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Abstract. We present a new exact solution to the defocusing modified Korteweg-de
Vries equation to describe the interaction of a dark soliton and a traveling periodic
wave. The solution (which we refer to as to the dark breather) is obtained by using the
Darboux transformation with the eigenfunctions of the Lax system expressed in terms of
the Jacobi theta functions. Properties of elliptic functions including the quarter-period
translations in the complex plane are applied to transform the solution to the simplest
form. We explore the characteristic properties of these dark breathers and show that
they propagate faster than the periodic wave (in the same direction) and attain maximal
localization at a specific parameter value which is explicitly computed.

1. Introduction

The main model for this work is the defocusing modified Korteweg–de Vries (mKdV)
equation written in the normalized form:

ut − 6u2ux + uxxx = 0, (1.1)

where u = u(x, t) is a real-valued function of two real-valued variables (x, t). The defo-
cusing mKdV equation (1.1) is a canonical model which can be used to describe nonlinear
phenomena in the physics of fluids and crystals, e.g. the propagation of internal waves
[14, 26], meandering ocean currents [27], or long waves in the chain of particles [32].

The purpose of this work is to obtain a new exact solution to the mKdV equation (1.1)
which describes the periodic interaction of a dark soliton and a traveling periodic wave.
Due to periodicity of such interactions, we cast this solution as the dark breather.

Breathers represent spatially localized, time-periodic wave patterns that persist in the
nonlinear dynamics. They generalize solitons by incorporating an additional time scale
associated with internal oscillations, and have been widely known in the context of inte-
grable systems. Breathers of the KdV equations were studied in [5, 15] after much earlier
works [13, 16]. Two families of bright (elevation) and dark (depression) breathers were
constructed and compared with numerical and laboratory experiments of interactions be-
tween solitary waves and dispersive shock waves [3, 24]. Similar bright and dark breathers
were obtained for another model of the Benjamin–Ono equation [9]. Breathers of the fo-
cusing and defocusing NLS (nonlinear Schrödinger) equations were obtained respectively
in [11] and [19] after the previous works in [7, 10] and [22, 28, 31].

Key words and phrases. The defocusing modified Korteweg–de Vries equation; Traveling periodic
waves; Soliton interactions; Dark breathers.
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Breathers arising as a result of interactions of solitary waves and traveling periodic
waves have been observed in various fluids [12, 23, 30, 33]. For a better comparison with
experiments, the breather solutions are needed to be constructed in the simplest form
with all parameters explicitly expressed in terms of the Jacobi elliptic functions. These
representations are useful for the study of the physically observable parameters such as
the speed, localization width, and the relative shift of dark solitons relative to the periodic
background.

The exact solutions for complicated wave interactions are available for the mKdV equa-
tion (1.1) due to its integrability. This is expressed through the existence of the Lax system
of two linear equations:

ϕx =

(
iζ u
u −iζ

)
ϕ (1.2)

and

ϕt =

(
4iζ3 + 2iζu2 4ζ2u− 2iζux + 2u3 − uxx

4ζ2u+ 2iζux + 2u3 − uxx −4iζ3 − 2iζu2

)
ϕ, (1.3)

where ζ is the (x, t)-independent spectral parameter and ϕ = (p, q)T is the corresponding
eigenfunction. The mKdV equation (1.1) appears as a compatibility condition ϕxt = ϕtx
of the Lax system (1.2) and (1.3), see [1, 34] for pioneering works.

The spectral problem (1.2) can be written as the classical eigenvalue problem:

(L − ζI)ϕ = 0, L =

(
−i∂x iu
−iu i∂x

)
(1.4)

defined by a self-adjoint Dirac operator L with real u in L2(R). Spatially bounded solu-
tions of the eigenvalue problem (1.4) exist for admissible values ζ on the real line R. The
set of all admissible values of ζ is said to be the Lax spectrum associated with the given
potential u.

Although the mKdV equation is related to the NLS equation because they share the
same spectral problem (1.4), there are differences between the complex-valued solutions
to the NLS equation and the real-valued solutions to the mKdV equation. As a result,
a general family of the traveling periodic wave solutions to the NLS equation from [19]
generates only one traveling periodic wave solution to the mKdV equation (1.1):

u(x, t) = φ0(x+ c0t), φ0(x) = k sn(x; k), c0 = 1 + k2, (1.5)

where k ∈ (0, 1) is the elliptic modulus. The snoidal solution (1.5) is expressed by the
Jacobi elliptic function sn(x; k), where the elliptic modulus k ∈ (0, 1) parametrizes the
family. We note that φ0(x) = 0 as k → 0 and φ0(x) = tanh(x) as k → 1, where the latter
solution is referred to as the kink of the mKdV equation (1.1). The snoidal solution (1.5)
generates a more general family of the periodic solutions of the mKdV equation (1.1) by
means of the scaling transformation

u(x, t) = αφ0(α(x+ ct)), c = α2c0, (1.6)

where the parameter α > 0 is arbitrary.
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The family of the snoidal solutions (1.5) is related to two (symmetric) spectral bands of
the eigenvalue problem (1.4). This family is not equivalent to the general traveling periodic
wave solution to the mKdV equation which has three spectral bands. In the case of the
focusing mKdV equation, a similar constraint on the general family of elliptic solutions
to the NLS equation [11] generates only two particular (dnoidal and cnoidal) traveling
periodic wave solutions to the mKdV equation [6, 20, 21], which are not equivalent to the
general traveling periodic wave solutions explored in [8].

The scopes of our work are restricted to the dark breathers on the snoidal background
(1.5). We do so by using the one-fold Darboux transformation and by transforming the
solution to the simplest form due to properties of the Jacobi theta functions including the
half-period and quarter-period transflations in the complex plane. As the main novelty of
our work, the obtained solutions did not appear in the previous publications on the defo-
cusing NLS equations in [22, 28, 31]. The explicit expressions are used to draw information
about the physically observable parameters such as the breather speed, localization width,
and breather phase shift.

Breathers are constructed by picking an eigenvalue in one of the two (symmetric) spec-
tral gaps of the Lax spectrum associated with the snoidal background (1.5). This yields
dark breathers, for which the dark soliton propagates on the snoidal background as a
depression wave. These breathers are topological because they impart a phase shift to the
snoidal wave background. We show that dark breathers propagate faster than the snoidal
wave background, while imparting a positive phase shift.

It remains open for further studies to obtain similar formulas for the general traveling
periodic wave solutions related to three spectral gaps, in which case we anticipate co-
existence of two breather solutions: dark breathers in the two (symmetric) gaps and
kink breathers in the central gap. One technical problem which needs to be solved for
construction of such breathers is to reformulate the solution u(x, t) of the mKdV equation
(1.1) in the form of a quotient of a product of Jacobi theta functions (see the recent work
in [18]) and to obtain the explicit solutions of the Lax system in a similar form of a
quotient of a product of Jacobi theta functions. This problem is left for future studies.

The organization of this paper is as follows. The main results featuring the closed-
form expression for dark breathers are explained in Section 2. Breather characteristics
are described in Section 3. The technical details of the proof are developed in Section 4.
Appendix A collects together some known relations between Jacobi elliptic functions.

