)—(5.18) we find two linear systems for
B2, v3:

B2+ 3yz = —6, (5.36)
B2—y3=0, (5.37)
and foryy, 82, &2:

—2y1+ 882+ 4e2 =0, (5.38)
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2y1 4+ 282 4+ 6e2 = 0, (5.39)
3
2 280 — = —, 4
Y1+ 202 — 4de2 10 (5.40)
The two linear systems have unique solutions:
3 3
- > == 5.41
B2 > %] 5 (5.41)
and
3 3 3
. 8o = — =——. 5.42
"= 2= 100 &2 100 (5.42)

The normal-form equations for the cubic dNLS and integrable AL lattices are studied separately in Seatidns
7.
6. Bifurcations of travelling wave solutions in the dNLS lattice

Combining the linear and cubic nonlinear terms in the normal fgEMg—(5.9) we rewrite explicitly the normal
form equations for the cubic dNLS latti¢#.3):

d .

d_z = b+ ie’(a1a + Bilala), (6.1)

db 2 . . 2 . - f—

e ¢+ €“(ia1h 4+ aza + iB1|alb + iy2(ab — ab)a) (6.2)
74

d

d_c = X(ia1c + aob + iaza + iBr)al’c + iya(ab — ab)b — 3ilal?a)
Z

+ €2(i83(1b|? — ac — ac)a + ie3(b® — 2ac)a), (6.3)

where numerical values fari, a2, a3, B1, ¥2, 83, andes are given by(5.22) and (5.31)and we have used
the representatio§ = (a, b, ¢)7 € C3. The normal form equation.1)—(6.3)can be simplified, by using the
transformation:

~ Z
(a,b,c) = (a,b,7) exp(iezalz +i€?py / a)%(z') dz/) , (6.4)
0
and the representation:
a= o), b=d'(z), ¢=d"(2)—Ead— iy (00 — o).
(6.5)

Neglecting the terms of order €}) beyond the normal form, we derive the scalar third-order derivative equation
(1.10)from the vector normal forn(6.1)—(6.3) whereh(®, &', @”, @) is given by(1.12)
There exists three roots in the linear part of the scalar normal fbrb®)

i3

| .

D(z) = Poo €71 : % —iVk—-2=0. (6.6)
€

One root is always purely imaginary and it corresponds to the resonant Fourief2n®d&wo roots are complex-
valued, with positive and negative real parts, when Y) gives the perturbed poiné( v) in the existence domain
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(1.7). For example, the two roots are real-valuedsbe= 0 andV > 0. These two roots correspond to exponentially
decaying tail42.7)of the travelling wave solutiof(z), if it exists. Since all three roots are small, of ordeel){vhen

2 = O(e) andV = O(1), we can rescale the third-order derivative NLS equdtioh0) Assuming thatb € C3(R)

for a smooth homoclinic orbit, if it exists, we apply the scaling transformation:

?(z) = €Y/25(¢), =€z, V =y, 2 =epu. (6.7)
The functionS(¢) satisfies the re-scaled third-order equation:

: 2

| p— J—

55'” —ivS + uS = |S1°S + ﬁ)(asﬁs” — 28525 4 (8')%S — 3/5'125). (6.8)

Let us consider the truncated equat{6rB).

%S”’ —ivS + uS = |§)?S. (6.9)
This equation can be reduced to the standard form, by using the scaling transformation:

S =3k/kIR(n) €3, n=3k;, keR, (6.10)
whereR = R(n) satisfies the equation:

R’ — AR +0|R?’R=i(R" — AR), o = sign{k), (6.11)

and the two parameterg (v) are related to new parameteks k) as follows:

2
= 6k3x + §k3, v = —k? + 3Ak2. (6.12)
In the standard fornf6.11), exponentially decaying and oscillatory tails are scaled as foll®¢g = R gVl
andR(n) = Roe'"". Since exponentially decaying solutions () have real-valued decay rate, we match scaling
transformationg6.7) and (6.10with the travelling wave solution anzaf$.5) and (1.6)such that the parameters
(B, k) are given at the leading order:

K =3ekv/n, B= g — ek, >0 (6.13)

Additionally, the transformationgl.9), (6.7), and (6.12)efine the leading-order expansions of parameters)(
in the travelling wave solutiofil.5).

1
w+2=ekv+ S = 2k + (kv + p) = 2k + k3 (9,\ — §> , (6.14)

v—2=¢e% =33 - 1), (6.15)

wherek € R andi > 0. The leading-order expansi@.14) and (6.15agree with the relation@.8) and (6.13)

The truncated equatiof®.11)was studied in the focusing case= +1 (k > 0). It was proved analytically in
[16] that no single-humped homoclinic orbits exists in the truncated equ@ibh)with o = +1 for any value of
2. Therefore, no single-humped homoclinic orbits exists in the full normal {68) for smalle2 = 0.

