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Abstract. We consider the propagation of smooth solitary waves in a two-dimensional
generalization of the Camassa–Holm equation. We show that transverse perturbations
to one-dimensional solitary waves behave similarly to the KP-II theory. This conclusion
follows from our two main results: (i) the double eigenvalue of the linearized equations
related to the translational symmetry breaks under a transverse perturbation into a
pair of the asymptotically stable resonances and (ii) small-amplitude solitary waves are
linearly stable with respect to transverse perturbations.

1. Introduction

The Camassa–Holm equation, labelled as the CH equation,

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.1)

is a popular model for the dynamics of unidirectional shallow water waves [2, 19] which has
been justified mathematically in [7]. It was originally introduced in [12] as a deformation
of the integrable KdV equations. The equation models the behavior of shallow water
waves both in the setting of solitary and periodic waves. Global solutions exist for initial
data with sufficiently gradual slopes and wave breaking occurs in finite time for initial data
with steep slopes [5, 6]. There exist smooth and peaked traveling waves both among the
spatially solitary and periodic waves [15, 25]. The smooth solitary waves were shown to be
spectrally and orbitally stable in the time evolution of the CH equation [10, 22]. Similar
stability results were obtained for the traveling periodic waves in [15, 26]. On the other
hand, although the peaked traveling waves (both solitary and periodic) are energetically
stable in the energy space H1 [8, 9, 23, 24], the local solutions are only defined in the
function space H1∩W 1,∞ [11, 27]. It was recently shown that the peaked traveling waves
are both spectrally and orbitally unstable in H1 ∩W 1,∞ [21, 28, 33].

As a model for shallow water waves, the CH equation (1.1) is limited to two-dimensional
fluid motion confined by a one-dimensional time-dependent surface. Transverse modula-
tions on the water surface can be defined in terms of the two spatial variables (x, y) ∈ R2.
A generalization of the CH equation with a two-dimensional time-dependent profile u =
u(x, y, t) has appeared in the literature only recently. This equation can be written in its
simplest dimensionless form as

(ut − utxx + 3uux − 2uxuxx − uuxxx)x + uyy = 0. (1.2)
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It was first derived in [3] as a model in the context of nonlinear elasticity theory. More
recently, it was obtained in [16] as a model in the context of incompressible and irrotational
shallow water wave theory. We refer to (1.2) as the CH-KP equation because it generalizes
the CH equation (1.1) in the same way as the Kadomtsev–Petviashvili (KP) equation
generalizes the classical Korteweg–de Vries (KdV) equation [20].

In the following we review some mathematical results that have been obtained for the
CH-KP equation (1.2) so far. Local existence of solutions was obtained in the space of
functions Xs(R2) with s ≥ 2, where

Xs(R2) := {u ∈ Hs(R2) : ∂−1
x u ∈ Hs(R2), ∂xu ∈ Hs(R2)},

see [16, Theorem 1.1]. The nonlocal operator ∂−1
x can be formally defined as

(∂−1
x f)(x) :=

 x

+∞
f(x′) dx′

for functions f(x) : R → R that decay to zero as x → +∞. This nonlocal operator can
be used to rewrite (1.2) in the evolution form

ut + (1− ∂2
x)

−1

3uux − 2uxuxx − uuxxx + ∂−1

x uyy


= 0. (1.3)

The evolution equation (1.3) can be cast in Hamiltonian form

ut = −JF ′(u), (1.4)

with the skew-adjoint operator J := ∂x(1− ∂2
x)

−1 and the conserved energy

F (u) :=
1

2



R2


u3 + uu2

x + (∂−1
x uy)

2

dx dy. (1.5)

It was shown in [16] that F (u) is conserved in time for local solutions in Xs(R2) for s ≥ 2,
and so is the momentum

E(u) :=
1

2



R2

(u2 + u2
x) dx dy. (1.6)

In addition to F (u) and E(u), the mass

M(u) :=



R2

u dx dy (1.7)

is formally conserved in the time evolution of the CH-KP equation (1.2). Various wave
breaking criteria were obtained in [16, Theorems 1.2–1.4]. A recent work [38] explored
numerical (Galerkin) methods for approximation of solitary waves in the CH–KP equation.

The purpose of this work is to study the transverse stability of perturbed solitary waves
in the CH-KP equation (1.2). Line solitary waves are obtained for functions of the form
u(x, y, t) = φ(x+γy−ct) with parameters γ, c ∈ R. In what follows, we will only consider
the case γ = 0 for the traveling wave solutions of the CH equation (1.1).

It was the motivation of the pioneering work [20] to investigate the transverse stability
of solitary waves under small slowly varying perturbations. It was discovered that the
line solitary waves are transversely unstable in one version of the KP equation and are
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transversely stable in another version of the KP equation. These versions are now conven-
tionally referred to as the KP-I and KP-II equations, respectively. The CH-KP equation
(1.2) we are considering in the present work corresponds to KP-II.

A rigorous proof of transverse stability of traveling waves in the KP-II equation was
completed only recently. Linear and nonlinear stability of the solitary waves have been
proven for transversely periodic perturbations in [30] and for decaying perturbations in
R2 [29]. Linear stability of traveling periodic waves was shown in [17] and the nonlinear
stability of periodic waves is still an open problem for the KP-II equation.

Asymptotic reductions of other nonlinear systems to the KP-II equation have been
explored in the literature. Mizumachi and Shimabukuro used the KP–II equation as
an approximation of the Benney–Luke system to prove linear and nonlinear transverse
stability of the line solitary waves of small amplitudes [31, 32]. A justification of the
asymptotic reduction to the KP-II equation for the two-dimensional Boussinesq equation
was done by Gallay and Schneider [13]. In the recent series of papers [14, 18, 34], the
KP-II equation was justified as the leading model for a two-dimensional Fermi–Pasta–
Ulam system on a square lattice. See also [1] for recent work on transverse stability of
line solitary waves in other generalizations of the KP equation.

We can formally obtain the asymptotic reduction of the CH–KP equation to the KP-II
equation. Let k > 0 be a fixed parameter and consider the slowly varying approximation
of small-amplitude perturbations of a constant background in the form

u(x, y, t) = k + ε2v(ε(x− 3kt), ε2y, ε3t). (1.8)

By using the chain rule and the evolution form (1.3), we derive the following evolution
equation for the variable v = v(X, Y, T ) in scaled coordinates as

vT + (1− ε2∂2
X)

−1

2kvXXX + 3vvX + ∂−1

X vY Y − ε2(2vXvXX + vvXXX)

= 0.

The formal truncation at ε = 0 yields the KP-II equation in the form

vT + 2kvXXX + 3vvX + ∂−1
X vY Y = 0. (1.9)

For every fixed k > 0, the line solitary waves are linearly and nonlinearly stable in the
KP-II equation (1.9) [29]. The main conclusion of this work is that the smooth solitary
waves are linearly transversely stable also in the CH-KP equation (1.3). The nonlinear
transverse stability is still an open question, and our results on the linear transverse
stability so far are limited to two claims:

• The transverse perturbation breaks the double zero eigenvalue of the linearized
equations into a pair of resonances located in the left half-plane. This result is
obtained for smooth solitary waves of arbitrary amplitude.

• The line solitary waves are linearly stable with respect to transverse perturbations
if the wave amplitude is sufficiently small.

The precise statement of these two results will be given in Section 2, after the traveling
waves and their linear stability problems will be described. Sections 3 and 4 contain the
proofs of these two main results. Section 5 concludes the paper with a summary and a
list of open questions for further studies.
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2. Smooth solitary waves

We consider the traveling one-dimensional solitary waves described by solutions to the
CH-KP equation (1.2) of the form

u(x, y, t) = φ(x− ct),

where φ(x) → k as |x| → ∞, for a fixed background parameter k > 0. It is well-known
[15, 22], see also [10, 25] for earlier results, that such solitary waves exist for c > 3k and
have a smooth profile φ ∈ C∞(R). The following lemma formalizes the result.