Acknowledgement. The authors thank M. A. Hoefer for many useful discussions and
collaborations during the project. D. E. Pelinovsky is supported in part by the National
Natural Science Foundation of China (No. 12371248).

2. Main results

Throughout the work, we make use of two of the four Jacobi’s theta functions [17]:

θ1(y) = 2
∞∑
n=1

(−1)n−1q(n−
1
2
)2 sin(2n− 1)y
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and

θ4(y) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2ny

where q := e−
πK′(k)
K(k) with K(k) being the complete elliptic integral and K ′(k) = K(k′)

with k′ =
√

1− k2. It is well-known [17] that K(k) is a quarter period and iK ′(k) is a
half period of the Jacobi elliptic function sn(x; k) with the correspondence

y =
πx

2K(k)
.

For notational convenience, we use H(x) = θ1(y), Θ(x) = θ4(y), and drop the dependence
of k ∈ (0, 1) in the elliptic integrals and elliptic functions unless it creates a confusion.
We also use Z(x) = Θ′(x)/Θ(x). Using the relation [17, (2.1.1)]:

sn(x; k) =
H(x)√
kΘ(x)

, (2.1)

we write the profile φ0 of the traveling wave (1.5) in the equivalent form:

φ0(x) =
H(K)

Θ(K)

H(x)

Θ(x)
. (2.2)

The following one-fold Darboux transformation allows us to obtain a new solution û of
mKdV equation (1.1) from the old solution u:

û = u− 4iζpq

p2 − q2
, (2.3)

where ϕ = (p, q)T is a particular nonzero solution of the linear systems (1.2) and (1.3),
associated with the potential u for a particular value of the spectral parameter ζ. The
validity of the one-fold Darboux transformation formula was recently confirmed in Ap-
pendix A in [6] for the focusing mKdV equation. The new solution û in (2.3) is real if the
complex-conjugate reduction q = p̄ is satisfied on the solution ϕ = (p, q)T of the linear
systems (1.2) and (1.3) with real u and real ζ. The solution is singular if p = p(x, t)
becomes real at a point (x, t) ∈ R × R, and the main challenge of using the one-fold
transformation (2.3) is to ensure that û(x, t) is bounded for every (x, t) ∈ R× R.

We are now ready to present the main results of this work.

Theorem 1. Let α ∈ (0, K) be a free parameter in addition to k ∈ (0, 1) and define β
and γ by

β :=

[
1− 2(1 + k)2 sn2(α)

(1 + k sn2(α))2

]
Θ(2α)

Θ(0)
, γ :=

Θ(2α)

Θ(0)
, (2.4)

The new solution of the mKdV equation (1.1) for the dark breather is given in the form:

û(x, t) =
H(K)

Θ(K)

H(ξ + 2α)e−2η +H(ξ − 2α)e2η + 2βH(ξ)

Θ(ξ + 2α)e−2η + Θ(ξ − 2α)e2η + 2γΘ(ξ)
, (2.5)
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where ξ = x+ c0t with c0 = 1 + k2 and η = κ(x+ ct+ x0) with

κ := Z(α) +
k sn(α) cn(α) dn(α)

1 + k sn2(α)
> 0, (2.6)

c := c0 +
2k(1 + k)2[1− k sn2(α)] sn(α) dn(α) cn(α)

[Z(α)[1 + k sn2(α)] + k sn(α) dn(α) cn(α)][1 + k sn2(α)]2
> c0. (2.7)

and arbitary x0 ∈ R.

Remark 1. Since Θ(x) > 0 for every x ∈ R, the new solution û(x, t) is non-singular for
every (x, t) ∈ R× R.

Remark 2. The value of α is uniquely defined by the spectral parameter ζ from the
characteristic equation:

ζ =
1 + k

2

1− k sn2(α)

1 + k sn2(α)
(2.8)

so that if α ∈ (0, K), then ζ ∈ (ζ−, ζ+) with ζ± := 1
2
(1 ± k). Intervals (−ζ+,−ζ−)

and (ζ−, ζ+) are two (symmetric) gaps in the Lax spectrum in the spectral problem (1.4)
associated with the potential u(x, t) = φ0(x+ c0t) with the profile φ0 given by (2.2).

Remark 3. The value α ∈ (0, K) determines the phase shift of the solitary wave propa-
gating across the snoidal background because

lim
η→±∞

û(x, t) = k sn(ξ ∓ 2α).

Since the period of sn(ξ) is 4K, a suitably normalized phase shift can be defined by

∆ :=
2π(4α)

4K
=

2πα

K
∈ (0, 2π). (2.9)

The inverse localization width of the solitary wave is defined by κ in (2.6) and its velocity
is defined by c in (2.7).

Figure 1 shows the spatiotemporal evolution of a dark breather on the snoidal wave
background given by the new solution in Theorem 1. The breather travels faster than the
periodic wave (both waves travel to the left) and imparts a phase shift.

Corollary 1. In the limit k → 1, the family of dark breathers of Theorem 1 generates a
two-soliton solution of the mKdV equation (1.1) in the form:

û(x, t) =
sinh(ξ + 2α)e−2η + sinh(ξ − 2α)e2η + 2 sinh(ξ)(1− sinh2(2α))sech(2α)

cosh(ξ + 2α)e−2η + cosh(ξ − 2α)e2η + 2 cosh(ξ) cosh(2α)
, (2.10)

where

ξ = x+ 2t,

η = tanh(2α)[x+ 2t+ 4t sech2(2α) + x0],

with x0 ∈ R and α ∈ (0,∞) being free parameters.
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Figure 1. Breather on the periodic wave background for α = 0.3K(k),
k = 0.7, and x0 = 0.

Remark 4. The parametrization formula (2.8) in the limit k → 1 becomes ζ = sech(2α)
so that if the first soliton has speed 2, then the second soliton has speed 2 + 4ζ2 with
ζ ∈ (0, 1).

Figure 2 shows the spatiotemporal evolution of the two-soliton solution with the profile
û for α = 0.6 (which corresponds to the eigenvalue ζ = 0.552). The two solitons propagate
with different speeds, collide, and scatter after some interaction.

Figure 2. Two-soliton solution of the mKdV equation (1.1) for α = 0.6
and x0 = 0.
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3. Properties of the dark breather

Here we explore the characteristic properties of the breather solutions given by Theorem
1. In particular, we analyze the breather phase shift ∆, the localization parameter κ, and
the breather speed c. All parameters are characterized by α ∈ (0, K) which is uniquely
determined via the characteristic equation (2.8) by the value of the spectral parameter ζ
in the spectral gap (ζ−, ζ+).

The following two lemmas give monotonicity of the mapping ζ → ∆ and the existence
of a single maximum in the mapping ζ → κ.

Lemma 1. The phase shift ∆ is a monotonically decreasing function of ζ in (ζ−, ζ+) with
∆(ζ−) = 2π and ∆(ζ+) = 0.

Proof. It follows from the characteristic equation (2.8) that

sn(α) =

√
1 + k − 2ζ√
k(1 + k + 2ζ)

= sin(ϕα), (3.1)

where ϕα is defined by α through the incomplete elliptic integral of the first kind as
α = F (ϕα, k). If α ∈ (0, K), then ϕα ∈

(
0, π

2

)
. Using (2.9) together with (3.1), we obtain

∂ζ∆ =
2π

K
∂ϕαF (ϕα, k)∂ζϕα.

