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Persistent oscillations of scalar and vector dispersion-managed solitons
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We show that both orthogonal and parallel internal modes exist on the background of a
dispersion-managed~DM! soliton in randomly birefringent fibers. The orthogonal modes exist for
arbitrarily small values of the dispersion map strength, while the parallel modes exist only when the
map strength exceeds a certain threshold value. We demonstrate that initial perturbations of a DM
soliton’s profile that consist of one or more internal modes, exhibit nearly stable oscillations over
very long propagation distances, before decaying into radiation. ©2000 American Institute of
Physics.@S1054-1500~00!00303-7#
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Dispersion-managed solitons are potential candidates fo
trans-oceanic optical telecommunication at ultrahigh bit
rates. Their remarkable dynamical properties such as the
ability to propagate with little distortion under the action
of various perturbations over thousands of kilometers
have been addressed in a great number of recent studies
In this work, we show that some part of linear dispersive
radiation, which is produced when perturbations in ei-
ther the transmitter or the fiber affect a dispersion-
managed soliton, can be effectively trapped by a number
of localized internal modes. These modes propagate alon
with the background soliton without visible decay over
extremely long distances, manifesting their presence by
small persistent oscillations of the soliton’s waveform.

I. INTRODUCTION

The dispersion management technique is known to
hance the robustness of soliton pulses with respect to a n
ber of important perturbations that occur in real-world op
cal telecommunication systems~see, e.g., Refs. 1 and 2!.
Those perturbations tend to affect the soliton paramet
such as its energy and time shift relative to the center of
bit slot, which may lead to an error when detecting the pu
at the receiving end of the system. Thus a perturbation the
which can quantify the effect of various detrimental facto
on a dispersion-managed~DM! soliton, is needed. In Ref. 3
a perturbation theory based on the Hermite–Gaussian~HG!
expansion for the DM soliton, was developed. The main c
clusion drawn in Ref. 3 was that the variational metho
based on a chirped Gaussian approximation for the DM s
ton, predicts the evolution of the soliton parameters rat
accurately~within 5% or so!. However, perturbations no
only shift the soliton parameters but also cause the solito
emit small-amplitude radiation. This radiation can act
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noise in the transmission line, thus increasing the probab
of a detection error. The perturbation theory of Ref. 3 co
not be used to describe the radiation in an efficient man
because the HG expansion is not geared for describing ra
tion modes, whose shape is, in general, different from
soliton shape. Among those modes, there may exist so ca
internal modes, which are localized in time and which a
known4 to ‘‘trap’’ part of the radiation generated by a pa
ticular perturbation. That is, the radiation trapped by an
ternal mode escapes the vicinity of the soliton much slow
than according to the conventional linear dispersive la
Therefore, if the length of the transmission line is sufficien
‘‘short,’’ then the radiation trapped by the internal mode~s!
does not contribute to the noise field, and the reliability
the pulse detection improves.

In this work, we demonstrate that internal modes do
ist on the background of a DM soliton of both the scalar a
vector DM nonlinear Schro¨dinger equation~NLS!. The vec-
tor form of the DM NLS can be derived for averaged pul
propagation in randomly birefringent fibers by the meth
of Ref. 5 ~see also references therein!. Here we write it for
the vectoru5(u,v)T, using the notations similar to those o
Ref. 3,

iuj1 1
2 D~j!utt1e~ 1

2 D0utt1G~j!~ uuu21uvu2!u!50.
~1.1!

The average and periodic parts,eD0 and D(j), of the dis-
persion coefficient, are explicitly separated in Eq.~1.1!, with
the average of the periodic part vanishing,*0

LmapD(j)dj
50. The distancej and retarded timet are normalized so as
to haveLmap51 anduD1L1u5uD2L2u51, respectively. Here
D1 andD2 are the values which the piecewise-constant
efficient D(j) takes on in the fiber sections with respecti
lengthsL1 andL2 , andL11L25Lmap(51). The coefficient
G(j) accounts for the periodic compensation of the fib
loss, with the amplification period being assumed to be
integer fraction ofLmap. ~In this way, the dispersion map
sets the coarser periodicity of the system.! Parametere in Eq.
~1.1! measures the size of the average-dispersion and no
© 2000 American Institute of Physics
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ear terms relative to the size of the periodic-dispersion te
Explicit relations between the nondimensional parameter
Eq. ~1.1!, on one hand, and dimensional parameters of a
fiber and pulse, on the other, can be found, e.g., in Ref.

Whene!1, Eq.~1.1! can be transformed7–9 into the fol-
lowing integro-differential form in the frequency domain,

iAz2
1

2
D0v2A1E E dv1dv2A~v1!n~v,v1 ,v2!

3h~~v12v!~v22v!!50, ~1.2!

wherez5ej,

A~z,v![S A
BD5

1

2p E
0

1

dj expF iv2

2
D~j!G

3E dtu~j,t !exp@2 ivt#, ~1.3!

n~v,v1 ,v2!5A~v2!A* ~v11v22v!

1B~v2!B* ~v11v22v!, ~1.4!

h~x!5E
0

1

exp@ ixD~j!#G~j!dj, ~1.5!

and

D~j!5D01E
0

j

D~j8!dj8 ~1.6!

with D0 arbitrary at this stage. Here and below we do n
explicitly indicate the integration limits if they are infinite
Note that due to the vanishing average ofD(j),D(j) is a
periodic function. Stationary solutions of the scalar versio
~where one of the components identically vanishes! of Eqs.
~1.1! and ~1.2! were numerically found in Refs. 10 and
respectively.

It was first observed in numerical studies,11,12 and later
justified by a systematic perturbation expansion,3,8,9,13that in
the limit e!1, all features of a DM soliton depend on
single quantity, referred to as the map strength,

S;
uD1L12D2L2u

Tp
2 , ~1.7!

whereTp is a characteristic pulse width.~We do not need to
specify a numerical factor in the definition ofS until Sec.
IV.! It can be shown that Eq.~1.1! reduces to a system o
coupled NLS equations, known as the Manakov equatio14

as the map strength decreases (S→0). Since the latter equa
tions are integrable by the inverse scattering transform, t
do not have internal modes in the spectrum of the lineari
problem.15,16However, for an arbitrary finite value ofS, nei-
ther Eq.~1.1! nor ~1.2! is integrable,17,18 and thus they may
have internal modes.19 @Note: It was pointed out earlier20 that
Eq. ~1.1! in the limit of weak dispersion management~which
is equivalent to the limitS→0! is nonintegrable.# In this
work, we show that internal modes do indeed exist for E
~1.1! and ~1.2!.