Lemma 2.1. Fix k > 0. For every c > 3k, there exists a traveling solitary wave solution
of the CH equation (1.1) with profile φ ∈ C∞(R) of the form φ(x) = k+ψ(x), where ψ is
found from the first-order invariant

(ψ′)2 = ψ2 c− 3k − ψ

c− k − ψ
. (2.1)

In particular, ψ(x) > 0 for all x ∈ R, ψ(x) → 0 as |x| → ∞ exponentially fast, and ψ(x)
is monotonically decreasing on both sides of its maximum at max

x∈R
ψ(x) = c− 3k.

Proof. The traveling wave of the CH equation (1.1) with profile φ satisfies the third-order
differential equation

−c(φ′ − φ′′′) + 3φφ′ − 2φ′φ′′ − φφ′′′ = 0,

which can either be integrated directly to give

(c− φ)(φ− φ′′) +
1

2
(φ′)2 − 1

2
φ2 = kc− 3

2
k2, (2.2)

or first multiplied by (c− φ) and then integrated to give

− (c− φ)2(φ′′ − φ) = k(c− k)2. (2.3)

In both cases, we have fixed the integration constant from the conditions φ(x) → k and
φ′(x),φ′′(x) → 0 as |x| → ∞. Multiplying (2.3) by φ′ and integrating again gives

1

2
(φ′)2 − 1

2
φ2 +

k(c− k)2

(c− φ)
= kc− 3

2
k2. (2.4)

Writing φ = k + ψ, we obtain (2.1) from (2.4).
A solitary wave with ψ(x) → 0 as |x| → ∞ corresponds to a homoclinic orbit on the

phase plane (ψ,ψ′) along the level curve (2.1) to the saddle point (0, 0). The solitary
wave exists if and only if c − 3k > 0, because (0, 0) is a center point for c − 3k < 0 and
no homoclinic orbit exists for c− 3k = 0. Since (0, 0) is a saddle point for c− 3k > 0, the
convergence rate of ψ(x) → 0 as |x| → ∞ is exponential. The stable and unstable curves
at (0, 0) do not intersect if ψ < 0 and intersect if ψ > 0. Hence ψ(x) > 0 for all x ∈ R and
the turning point x0 ∈ R with ψ′(x0) = 0 exists if and only if ψ(x0) = c− 3k. Thus, the
profile ψ is monotonically decreasing away from its maximum at max

x∈R
ψ(x) = c− 3k. □

Remark 2.2. Due to the translational symmetry of the CH equation we may place the
maximum of ψ at x = 0 such that ψ(0) = c− 3k.
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Remark 2.3. Since the scaling (1.8) suggests a reduction of the CH-KP equation (1.3) to
the KP-II equation (1.9), the traveling solitary wave of Lemma 2.1 must converge to the
traveling solitary wave of the KdV equation

vT + 2kvXXX + 3vvX = 0. (2.5)

Indeed, solving the KdV equation (2.5) for the solitary wave profile with

v(X, T ) = sech2


X − T

2
√
2k



gives the formal asymptotic expansion

φ(x) = k + ε2sech2


εx

2
√
2k


+O(ε4), c = 3k + ε2, (2.6)

where ε > 0 is an arbitrary (small) parameter and x stands for x − ct. The asymptotic
limit to the solitary wave of small amplitude corresponds to the limit c → 3k for which
ε → 0. This reduction is made rigorous in Lemma 4.1 below.

In order to set up the linear transverse stability problem for the smooth solitary wave
of Lemma 2.1, we consider the decomposition

u(x, y, t) = φ(x− ct) + v(x− ct, y, t)

with the perturbation v to the solitary wave profile φ ∈ C∞(R). After substitution of the
decomposition into (1.3) and neglecting the quadratic terms in v, we obtain the linearized
equation

vt = J(L− ∂−2
x ∂2

y)v, (2.7)

where J := ∂x(1− ∂2
x)

−1 as in (1.4) and

L := c− 3φ+ φ′′ − ∂x(c− φ)∂x. (2.8)

Separation of variables in the linearized equation (2.7) by using normal modes of the form

v(x, y, t) = eλteiηyv̂(x),

where λ ∈ C and η ∈ R, yields the spectral stability problem

J(L+ η2∂−2
x )v̂ = λv̂. (2.9)

The one-dimensional spectral stability problem is recovered for η = 0. We can now specify
the following definition of transverse spectral stability.

Definition 2.4. We say that the solitary wave with profile φ ∈ C∞(R) is transversely
spectrally stable if for every η ∈ R there exists no eigenvalue λ ∈ C with Re(λ) > 0 and
eigenfunction v̂ ∈ Dom(J(L+ η2∂−2

x )) ⊂ L2(R) of the spectral stability problem (2.9).

A common method to study the linear stability of solitary waves in the KdV equation
(2.5) is to use the exponentially weighted space L2

ν with fixed ν > 0 [4, 36], which is
defined as

L2
ν := {f(x) : R → R : eν·f ∈ L2(R)}. (2.10)
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If f ∈ L2
ν with ν > 0, then f(x) → 0 as x → +∞ and so the nonlocal operator ∂−1

x is
well-defined. Note however that f(x) does not have to decay and may even be slowly
growing as x → −∞. By using the exponentially weighted space L2

ν , we rephrase the
definition of the transverse spectral stability.

Definition 2.5. We say that the solitary wave with profile φ ∈ C∞(R) is transversely
asymptotically stable in L2

ν for some ν > 0 if for every η ∈ R, η ∕= 0 there exists b > 0
such that all points λ in the spectrum of the linear operator

J(L+ η2∂−2
x ) : Dom(J(L+ η2∂−2

x )) ⊂ L2
ν → L2

ν

satisfy Re(λ) ≤ −b.

The fact that φ(x) → k as |x| → ∞ exponentially fast greatly simplifies the spectral
analysis of our problem. As a result, Weyl’s theory implies that the continuous spectrum
of J(L + η2∂−2

x ) in L2
ν is uniquely determined by the purely continuous spectrum of

J(L0 + η2∂−2
x ), where

L0 := c− 3k − (c− k)∂2
x. (2.11)

In addition, the point spectrum of J(L + η2∂−2
x ) in L2

ν may contain eigenvalues λ ∈ C
with eigenfunctions v̂ ∈ Dom(J(L+ η2∂−2

x )).
The first result of this paper is to show that both the continuous spectrum and the two

eigenvalues near the origin in the complex plane satisfy the transverse asymptotic stability
condition of Definition 2.5 for some ν > 0. The proof is developed in Section 3, where
the continuous spectrum is computed with the help of the Fourier transform and the two
eigenvalues are computed by using Puiseux expansions [37] in the small parameter η.

Theorem 2.6. For every c > 3k, η ∈ R, and ν ∈ (0, ν0) with ν0 :=


c−3k
c−k

, there exists

b0 > 0 such that all points λ in the spectrum of the linear operator J(L0 + η2∂
−2
x ) in L2

ν

satisfy Re(λ) ≤ −b0. Furthermore, there exists η0 > 0 such that the spectrum of the linear
operator J(L+η2∂−2

x ) in L2
ν with η ∈ (−η0, η0) includes a pair of simple eigenvalues λ±(η)

such that for η ∕= 0 we have

• Re(λ+(η)) = Re(λ−(η)) < 0,
• Im(λ+(η)) = −Im(λ−(η)) > 0,

and λ+(0) = λ−(0) = 0.

Remark 2.7. The result of Theorem 2.6 is consistent with the transverse asymptotic sta-
bility with respect to long transverse perturbations in the sense of Definition 2.5 with
small η ∕= 0. However, the spectrum of JL in L2

ν might include more than the contin-
uous spectrum and the double zero eigenvalue. There might exist additional embedded
eigenvalues of JL in L2(R) on the imaginary axis which could become isolated in L2

ν for
ν > 0. The latter possibility has been ruled out for the KdV equation (2.5), see [35, 36].
However, nothing is known about the existence of additional embedded eigenvalues of JL
in L2(R) on iR for the CH equation (1.1).
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The second result of this paper explores the small-amplitude limit of the solitary waves
and provides transverse asymptotic stability for solitary waves of small amplitudes in the
sense of Definition 2.5. The proof is developed in Section 4 based on estimates for the
resolvent equation.