Differentiating (3.1) in ζ yields ∂ζϕα < 0 for ϕα ∈
(
0, π

2

)
. On the other hand, it follows

from the definition of the incomplete elliptic integral that ∂ϕF (ϕ, k) > 0. Hence, we have
∂ζ∆ < 0. Since α = 0 at ζ = ζ+ and α = K at ζ = ζ−, it follows from (2.9) that
∆(ζ−) = 2π and ∆(ζ+) = 0. �

Lemma 2. The localization parameter κ admits the only extremal (maximum) point in
(ζ−, ζ+) at

ζ0 =

√
E

2K
− (1− k2)

4
, (3.2)

where E is a complete elliptic integral of the second kind.

Proof. By Lemma 1, the mapping ζ → ∆ is monotone, where ∆ = 2πα/K in (2.9).
Hence, we can check the mapping α→ κ instead of ζ → κ. Computing the derivative of
(2.6) in α, we obtain a critical point of the mapping α→ κ from roots of the transcendal
equation:

1− E

K
− k2 sn2(α)− 2k2 sn2(α) cn2(α) dn2(α)

(1 + k sn2(α))2

+ k
cn2(α) dn2(α)− sn2(α) dn2(α)− k2 sn2(α) cn2(α)

1 + k sn2(α)
= 0, (3.3)

where we have used the formula Z ′(α) = 1− k2 sn2(α)− E/K. We can use

cn2(α) dn2(α) + (1 + k)2 sn2(α) = [1 + k sn2(α)]2 (3.4)
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and the fundamental relations

cn2(α) = 1− sn2(α), dn2(α) = 1− k2 sn2(α) (3.5)

to obtain

1− k2 sn2(α)− 2k2 sn2(α) cn2(α) dn2(α)

(1 + k sn2(α))2

+ k
cn2(α) dn2(α)− sn2(α) dn2(α)− k2 sn2(α) cn2(α)

1 + k sn2(α)

= 1− 3k2 sn2(α) +
2k2(1 + k)2 sn4(α)

(1 + k sn2(α))2
+ k

1− 2(1 + k2) sn2(α) + 3k2 sn4(α)

1 + k sn2(α)

= 1 +
2k2(1 + k)2 sn4(α)

(1 + k sn2(α))2
+ k

1− 2(1 + k2) sn2(α)− 3k sn2(α)

1 + k sn2(α)

= 1 + k
(1 + k sn2(α))2 − 2(1 + k)2 sn2(α)

(1 + k sn2(α))2

= (1 + k)

[
1− 2k(1 + k) sn2(α)

(1 + k sn2(α))2

]
.

The transcendental equation (3.3) is rewritten in the form

E

K
=

(1− k2)
2

+
(1 + k)2

2

(1− k sn2(α))2

(1 + k sn2(α))2

=
(1− k2)

2
+ 2ζ2,

which yields (3.2). It follows from (2.6) that κ > 0 for α ∈ (0, K) with κ → 0 as α → 0
and α→ K. Since there is only one critical point of κ for positive ζ, the mapping ζ → κ
is monotonically increasing for ζ ∈ (ζ−, ζ0) and monotonically decreasing for ζ ∈ (ζ0, ζ+)
with the global maximum in (ζ−, ζ+) at ζ0. �

Figure 3 plots ∆, κ, and c as a function of the spectral parameter ζ in the spectral gap
[ζ−, ζ+]. The band edges ζ− and ζ+ are shown by the vertical dashed lines. The phase
shift ∆ is monotonically decreasing between the band edges in agreement with Lemma 1.
The inverse width κ has a single maximum and vanishes at the band edges in agreement
with Lemma 2. The breather speed c is monotonically increasing and satisfy c > c0.

Figure 4 shows the profiles of the family of breathers for two values of k. The periodic
wave background is close to a sinusoidal wave for smaller values of k and is close to a
kink as k → 1 on each period [0, 4K]. The shift parameter α determines the breather
localization relative to the periodic wave background. When α → 0 and α → K, the
breather represents a slowly modulated wave over many periods since the inverse width
parameter κ becomes smaller. When α → αmax given by the root of (3.3), the breather
has the narrowest (strongest) modulation of the cnoidal wave. The dotted curves in the
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Figure 3. Normalized phase shift ∆ (left), inverse width κ (middle), and
breather speed c (right) versus ζ ∈ (ζ−, ζ+) for k = 0.8. The band edges ζ−
and ζ+ are shown by the vertical dashed lines.

Figure 4. Left: plots of c − c0 and κ versus ∆ for several values of k.
Right: representative dark breather solutions. Representative solutions are
marked on the left panel with a unique colored symbol. The dotted curve
on the left panels corresponds to points of maximal κ parameterized by k.
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left panels show the graphs of

{(∆max, cmax − c0), k ∈ (0, 1)} and {(∆max, κmax), k ∈ (0, 1)}

where ∆max, cmax, and κmax are computed at α = αmax.

4. Proof of the main results

The starting point for the proof of Theorem 1 is the exact solution of the following
system of differential equations:{

p′(x) = iζp(x) + φ0(x)q(x),
q′(x) = −iζq(x) + φ0(x)p(x),

(4.1)

where φ0(x) = k sn(x), x stands for x+c0t, and ϕ = (p, q)T gives a solution of the spectral
problem (1.2) for the normalized wave (1.5) after the translation.

We take for granted (see [31] based on earlier works [4, 28, 29]) that the system (4.1)
is satisfied by the following explicit functions

p(x; z) = es(z)xe−
iπx
4K
H(x− iz)

Θ(x)Θ(iz)
, q(x; z) = es(z)xe−

iπx
4K

Θ(x− iz)

Θ(x)H(iz)
, (4.2)

where s(z) is defined by

s(z) =
1

2
Z(iz)− 1

2
Z(iz′), z′ = K ′ − z. (4.3)

The spectral parameter z ∈ C is related to the spectral parameter ζ ∈ R of the linear
system (4.1) by the characteristic equation

ζ(z) =
1

2
dn(iz) dn(iz′). (4.4)

The second linearly independent solution of the system (4.1) is obtained from (4.2) by
replacing z with z′ and vice versa.

4.1. Lax spectrum for the snoidal potential. The following result is based on the
study of the characteristic equations (4.3) and (4.4). See Figure 5 for illustration of the
Lax spectrum and the corresponding values of the shift parameter z in (4.4).

Proposition 1. Lax spectrum associated with the snoidal potential φ0 is located on

(−∞,−ζ+] ∪ [−ζ−, ζ−] ∪ [ζ+,∞)

and the two band gaps are located on (−ζ+,−ζ−) and (ζ−, ζ+), where ζ± := 1
2
(1± k).

Proof. We have ζ(z) ∈ R if either z ∈ R + imK or z ∈ iR + 1
2
(2m+ 1)K ′, where m ∈ Z.