This paper is organized as follows: In Sec. II, we obta
a correction to the Manakov equations that follows from E
~1.1! and ~1.2! in the limit of weak dispersion manageme
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and small map strength, respectively, and show that this
rection is the same in both cases. In Sec. III, we use
explicit form of this correction to show analytically that a
internal mode bifurcates from the edge of the continuo
spectrum of the linearized Eq.~1.1! in the limit e→0, S
→0. This mode is polarized orthogonally to the backgrou
DM soliton. No copolarized internal mode exists in th
limit. In Sec. IV, we proceed by solving linearized Eq.~1.2!
numerically, and find a family of internal modes for a wid
range of values ofS. Remarkably, we find a family of copo
larized internal modes, the lowest of which bifurcates fro
the edge of the continuous spectrum for a certain nonz
value ofS. Stability of some of the lower-order modes ov
very long propagation distances is confirmed numerically
Sec. V, we study the case when more than one inte
modes are initially excited and show that the modes unde
slow oscillations which do not decay over distances mu
longer than anytrans-oceanic distance. Finally, Sec. VI con
tains a summary of this work.

II. REDUCTIONS IN THE LIMIT OF WEAK DISPERSION
MANAGEMENT

Here we first derive corrections to the NLS, startin
from the scalar versions of Eqs.~1.1! and~1.2! in the appro-
priate limits, and show that the two procedures result in
same reduced model. Then we generalize this model to
vector case, thus obtaining a correction to the Manak
equations in the limit of weak dispersion management.
simplify the calculations,G(j)[1 is assumed in Secs. I
and III.

The Fourier transform of Eq.~1.2! has the form8

iUz1
1

2
D0Utt1EE dt1dt2H~ t1 ,t2!U~ t1t1!N~ t,t1 ,t2!50,

~2.1!

where

U~z,t ![S U
V D5E exp@ ivt#A~z,v!dv, ~2.2!

N~ t,t1 ,t2!5U~ t1t2!U* ~ t1t11t2!

1V~ t1t2!V* ~ t1t11t2!, ~2.3!

H~ t1 ,t2!5
1

~2p!2 EE h~v1v2!

3exp@2 iv1t12 iv2t2#dv1dv2 . ~2.4!

Let us consider reduction of system~2.1! with V[0 in the
limit S→0. First of all, we note thatS is the parameter char
acterizing a solution of that equation, butnot the equation
itself, becauseS depends on the pulse widths@cf. Eq. ~1.7!#.
It was shown in Refs. 8 and 9 that the main-order reduct
of Eq. ~2.1! in the limit S→0 coincides with the NLS. Now
we derive the first-order correction to that result. In order
explicitly include the small parameterS, we perform the fol-
lowing scaling of variables:

D05d0 /S, t5T/AS, ~2.5!
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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541Chaos, Vol. 10, No. 3, 2000 Oscillations of dispersion-managed solitons
with d0 anduUu beingO(1) quantities. Since the pulse sha
and function H(t1 ,t2) vary on disparate scales,T and t
!T, respectively, then we can use the following formal e
pansion:

H~ t1 ,t2!5S@d~T1!d~T2!2Sh1d8~T1!d8~T2!

1 1
2 S2h2d9~T1!d9~T2!1¯#, ~2.6!

whereh15 i *0
1Ddj and h252*0

1D2dj. Then Eq.~2.1! be-
comes

iU z1
1
2 d0UTT1uUu2U

5Sh1@UTuUuT
21U~UUT* !T#

2 1
2 S2h2@U2UTTTT* 14UUTUTTTT* 14UT

2UTT*

12UuUTTu214uUTu2UTT1UTT
2 U* #. ~2.7!

A simple asymptotic transformation,

U5Ũ2 1
2 Sh1ŨTT1O~S2!, ~2.8!

eliminates theO(S)-term in Eq.~2.7! and modifies the form
of theO(S2)-term. However, we do not need to compute th
modified form, because theO(S)-term can also be elimi-
nated by simply choosing the constantD0 in the definition of
D~j! so as to seth150. This condition is just the small-S
version of the condition that determines the initial chirp o
DM soliton; cf. Eq. ~4.2b! below. In our nondimensiona
units (uD1L1u5uD2L2u51), the conditionh150 yields

D052 1
2 sgn~D1L1!, ~2.9!

and consequently,h2521/12. Then the following transfor
mation:

U5q1
S2

24d0
@qT

2q* 12quqTu21q2qTT* #1O~S3!, ~2.10!

which we found usingMATHEMATICA , takes Eq.~2.7! to the
form

iqz1
1
2 d0qTT1 f S~ uqu2!q50, ~2.11!

where

f S~x!5x1
S2

24d0
~2xxTT1~xT!2!1O~S3!. ~2.12!

Now, Eq.~2.11! is to be compared with the equation fo
^u&5*0

1u(j,T)dj, that was derived in Ref. 21 from the sc
lar version of Eq.~1.1! in the limit of weak dispersion man
agement. Here we refer to the form of this reduced equa
obtained in Ref. 22. The limit of weak dispersion manag
ment corresponds to settingD(j)5ed(j) in Eq. ~1.1!, with
all the other parameters beingO(1) and, moreover, with
d(j), rather thanD(j), satisfying the normalization as de
tailed in the paragraph following Eq.~1.1!. Comparing our
Eqs.~2.10! and~2.11! with Eqs.~10! and~11! of Ref. 22; we
see that the two sets of equations coincide, except for
term qTTTT, which is missing in our Eq.~2.10!. However,
this term is recovered once we observe that the relation
tween^u& andU is given by

U5^u&2 1
8 S2h2^u&TTTT1O~S3!, ~2.13!
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whose derivation is outlined in the Appendix. Thus, Eq.~1.1!
in the limit D(j)5O(e), e→0, and Eq.~1.2! in the limit S
→0, are reduced to the same model, which in the scalar c
is given by Eq. ~2.11!. This model describes the
O(S2)-correction to the NLS, that arises in the limit of wea
dispersion management.

A generalization of this result to the vector case
straightforward. For example, from the vector analog of E
~2.1!, one can obtain a system generalizing Eq.~2.7!, which
we do not present here because of its cumbersome fo
Using MATHEMATICA , we found an asymptotic transforma
tion,

U5q1
S2

24d0
@~ uqu21ur u2!TqT1~qqT* 1rr T* !Tq#, ~2.14!

which transforms that system into a simpler form,

iqz1
1
2 d0qTT1 f S~ uqu21ur u2!q50, ~2.15!

whereq5(q,r )T, and the functionf S is given by~2.12!.