Theorem 2.8. Let λ±(η) be the simple eigenvalues of J(L + η2∂−2
x ) in L2

ν for fixed ν ∈
(0, ν0) found in Theorem 2.6. There exists ε0 > 0 and β0 > 0 such that for every ε ∈
(0, ε0), where ε :=

√
c− 3k, and for every η ∈ R, η ∕= 0, the spectrum of J(L+ η2∂−2

x ) in
L2
ν is contained in

S := {λ ∈ C : Re(λ) ≤ −β0ε
3},

with the exception of the two simple eigenvalues λ = λ±(η).

Remark 2.9. Since Re(λ±(η)) < 0 for η ∈ (−η0, η0), η ∕= 0, the solitary waves of small
amplitude are transversely asymptotically stable in L2

ν . By using the Fourier transform
in y, the result of Theorem 2.8 also implies the transverse asymptotic stability of these
solitary waves with respect to perturbations in L2

ν(R2), where the weight ν ∈ (0, ν0) is
only applied in the direction of the solitary waves. This yields linear asymptotic stability
of solutions to the evolution equation (2.7) in L2

ν(R2) by semi-group theory.

3. Proof of Theorem 2.6

3.1. Preliminary results. The one-dimensional CH equation (1.1) has the following
conserved quantities which play a crucial role in the stability analysis of its traveling
solitary and periodic waves [10, 15]:

F̂ (u) :=
1

2



R
(u3 + uu2

x − k3) dx,

Ê(u) :=
1

2



R
(u2 + u2

x − k2) dx,

M̂(u) :=



R
(u− k) dx.

The constant values have been subtracted from the integrands to ensure that the in-
tegrals converge if u(x) → k as |x| → ∞ sufficiently fast. These quantities are the
one-dimensional analogues of the conserved quantities (1.5), (1.6), and (1.7) of the two-

dimensional CH-KP equation (1.2). Using F̂ , Ê, and M̂ we define the augmented energy

Λc(u) := −F̂ (u) + cÊ(u)−

ck − 3

2
k2


M̂(u).

Smooth solutions to the second-order equation (2.2) with the profile φ ∈ C∞(R) are
critical points of Λc in the sense that the first variation vanishes:

Λ′
c(φ) = −3

2
φ2 +

1

2
(φ′)2 + φφ′′ + cφ− cφ′′ − ck +

3

2
k2 = 0.

The linear operator L in (2.8) is the Hessian operator of Λc at the critical point with
the profile φ ∈ C∞(R). This variational characterization of the traveling wave solutions



8 ANNA GEYER, YUE LIU, AND DMITRY E. PELINOVSKY

was explored in the stability analysis in [10, 15], see also [22] for alternative variational
characterizations of the traveling wave solutions in the CH equation (1.1).

Remark 3.1. Since the linear operator L in (2.8) is the Hessian operator Λ′′
c (φ) at the

traveling solitary wave with the profile φ ∈ C∞(R) given by Lemma 2.1, it also arises in
the linearization of the CH equation (1.1) given by vt = JLv.

If φ = k + ψ, then

E1D(ψ) := Ê(φ)− kM̂(φ)

=
1

2



R
[(k + ψ)2 + (ψ′)2 − k2 − 2kψ]dx

=
1

2



R
[(ψ′)2 + ψ2]dx (3.1)

and

M1D(ψ) := M̂(φ) =



R
ψdx. (3.2)

The following lemma reports important monotonicity properties of E1D(ψ) and M1D(ψ)
with respect to the parameter c ∈ (3k,∞) for fixed k > 0. The proof is based on direct
computations.

Lemma 3.2. For fixed k > 0, let ψ be the solitary wave defined by the first-order invariant
(2.1). Then, the mappings c → M1D(ψ) and c → E1D(ψ) are monotonically increasing
for every c ∈ (3k,∞).

Proof. Without loss of generality, we place the maximum of ψ at x = 0 such that ψ(0) =
c− 3k, see Remark 2.2. By Lemma 2.1, we have ψ(x) = ψ(−x) > 0 for every x ∈ R and
ψ′(x) = −ψ′(−x) < 0 for every x > 0. We obtain from (3.2) by explicit computations
that

M1D(ψ) = 2

 ∞

0

ψ(x)dx

= 2

 c−3k

0

√
c− k − ψ√
c− 3k − ψ

dψ

= 2

 c−3k

0

√
2k + z√

z
dz

= 8k

 ξ0

0


1 + ξ2dξ,

where we have made the substitutions z = c− 3k − ψ and

ξ =

√
z√
2k

, ξ0 =

√
c− 3k√
2k

.

The integral is evaluated explicitly to find that

M1D(ψ) = 4k


ξ0


1 + ξ20 + arcsinhξ0


,
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from which it follows that

d

dc
M1D(ψ) = 2


c− k

c− 3k
> 0.

Similarly, we find that

E1D(ψ) = 2

 c−3k

0

ψ(c− 2k − ψ)
(c− k − ψ)(c− 3k − ψ)

dψ

= 2

 c−3k

0

(c− 3k − z)(z + k)
z(z + 2k)

dz,

from which we obtain that

d

dc
E1D(ψ) = 2

 c−3k

0

z + k
z(z + 2k)

dz

= 2


z(z + 2k)


z=c−3k

z=0

= 2


(c− 3k)(c− k) > 0.

Thus, both mappings c → M1D(ψ) and c → E1D(ψ) are monotonically increasing for
every c ∈ (3k,∞). □

Remark 3.3. The monotonicity of c → E1D(ψ) plays a central role in the proof of the
orbital stability of smooth solitary wave in the CH equation (1.1), see [10].

Remark 3.4. For later reference, we also compute ψ2L2 by using the same idea as in the
proof of Lemma 3.2:

ψ2L2 = 2

 c−3k

0

ψ
√
c− k − ψ√

c− 3k − ψ
dψ

= 2

 c−3k

0

√
2k + z(c− 3k − z)√

z
dz

= 8k

 ξ0

0

(c− 3k − 2kξ2)


1 + ξ2dξ,

from which we obtain

ψ2L2 = 4k(c− 3k)


ξ0


1 + ξ20 + arcsinhξ0



− 2k2


2ξ0


(1 + ξ20)

3 − ξ0


1 + ξ20 − arcsinhξ0



= 2k(2c− 5k)


ξ0


1 + ξ20 + arcsinhξ0


− 4k2ξ0


(1 + ξ20)

3.
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3.2. The continuous spectrum of the spectral problem (2.9). We start by ana-
lyzing properties of L. First, L is a self-adjoint Sturm-Liouville operator in L2(R) with
dense domain in H2(R). The translational symmetry of the CH equation (1.1) implies
that

Lφ′ = 0, φ′ ∈ Dom(L) ⊂ L2(R). (3.3)

Since φ′ has only one zero on R, Sturm–Liouville theory implies that the spectrum of L
in L2(R) consists of one simple negative and a simple zero eigenvalue isolated from the
strictly positive part of the spectrum. Furthermore, since φ ∈ C∞(R) is smooth in c, we
find by differentiating the traveling wave equation (2.2) with respect to c that

L∂cφ = k − µ, ∂cφ ∈ Dom(L) ⊂ L2(R), (3.4)

where µ := φ−φ′′. Based on these computations, the following two lemmas specify prop-
erties of the linearized operator JL in L2(R), included here for the sake of completeness,
and in the exponentially weighted space L2

ν for small ν > 0.

Lemma 3.5. For every c > 3k, the spectrum of JL in L2(R) covers iR with 0 being an
embedded eigenvalue.

Proof. It follows from (3.3) that JLφ′ = 0 with φ′ ∈ Ker(JL) ⊂ L2(R) so that 0 ∈ σ(JL).
Because φ(x) → k as |x| → ∞ exponentially fast, Weyl’s theorem implies that the
continuous spectrum of JL is given by the spectrum of JL0 in L2(R), where L0 is given
by (2.11). By using the Fourier transform in L2(R), we obtain that

σ(JL0) =

iξ(1 + ξ2)−1[c− 3k + (c− k)ξ2], ξ ∈ R


= iR in L2(R).