The former follows from the characteristic equation (4.4), the translation formulas (A.1),
and the reflection formulas (A.3). The latter follows from the characteristic equation
(4.4), the translation formulas (A.2), and the addition formulas (A.6).
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ζ

k

1

0 1/2−1/2 Rez

Imz

iK

K ′/2−K ′/2

Figure 5. Left: Lax spectrum for φ0(x) = k sn(x) with k ∈ (0, 1). Right:
The path of z in the complex plane for real values of ζ.

When z traverses along the rectange in the complex plane shown in Figure 5 (right),
the values of ζ in (4.4) change from +∞ to −∞, where ζ = ±∞ corresponds to z = 0.
The four corner points of the rectange in the z plane correspond to

±ζ+ := ζ

(
±1

2
K ′
)

= ±1

2
(1 + k) and ± ζ− := ζ

(
±1

2
K ′ + iK

)
= ±1

2
(1− k).

The values of s(z) in (4.3) are purely imaginary if z ∈ R + imK and purely real if
z ∈ iR + 1

2
(2m + 1)K ′ for an integer m. Lax spectrum of the spectral problem (4.1) is

defined by bounded solutions (4.2) in x which only exist if s(z) ∈ iR. Thus, Lax spectrum
corresponds to

• [ζ+,∞) for z ∈ (0, 1
2
K ′],

• [−ζ−, ζ−] for z ∈ [−1
2
K ′, 1

2
K ′] + iK,

• (−∞,−ζ+] for z ∈ [−1
2
K ′, 0)

with two (symmetric) band gaps (−ζ+,−ζ−) and (ζ−, ζ+) for z ∈ ±1
2
K ′ + i[0, K]. �

Remark 5. Figure 5 (left) shows the Lax spectrum described in Proposition 1 for different
values of k ∈ (0, 1). As k → 0, the Lax spectrum transforms to (−∞,∞). As k → 1, the
Lax spectrum transforms to (−∞,−1]∪{0}∪ [1,∞), where 0 is the isolated eigenvalue of
the eigenvalue problem (1.4) for the black soliton [34].

4.2. Parameterization in the spectral gap (ζ−, ζ+). The spectral gap (ζ−, ζ+) cor-
responds to the vertical segment with Re(z) = Re(z′) = 1

2
K ′, for which it is natural to

parameterize z by using

z =
1

2
K ′ + iα, α ∈ [0, K]. (4.5)

Since the dark breathers on the snoidal background are constructed by using the one-fold
Darboux transformation (2.3) with ζ selected in the band gap, we shall give the explicit
expressions for s(z) and ζ(z) in (4.3) and (4.4) by using (4.5).
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Proposition 2. Let z be given by the parameterization (4.5). Then we have

ζ =
1 + k

2

1− k sn2(α)

1 + k sn2(α)
(4.6)

and

s = −Z(α)− k sn(α) cn(α) dn(α)

1 + k sn2(α)
. (4.7)

Proof. By using (4.4), (4.5), and (A.6), we obtain

ζ =
1

2
dn

(
i

2
K ′ − α

)
dn

(
i

2
K ′ + α

)
=

1 + k

2

dn2(α) + k2 sn2(α) cn2(α)

[1 + k sn2(α)]2
,

which yields (4.6).
By using (4.3), (4.5), (A.6), and (A.7), we obtain

s =
1

2
Z

(
iK ′

2
− α

)
− 1

2
Z

(
iK ′

2
+ α

)
= −Z(α) +

1

2
k2 sn

(
iK ′

2

)
sn(α)

[
sn

(
iK ′

2
+ α

)
+ sn

(
iK ′

2
− α

)]
,

which yields (4.7). �

Remark 6. In agreement with Proposition 1, it follows from (4.6) that ζ = ζ+ at α = 0
and ζ = ζ− at α = K, whereas it follows from (4.7) that the exponent es(z)x in (4.2) is
purely real for α ∈ (0, K).

4.3. Time evolution of eigenfunctions in the spectral gap. The time evolution of
eigenfunctions (4.2) along the linear flow (1.3) is obtained by changing x to x + c0t and
by multiplication of the eigenfunctions by eω(z)t with ω(z) to be determined:

ϕ(x, t) = eω(z)t
[
p(x+ c0t; z)
q(x+ c0t; z)

]
. (4.8)

Substituting (4.8) into (1.3) and using (4.1) yields the algebraic system:{
ωp = iζ(4ζ2 + 2φ2

0 − 1− k2)p+ (4ζ2φ0 − 2iζφ′0 + 2φ3
0 − φ′′0 − (1 + k2)φ0)q,

ωq = (4ζ2φ0 + 2iζφ′0 + 2φ3
0 − φ′′0 − (1 + k2)φ0)p− iζ(4ζ2 + 2φ2

0 − 1− k2)q, (4.9)

where φ0(x) = k sn(x).

Proposition 3. The value of ω in the system (4.9) is determined by ζ ∈ R from

ω2 = −16ζ2P (ζ), P (ζ) := ζ4 − 1

2
(1 + k2)ζ2 +

1

16
(1− k2)2, (4.10)

with P (ζ) = (ζ2 − ζ2+)(ζ2 − ζ2−) with ζ± = 1
2
(1± k).
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Proof. Since (4.9) is a linear algebraic system, we obtain the values of ω from the deter-
minant equation

det

(
iζ(4ζ2 + 2φ2

0 − 1− k2)− ω 4ζ2φ0 − 2iζφ′0 + 2φ3
0 − φ′′0 − (1 + k2)φ0

4ζ2φ0 + 2iζφ′0 + 2φ3
0 − φ′′0 − (1 + k2)φ0 −iζ(4ζ2 + 2φ2

0 − 1− k2)− ω

)
= ω2 + ζ2(4ζ2 + 2φ2

0 − 1− k2)2 − (4ζ2φ0 − 2iζφ′0 + 2φ3
0 − φ′′0 − (1 + k2)φ0)

× (4ζ2φ0 + 2iζφ′0 + 2φ3
0 − φ′′0 − (1 + k2)φ0) = 0.

The profile φ0(x) = k sn(x) satisfies the second-order differential equation:

φ′′0 − 2φ3
0 + c0φ0 = 0, c0 = 1 + k2. (4.11)

Integration of (4.11) yields the first-order invariant

(φ′0)
2 − φ4

0 + c0φ
2
0 = d0, d0 = k2. (4.12)

Using (4.11) and (4.12) in the determinant equation yields (4.10). �

The next result gives the explicit expression for ω(z) for ζ in the band gap (ζ−, ζ+) by
using (4.5) and (4.10).