III. INTERNAL MODES IN THE LIMIT S\0

Here we analytically establish the existence of an int
nal mode polarized orthogonally to the background DM so
ton. Since we consider Eq.~2.15! as a small deformation o
the Manakov equations, it is appropriate to reduce it to
standard form by settingd051. We also introduce a sma
parameter,

m5
S2

48
!1, ~3.1!

to measure how far the model in question is from the in
grable one.

The vector soliton of Eq.~2.15! is obtained by substitut-
ing

q5Qu~T!eiz/2, r 5Rm~T!eiKz/2, ~3.2!

into that equation. Here we have used the subscript nota
to indicate that the solution pertains to Eq.~2.15! with a
given value of the parameterm. For the vector generalization
of the scalar DM soliton, the propagation constants of thq
and r components are equal;K51, and

Qm~T!5cosuFm~T!, Rm~T!5sinuFm~T!, ~3.3!

whereu is an arbitrary polarization angle, andFm(T) is the
scalar DM soliton. Form!1, its form is given by the
asymptotic expression,22

Fm~T!5F0~T!1mF1~T!1O~m2!, ~3.4!

whereF05sechT and

F15 8
3 @2 sechT2sech3 T2sech5 T#. ~3.5!

To study analytically the spectrum of elementary excitatio
on the background of the DM soliton in the vector model, w
assume the expansions,

q5eiz/2@Fm~T!1@w1~T!2w0~T!#eilz/2

1@w1* ~T!1w0* ~T!#e2 ilz/2# ~3.6a!

and
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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r 5eiz/2@c1~T!e2 ilz/21c2~T!eilz/2#, ~3.6b!

with uw1 ,w0 ,c1,c2u!uFmu. Here we used the rotationa
invariance of Eq.~2.15! and thus setu50. Linearizing Eq.
~2.15!, we arrive at two uncoupled linear problems,

L1w15lw014mM1~T!w1 ,
~3.7!L0w05lw114mM0~T!w0 ,

and

L0c656lc614mM0~T!c6, ~3.8!

where

L152]T
21126 sech2 T, L052]T

21122 sech2 T,
~3.9!

and

M1~T!53F0F1116F0
3F0TT124F0

2F0T
2

116F0
3F0T]T14F0

4]T
2, ~3.10a!

M0~T!5F0F114F0
3F0TT18F0

2F0T
2 . ~3.10b!

Linear systems~3.7! and~3.8! with m50 occur in the analy-
sis of perturbed Manakov equations.16 For m!1, they can be
analyzed by the bifurcation theory for the linearized NL
and linear Schro¨dinger operators, respectively.19

Linear system~3.7! describes a perturbation in the sam
vector component as the DM soliton. Form50, its spectrum
consists of two branches of the continuous spectrum w
ulu>1 and four bound states of the discrete spectrum,
located atl50. These neutrally stable bound states repres
infinitesimal translations of the DM soliton’s propagatio
constant, phase, velocity, and center. TheO(m)-term does
not change the discrete spectrum but deforms the edge o
continuum atl561, provided that a certain bifurcation pa
rameterkpar is nonzero, where

kpar5E
2`

`

dT~w10M1~T!w101w00M0~T!w00!. ~3.11!

Here w1051 – 2 sech2 T and w0051 are the limiting eigen-
functions of the continuous spectrum forl561. The differ-
ence between the nondeformed and deformed edges o
continuous spectrum is that the former contains the limit
eigenvalues, along with the corresponding eigenfuncti
~in this case, they are, respectively,l561 and w10,w00!,
whereas the latter does not contain the limiting eigenval
and eigenfunctions, but contains those arbitrarily close
them.19 Integrable systems are known to have the edge
their continuous spectra nondeformed, while a deform
edge is an indication of nonintegrability of any given syste

Returning to Eq.~3.11!, if kpar.0, then a new bound
state with the eigenvaluel56(12m2kpar

2 ) arises from the
edge of the continuum.19,23 If kpar,0, a new bound state
does not appear. Yet, the edges of the continuum are
formed, so that pointsl561 no longer belong to it, which
means that further bifurcations for nonzero but smallm are
not possible.

We evaluate the integral in Eq.~3.11! using MATH-

EMATICA and find that
Downloaded 26 Oct 2000  to 130.113.234.100.  Redistribution subject to
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kpar52 112
15 .

Thus, we conclude that a nontrivial oscillatory mode do
not detach from the edge of the continuum for 0,m!1.
Therefore, no internal mode copolarized to the backgrou
DM soliton exists for a sufficiently small map strength. Fu
thermore, sincekparÞ0 in this case, theO(m)-term in Eq.
~2.15! destroys integrability of the model, which coincide
with the conclusion obtained earlier by differe
methods.17,18,20A similar result was found recently for opti
cal solitons in quadratic resonant materials.24

Linear system~3.8! describes an orthogonal perturbatio
to the DM soliton and, in fact, reduces to two uncoupl
Schrödinger problems. Sincec2(T,2l)5c1(T,l), in
what follows we consider only the equation forc1. Its spec-
trum for m50 consists of a single continuum branch wi
l>1 and a single bound state atl50. This bound state
c1;F0(T), corresponds to a rotation of the vector D
soliton by a small angleu. Since theO(m)-term preserves
the rotational invariance of the equation,it cannot alter t
bound state. However, it does deform the edge of the c
tinuum, provided thatkortÞ0, where19

kort52E
2`

`

dTc0
1M0~T!c0

1 ~3.12!

andc0
1(T)5tanhT is the limiting eigenfunction atl51. Us-

ing MATHEMATICA , we find that

kort5
32
5 .

Sincekort is positive, not only does the perturbation term
Eq. ~2.15! deform the edge of the continuous spectrum a
hence destroy integrability of the perturbed Manakov eq
tions, but also a discrete eigenvaluel15(12m2kort

2 ) de-
taches from the edge pointl51. The corresponding boun
state~internal mode! Cm(T) is an odd inT, one-node solu-
tion of Eq. ~3.8!, whose exact form can be numerically ca
culated from Eqs.~3! and ~4! of Ref. 19.