Since φ is spectrally stable in the time evolution of the CH equation (1.1) [10, 22], no
other points of the spectrum of JL in L2(R) exists outside iR. Thus, the spectrum of JL
in L2(R) is σ(JL) = iR with 0 being an embedded eigenvalue. □
Lemma 3.6. For every c > 3k, there exists ν0 > 0 such that the continuous spectrum of
JL in L2

ν with ν ∈ (0, ν0) is strictly negative and the (isolated) zero eigenvalue in L2
ν is

algebraically double.

Proof. By Weyl’s theorem, the continuous spectrum of JL in L2
ν is given by the spectrum

of JL0 in L2
ν . Using the Fourier transform we obtain that

σ(JL0) =

(iξ − ν)[1− (iξ − ν)2]−1[c− 3k − (c− k)(iξ − ν)2], ξ ∈ R


in L2

ν .

We claim that if 0 < ν < ν0 with ν0 =


c−3k
c−k

, then

Re(σ(JL0)) < 0 in L2
ν ,

where Re(σ(JL0)) coincides with the range of the function λr(ξ) : R → R given by

λr(ξ) = Re

(iξ − ν)[1− (iξ − ν)2]−1[c− 3k − (c− k)(iξ − ν)2]



= Re

(c− k)(iξ − ν)− 2k(iξ − ν)[1− (iξ − ν)2]−1



= −ν(c− k)− 2kν(ν2 + ξ2 − 1)

(1− ν2 + ξ2)2 + 4ξ2ν2
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Expanding this quantity yields

λr(ξ) = − ν

(1− ν2 + ξ2)2 + 4ξ2ν2


c− 3k + 2cξ2 − 2(c− 2k)ν2 + (c− k)(ξ2 + ν2)2


,

which is strictly negative if ν > 0 and

(c− k)ν4 − 2(c− 2k)ν2 + c− 3k > 0.

The latter constraint is true if ν < ν0 =


c−3k
c−k

. Note that ν0 ∈ (0, 1).

It remains to prove that 0 ∈ σ(JL) is a double eigenvalue in L2
ν . Since φ′(x) → 0 as

|x| → ∞ exponentially fast, we have φ′ ∈ L2
ν for sufficiently small ν > 0. The Wronskian

between two solutions {f1, f2} of Lf = 0 is asymptotically constant at infinity and nonzero
since

W (f1, f2) =


f1 f2
f ′
1 f ′

2

 =
W0

c− φ
, x ∈ R,

where W0 is a nonzero constant. If one solution f1 := φ′ decays exponentially at infinity,
the other (linearly independent) solution f2 grows exponentially at infinity. Hence

kerL = span(φ′) in L2
ν .

Furthermore, since φ is even, L is parity preserving. There exists an even solution f0
to the inhomogeneous equation Lf0 = 1 and since L converges to L0 at infinity, f0 is
non-decaying at infinity. Since JLf = 0 implies Lf = C for some constant C ∈ R and
f = Cf0 /∈ L2

ν is non-decaying if C ∕= 0, it follows that

ker(JL) = ker(L) = span(φ′) in L2
ν .

In order to study the algebraic multiplicity of the zero eigenvalue, we consider solutions
of JLf = φ′. Since it follows from (3.4) that JL∂cφ = −φ′ and ∂cφ ∈ L2

ν , we have

ker((JL)2) = span(φ′, ∂cφ) in L2
ν .

The zero eigenvalue of JL is algebraically double if and only if there exists no f ∈ L2
ν

such that JLf = ∂cφ, or equivalently,

Lf = ∂−1
x ∂cµ, (3.5)

where ∂−1
x ∂cµ ∈ L2

ν . If the eigenfunctions of L are defined in L2
ν , then the adjoint eigen-

functions are defined in L2
−ν due to the transformation L → Lν := eνxLe−νx for eigen-

functions in the weighted space L2
ν , see [4, 36]. As a result, the inner product in L2

µ is

equivalent to the inner product in L2, i.e.

∀f ∈ L2
ν , ∀g ∈ L2

−ν : 〈f, g〉L2
ν
:= 〈eνxf, e−νxg〉L2 = 〈f, g〉L2 . (3.6)

In what follows, we drop the subscript L2 for the inner product in L2. To provide the
existence of solutions f ∈ L2

ν of the linear inhomogeneous equation (3.5), we check the
Fredholm condition given by

〈φ′, ∂−1
x ∂cµ〉 = −〈(φ− k), ∂cµ〉 = − d

dc
E1D(ψ), (3.7)
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where E1D(ψ) is given by (3.1) and integration by parts gives no contribution at infinity
since φ(x) → k as |x| → ∞ exponentially fast. By Lemma 3.2, the right-hand side is
strictly negative so that no f ∈ L2

ν exists such that JLf = ∂cφ. Hence, 0 ∈ σ(JL) is a
double eigenvalue in L2

ν . □

Figure 3.1. A plot of λ(ξ), ξ ∈ R in the complex plane for k = 1, c = 4,
η = 0.01, and ν = 0.1

Based on Lemma 3.6, we can study properties of the spectral stability problem (2.9)
with transverse wave number η ∈ R, η ∕= 0. The continuous spectrum of J(L + η2∂−2

x )
in L2

ν coincides with the purely continuous spectrum of J(L0 + η2∂−2
x ) in L2

ν , which can
be obtained by using the Fourier transform in x. The spectrum σ(L0 + η2∂−2

x ) in L2
ν is

defined by the range of the function λ(ξ) : R → C given by

λ(ξ) = (iξ − ν)[1− (iξ − ν)2]−1

c− 3k − (c− k)(iξ − ν)2 + η2(iξ − ν)−2


. (3.8)

Figure 3.1 gives a plot of λ(ξ) for specific values of k, c, η, and ν. The plot suggests
that σ(L0 + η2∂−2

x ) in L2
ν is located in the left half-plane bounded away from zero. The

following lemma proves this property.

Lemma 3.7. For every c > 3k, η ∈ R and ν ∈ (0, ν0), where ν0 :=


c−3k
c−k

, we have

Re(λ(ξ)) < 0 for all ξ ∈ R.

Proof. The expression (3.8) can be simplified in the form:

λ(ξ) =(c− k)(iξ − ν)− 2k(iξ − ν)[1− (iξ − ν)2]−1 + η2(iξ − ν)−1[1− (iξ − ν)2]−1.

Computing the real part and using λr(ξ) from the proof of Lemma 3.6, we obtain

Re(λ(ξ)) = λr(ξ)−
η2ν(1− ν2 + 3ξ2)

(ξ2 + ν2)[(1− ν2 + ξ2)2 + 4ξ2ν2]
.

Since λr(ξ) < 0 for ν ∈ (0, ν0) with ν0 :=


c−3k
c−k

and ν0 ∈ (0, 1), we have Re(λ(ξ)) < 0

for all ξ ∈ R. □
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3.3. Splitting of the double zero eigenvalue in L2
ν for η ∕= 0. By Lemma 3.6, 0 is a

double (isolated) eigenvalue of JL in L2
ν for small ν > 0. When η ∕= 0 in (2.9), the trans-

lational symmetry is broken and the double zero eigenvalue may split into two complex
eigenvalues of J(L + η2∂−2

x ). Since it is isolated away from the continuous spectrum of
J(L+ η2∂−2

x ) for every η ∈ R and small ν > 0 by Lemma 3.7, the splitting can be studied
by using perturbative methods in powers of η.

The following lemma states that when η ∕= 0 the double zero eigenvalue of JL in L2
ν for

small ν > 0 splits into a pair of eigenvalues of J(L+ η2∂−2
x ) located in the left half of the

complex plane. The result holds for solitary waves of arbitrary amplitude and is derived
by means of Puiseux expansions in η. Together with Lemma 3.7, this proves the result of
Theorem 2.6.