Proposition 4. Let z be given by the parameterization (4.5). Then we have

ω = −2k(1 + k)2
1− k sn2(α)

[1 + k sn2(α)]3
sn(α) cn(α) dn(α). (4.13)

Proof. Compatibility of (4.1) and (4.9) implies that the expression for ω can be computed
from the first algebraic equation of system (4.9) at a single value of x, e.g. at x = 0. By
doing so, we obtain

ω + iζ(1 + k2)− 4iζ3 = −2iζk
q(0; z)

p(0; z)

= 2iζk
Θ2
(
α− iK′

2

)
H2
(
α− iK′

2

)
= 2iζk

(1 + k) sn(α) + i cn(α) dn(α)

(1 + k) sn(α)− i cn(α) dn(α)
,

where we have used (2.1), (4.2), (4.5), and (A.6). Expressing now ζ in terms of α by using
(4.6) in the band gap (ζ−, ζ+) and using (3.4), we obtain

ω = iζ

[
4ζ2 − 1− k2 + 2k

[(1 + k) sn(α) + i cn(α) dn(α)]2

[1 + k sn2(α)]2

]
= −4ζk(1 + k)

sn(α) cn(α) dn(α)

[1 + k sn2(α)]2
,

which yields (4.13). �

Remark 7. It follows from (4.13) that the exponent eω(z)t in (4.8) is purely real for
α ∈ (0, K). The values of s in (4.7) and ω in (4.13) are strictly negative for all α ∈ (0, K).
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Remark 8. The expression (4.13) can be obtained by taking the negative square root from
the expression (4.10) after ζ is expressed by (2.8).

4.4. Quarter-period translation of the Jacobi’s theta functions. The relevance of
the quarter-period translations of Jacobi’s theta functions follows from the representations
(4.2) with (4.5):

H(x− iz) = H

(
x+ α− iK ′

2

)
, Θ(x− iz) = Θ

(
x+ α− iK ′

2

)
.

The following proposition specifies some useful quarter-period translation formulas of the
Jacobi’s theta functions, which are novel to the best of our knowledge.

Proposition 5. We have for every x ∈ R:

H2
(
x+ iK′

2

)
Θ2
(
iK′

2

)
Θ2(x)Θ2(0)

=
i
√
k

2(1 + k)
e
πK′
4K e−

iπx
2K [(1 + k) sn(x) + i cn(x) dn(x)] (4.14)

and

Θ2
(
x+ iK′

2

)
Θ2
(
iK′

2

)
Θ2(x)Θ2(0)

=
i
√
k

2(1 + k)
e
πK′
4K e−

iπx
2K [(1 + k) sn(x)− i cn(x) dn(x)] . (4.15)

Proof. We start with the quadratic identities for Jacobi’s theta functions [17, (1.4.16) and
(1.4.19)]:

H(x+ y)H(x− y)Θ2(0) = H2(x)Θ2(y)−Θ2(x)H2(y),
Θ(x+ y)Θ(x− y)Θ2(0) = Θ2(x)Θ2(y)−H2(x)H2(y).

(4.16)

It follows from (2.1) with sn( iK
′

2
) = i√

k
that

H

(
iK ′

2

)
= iΘ

(
iK ′

2

)
,

where Θ
(
iK′

2

)
is real since Θ is even with real coefficients. Hence we obtain from (4.16):[

H2(x) + Θ2(x)
]

Θ2

(
iK ′

2

)
= H

(
x+

iK ′

2

)
H

(
x− iK ′

2

)
Θ2(0)

= Θ

(
x+

iK ′

2

)
Θ

(
x− iK ′

2

)
Θ2(0).

By using the half-period translations of Jacobi’s theta functions (A.4), we obtain their
squared quarter-period translations:[

H2

(
x+

iK ′

2

)
+ Θ2

(
x+

iK ′

2

)]
Θ2

(
iK ′

2

)
= ie

πK′
4K e−

iπx
2KH(x)Θ(x)Θ2(0). (4.17)

Using (2.1) and (A.6) with

1 + k sn2

(
x+

iK ′

2

)
=

2(1 + k) sn(x)

(1 + k) sn(x)− i cn(x) dn(x)
,

we obtain (4.14) and (4.15) from (4.17). �
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Remark 9. Setting x = 0 in (4.15) yields the useful relation:

Θ4
(
iK′

2

)
Θ2(0)

=

√
k

2(1 + k)
e
πK′
4K . (4.18)

4.5. One-mode transformation of the snoidal potential. Here we apply the one-
fold Darboux transformation (2.3) with the particular solution ϕ = (p, q)T of the linear
system (1.2) and (1.3) given by (4.2) and (4.8). The following proposition contains an
important identity for the relevant computations of the two-mode transformation.

Proposition 6. For every x, α ∈ R, we have

sn(x) sn(α) cn(x+ α) dn(x+ α) + sn(x) sn(x+ α) cn(α) dn(α)

+ sn2(α)− sn2(x+ α) = 0. (4.19)

Proof. We expand the left-hand side of (4.19) with the addition formulas (A.5):

sn(x) sn(α)[cn(x) cn(α)− sn(x) sn(α) dn(x) dn(α)][dn(x) dn(α)− k2 sn(x) sn(α) cn(x) cn(α)]

[1− k2 sn2(x) sn2(α)]2

+
sn(x) cn(α) dn(α)[sn(x) cn(α) dn(α) + sn(α) cn(x) dn(x)]

[1− k2 sn2(x) sn2(α)]

+ sn2(α)− [sn(x) cn(α) dn(α) + sn(α) cn(x) dn(x)]2

[1− k2 sn2(x) sn2(α)]2
.

Expanding the numerators of the two quotients with the squared denominators yields a
simplification

− sn(x) sn(α) cn(x) cn(α) dn(x) dn(α)[1− k2 sn2(x) sn2(α)] + Rem

[1− k2 sn2(x) sn2(α)]2
,

where

Rem := sn2(x) sn2(α) dn2(x) dn2(α) + k2 sn2(x) sn2(α) cn2(x) cn2(α)

+ sn2(x) cn2(α) dn2(α) + sn2(α) cn2(x) dn2(x)

is also divisible by [1− k2 sn2(x) sn2(α)] due to the explicit factorization:

Rem = [cn2(x) sn2(α) + sn2(x) dn2(α)][1− k2 sn2(x) sn2(α)].

This allows us to rewrite the left-hand side of (4.19) in the simplified form:

sn2(x) cn2(α) dn2(α)− cn2(x) sn2(α)− sn2(x) dn2(α)

[1− k2 sn2(x) sn2(α)]
+ sn2(α).

The numerator of the first quotient is divisible by [1− k2 sn2(x) sn2(α)]:

sn2(x) cn2(α) dn2(α)− cn2(x) sn2(α)− sn2(x) dn2(α)

= − sn2(α)[cn2(x) + sn2(x) dn2(α)]

= − sn2(α)[1− k2 sn2(x) sn2(α)],

which completes the proof of (4.19) with − sn2(α) + sn2(α) = 0. �
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With the help of Proposition 6, we prove that the transformation (2.3) with the one-
mode solution (4.2) and (4.8) recovers the same snoidal potential φ0(x) = k sn(x).

Proposition 7. Let z be given by (4.5), ζ be given by (4.6), and ϕ = (p, q)T be given by
(4.2) and (4.8) with s and ω in (4.7) and (4.13). The transformation formula (2.3) with
u(x) = k sn(x) returns

û(x) = − 1

sn(x+ 2α)
⇒ −û(x+ iK ′) = k sn(x+ 2α), (4.20)

where x stands for x+ c0t with c0 = 1 + k2.