Let us now briefly discuss the role of this new intern
mode. First, as pointed out in Sec. 1, it can trap some pa
radiation polarized orthogonally to the DM soliton, so th
this radiation would remain in the vicinity of the soliton ove
a much longer distance than it would if the internal mo
were absent. Second, we conjecture that a superposition
scalar DM soliton and the orthogonally polarized intern
mode, which has the form~3.2! with K5m2kort

2 and

Qm5Fm~T!1O~n2!, Rm5nCm~T!1O~n3!, ~3.13!

where n!1, is a member of a new family of asymmetr
vector solitons of Eqs.~1.1! or ~1.2!. A numerical proof of
existence of such family of asymmetric solitons would r
quire having a fast algorithm of finding stationary solitons
Eq. ~1.2!, which we do not have at the moment. We postpo
further qualitative discussion of this issue until Sec. V.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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IV. INTERNAL MODES FOR ARBITRARY MAP
STRENGTH

For arbitrary values of the map strength, it is more co
venient to consider equations written in the frequency
main, and then transform the solution back into the ti
domain by inverting Eq.~1.3!. Thus, below we numerically
determine internal modes of Eq.~1.2!, linearized on the
background of a DM soliton.

First of all, owing to the rotational invariance of thes
equations, we are free to take the background soliton be
polarized along theA-component. Then the linearized pro
lem splits into two uncoupled ones, which are counterpa
of Eqs. ~3.7! and ~3.8!. Next, since we could not efficiently
determine the exact shape of a stationary scalar DM soli
we have to approximate it by a Gaussian. In selected ca
we verified that including corrections that arise due to
next Hermite–Gaussian component in the expansion of
DM soliton shape,3,25 changed our results only slightly.

Without loss of generality, we set the maximum amp
tude~measured in the time domain! of the Gaussian to unity
In the frequency domain, the corresponding approxim
shape of the DM soliton is~see, e.g., Ref. 6!

A0~z,v!5
T0

A2p
expF2

1

2
~vT0!21 iksolzG

[A0~v! exp@ iksolz#. ~4.1!

Here T0 is the minimum width of the Gaussian in the tim
domain, which is related to the average dispersionD0 by the
following equation~see Refs. 3, 2, and references therein!:

D05T0
2 ReI 2 /&, ~4.2a!

whereI 2 is obtained from

I n5E
0

1S 11 iD/T0
2

12 iD/T0
2D n/2 G~j!dj

A11D2/T0
4

, n50,1,... . ~4.3!

IntegralsI n appear in expansion of a DM soliton over th
basis of Hermite–Gaussian functions.3 We remind the reade
that we use the normalization of the time variable such t
uD1L1u5uD2L2u51 ~cf. Sec. I!. The values ofI n depend on
the initial constantD0 @cf. Eq. ~1.6!#, which is found from
the equation

Im I 250. ~4.2b!

The soliton propagation constant,ksol, is related toT0 by3

ksol5~1/& !~ I 02I 2/4!. ~4.4!

For a lossless fiber, whereG(j)51, all integralsI n can be
evaluated explicitly. Then, Eq.~4.2b! yields the value forD0

as given by Eq.~2.9!, and Eqs.~4.2a! and ~4.4! become

D05&T0
4F 2

~114T0
4!1/22 lnS 11~114T0

4!1/2

2T0
2 D G

and

ksol5
T0

2

2&
F2

2

~114T0
4!1/215 lnS 11~114T0

4!1/2

2T0
2 D G .
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Equations~4.1!–~4.4! illustrate the fact, mentioned in
Sec. I, that the only parameter of the family of scalar D
solitons isT0 , or, equivalently, the map strength, which w
define here as

S51/~2T0
2!. ~4.5!

This quantity is by a factor of ln 2 smaller6 than the map
strength originally introduced in Ref. 11. Thus, in what fo
lows we consider bothD0 andksol as functions ofS, and also
parametrize the family of internal modes by this quantity

A. Orthogonal internal modes

The linearization of Eq.~1.2! for the orthogonal interna
modeb(v) reads

S ksol2l1
D0

2
v2Db~v!5E dv8b~v8!K ~1!~v8,v!,

~4.6!

whereB(z,v)5b(v)exp@i(ksol2l)z# and

K ~1!~v8,v!5E dv9A0~v9!A0* ~v81v92v!

3h@~v82v!~v92v!#. ~4.7!

An eigenvaluel5knodeis that of an internal mode, provide
that the functionv(z,t), found from the corresponding
eigenfunctionb(v), is localized int. For other values ofl,
v(z,t) oscillates witht as utu→`.

The stationary DM soliton is an even function oft, hence
A0(v)5A0(2v) and the kernelK (1)(v8,v) has a symme-
try

K ~1!~v8,v!5K ~1!~2v8,2v!. ~4.8!

Another symmetry ofK (1)(v8,v) follows from the relation
h(2x)5h* (x), using which one obtains

K ~1!~v8,v!5K ~1!* ~v,v8!. ~4.9!

This means that the Fredholm equation~4.6! is self-adjoint,
and its eigenvalues are all real. Symmetry~4.8! means that
b(v) and b(2v) satisfy the same equation, and therefo
one can look for even and odd internal modes separat
This circumstance is used to reduce the computational t
of solving Eq. ~4.6! numrically, since for a mode with a
certain parity, this equation can be rewritten as

S ksol2l1
D0

2
v2Dbo,e~v!

5E
0

`

dv8bo,e~v8!Ko,e
~1!~v8,v!, ~4.10!

wherev.0 and

Ko,e
~1!~v8,v!5K ~1!~v8,v!7K ~1!~v8,2v!. ~4.11!

The label ‘‘o’’ ~‘‘ e’’ ! pertains to odd~even! modes. Equation
~4.10! is solved by replacing the integral by a finite su
~see, e.g., Ref. 26! that extends over the set$vn85(n
21)dv%n51

nmax for some dv and nmax. The discrete vector

b̂o,e5$b(vn)%n51
nmax is a solution of a linear algebraic eigen

value problem,
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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S ksol1
D0

2
v̂22dvK̂o,e

~1!WD b̂o,e5lb̂o,e , ~4.12!

where (K̂o,e
(1))mn5Ko,e

(1)(vm8 ,vn) and v̂25diag(v1
2,v2

2,...,
vnmax

2 ). The weight matrixW depends on the approximatio

by which the integral is converted into a finite sum, e.
when the Simpson rule is used,W5diag~1/3,4/3,2/3,4/3,...,
2/3,4/3,1/3!. System~4.12! can be solved using any com
puter linear algebra package. Let us note that the matrix
ements (K̂o,e

(1))mn can be efficiently evaluated by any standa
numerical integration routine using the known analytical e
pressions forh(v1v2) andA0(v).