Lemma 3.8. There exists ν0 > 0 such that for every fixed ν ∈ (0, ν0) there exists η0 > 0
such that the spectrum of J(L+ η2∂−2

x ) in L2
ν for η ∈ (−η0, η0) contains a pair of simple

eigenvalues λ±(η) such that for η ∕= 0 we have

• Re(λ+(η)) = Re(λ−(η)) < 0,
• Im(λ+(η)) = −Im(λ−(η)) > 0,

and λ+(0) = λ−(0) = 0.

Proof. By Lemma 3.7, there exists ν0 > 0 such that for every fixed ν ∈ (0, ν0), the double
zero eigenvalue of JL in L2

ν is isolated from its continuous spectrum of J(L + η2∂−2
x ) in

L2
ν . Since η2∂−2

x is a bounded analytic perturbation to the unbounded operator L in L2
ν

for ν > 0, the eigenvalues of J(L+ η2∂−2
x ) in L2

ν are continuous functions of η.
By Lemma 3.6, the zero eigenvalue of JL in L2

ν is geometrically simple and algebraically
double. Hence we use Puiseux expansions [37] in order to trace the eigenvalues λ±(η)
satisfying λ±(η) → 0 as η → 0 with respect to small but nonzero η. Solutions of the
spectral stability problem (2.9) with λ = λ(η) are expanded as

v̂ = v0 + v1η + v2η
2 + v3η

3 +O(η4),

λ(η) = λ1η + λ2η
2 + λ3η

3 +O(η4).

where v0, v1, v2, v3 ∈ L2
ν and λ1,λ2,λ3 ∈ C are to be determined. We obtain at different

orders in powers of η that

O(1) : JLv0 = 0,

O(η) : JLv1 = λ1v0,

O(η2) : JLv2 = λ2v0 + λ1v1 − (1− ∂2
x)

−1∂−1
x v0

O(η3) : JLv3 = λ3v0 + λ2v1 + λ1v2 − (1− ∂2
x)

−1∂−1
x v1.

With arbitrary normalization, we can set v0 = φ′ and v1 = −λ1∂cφ due to computations
in the proof of Lemma 3.6. Then, at the order of O(η2), we write v2 = −λ2∂cφ+ v̂2, where
v̂2 satisfies

JLv̂2 = −λ2
1∂cφ− (1− ∂2

x)
−1(φ− k).
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After inverting J in L2
ν with ν > 0 we rewrite this linear inhomogeneous equation in the

equivalent form

Lv̂2 = −λ2
1∂

−1
x ∂cµ− ∂−1

x (φ− k).

By using (3.6) we check the Fredholm condition for the existence of solutions v̂2 ∈ L2
ν :

λ2
1〈φ′, ∂−1

x ∂cµ〉+ 〈φ′, ∂−1
x (φ− k)〉 = 0.

Note that ∂−1
x (φ− k) =

 x

+∞(φ− k), so the second term gives after integration by parts

〈φ′, ∂−1
x (φ− k)〉 = (φ− k)

 x

+∞
(φ− k)dx′


x→+∞

x→−∞
−

 ∞

−∞
(φ− k)2dx

= −φ− k2L2 = −ψ2L2 .

On the other hand, the first term is evaluated with the help of (3.7). Since d
dc
E1D(ψ) > 0

by Lemma 3.2, we obtain that

λ2
1 = −〈φ′, ∂−1

x (φ− k)〉
〈φ′, ∂−1

x ∂cµ〉
= −

ψ2L2

d
dc
E1D(ψ)

< 0. (3.9)

Thus, we have two roots for λ1 ∈ iR, which determine two simple eigenvalues λ = λ±(η).
At the leading order, we have Im(λ+(η)) = −Im(λ−(η)) > 0 and the complex-conjugate
symmetry of eigenvalues is preserved since J and L are real-valued.

At the next order O(η3) we write v3 = −λ3∂cφ+ φ̂3, where v̂3 satisfies

JLv̂3 = λ1


v̂2 + (1− ∂2

x)
−1∂−1

x ∂cφ− 2λ2∂cφ

,

which, after inverting J in L2
ν with ν > 0, gives

Lv̂3 = λ1


(1− ∂2

x)∂
−1
x v̂2 + ∂−2

x ∂cφ− 2λ2∂
−1
x ∂cµ


.

By using (3.6) we check the Fredholm condition for the existence of solutions v̂3 ∈ L2
ν :

2λ2 =
〈φ′, ∂−1

x [(1− ∂2
x)v̂2 + ∂−1

x ∂cφ]〉
〈φ′, ∂−1

x ∂cµ〉

=
〈φ− k, (1− ∂2

x)v̂2〉+ 〈φ− k, ∂−1
x ∂cφ〉

d
dc
E1D(ψ)

.

For the first term in the numerator, we use (3.4) and obtain

〈φ− k, (1− ∂2
x)v̂2〉 = 〈µ− k, v̂2〉 = −〈L∂cφ, v̂2〉 = −〈∂cφ, Lv̂2〉

= λ2
1〈∂cφ, ∂−1

x ∂cµ〉+ 〈∂cφ, ∂−1
x (φ− k)〉.
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We use the even parity of φ for which
 x

+∞(φ− k)dx′ = −1
2

∞
−∞(φ− k)dx′+

 x

0
(φ− k)dx′,

where the second term is odd, and obtain

〈φ− k, ∂−1
x ∂cφ〉 = −1

2

 ∞

−∞
(φ− k)dx

 ∞

−∞
∂cφdx


= −1

2
M1D(ψ)

d

dc
M1D(ψ),

〈∂cφ, ∂−1
x (φ− k)〉 = −1

2

 ∞

−∞
∂cφdx

 ∞

−∞
(φ− k)dx = −1

2
M1D(ψ)

d

dc
M1D(ψ),

〈∂cφ, ∂−1
x ∂cµ〉 = −1

2

 ∞

−∞
∂cφdx

 ∞

−∞
∂cµdx = −1

2


d

dc
M1D(ψ)

2

,

which then yields

2λ2 =
d
dc
M1D(ψ)

d
dc
E1D(ψ)


ψ2L2

2 d
dc
E1D(ψ)

d

dc
M1D(ψ)−M1D(ψ)



=
d
dc
M1D(ψ)

2


d
dc
E1D(ψ)

2


ψ2L2

d

dc
M1D(ψ)− 2M1D(ψ)

d

dc
E1D(ψ)


, (3.10)

where we have used (3.9) for λ2
1.

In order to identify the sign of λ2, we recall from Lemma 3.2 that the mappings c →
M1D(ψ) and c → E1D(ψ) are monotonically increasing. Hence, the sign of λ2 is equivalent
to the sign of

ψ2L2

d

dc
M1D(ψ)− 2M1D(ψ)

d

dc
E1D(ψ)

=
4k

√
c− k√

c− 3k


(7k − 2c)(ξ0


1 + ξ20 + arcsinhξ0)− 2kξ0


(1 + ξ20)

3


, ξ0 :=

√
c− 3k√
2k

,

where we have substituted explicit expressions from Lemma 3.2 and Remark 3.4. Since
c > 3k, we obtain

ψ2L2

d

dc
M1D(ψ)− 2M1D(ψ)

d

dc
E1D(ψ)

≤ 4k2
√
c− k√

c− 3k


ξ0


1 + ξ20 + arcsinhξ0 − 2ξ0


(1 + ξ20)

3


,

= −4k2
√
c− k√

c− 3k
ξ0


1 + ξ20


1 + 2ξ20 −

log(ξ0 +


1 + ξ20)

ξ0
√
1 + ξ0

2


,

where we have used arcsinhξ0 = log(ξ0 +


1 + ξ20). Since log(ξ0 +


1 + ξ20) < ξ0


1 + ξ20
for every ξ0 > 0, the expression in the bracket is positive so that λ2 < 0. This yields
Re(λ+(η)) = Re(λ−(η)) < 0 at the leading order and hence for sufficiently small η ∕= 0. □
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Remark 3.9. In the KdV limit (2.6) as c → 3k, we can simplify the expressions (3.9) and
(3.10) for λ1 and λ2 to obtain

λ2
1 = −

√
2k

2
√
c− 3k


4(c− 3k)ξ0 −

8

3
kξ30 +O(ξ50)


∼ −4

3
(c− 3k)

and

2λ2 =
k

(c− 3k)2


4(3k − c)ξ0 −

8

3
kξ30 +O(ξ50)


∼ − 8

√
2k

3
√
c− 3k

,

where we have used the explicit expressions in the proof of Lemma 3.2 and the asymptotic
limit ξ0 → 0. Extracting the postive square root for λ1 yields the expansion for λ±(η) in
the form

λ±(η) = ± 2i√
3

√
c− 3kη − 4

3

√
2k√

c− 3k
η2 +O(η3).