On the other hand, it was proved with the same meth@@lithat double-humped and multi-humped homoclinic
orbits exist in the truncated equati¢®11)with o = +1 for special values of parameter These multi-humped
homoclinic orbits are associated with a positive Birkhoff signature in the normal form computg@ijnet was
proved in[28,7] that such multi-humped homoclinic orbits persist in the full normal f¢68), even beyond all
orders ine.
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Fig. 3. Asymptotic approximations of the bifurcation curves for two-humped travelling wave solutions of the dNLS1aRjoe the parameter
plane @, v). The four curves are shown for four values\gf according to the expansiof.14) and (6.15)SeeFig. 2for other notations.

Numerical approximations of the double-humped homoclinic orbits were repoifa4 80] The discrete infinite
set of values of = {A,}° ; starts with the first valueg; = 0.0668,1, = 0.0480,A3 = 0.0397,14 = 0.0345 and
extends to lim_. A, = 0. Different solutions from the se&k = {R,(n)};>, are characterized by the different
distances between the two humps, such that the solutions with fangee larger distance between the two humps.
Fig. 3 plots families of the doubled-humped solutions on the parameter pdang, (predicted from the leading-
order expansion&.14) and (6.15)It is expected that double-humped travelling wave solutions in the discrete NLS
lattice(1.3)exist in a neighborhood of these curves. Numerical search for double-humped travelling wave solutions
in the dNLS lattice(1.3) is beyond the scope of this paper. We also mention that no results exist in the literature
on the double-humped homoclinic orbit in the defocusing ease—1 (k < 0), which corresponds to the lower
semi-circle orFig. 3. Additional studies of the truncated equati@l1)with 0 = —1 need to be developed in the
context of bifurcations of travelling wave solutions in the dNLS lat{its).

7. Bifurcations of travelling wave solutions in the AL lattice

The normal form equations for the integrable AL latt{@e4) are rewritten explicitly as

d - _
d_a = b+ €(ic1a — y1(ab — ab)a), (7.1
<
db - _ - —
& =¢ + é%(ia1h + aza — y1(ab — ab)b + Bolal®a) + €*(82(1b|° — ac — ac)a
74
+ e2(b? — 2ac)a) (7.2)
d

d_c = X(io1c + aob + iaza — y1(ab — ab)c + Palal?b) + €2(82(|b)? — ac — ac)b
Z

+ e2(b? — 2ac)b — y3(ab — ab)a), (7.3)
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where numerical values fery, a2, a3, y1, B2, 62, €2, andys are given by(5.22), (5.41), and (5.42)he normal
form equationg7.1)—(7.3)can be simplified, by using the transformation:

(a,b,c) = (a,b,7) exp (i&m — €y /0 Z(&E_ —ab)(7) dz’) , (7.4)

and the representation= @(z), b = @'(z), and
¢ =" (2) — X(a2® + Bo| PI°P + 82(| | — P — PP
+ &2((@)? — 209") D). (7.5)

Neglecting the terms of order €f) beyond the normal form, we derive the scalar third-order derivative equation
(1.10)from the vector normal forni7.1)—(7.3) whereh(®, @', ®”, @") is given by(1.13)

Using the same assumption thate C3(R) for a smooth homoclinic orbit, if it exists, we apply the scaling
transformation:

D(2) = S(2). { = ez, V=y, R=epu, (7.6)

where the functiors(¢) satisfies the re-scaled third-order equation:
[
_S/// _ | S/ S
3 e

i 2
. i 5 5 = -
= —2iISPS + ﬁ)@ss”s’ — 255'S" — 25'S"S + |S|2S" — §25""). (7.7)
Let us consider the truncated equat{@:).

i—3S”’ —ivS + uS = —2i|525". (7.8)
This equation can be reduced to the standard form, by using the scaling transformation:

S=R@)EX, keR, (7.9)
whereR(n) satisfies the equation:

3k(R” — AR + 2|R|?R) = i(R" — AR + 6|R|°R)), (7.10)

and the two parameterg (v) are related to new parameteis k) as follows:
2 1
= kO + k%), v=—k?+ I+ (7.11)
The standard forn(i7.10)has the exact solution for single-humped homoclinic orbits:

R = vAsech¢/An), A > 0. (7.12)

The exact solutior{7.12) corresponds to the exact single-humped travelling wave solution of the integrable AL
lattice (1.4).