Before presenting the results of numerical solution
Eq. ~4.12!, let us discuss what its spectrum is expected
look like. As noted above, this spectrum is purely real. Mo
over, l50 is always an eigenvalue, corresponding to
rotational invariance of the DM soliton. If we now assum
that the inverse Fourier transform of the integral term in E
~4.6! vanishes faster than the linear one forutu→`, as is the
case for Eq.~3.8!, then, forD0.0, the continuous and pos
sible discrete eigenvalues occupy the regionsl.ksol and 0
,l,ksol, respectively. Any internal mode is to detach fro
the edge pointl5ksol of the continuous spectrum. Now, t
our knowledge, the above assumption about the asymp
behavior of the integral term in Eq.~4.6! or its Fourier trans-
form has not been rigorously proven. Nonetheless, the res
we find for D0.0 are as predicted above. ForD0,0, the
situaton is not so obvious, and it will be clarified as w
proceed. Finally, let us mention that the Fourier transfor
of the odd and even solutionsbo,e are counterparts of the
following solutions of the linear Schro¨dinger equation~3.8!
with m50; exp@ikT#(2ik1tanhT)7exp@2ikT#(ik1tanhT),
respectively, wherek5Al21.

The normalized eigenvalues of odd~‘‘ o’’ ! and even
~‘‘ e’’ ! internal modes, obtained by numerically solving E
~4.12! with dv52p/(MT0) andnmax581, are presented in
Table I. We useM5100 for all values ofS, except forS
50.1, for which we have to use a wider interval in time~with
M5120!, because for smallS, the internal mode is very

TABLE I. Orthogonal internal modes.

Map strength,S (kmode)o /ksol (kmode)e /ksol

0.1 0.998
0.25 0.995
0.5 0.976
0.75 0.931
1.0 0.873
1.5 0.745 0.979
2.0 0.644, 0.969 0.861
2.5 0.572, 0.849, 0.969 0.748, 0.918
3.0 0.519, 0.734 0.659, 0.786

15 more modes 15 more modes
3.28('Scr) 0.496 0.617

1` more ~?! 1` more ~?!
3.5a 0.479 0.687
4.0a 0.448
4.5a 0.418

aFor S.Scr , modes are quasilocalized. Eigenvalues of only the first one
two such modes are listed.
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weakly localized. The critical value of the map strength c
responding toD050 is Scr'3.28. ForS>Scr , we also in-
creasenmax to verify the asymptotic behavior of the intern
modes. All the calculations are performed for the lossl
fiber @G(j)51#, but exactly the same procedure can
used, and qualitatively the same results are expected, w
the fiber is periodically amplified. We verify that there a
ways exists an even eigenfunction withl'0; deviations
from the exact zero, for which we always foundl/ksol

,7%, are attributed to the fact that the background solut
was not an exact DM soliton. It is also interesting to note t
for S.1, the neutral mode withl'0 has ‘‘wings’’ very
similar to those of a stationary DM soliton~see, e.g., Refs
12,10!. That is, this neutral mode, whose shape must be
actly that of a stationary DM soliton, ‘‘tries’’ to be of the
proper shape even though the background solution is no

For D0.0, we find the eigenvalues of internal modes
looking for them in the internal (0,ksol), as explained above
The number of the internal modes increases asS approaches
the critical value,Scr , where the average dispersion chang
sign. For a givenS,Scr , the number of oscillations in the
profile of an internal mode increases with the mode’s nu
ber. Also, the eigenvalues of internal modes are seen to
cupy only the upper half, (ksol/2,ksol), of the allowed inter-
val. For S53.28 ~corresponding to the exact valueD0

53.1631024!, the number of internal modes found strong
depends onnmax. For nmax581, we find 19 odd and 19 eve
localized modes, while fornmax5241, the number of each
type of modes increases to 26. With our numerical resolut
(10216), we cannot see any oscillating tails; all the 26 mod
are localized. Therefore, we think that forS5Scr , an infinite
number of internal modes exist. ForD0,0, all the eigenval-
ues occupy the region (2`,ksol), and the interval (0,ksol)
contains eigenvalues pertaining to both localized and no
calized modes. In that case, we first takenmax sufficiently
small (nmax581) and visually examine all of the eigen
modes, whose eigenvalues are in that interval; those lo
ized are the internal modes. Next, we increasenmax to 509
and verify that these modes remain either localized
quasilocalized~i.e., develop very small oscillating tails ex
tending to infinity!. In fact, we find that all of the interna
modes do become quasilocalized forD0,0, whereas the
neutral mode withl'0 remains localized even then, at lea
within our numerical resolution. Thus, the internal modes
not exist forD0,0 in the strict sense. Nonetheless, for t
reasons that we explain shortly, we still list the eigenvalu
of a few lowest quasilocalized modes.

As it was explained in Sec. I, the main role played
internal modes in the dynamics of a soliton is that they t
part of radiation and force it to remain in the soliton’s vici
ity over a very long distance. In particular, if a perturbati
of the soliton’s profile initially coincides with an interna
mode, then this perturbation preserves its shape over a
distance. This is illustrated in Figs. 1–3, which are obtain
by numerically solving Eq.~1.1! with e50.2 andG(j)51
over 600 map periods. Figure 1 shows, forS51.5, evolu-
tions of the odd internal mode@Fig. 1~a!# and a perturbation
@Fig. 1~b!# whose profile at the chirp-free point of the map

r

 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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v}~122t2/T0
2!exp@2t2/~2T0

2!#. ~4.13!

Perturbation~4.13! is orthogonal to both the odd interna
mode and the Gaussian approximation of the neutral mo
~Here orthogonality is used in the sense of a functional in
product as in, e.g., Ref. 16, rather than in the sense of po
ization.! It is also approximately orthogonal to the even i
ternal mode~cf. Table I!, because the latter is only weak
localized~its eigenvalue lies close to the edge of the contin
ous spectrum!. Thus, perturbation~4.13! consists mostly of
the continuous spectrum eigenfunctions, and is seen to
siderably spread out over 600 map periods, while the inte
mode remains almost unchanged over the same dista
Figures 2~a! and 2~b! show similar evolutions, but forS
53. In this case, a significant part of perturbation~4.13! is
found in the firsteveninternal mode@compare Figs. 2~b! and
2~c!#, and therefore it decays much less than in Fig. 1~b!.
Finally, Figs. 3~a! and 3~b! show evolutions of, respectively
a localized initial perturbation, which was obtained by ‘‘cu
ting off’’ the oscillating tails of the quasilocalized odd mod
for S54.5, and a perturbation of the form~4.13! for the same
value ofS. This value was chosen sufficiently ‘‘far’’ into the

FIG. 1. Evolutions of the orthogonal odd internal mode~a! and perturbation
~4.13! for S51.5. Solid, profile atj5600Lmap; dashed, initial profile.
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region whereD0,0, so as to ensure that only one quasi
calized mode has tails whose amplitude is much less t
that of the mode’s central part. That is, all the other mod
are indistinguishable from the modes of the continuous sp
trum. Figure 3 clearly shows that a perturbation that is i

FIG. 2. Evolutions of the lowest orthogonal odd~a! and even~c! internal
modes and perturbation~4.13! ~b! for S53.0. Solid, profile at j
5600Lmap; dashed, initial profile.
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546 Chaos, Vol. 10, No. 3, 2000 T. I. Lakoba and D. E. Pelinovsky
tially close to even a quasilocalized mode decays at a m
slower rate than a perturbation consisting of an arbitr
combination of the continuous spectrum modes. Th
quasilocalized modes can play similar part in the dynam
of a DM soliton for D0,0 as true internal modes play fo
D0.0.