Using the KP-II scaling (1.8) and (2.6) with η = ε2Υ and c− 3k = ε2, we obtain

ε−3λ±(ε
2Υ) = ± 2i√

3
Υ− 4

3

√
2kΥ2 +O(Υ3),

which is the asymptotic expansion of the exact expression of the pair of eigenvalues Λ±(Υ)
of the corresponding linearized operator for the KP-II equation (1.9),

Λ±(Υ) = ± 2i√
3
Υ



1± 4i√
3

√
2kΥ, (3.11)

see [29].

Remark 3.10. The continuous spectrum of J(L + η2∂−2
x ) in L2

ν deforms to iR as ν → 0,
which can be seen by taking the limit ν → 0 in equation (3.8). On the other hand,
the location of the simple eigenvalues λ±(η) is independent of ν for η ∈ (−η0, η0) and
ν ∈ (0, ν0) as follows from (3.9) and (3.10). As a result, the continuous spectrum crosses
the location of the simple eigenvalues for some ν1 ∈ (0, ν0) that depends on η ∕= 0.
Consequently, as is shown in [36], the simple eigenvalues of J(L + η2∂−2

x ) in L2
ν for ν ∈

(ν1, ν0) are no longer eigenvalues of J(L + η2∂−2
x ) in L2

ν for ν ∈ (0, ν1) and in L2(R),
because they are associated with the eigenfunctions growing exponentially as x → −∞.
Such points are referred to as resonances of the linear operator J(L+ η2∂−2

x ), see [36].

4. Proof of Theorem 2.8

4.1. Preliminary results. We consider the spectral stability problem in the form (2.9).
Writing φ = k + ψ and c = 3k + γ, we can rewrite the spectral problem (2.9) in the
equivalent form

∂x(1− ∂2
x)

−1

γ − 3ψ + ψ′′ − ∂x(γ − ψ)∂x − 2k∂2

x + η2∂−2
x


v̂ = λv̂. (4.1)

In order to analyze the spectral problem (4.1) in the limit of small-amplitude solitary
waves, we give a rigorous proof of the approximation result in Remark 2.3 and justify the
asymptotic approximation (2.6). The following lemma presents this asymptotic result.
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Lemma 4.1. There exists ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0) the solitary
wave solution of Lemma 2.1 satisfying ψ(0) = c− 3k and ψ′(0) = 0 can be written in the
form

ψ(x) = ε2ΨKdV(X) + ε4Ψ̃(X), X = εx, c = 3k + ε2, (4.2)

where

ΨKdV(X) := sech2


X

2
√
2k


and Ψ̃L∞ ≤ C0.

Proof. Substituting ψ(x) = ε2Ψ(X), X = εx, and c = 3k + ε2 into (2.1) yields the
first-order invariant

(Ψ′)2 = Ψ2 1−Ψ

2k + ε2(1−Ψ)
,

for some Ψ ∈ H2(R). The function ΨKdV is a solution of the above equation in the limit
ε → 0. To prove (4.2) we differentiate the first-order invariant and obtain the second-
order equation in the form F (Ψ, ε2) = 0, where F (Ψ, ε2) : H2(R) × R → L2(R) is the
operator function given by

F (Ψ, ε2) := −Ψ′′ +Ψ
k(2− 3Ψ) + ε2(1−Ψ)2

(2k + ε2(1−Ψ))2
.

It is clear that F is a C1 function near (ΨKdV, 0) satisfying

F (ΨKdV, 0) = −Ψ′′
KdV +

1

4k
ΨKdV(2− 3ΨKdV) = 0

and

DΨF (ΨKdV, 0) = −∂2
x +

1

2k
(1− 3ΨKdV).

Since 0 is a simple eigenvalue of DΨF (ΨKdV, 0) with odd eigenfunction Ψ′
KdV, and the

rest of its spectrum is bounded away from 0, the operator DΨF (ΨKdV, 0) is invertible in
the subspace of even functions in H2(R). By the implicit function theorem, there exists
a unique C1 mapping ε2 → Ψ(·, ε2) ∈ H2(R) which yields the unique even solution of
F (Ψ(·, ε2), ε2) = 0 for small ε2 such that Ψ(·, ε2) → ΨKdV as ε2 → 0. The decomposition
(4.2) follows from the C1 property of this mapping and the continuous embedding of
H2(R) into L∞(R). □

The KP-II scaling (1.8) and (2.6) corresponds to

λ = ε3Λ, η = ε2Υ, γ = ε2, x = ε−1X, v̂(x) = V̂ (X). (4.3)

By Lemma 4.1, we can also write

ψ(x) = ε2Ψ(X), Ψ := ΨKdV + ε2Ψ̃, c = 3k + ε2. (4.4)

The spectral problem (4.1) can then be rewritten as

∂X(1− ε2∂2
X)

−1

LKdV + ε2Lpert +Υ2∂−2

X


V̂ = ΛV̂ , (4.5)

where

LKdV := 1− 3ΨKdV − 2k∂2
X , Lpert := Ψ′′ − ∂X(1−Ψ)∂X − 3Ψ̃.
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Since

ν0 =

√
c− 3k√
c− k

=
ε√

2k + ε2

in Lemma 3.7, we need to rescale the exponential weight ν as ν = ερ and replace the
weighted space (2.10) by

L2
ρ := {F (X) : R → R : eρ·F ∈ L2(R)}.

The parameter ρ is fixed in (0, ρ0), where ρ0 := 1/
√
2k. In order to prove Theorem 2.8,

we consider the resolvent equations obtained from the spectral stability problem (4.1) in
the original variables and (4.5) in the scaled variables. The two resolvent equations are
used in two different regions:

• the high-frequency region with |η| ≥ K2
0ε

2 for sufficiently large K0 > 0;
• the low-frequency region with |η| ≤ K2ε2 for every fixed K > 0.

Combining the two regions covers the entire range of η values since K can be taken to
be greater than K0. Estimates in Lemma 4.6 and Lemma 4.8 below prove the result of
Theorem 2.8.

4.2. The high-frequency region. We start with the following result, which is a gen-
eralization of [31, Lemma 3.1] obtained for the linearized KP-II equation and extended
here for the spectral problem (4.5).

Proposition 4.2. For every ρ ∈ (0, ρ0) there exist ε0 > 0 and β0 > 0 such that for every
ε ∈ (0, ε0), Υ ∈ R, and every Λ ∈ C satisfying Re(Λ) > −β0, we have



Λ− ∂X(1− ε2∂2

X)
−1(1− (2k + ε2)∂2

X +Υ2∂−2
X )

−1 L2
ρ→L2

ρ
≤ (Re(Λ) + β0)

−1. (4.6)

Moreover, there exists C > 0 such that

∂X(1− ε2∂2
X)

−1

Λ− ∂X(1− ε2∂2

X)
−1(1− (2k + ε2)∂2

X +Υ2∂−2
X )

−1 L2
ρ→L2

ρ

≤ C (Re(Λ) + β0)
−1/2 . (4.7)

if Re(Λ) > −1
2
β0.