Proof. By using (2.1) and (4.17), we obtain from (4.2) and (4.8):

pq = e2sx+2ωte−
iπx
2K

H
(
x+ α− iK′

2

)
Θ
(
x+ α− iK′

2

)
Θ2(x)H

(
−α + iK′

2

)
Θ
(
−α + iK′

2

)
= −e2sx+2ωtH

2(x+ α) + Θ2(x+ α)

Θ2(x)[H2(α) + Θ2(α)]

= −e2sx+2ωt Θ2(x+ α)

Θ2(x)Θ2(α)

1 + k sn2(x+ α)

1 + k sn2(α)
.

Since the complex exponential e−
iπx
2K cancels out, we confirm that pq is real since e2s(z)x

and e2ω(z)t are real.
Similarly, by using (4.14) and (4.15), we obtain

p2 = e2sx+2ωte−
iπx
2K

H2
(
x+ α− iK′

2

)
Θ2(x)Θ2

(
−α + iK′

2

)
= e2sx+2ωt (1 + k) sn(x+ α)− i cn(x+ α) dn(x+ α)

(1 + k) sn(α) + i cn(α) dn(α)

Θ2(x+ α)

Θ2(x)Θ2(α)

and

q2 = e2sx+2ωte−
iπx
2K

Θ2
(
x+ α− iK′

2

)
Θ2(x)H2

(
−α + iK′

2

)
= e2sx+2ωt (1 + k) sn(x+ α) + i cn(x+ α) dn(x+ α)

(1 + k) sn(α)− i cn(α) dn(α)

Θ2(x+ α)

Θ2(x)Θ2(α)
.

Again, since the complex exponential e−
iπx
2K cancels out, we confirm that q2 is the complex

conjugate of p2.
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Substituting explicit expressions for pq, p2, and q2 into (2.3) and using (4.6) with (A.5),
we obtain the new solution to the mKdV equation (1.1)

û(x) = k sn(x)− 4iζpq

p2 − q2

= k sn(x)− 2ζ

(1 + k)

[1 + k sn2(α)][1 + k sn2(x+ α)]

sn(α) cn(x+ α) dn(x+ α) + sn(x+ α) cn(α) dn(α)

= k sn(x)− [1− k sn2(α)][1 + k sn2(x+ α)]

sn(x+ 2α)[1− k2 sn2(α) sn2(x+ α)]

= − 1

sn(x+ 2α)
+ k

[
sn(x) +

sn2(α)− sn2(x+ α)

sn(α) cn(x+ α) dn(x+ α) + sn(x+ α) cn(α) dn(α)

]
= − 1

sn(x+ 2α)
,

where the expression in the brackets is identically equal to zero by (4.19). Translating
the new solution by iK ′ with (A.2), we obtain (4.20). �

Remark 10. The new solution

ũ(x, t) := −û(x+ iK ′ + c0t) = φ0(x+ c0t+ 2α)

in (4.20) coincides with the same solution u(x, t) = φ0(x+ c0t) after the translation along
the real axis to the left by the phase shift 2α.

Remark 11. If we use the second linearly independent solution of the linear system (4.1)
given by (4.2) and (4.8) with z′ instead of z in the transformation formula (2.3), then û
is given by (4.20) with 2α being replaced by −2α. It is translated along the real axis to
the right by the same phase shift 2α.

4.6. Two-mode transformation of the snoidal potential. In order to obtain a non-
trivial solution û describing a soliton moving on the snoidal background, we take a linear
superposition of two linearly independent solutions given by (4.2) and (4.8) with z and z′.
The two solutions are only different by the sign of α in the parameterization (4.5) which
leaves the solution written in the same form but with the opposite signs of s and ω in
(4.7) and (4.13). Hence we write:

p = c+e
sx+ωte−

iπx
4K

H
(
x+ α− iK′

2

)
Θ(x)Θ

(
−α + iK′

2

) + c−e
−sx−ωte−

iπx
4K
H
(
x− α− iK′

2

)
Θ(x)Θ

(
α + iK′

2

) (4.21)

and

q = c+e
sx+ωte−

iπx
4K

Θ
(
x+ α− iK′

2

)
Θ(x)H

(
−α + iK′

2

) + c−e
−sx−ωte−

iπx
4K

Θ
(
x− α− iK′

2

)
Θ(x)H

(
α + iK′

2

) , (4.22)

where c+ and c− are arbitrary constants. We choose

c+ = cesx0 , c− = ce−sx0 , (4.23)
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and define η := −s(x+x0)−ωt. The following proposition contains an important identity
in the derivation of the solution form in Theorem 1.

Proposition 8. For every x, α ∈ R, we have

− i
sn(x+ α− iK′

2
) sn(α− iK′

2
)− sn(x− α− iK′

2
) sn(α + iK′

2
)

sn(α + iK′

2
) sn(α− iK′

2
)

×
[
(1 + k) sn(x)[1− k sn2(α)] + i cn(x) dn(x)[1 + k sn2(α)]

] [
1 + k sn2(α)

]
= 2

[
(1 + k)2 sn2(α)(1− k sn2(x))− cn2(α) dn2(α)(1 + k sn2(x))

]
, (4.24)

Proof. By using (3.4) and (A.5), we obtain

sn

(
α +

iK ′

2

)
sn

(
α− iK ′

2

)
=

[(1 + k) sn(α) + i cn(α) dn(α)][(1 + k) sn(α)− i cn(α) dn(α)]

k[1 + k sn2(α)]2

=
(1 + k)2 sn2(α) + cn2(α) dn2(α)

k[1 + k sn2(α)]2
=

1

k

and

sn(x+ α− iK′

2
) sn(α− iK′

2
)− sn(x− α− iK′

2
) sn(α + iK′

2
)

sn(α + iK′

2
) sn(α− iK′

2
)

=
[(1 + k) sn(x+ α)− i cn(x+ α) dn(x+ α)][(1 + k) sn(α)− i cn(α) dn(α)]

[1 + k sn2(x+ α)][1 + k sn2(α)]

− [(1 + k) sn(x− α)− i cn(x− α) dn(x− α)][(1 + k) sn(α) + i cn(α) dn(α)]

[1 + k sn2(x− α)][1 + k sn2(α)]

We will use Landen transformation formulas:

sn

(
(1 + k)x;

2
√
k

1 + k

)
=

(1 + k) sn(x; k)

1 + k sn2(x; k)
,

cn

(
(1 + k)x;

2
√
k

1 + k

)
=

cn(x; k) dn(x; k)

1 + k sn2(x; k)
,

dn

(
(1 + k)x;

2
√
k

1 + k

)
=

1− k sn2(x; k)

1 + k sn2(x; k)
,

(4.25)

where the new elliptic modulus κ := 2
√
k/(1+k) and the old elliptic modulus k are listed

explicitly. Suppressing the second argument, the transformation formulas (4.25) rewrite
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the previous expression in the new form:

sn(x+ α− iK′

2
) sn(α− iK′

2
)− sn(x− α− iK′

2
) sn(α + iK′

2
)

sn(α + iK′

2
) sn(α− iK′

2
)

= [sn(1 + k)(x+ α)− i cn(1 + k)(x+ α)] [sn(1 + k)α− i cn(1 + k)α]

− [sn(1 + k)(x− α)− i cn(1 + k)(x− α)] [sn(1 + k)α + i cn(1 + k)α].