B. Parallel internal modes

The procedure of finding internal modes parallel to t
DM soliton is similar to that described above. Substituti
A5(A01a)exp@iksolz#, B50, uau!uA0u into Eq. ~1.2! and
linearizing, one obtains the following equation for the vec
a5(a,a* )T exp@2ilz#:

la~v!52s3S ksol1
D0

2
v2Da~v!1E ~2s3K ~1!~v8,v!

1 is2K ~2!~v8,v!!a~v8!dv8, ~4.14!

where

FIG. 3. Evolutions of the orthogonal odd quasi-localized mode~a! and
perturbation~4.13! ~b! for S54.5. Solid, profile atj5600Lmap; dashed,
initial profile.
Downloaded 26 Oct 2000  to 130.113.234.100.  Redistribution subject to
ch
y
s,
s

r

K ~2!~v8,v!5E dv9A0~v9!A0~v82v91v!

3h* @~v82v9!~v2v9!#, ~4.15!

and

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D
are the Pauli matrices~matrix s1 is referred to later on!.
Kernel K (2) has the following symmetries:

K ~2!~v8,v!5K ~2!~2v8,2v!, ~4.16!

K ~2!~v8,v!5K ~2!~v,v8!. ~4.17!

Symmetry ~4.16! means that even and odd eigenmod
can be considered separately. They are counterparts o
following eigenfunctions of the linearized NLS:c(T,k)
6c(2T,2k)1c(T,2k)6c(2T,k).27 Symmetry ~4.17!
has no obvious consequences. Replacing the integral ter
Eq. ~4.14! by a discrete sum, we obtain for the vector

â5~a~v1!,...,a~vnmax
!,a* ~v1!,...,a* ~vnmax

!!

3exp@2 ilz#,

the following linear algebraic equation:

lâ52H diagFksol1
D0

2
v̂2,2S ksol1

D0

2
v̂2D G J â

1S 2K̂ ~1!W K̂~2!W

2K̂ ~2!W 22K̂ ~1!W
D â. ~4.18!

Matrix K̂ (2) is defined similar toK̂ (1) and is symmetric@see
~4.17!#, whereasK̂ (1) is Hermitian. As a collateral remark
serving to make comparison with the linearized NLS,27 we
note that the solutionâadj of an equation adjoint to~4.18! is
related to the solution of Eq.~4.18! by

~4.19!

only if K̂ (2) is also Hermitian. This can only be so when a
the elements of this matrix are real, which occurs, for e
ample, in the case of a lossless fiber, whereh(x)
5sin(x/2)/(x/2). In the NLS limit ~i.e., S→0!, K (2) is also
real, even for a periodically amplified fiber.

Since the eigenvalue problem~4.18! is not Hermitian, its
spectrum cannot be guaranteed to be reala priori. However,
in all our numerical simulations, we found that it is indee
real, except for the eigenvalues corresponding to the
lowest odd eigenmodes. If the exact stationary DM soliton
substituted forA0 in Eq. ~4.16! or ~4.18!, these equations
have four neutral modes with the same eigenvaluel50 ~cf.
Sec. III!. However, since in our procedure,A0 is not the
exact DM solition, this fourfold degenerate eigenvalue sp
into four simple eigenvalues located around zero (ul
u,0.1ksol). Two of them, corresponding to the even neut
modes, remain real, while the other two, corresponding
the odd eigenmodes,become imaginary. A similar fact
garding the latter eigenmodes was earlier noted in~Ref. 3!.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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547Chaos, Vol. 10, No. 3, 2000 Oscillations of dispersion-managed solitons
For D0.0 the continuous spectrum occupies t
branches~2},2ksol# and @ksol,`!, and thus any localized
modes may only be found inside the interval (2ksol,ksol).
For D0,0, the two branches of the continuous spectr
intersect over this interval, and therefore the localiz
modes can only be found by visual examination, as
plained earlier for orthogonal eigenmodes. Our numerical
sults are summarized in Table II. Since the eigenvalues
ways come in pairs as6l,27 we only list the positive
eigenvalue. The corresponding eigenfunctions are relate
a(2l)5s1a* (l).27 Note that in contrast to the case of o
thogonal internal modes, the first parallel internal mode t
detaches from the edge of the continuum is even int ~or v!.
Similar to the case of orthogonal modes, there appear to
an infinite number of internal modes forS5Scr , while these
modes becomes quasilocalized forS.Scr .

Numerical verification of long-term stability of paralle
internal modes is somewhat more involved than that of
thogonal modes. The Gaussian approximation for the D
soliton, which we have to use, is a superposition of theexact
DM soliton and some combination of internal modes w
small amplitudes. These modes evolve each with its o
propagation constant, thus making extraction of the des
one mode not a straightforward task. Furthermore, the
proximately determined internal mode contains a small co
ponent of the exact neutral mode. The latter, when adde
the background soliton, leads to linear increase of its ov
all phase, which becomes appreciable over long distan
Thus, to compare the initial and final mode profiles, the co
ponent arising due to the slow accumulation of the solito
phase should always be subtracted. Now, ifa[(a(1),a(2))T

is any eigenfunction of Eq.~4.14!, then the corresponding
initial condition for the scalar quantitya is (c1 id)a(1)

1(c2 id)a(2)* , wherec andd are real constants.27 For the
case of a lossless fiber, the componentsa(1,2) of an internal
mode can always be taken to be real. Then the evolutio
such a perturbation is@compare with Eq.~3.6a!#

a5c@a~a~1!1a~2!!cos~lz!1 i ~a~1!2a~2!!sin~lz!#

1d@ i ~a~1!2a~2!!cos~lz!1~a~1!1a~2!!sin~lz!#,

~4.20!

TABLE II. Parallel internal modes.