Proof. Since the operators in the estimates (4.6) and (4.7) have constant coefficients, we
can use the Fourier transform in X and introduce the spectral function

Λ(Ξ) := (iΞ− ρ)[1− ε2(iΞ− ρ)2]−1[1− (2k + ε2)(iΞ− ρ)2 +Υ2(iΞ− ρ)−2],

for Υ ∈ R. The function Λ(Υ) is a scaled version of the function λ(ξ) in (3.8). We deduce
the explicit expression as in the proof of Lemmas 3.6 and 3.7:

Re (Λ(Ξ)) = −ρ

1 +

2k(3Ξ2 − ρ2 + ε2(Ξ2 − ρ2)2)

1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2

+
Υ2(1 + 3ε2Ξ2 − ε2ρ2)

(Ξ2 + ρ2)[1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2]


. (4.8)

Since
1− 2ε2ρ2 ≤ 1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2 ≤ [1 + ε2(Ξ2 + ρ2)]2,
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we have

−Re(Λ(Ξ)) ≥ ρ


1− 2kρ2 +

2k(−ε2ρ4 + 3Ξ2 + ε2Ξ4 + ε4ρ2(Ξ2 + ρ2)2)

1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2



≥ ρ


1− 2kρ2 − 2kε2ρ4

1− 2ε2ρ2
+

2k[Ξ2(3 + ε2Ξ2) + ε4ρ2(Ξ2 + ρ2)2]

[1 + ε2(Ξ2 + ρ2)]2


(4.9)

uniformly for all Υ ∈ R. Therefore, there exists ρ0 = 1/
√
2k such that for every ρ ∈ (0, ρ0)

there exists ε0 > 0 and β0 > 0 such that −ReΛ(Ξ) ≥ β0 for every ε ∈ (0, ε0) uniformly
for all Ξ ∈ R. For instance, we can choose

β0 := ρ


1− 2kρ2 − 2kε20ρ

4

1− 2ε20ρ
2


> 0

for a suitable choice of ε0 > 0. Hence, for every Λ ∈ C satisfying Re(Λ) > −β0, we have

|Λ− Λ(Ξ)| ≥ (Re(Λ) + β0)

and the bound (4.6) holds from standard Fourier estimates.
For the bound (4.7), we obtain from (4.9) that there exists γ0 > 0 such that

−Re(Λ(Ξ)) ≥ β0 +
γ0Ξ

2

1 + ε2(Ξ2 + ρ2)
.

For instance, we can choose γ0 := 2kρ since ε0ρ0 < 1. Hence for every Λ ∈ C satisfying
Re(Λ) > −1

2
β0, we have

|Λ− Λ(Ξ)| ≥ 1

2
β0 +

γ0Ξ
2

1 + ε2(Ξ2 + ρ2)
. (4.10)

Since there exists C0 ∈ (0, 1) such that

1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2 ≥ C0[1 + ε2(Ξ2 + ρ2)]2,

we obtain

|iΞ− ρ|
|1− ε2(iΞ− ρ)2||Λ− Λ(Ξ)| ≤

C


Ξ2 + ρ2

|1 + ε2(Ξ2 + ρ2)||Λ− Λ(Ξ)|

≤ C
1 + ε2(Ξ2 + ρ2)


|Λ− Λ(Ξ)|

≤ C(Re(Λ) + β0)
−1/2, (4.11)

for some generic constants C > 0 uniformly in Ξ ∈ R. The bound (4.7) follows again
from Fourier theory. □

In order to complete the estimates in the high-frequency region, we obtain a modified
version of Proposition 4.2.
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Proposition 4.3. Let ε0 > 0 and β0 > 0 be the same as in Proposition 4.2. There are
K0 > 0 and C0 > 0 such that for every Λ ∈ C satisfying Re(Λ) > −1

2
β0 and every Υ ∈ R

satisfying |Υ| ≥ K2
0 , we have

∂X(1− ε2∂2
X)

−1

Λ− ∂X(1− ε2∂2

X)
−1(1− (2k + ε2)∂2

X +Υ2∂−2
X )

−1 L2
ρ→L2

ρ

≤ CK−1
0 (Re(Λ) + β0)

−1/2 . (4.12)

Proof. This follows from the bounds on Λ(Ξ) obtained in the proof of Proposition 4.2. If
|Ξ| ≥ K0 and K0 > 0 is sufficiently large, then it follows from (4.10) that for every Υ ∈ R,
we have

|Λ− Λ(Ξ)| ≥ γ0K
2
0

1 + ε2(Ξ2 + ρ2)
.

On the other hand, if |Ξ+ iρ| ≤ K0 and |Υ| ≥ K2
0 ≥ K0|Ξ+ iρ|, then it follows from (4.8)

that

|Λ− Λ(Ξ)| ≥ ρΥ2(1 + 3ε2Ξ2 − ε2ρ2)

(Ξ2 + ρ2)[1 + ε2(Ξ2 − ρ2)]2
≥ ρK2

0

1 + ε2(Ξ2 + ρ2)
.

Then, similarly to (4.11), we obtain

|iΞ− ρ|
|1− ε2(iΞ− ρ)2||Λ− Λ(Ξ)| ≤

C
1 + ε2(Ξ2 + ρ2)


|Λ− Λ(Ξ)|

≤ CK−1
0 (Re(Λ) + β0)

−1/2,

for some generic constant C > 0 uniformly in Ξ ∈ R. This justifies the bound (4.16). □

The resolvent equation in the original variables is obtained from the spectral problem
(4.1) with γ = ε2 in the form:

(λ− A0 − A1 − A2) u = f, f ∈ L2
ν , (4.13)

where

A0 := ∂x(1− ∂2
x)

−1(ε2 − (2k + ε2)∂2
x + η2∂−2

x ),

A1 := ∂x(1− ∂2
x)

−1∂xψ∂x,

A2 := ∂x(1− ∂2
x)

−1(−3ψ + ψ′′).

Using this notation we obtain the following corollary of Proposition 4.3 which gives the
bounds in original variables.

Corollary 4.4. For every λ ∈ C satisfying Re(λ) > −1
2
β0ε

3 with some β0 > 0 and every
η ∈ R satisfying |η| ≥ K2

0ε
2 with sufficiently large K0 > 0 we find that

(λ− A0)
−1L2

ερ→L2
ερ
≤ Cε−3, (4.14)

∂x(1− ∂2
x)

−1(λ− A0)
−1L2

ερ→L2
ερ
≤ Cε−2, (4.15)

and

∂x(1− ∂2
x)

−1(λ− A0)
−1L2

ερ→L2
ερ
≤ CK−1

0 ε−2. (4.16)
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Remark 4.5. Since the continuous spectrum of ε−3A0 in L2
ρ is bounded away from iR by

the ε-independent constant β0, and ε−3A1 is a relatively bounded perturbation to ε−3A0

of order O(ε2) due to the scaling (4.4), the estimates (4.14), (4.15), and (4.16) apply also
for (λ− A0 − A1)

−1 instead of (λ− A0)
−1. Hence, we will use

(λ− A0 − A1)
−1L2

ερ→L2
ερ
≤ Cε−3, (4.17)

∂x(1− ∂2
x)

−1(λ− A0 − A1)
−1L2

ερ→L2
ερ
≤ Cε−2, (4.18)

and

∂x(1− ∂2
x)

−1(λ− A0 − A1)
−1L2

ερ→L2
ερ
≤ CK−1

0 ε−2. (4.19)

instead of (4.14), (4.15), and (4.16).

The following lemma uses the fact that the operator A2 in (4.13) is small compared to
the operator A0 + A1 in L2

ερ due to the KP-II scaling (4.3) and (4.4), see the estimate
(4.22) below. As a result, we obtain the following resolvent estimate in the high-frequency
region.

Lemma 4.6. For every ρ ∈ (0, ρ0) there exists ε0 > 0, β0 > 0, and K0 > 0 such that for
every ε ∈ (0, ε0), η ∈ R satisfying |η| ≥ K2

0ε
2, and λ ∈ C satisfying Re(λ) > −β0ε

3, there
exists a unique solution u ∈ Dom(A0) ⊂ L2

ερ to the resolvent equation (4.13) with f ∈ L2
ερ

such that

uL2
ερ
≤ Cε−3fL2

ερ
, (4.20)

for some C > 0 independently of f ∈ L2
ερ and ε.