By using (4.25) and (A.5) backwards, we obtain

sn(x+ α− iK′

2
) sn(α− iK′

2
)− sn(x− α− iK′

2
) sn(α + iK′

2
)

sn(α + iK′

2
) sn(α− iK′

2
)

=
2[cn(1 + k)x+ i sn(1 + k)x dn(1 + k)α][sn2(1 + k)α dn(1 + k)x− cn2(1 + k)α]

1− κ2 sn2(1 + k)x sn2(1 + k)α

= 2[cnx dnx(1 + k sn2 α) + i(1 + k) snx(1− k sn2 α)]

× [(1 + k)2 sn2 α(1− k sn2 x)− cn2 α dn2 α(1 + k sn2 x)]

[1 + k sn2 α][(1 + k sn2 x)2(1 + k sn2 α)2 − 4k(1 + k)2 sn2 x sn2 α]

Multiplying this formula by

−i[(1 + k) snx(1− k sn2 α) + i cnx dnx(1 + k sn2 α)][1 + k sn2 α]

yields (4.24) if and only if the following identity holds:

(1 + k)2 sn2 x(1− k sn2 α)2 + cn2 x dn2 x(1 + k sn2 α)2

= (1 + k sn2 x)2(1 + k sn2 α)2 − 4k(1 + k)2 sn2 x sn2 α.

However, this identity is true in view of the fundamental relations (3.5). Hence, the
identity (4.24) has been proved. �

We can now provide the proof of Theorem 1. Since the parameter c in (4.23) cancels
in the quotient (2.3) and so is the common factor Θ2(x) in the denominators of pq, p2,
and q2, we will not write these common factors and use the sign ' for the equivalent
expressions up to the division of these common factors.

Proof of Theorem 1. By using (4.21) and (4.23), we write

p2 ' e−2ηe−
iπx
2K
H2
(
x+ α− iK′

2

)
Θ2
(
−α + iK′

2

) + e2ηe−
iπx
2K
H2
(
x− α− iK′

2

)
Θ2
(
α + iK′

2

)
+ 2e−

iπx
2K
H
(
x+ α− iK′

2

)
H
(
x− α− iK′

2

)
Θ
(
−α + iK′

2

)
Θ
(
α + iK′

2

) .
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By using (2.1), (4.14), (4.15), (4.16), and (4.18), we obtain

p2 ' e−2η
(1 + k) sn(x+ α)− i cn(x+ α) dn(x+ α)

(1 + k) sn(α) + i cn(α) dn(α)

Θ2(x+ α)

Θ2(α)

− e2η (1 + k) sn(x− α)− i cn(x− α) dn(x− α)

(1 + k) sn(α)− i cn(α) dn(α)

Θ2(x− α)

Θ2(α)

− 2i
(1 + k) sn(x)[1− k sn2(α)]− i cn(x) dn(x)[1 + k sn2(α)]

1 + k sn2(α)

Θ2(x)

Θ2(0)
.

Similarly, we obtain

q2 ' e−2η
(1 + k) sn(x+ α) + i cn(x+ α) dn(x+ α)

(1 + k) sn(α)− i cn(α) dn(α)

Θ2(x+ α)

Θ2(α)

− e2η (1 + k) sn(x− α) + i cn(x− α) dn(x− α)

(1 + k) sn(α) + i cn(α) dn(α)

Θ2(x− α)

Θ2(α)

+ 2i
(1 + k) sn(x)[1− k sn2(α)] + i cn(x) dn(x)[1 + k sn2(α)]

1 + k sn2(α)

Θ2(x)

Θ2(0)
.

This yields a compact expression for the real-valued quantity in the transformation (2.3):

p2 − q2

−2i(1 + k)
' e−2η

sn(x+ α) cn(α) dn(α) + sn(α) cn(x+ α) dn(x+ α)

[1 + k sn2(α)]2
Θ2(x+ α)

Θ2(α)

+ e2η
sn(x− α) cn(α) dn(α)− sn(α) cn(x− α) dn(x− α)

[1 + k sn2(α)]2
Θ2(x− α)

Θ2(α)

+ 2 sn(x)
1− k sn2(α)

1 + k sn2(α)

Θ2(x)

Θ2(0)
.

To simplify the expression for pq, we write

pq ' e−2ηe−
iπx
2K
H
(
x+ α− iK′

2

)
Θ
(
x+ α− iK′

2

)
H
(
−α + iK′

2

)
Θ
(
−α + iK′

2

)
+ e2ηe−

iπx
2K
H
(
x− α− iK′

2

)
Θ
(
x− α− iK′

2

)
H
(
α + iK′

2

)
Θ
(
α + iK′

2

)
+ e−

iπx
2K
H
(
x+ α− iK′

2

)
Θ
(
x− α− iK′

2

)
H
(
α + iK′

2

)
Θ
(
−α + iK′

2

)
+ e−

iπx
2K
H
(
x− α− iK′

2

)
Θ
(
x+ α− iK′

2

)
H
(
−α + iK′

2

)
Θ
(
α + iK′

2

) .
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Using (2.1), (4.14), (4.15), and (4.18), we obtain

pq ' −e−2η 1 + k sn2(x+ α)

1 + k sn2(α)

Θ2 (x+ α)

Θ2 (α)

− e2η 1 + k sn2(x− α)

1 + k sn2(α)

Θ2 (x− α)

Θ2 (α)

− i

[
sn(x+ α− iK′

2
)

sn(α + iK′

2
)

+
sn(x− α− iK′

2
)

sn(−α + iK′

2
)

]

× (1 + k) sn(x)[1− k sn2(α)] + i cn(x) dn(x)[1 + k sn2(α)]

1 + k sn2(α)

Θ2 (x)

Θ2(0)
.

By using (4.24), we rewrite pq as follows:

pq ' −e−2η 1 + k sn2(x+ α)

1 + k sn2(α)

Θ2(x+ α)

Θ2(α)

− e2η 1 + k sn2(x− α)

1 + k sn2(α)

Θ2(x− α)

Θ2(α)

+ 2
(1 + k)2 sn2(α)(1− k sn2(x))− cn2(α) dn2(α)(1 + k sn2(x))

(1 + k sn2(α))2
Θ2(x)

Θ2(0)
.

Next we substitute the simplified expressions for pq and (p2 − q2)/(−2i(1 + k)) into (2.3)
and bring it to the common denominator. The resulting formula is greatly simplified with
the use of (3.4) and (4.19) to the form û = −N/D, where

N(x) = e−2η[1− k2 sn2(α) sn2(x+ α)]
Θ2(x+ α)

Θ2(α)

+ e2η[1− k2 sn2(α) sn2(x− α)]
Θ2(x− α)

Θ2(α)

+ 2
1− k sn2(α)

1 + k sn2(α)
[cn2(α) dn2(α)− (1 + k)2 sn2(α)]

Θ2(x)

Θ2(0)

and

D(x) = e−2η[1− k2 sn2(α) sn2(x+ α)]
Θ2(x+ α)

Θ2(α)
sn(x+ 2α)

+ e2η[1− k2 sn2(α) sn2(x− α)]
Θ2(x− α)

Θ2(α)
sn(x− 2α)

+ 2(1− k2 sn4(α))
Θ2(x)

Θ2(0)
sn(x).