Map strength,S (kmode)e /ksol (kmode)o /ksol

0.7 0.995
1.0 0.917
1.5 0.675 0.935
2.0 0.472, 0.867 0.699, 0.971
2.5 0.335, 0.652

12 more modes
0.511, 0.755

12 more modes
3.0 0.244, 0.484

18 more modes
0.379, 0.560

17 more modes
3.28 0.207, 0.409 0.323, 0.469

1` more ~?! 1` more ~?!
3.5a 0.182 0.285
4.0a 0.137 0.215

aSee footnote in Table I.
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wherel is the corresponding eigenvalue. Then, calculat
separatelyevolutions of two initial perturbations, one wit
c50 and the other withd50, one can obtain profiles of bot
a(1)6a(2) for arbitrarily long distances of propagation. Th
results obtained in this way for evolution of an initial pertu
bation corresponding toa(1)1a(2) and forS52.0 are shown
in Fig. 4. Note that if one only calculates evolution of ju
one of the above perturbations~with either c50 or d50!
and then attempts to use the known values of cos(lz) and
sin(lz) to extracta(1)6a(2), one may fail to achieve that ifz
is sufficiently large, because of limited accuracy~some few
percent! with which the eigenvalues are determined.

V. SIMULTANEOUS EXCITATION OF SEVERAL
INTERNAL MODES

Here we study nonlinear dynamics of small orthogon
perturbations to the DM soliton. A generic perturbation is
superposition of localized modes, both netral and intern
and modes of the continuous spectrum. The latter deca
O(z21/2) and thus can be neglected in comparison with
long-living localized modes. In other words, after the co

FIG. 4. Evolutions of the lowest even~a! and odd~b! parallel internal modes
over j51000Lmap ~e50.1! for S52.0. Solid, profile atj51000Lmap;
dashed, initial profile.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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tinuous spectrum component is ‘‘washed out’’ over a d
tanceO(e22), there is left a ‘‘skeleton’’ of the initial per-
turbation, consisting only of the localized modes. T
motivation for studying nonlinear interaction of these mod
is provided by the results of a recent paper,28 where such
interaction was considered for the case of solitons in
constant-birefringence fiber. The authors of Ref. 28 show
that the lower-order internal modes, orthogonal to the ba
ground scalar soliton, may suppress higher-order ones
causing them to decay into continuum radiation expon
tially fast. Thus, in the case considered in Ref. 28, only
lowest-order localized mode from the initial perturbati
would survive and form, together with the background sca
soliton, a new vector soliton. The main result obtained in t
section is that in the case of a DM soliton of Eq.~1.1!, the
nonlinear interaction among the localized modes does
lead to suppression of any of them, at least on the len
scale considered in Ref. 28. Instead, the modes undergo
cillations that do not decay visibly over a few thousand m
periods, which by far exceeds the length of anytrans-oceanic
fiber link.

We consider the simplest case where the initial per
bation consists of only two orthogonal modes, and furt
restrict our analysis to the limit of smallS, where fully ana-
lytical treatment is possible. For a finite nonzero value of
map strength, similar considerations can be shown to g
qualitatively the same results. ForS!1, the model is de-
scribed by Eq.~2.15!, in which we use the same normaliz
tion, d051 andm5S2/48 as in Sec. III. The orthogonal pe
turbation to the DM soliton~3.3! with u50 has the form
given by Eqs.~3.2! and ~3.13!, with n being a small param
eter measuring the size of the orthogonal component. U
an asymptotic multiscale method, we extend this form
higher orders inn as follows:

q5eiz/2@Q0~T!1n2Q2~z,T!1O~n4!#, ~5.1!

r 5nR1~z,T!1n3R3~z,T!1O~n5!, ~5.2!

whereQ05Fm(T) and

R15c1~z2!Fm~T!eiz/21c2~z2!Cm~T!eikmz/2. ~5.3!

The first term in Eq.~5.3! is the neutral mode and the seco
one is the internal mode. They have even and odd parity iT,
respectively. The parameterkm5m2kort

2 ~cf. end of Sec. III!
is the propagation constant of the internal mode, and
amplitudesc1 and c2 are constant on the scalez but may
evolve on the slower scale,z25n2z.

The correction termQ2(z,T) to q is induced by a term
that is quadratic in the orthogonal perturbationr,

Q25uc1u2w1~T!1uc2u2w2~T!

1c1c2* ~w3~T!2w4~T!!ei ~12km!z/2

1c1* c2~w3* ~T!1w4* ~T!!e2 i ~12km!z/2. ~5.4!

Herew1(T) to w4(T) solve the equations

L1w154mM1w11Fm f S8@Fm
2 #~Fm

2 !, ~5.5!

L1w254mM1w21Fm f S8@Fm
2 #~Cm

2 !, ~5.6!
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L1w35~12vm!w414mM1v31Fm f S8@Fm
2 #~FmCm!,

~5.7!

L0w45~12vm!w314mM0w4 , ~5.8!

where operatorsL1 ,L0 and functionsM1 ,M0 are defined in
Eqs.~3.9! and ~3.10!, and f S8@x#(y) is the Freshet derivative
of the operator functionf S(x). Now, since the vector soliton
~3.3! is an exact solution of Eqs.~2.15!, we find an exact
solution of Eq.~5.5! asw152 1

2 Fm(T). The correction term
w2(T) represents the second-order correction to the as
metric soliton in the asymptotic expansion~3.4!. The
z-dependent terms inQ2 are shown below to lead to interac
tion and oscillatory dynamics of the two orthogonal mod
Since the eigenvaluel512km lies in the gap of the con-
tinuous spectrum of the linear eigenvalue problem~3.7!, the
functionsw3(x) andw4(x) are real and localized inT. Thus,
no radiation occurs at the orderO(n2) of the asymptotic
expansion.

The correction termR3(z,T) has the following form:

R35v1~z2 ,T!eiz/21v2~z2 ,T!eikmz/2

1c1
2c2* v3~T!ei ~22km!z/21c1* c2

2v4~T!e2 i ~122km!z/2.

~5.9!

The first two terms in R3 have the same fast-sca
z-dependence as the lowest-order terms~5.3!. It is well-
known ~see, e.g., Ref. 29! that in such a case coefficientsv1

and v2 will grow linearly on the fast scale unless certa
secular conditions are imposed on the amplitudesc1 ,c2 .
These conditions are found using the method of Ref. 28,

ia1

dc1

dz2
5d12uc2u2c1 , ~5.10!

ia2

dc2

dz2
5~d21uc1u21d22uc2u2!c2 . ~5.11!