Proof. We use the resolvent identity

(λ− A0 − A1 − A2)
−1 = [I − (λ− A0 − A1)

−1A2]
−1(λ− A0 − A1)

−1.

It follows from the bound (4.17) that we only need to show that the operator

I − (λ− A0 − A1)
−1A2

is invertible with a bounded inverse in L2
ερ, which is true if (λ − A0 − A1)

−1A2L2
ερ→L2

ερ

is small. Since the decomposition (4.4) implies that

(−3ψ + ψ′′)fL2
ερ
≤ Cε2fL2

ερ
, (4.21)

it follows from the bound (4.18) that the smallness of (λ−A0−A1)
−1A2L2

ερ→L2
ερ
cannot

be deduced from smallness of ε. Nevertheless, if we use the estimates (4.19) and (4.21),
then we obtain

(λ− A0 − A1)
−1A2L2

ερ→L2
ερ
≤ C0K

−1
0 (4.22)

for some C0 > 0. If K0 > 0 is sufficiently large, the norm is small and the operator
I − (λ − A0 − A1)

−1A2 is invertible with a bounded inverse in L2
ερ. The bound (4.20)

follows from (4.17). □



22 ANNA GEYER, YUE LIU, AND DMITRY E. PELINOVSKY

4.3. The low-frequency region. We first consider the two eigenvalues λ±(η) of the
spectral problem (4.1) in L2

ν for small η ∕= 0, see Lemma 3.8. By Remark 3.9, the
expansion of ε−3λ±(ε

2Υ) in Υ agrees with the exact expression (3.11) known for the KP-
II equation (1.9). The following lemma states that the same correspondence holds for
every Υ if ε is sufficiently small.

Lemma 4.7. Let Λ±(Υ) be given by (3.11) for every Υ ∈ R. For every ρ ∈ (0, ρ0), there
exists ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0) the spectral problem (4.5) admits
eigenvalues ε−3λ±(ε

2Υ) in L2
ρ such that

|ε−3λ±(ε
2Υ)− Λ±(Υ)| ≤ C0ε

2.

Proof. By bootstrapping arguments, an eigenfunction V̂ of the spectral problem (4.5) in
L2
ρ satisfies that

V̂ ∈ Dom(∂X(1− ε2∂2
X)

−1(LKdV +Υ2∂−2
X )) ⊂ L2

ρ

if and only if

V̂ ∈ Dom(∂X(LKdV +Υ2∂−2
X )) ⊂ L2

ρ.

Hence we can rewrite the spectral problem (4.5) for the eigenfunction V̂ in L2
ρ in the

equivalent form

∂X

LKdV + ε2Lpert +Υ2∂−2

X


V̂ = Λ(1− ε2∂2

X)V̂ . (4.23)

Since (Λ±(Υ), U±) ∈ C× L2
ρ are solutions of the truncated problem

∂X

LKdV +Υ2∂−2

X


U± = Λ±(Υ)U±, (4.24)

we can write the decomposition Λ = Λ±(Υ)+ε2Λ̃, V̂ = U±+εŨ and obtain the perturbed
problem for (Λ̃, Ũ) given by

∂X

LKdV + ε2Lpert +Υ2∂−2

X


Ũ − (Λ±(Υ) + ε2Λ̃)(1− ε2∂2

X)Ũ

= −LpertU± − Λ±∂
2
XU± + Λ̃(1− ε2∂2

X)U±.

This equation is routinely solved by using the method of Lyapunov–Schmidt reduction
with Λ̃ being uniquely defined from the condition that Ũ ∈ Dom(∂X(LKdV+Υ2∂−2

X )) ⊂ L2
ρ

satisfy the orthogonality condition to the adjoint eigenfunction for the eigenvalue Λ±(Υ).
See Lemma 3.4 and Corollary 3.5 in [31] for details. □

The resolvent equation in the scaled variables is obtained from the spectral stability
problem (4.5) in the form


Λ− ∂X(1− ε2∂2

X)
−1


LKdV + ε2Lpert +Υ2∂−2

X


U = F, F ∈ L2

ρ. (4.25)

The following lemma uses the smallness of ε2Lpert and the formalism from [31] in order
to obtain the resolvent estimate in the low-frequency region.
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Lemma 4.8. For every ρ ∈ (0, ρ0) there exists ε0 > 0, β0 > 0 such that for every
ε ∈ (0, ε0), Υ ∈ R and Λ ∈ C satisfying Re(Λ) > −β0 and Λ ∕= ε−3λ±(ε

2Υ), there exists
a unique solution

U ∈ Dom(∂X(1− ε2∂2
X)

−1(LKdV +Υ2∂−2
X )) ⊂ L2

ρ

of the resolvent equation (4.25) for every F ∈ L2
ρ satisfying

UL2
ρ
≤ CFL2

ρ
(4.26)

for C > 0.

Proof. Let QKP be the projection operator for the spectral problem (4.24) which reduces
L2
ρ to the subspace orthogonal to the two adjoint eigenfunctions for the eigenvalues Λ±(Υ).

It follows from Proposition 3.2 in [31] (proven in [29]) that there exists β0 > 0 and C0 > 0
such that for every Λ ∈ C satisfying Re(Λ) > −β0 and every F ∈ L2

ρ, we have

(Λ− ∂X(LKdV +Υ2∂−2
X ))−1QKPFL2

ρ
≤ C0FL2

ρ
. (4.27)

By the proximity result of Lemma 4.7, we can introduce Q, the projection operator for the
spectral problem (4.23) which reduces L2

ρ to the subspace orthogonal to the two adjoint

eigenfunctions for the eigenvalues ε−3λ±(ε
2Υ). The bound (4.27) and the proximity result

suggest that there exists β0 > 0 and C0 > 0 such that for every Λ ∈ C satisfying
Re(Λ) > −β0 and every F ∈ L2

ρ, we have

(Λ−M)−1QFL2
ρ
≤ C0FL2

ρ
, (4.28)

where

M := ∂X(1− ε2∂2
X)

−1(LKdV − ε2∂X(1−Ψ)∂X +Υ2∂−2
X ).

Writing again the resolvent identity as

(Λ− ∂X(1− ε2∂2
X)

−1(LKdV + ε2Lpert +Υ2∂−2
X ))−1)−1

= [I − ε2(Λ−M)(Ψ′′ − 3Ψ̃)]−1(Λ−M)−1

and using smallness of ε2, we obtain the invertibility of the near-identity operator

[I − ε2(Λ−M)(Ψ′′ − 3Ψ̃)] : L2
ρ → L2

ρ

for every Λ ∈ C satisfying Re(Λ) > −β0. The bound (4.26) on the unique solution U to
the resolvent equation (4.25) follows from the bound (4.28). □

5. Conclusion

We have derived two results, which suggest that the transverse perturbations to the
one-dimensional solitary waves of the CH equation (1.1) are stable in the time evolution of
the CH-KP equation (1.2), similar to the KP-II theory. First, we proved that the double
zero eigenvalue of the linearized equation related to the translational symmetry breaks
under a transverse perturbation into a pair of the asymptotically stable resonances, which
are isolated eigenvalues in the exponentially weighted L2 space. Second, we considered
the small-amplitude solitary waves governed by the perturbed KP-II equation and proved
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their linear stability under transverse perturbations.

We conclude the paper with a list of further questions. First, nonlinear stability of
small-amplitude solitary waves of CH-KP is an open question, see [32] for such analysis in
the Benney–Luke equation. Second, peaked traveling waves of the CH equation (1.1) exist
but they are linearly and nonlinearly unstable in the time evolution in H1(R)∩W 1,∞(R),
see [21, 33]. It would be interesting to see how the peaked profile of the solitary waves
breaks under transverse perturbations and whether cusps (waves with infinite slopes at
their maximum) would form in finite time. Third, transverse stability of smooth periodic
waves and transverse instability of peaked periodic waves can be studied based on the
stability analysis of the periodic waves in the one-dimensional model, see [15] and [28].
Finally, hydrodynamical applications of the obtained results are interesting in their own
right within modeling of shallow water waves in seas and oceans [16].
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