¢(z) = € *sinh() sechkz), (7.13)

wherex defines the asymptotic tail at infinif{l.6), such that parameterg,(x) are related to parameters,(v)
by virtue of the transformatio(2.8). The single-humped solutior{g.13) exist everywhere in the doma{i.7),



34 D.E. Pelinovsky, V.M. Rothos / Physica D 202 (2005) 16—-36

outside the shaded area Big. 2 The exact solutioné7.12) and (7.13pgree asymptotically as— 0, with the
correspondence:

K= evn, ﬂ:%—ek (7.14)
and
3 1>
w+2=2€k+ek<k—§k>, (7.15)
2,2 (1 2
v—2=¢c% <§A—k), (7.16)

wherek € R andA > 0. Since the exact solution for single-humped travelling w@vé3)is well-known for the
integrable AL lattice(1.4), we do not consider the problem of persistence of the single-humped homaoclinic orbit
(7.9) and (7.12)within the full normal form(7.7). Whenk = 0 (u = 0), the exact solutioli7.12) satisfies(7.7)
identically. Whenk # 0 (u # 0), corrections t¢7.12)appear due to the perturbation terms, which are of the same
order as the order of truncation of the vector normal f¢vini)—(7.3) Therefore, the persistence problem would
involve higher-order and beyond-all-orders asymptotic expansions, where all resonances (Stokes constants) ar
supposed to vanish due to the existence of the exact sol(tid8)

8. Discussions

We have applied central manifold and normal form reductions for derivation of the third-order differential equa-
tion (1.10)from the differential advance—delay equat{@nl). These reductions allowed us to analyze bifurcations
of travelling wave solutions in the dNLS and AL latticéls3) and (1.4)In particular, we showed that no single-
humped travelling wave solutions exist in the dNLS lat{it@) near the zero-dispersion limit, while two-parameter
single-humped travelling wave solutions exist in the AL lattfget). On the other hand, an infinite discrete set
of one-parameter double-humped travelling wave solutions may exist in the dNLS lattice near the zero-dispersion
limit.

Similar but numerical results show existence of an infinite discrete set of one-parameter families of multi-humped
travelling kinks in the Frenkel-Kontorova latticé}. Numerical computations of the full discrete problem show that
the families extend in the existence domain with= 1 but terminate in the domains wif¥i > 1 [4]. Following to
these connections, one can study two open problems: (i) derivation and analysis of a normal form for the special point
(c =1, y = 0) of the travelling kink problem in the Frenkel-Kontorova lattices and (ii) numerical approximations
of one-parameter families of double-humped travelling wave solutions in the discrete NLS edqudt)on

In addition, we mention that Kevrekidj22] constructed recently various discretizations of the NLS and Klein—
Gordon equations that possess an additional momentum conserved quantity in spite of the broken translationa
invariance. He also conjectured that the single-humped travelling wave solutions should exist in the systems with
the momentum conservation. The integrable AL lat{itel) satisfies the latter class of equations and it has the
travelling wave solution§7.13) The proof of this conjecture is left open for further studies.
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Appendix A. Formal derivation of the third-order ODEs (1.10)

Here we show that the truncated third-order OR&ES) and (7.8ran be derived from the differential advance—
delay equatior§2.1) with the formal asymptotic multi-scale expansion methods.
Let 8 = n/2 and (v, v) be defined by1.9). Then, equatioii2.1) takes the form:

i(p(z + 1) — ¢z — 1) — 2¢/(2))
= E(f(p(2). —ip(z + 1), ip(z — 1)) — 2¢(2) + iV (2)). (A1)

Assuming the slow variations @f(z), we can reducéA.1) to a differential equation in the Taylor series approxima-
tion. The order of the asymptotic truncation of the Taylor series depends on the form of the nonlinearity function

f = f@k), —ig(z + 1), ip(z — 1)).
Let us consider the dNLS lattid@.3), such thatf = |¢(z)|%¢(z). Then, we apply the scaling transformation,

P(2) =VeS(), t=e,  V=v, Q= (A.2)
and reduce the proble(A.1) to the form:

|
:—%S”’ —ivS + uS = |28 + O(?), (A.3)

which is nothing but the normal fori®.8).
Let us now consider the AL latticél.3), such thatf = —i|¢(z)|%(¢(z + 1) — ¢#(z — 1)). Then, we apply the
scaling transformation,

p)=5@©), t=e,  V=v  Q2=epu, (A.4)
and reduce the proble(A.1) to the form:

i .
és“’ — S + S = —2i|S|?S" + O(e?), (A.5)

which is nothing but the normal forif7.7).
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