Here the parameters are

a15E
2`

`

Fm
2 dT.0, a25E

2`

`

Cm
2 dT.0,

d1252E
2`

`

dT@Fm
2 f S8@Fm

2 #~Cm
2 12Fmw2!

1FmCm f S8@Fm
2 #~FmCm12Fmw3!#,

d2152E
2`

`

dTFmCm f S8@Fm
2 #~FmCm12Fmw3* !,

d2252E
2`

`

dTCm
2 f S8@Fm

2 #~Cm
2 12Fmw2!.

All coefficients a j and d i j are real. Therefore, at order th
distancesz;O(n22), where z2;O(1), Eqs. ~5.10! and
~5.11! describe self-consistent oscillations between the t
orthogonal modes,

c15C1ein2Dk1z/2, c25C2ein2Dk2z/2, ~5.12!

whereC1 ,C2 are constant on the scalez2 and
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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Dk152
1

a1
d12uC2u2,

~5.13!

Dk252
1

a2
~d21uC1u21d22uC2u2!.

Equations~5.12! are the main result of this section. The
show that neither of the modes decays on the sc
z2(O(e21n22)). This is the key difference between the i
ternal modes dynamics in the present model and that in
model considered in Ref. 28. The reason for the differ
behaviors of the two models is the following. The cros
terms ~proportional toc1* c2 and c1c2* ! in Eq. ~5.4! have
propagation constants,6(12km)/2, that lie insidethe gapof
the continuous spectrum of the linear problem~3.7!. There-
fore, the corresponding terms,w3 andw4 , are both localized.
On the contrary, for the model considered in Ref. 28, pro
gation constants of the cross-terms lie inside the continu
spectrum proper. Therefore, the counterparts ofw3 and w4

for that case are not localized and describe radiation wit
certain frequency generated away from the soliton. This
diation causes the higher-order internal mode to lose its
ergy exponentially fast. Such rapid~on the scalez2! decay of
that mode was confirmed by numerical simulations.28

Now, similar considerations suggest that radiatio
mediated decay of one of the localized modes can also
place in our model, but on a much longer scale. Indeed,
last term in expression~5.9! for R3 has the propagation con
stant2(122km)/2 that lies inside the continuous spectru
of the linear problem~3.8!. Therefore, the correctionv4(T)
is not localized inT and corresponds to radiation by th
solition at a certain frequency. This correction can be sho
to be even inT; thus the radiation is expected to have th
parity and magnitude of orderO(n3). However, such a weak
radiation might only lead to very small effects which a
definitely negligible for any practical situation and, mor
over, whose resolution is beyond our numerical capabil
To illustrate this, we simulate propagation of a backgrou
DM soliton with S50.5 and the orthogonal component give
by Eqs.~5.2!, ~5.3! with n50.13 over 10 000 dispersion ma
periods. Other parameters in Eq.~1.1! are e50.2 andG(j)
51. Our numerical simulations clearly show that both mod
undergo small oscillations that do not decay visibly ov
10 000 map periods. Figure 5 shows this for the odd inter
mode; changes in both the amplitude and shape of the ne
mode are even smaller. Let us specifically note that the sm
‘‘bumps’’ seen in Fig. 5~b! are not related to the radiatio
v4 , because only the odd-parity part of ther-component is
shown in that figure. Instead, those ‘‘bumps’’ are likely to
the result of the interaction between the weakly localiz
internal mode and the absorbing boundary used in our si
lations.

To conclude this section, let us remark on existence o
stationary asymmetric soliton, mentioned in Sec. III. A lim
iting case of such a soliton would be the given by Eq.~3.3!,
with its r-component consisting of a single internal mode
we repeat the analysis of this section while settingc150, we
do not find terms that can cause the soliton to radiate, at
Downloaded 26 Oct 2000  to 130.113.234.100.  Redistribution subject to
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order in n. This is a strong indication at that a stationa
asymmetric DM soliton indeed exists.

VI. CONCLUSION

In this work, we have demonstrated that both orthogo
and parallel internal~localized! modes exist on the back
ground of a DM soliton. Our analysis was performed for t
so called low-energy limit, where the nonlinearity and av
age dispersion affect the soliton evolution on a much lon
scale than the local dispersion does. We found that the
thogonal modes exist for arbitrarily small map streng
whereas the parallel ones exist only when the map stren
exceeds a certain threshold value. As the map strength
proaches another critical value where the average disper
changes its sign from positive to negative, the number
internal modes increases. Our numerical results suggest
for this critical value of the map strength, the number of bo
orthogonal and parallel internal modes is infinite. As o
moves into the parameter region where the average dis
sion is negative, these modes become quasilocalized,
they develop oscillatory tails forutu→`. Yet, the numerical
simulations demonstrate that if an initial perturbation to t
exact DM soliton has a shape similar to that of a quasiloc

FIG. 5. ~a! Evolution of the amplitude of the~odd! internal mode, recorded
at every 50th map period. Other parameters are specified in Sec. V.~b! The
initial ~dashed line! and final~solid line! profiles of the same mode.
 AIP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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ized mode near the soliton’s central part, then the decay
of such a perturbation into continuum radiation is very sm

We have also considered propagation of an orthogo
perturbation that consists of more than one internal mo
For the purpose of studying a long-term evolution, any
neric perturbation can be thought of as consisting only o
finite number of internal modes, because the component
the continuous spectrum are ‘‘washed out’’ over shorter d
tances. We have shown that such a perturbation exh
stable oscillatory dynamics over much greater distances
those required for telecommunication applications, with n
ligible amount of radiation being generated.
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APPENDIX

In order to derive Eq.~2.13!, we first substitute Eq.~1.3!
into Eq. ~2.2! and then use the formal Fourier transform
the Taylor expansion of exp@iv2D/2#, similar to Eq.~2.6!. As
a result, we find

U5^u&2
iS

2
^Du&TT2

S2

8
^D2u&TTTT1O~S3!. ~A1!

Here the angle brackets denote averaging over the map
riod. We have also used the scalingt5T/AS @see Eq.~2.5!#.
Next, we expand the solution of Eq.~1.1! for D(j)5O(e)
and (S,e)→0 in the asymptotic series as

u5^u&1Su11O~S2!, ~A2!

where^u1&50. Under the conditionh150, which we have
assumed earlier, the form ofu1 becomes22

u15
i

2
D^u&TT . ~A3!
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Finally, substituting Eqs.~A2! and ~A3! into Eq. ~A1! and
using the definition ofh2 , found after Eq.~2.6!, we arrive at
Eq. ~2.13!.
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