Multiplying both N and D by Θ4(α), we rewrite û in the form:

û(x) = − G(x+ α, α)e−2η +G(x− α, α)e2η + 2βG(x, 0)

G(x+ α, α)e−2η sn(x+ 2α) +G(x− α, α)e2η sn(x− 2α) + 2γG(x, 0) sn(x)
,
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where G(x, α) is given by

G(x, α) :=
[
1− k2 sn2(x) sn2(α)

]
Θ2(x)Θ2(α) (4.26)

and the x-independent parameters β and γ are given by

β :=
1− k sn2(α)

1 + k sn2(α)
[cn2(α) dn2(α)− (1 + k)2 sn2(α)]

Θ4(α)

Θ4(0)
,

γ :=
[
1− k2 sn4(α)

] Θ4(α)

Θ4(0)
.

The expresion for û(x) reduces to the one-mode solutions (4.20) as η → ±∞, which is
non-singular after the half-period translation along the imaginary axis:

û(x)→ û(x+ iK ′).

To perform the same half-period translation of û(x) for the two-mode solution, we use
the translation formulas (A.4) in G(x, α) rewritten as

G(x, α) = Θ2(x)Θ2(α)−H2(x)H2(α).

After canceling the numerical and x-dependent factors in the quotient for û(x + iK ′)
and the complex phase in η by a suitable choice of x0, the expression for û(x + iK ′)
is transformed to the same form as for û(x) with G(x ± α + iK ′, α) being replaced by

Ĝ(x± α, α). Simplifying Ĝ(x+ α, α) yields

Ĝ(x+ α, α) = H2(x+ α)Θ2(α)−Θ2(x+ α)H2(α)

= kΘ2(x+ α)Θ2(α)[sn2(x+ α)− sn2(α)]

= kΘ2(x+ α)Θ2(α) sn(x)[sn(α) cn(x+ α) dn(x+ α) + sn(x+ α) cn(α) dn(α)]

= kΘ2(x+ α)Θ2(α) sn(x) sn(x+ 2α)[1− k2 sn2(α) sn2(x+ α)]

= k sn(x) sn(x+ 2α)G(x+ α, α),

where we have used again (4.19) and where G(x, α) is given by (4.26). Substituting

Ĝ(x ± α, α), and Ĝ(x, 0) into û(x + iK ′) and canceling one power of sn(x) yields the
formula

û(x+ iK ′)

= −kG(x+ α, α)e−2η sn(x+ 2α) +G(x− α, α)e2η sn(x− 2α) + 2βG(x, 0) sn(x)

G(x+ α, α)e−2η +G(x− α, α)e2η + 2γG(x, 0)
.

It follows from (4.16) that

G(x, α) = Θ2(0)Θ(x+ α)Θ(x− α).

Canceling Θ2(0)Θ(x) yields

û(x+ iK ′) = −kΘ(x+ 2α) sn(x+ 2α)e−2η + Θ(x− 2α) sn(x− 2α)e2η + 2βΘ(x) sn(x)

Θ(x+ 2α)e−2η + Θ(x− 2α)e2η + 2γΘ(x)
.
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Similarly, we simplify the constants β and γ:

γ =
G(α, α)

Θ4(0)
=

Θ(2α)

Θ(0)

and

β =
1− k sn2(α)

1 + k sn2(α)
[(1 + k sn2(α))2 − 2(1 + k)2 sn2(α)]

Θ4(α)

Θ4(0)

=

[
1− 2(1 + k)2 sn2(α)

(1 + k sn2(α))2

]
Θ(2α)

Θ(0)
,

where we have used (3.4). These expressions coincide with (2.4). Finally, using (2.1) and
canceling the negative sign in û(x + iK ′) yields the two-mode solution in the final form
(2.5), where we recall that x is replaced by ξ = x+ c0t and η = −s(x+ c0t+ x0)− ωt is
expressed explicitly from (4.7) and (4.13). �

We finish by giving the proof of Corollary 1.

Proof of Corollary 1. We take the limit k → 1 with the help of the limiting relations:

k = 1 : sn(x) = tanh(x), cn(x) = sech(x), dn(x) = sech(x)

and

k = 1 : β = [1− sinh2(2α)]sech(2α), γ = cosh(2α).

The asymptotic behavior Θ(x) ' cosh(x) with some k-dependent numerical factor has
been clarified in [15, Eq. (36)]. It follows from (2.1) that H(x) ' sinh(x) with the same
k-dependent factor. Taking the limit k → 1 in (2.5) and cancelling the k-dependent
numerical factor in the quotient yields the expression (2.10). We also obtain:

k = 1 : c0 = 2, κ = tanh(α) + tanh(α)sech(2α) = tanh(2α),

and c = 2 + 4 sech2(2α). �

Appendix A. Relations between Jacobi’s elliptic functions

Jacobi’s elliptic functions satisfy the translation properties [17, (2.2.17)–(2.2.19)]:

sn(x+K) =
cn(x)

dn(x)
, cn(x+K) =

−ik′ sn(x)

dn(x)
, dn(x+K) =

k′

dn(x)
(A.1)

and

sn(x+ iK ′) =
1

k sn(x)
, cn(x+ iK ′) =

−i dn(x)

k sn(x)
, dn(x+ iK ′) =

−i cn(x)

sn(x)
, (A.2)

as well as the reflection formulas [17, (2.6.12)] with k′ =
√

1− k2:

sn(ix; k) =
i sn(x; k′)

cn(x; k′)
, cn(ix; k) =

1

cn(x; k′)
, dn(ix; k) =

dn(x; k′)

cn(x; k′)
. (A.3)
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Similarly, Jacobi’s theta functions satisfy the translation properties [17, (1.3.6) and (1.3.9)]:

H(x+ iK ′) = ie
πK′
4K e−

iπx
2K Θ(x), Θ(x+ iK ′) = ie

πK′
4K e−

iπx
2KH(x), (A.4)

The addition formulas for elliptic functions [17, (2.4.1)–(2.4.3)] are given by

sn(u± v) =
sn(u) cn(v) dn(v)± sn(v) cn(u) dn(u)

1− k2 sn2(u) sn2(v)
,

cn(u± v) =
cn(u) cn(v)∓ sn(u) sn(v) dn(u) dn(v)

1− k2 sn2(u) sn2(v)
,

dn(u± v) =
dn(u) dn(v)∓ k2 sn(u) sn(v) cn(u) cn(v)

1− k2 sn2(u) sn2(v)
,

(A.5)

from which we obtain the following translation formulas:

sn
(
x+ iK′

2

)
=

1√
k

(1 + k) sn(x) + i cn(x) dn(x)

1 + k sn2(x)
,

cn
(
x+ iK′

2

)
=

√
1 + k√
k

cn(x)− i sn(x) dn(x)

1 + k sn2(x)
,

dn
(
x+ iK′

2

)
=
√

1 + k
dn(x)− ik sn(x) cn(x)

1 + k sn2(x)
.

(A.6)

Jacobi’s zeta function satisfies the following addition formula [17, (3.6.2)]:

Z(u± v) = Z(u)± Z(v)∓ k2 sn(u) sn(v) sn(u± v). (A.7)
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