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Persistent oscillations of scalar and vector dispersion-managed solitons
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We show that both orthogonal and parallel internal modes exist on the background of a
dispersion-manageM) soliton in randomly birefringent fibers. The orthogonal modes exist for
arbitrarily small values of the dispersion map strength, while the parallel modes exist only when the
map strength exceeds a certain threshold value. We demonstrate that initial perturbations of a DM
soliton’s profile that consist of one or more internal modes, exhibit nearly stable oscillations over
very long propagation distances, before decaying into radiation20@0 American Institute of
Physics[S1054-150000)00303-7

Dispersion-managed solitons are potential candidates for noise in the transmission line, thus increasing the probability
trans-oceanic optical telecommunication at ultrahigh bit  of a detection error. The perturbation theory of Ref. 3 could
rates. Their remarkable dynamical properties such as the not be used to describe the radiation in an efficient manner,
ability to propagate with little distortion under the action because the HG expansion is not geared for describing radia-
of various perturbations over thousands of kilometers tion modes, whose shape is, in general, different from the
have been addressed in a great number of recent studies. soliton shape. Among those modes, there may exist so called
In this work, we show that some part of linear dispersive  internal modes, which are localized in time and which are
radiation, which is produced when perturbations in ei-  knowrf to “trap” part of the radiation generated by a par-
ther the transmitter or the fiber affect a dispersion-  ticular perturbation. That is, the radiation trapped by an in-
managed soliton, can be effectively trapped by a number ternal mode escapes the vicinity of the soliton much slower
of localized internal modes. These modes propagate along than according to the conventional linear dispersive law.
with the background soliton without visible decay over Therefore, if the length of the transmission line is sufficiently

extremely long distances, manifesting their presence by “short,” then the radiation trapped by the internal mésje
small persistent oscillations of the soliton’s waveform. does not contribute to the noise field, and the reliability of

the pulse detection improves.
In this work, we demonstrate that internal modes do ex-
I. INTRODUCTION ist on the background of a DM soliton of both the scalar and
vector DM nonlinear Schiinger equatioNLS). The vec-
The dispersion management technique is known to entor form of the DM NLS can be derived for averaged pulse
hance the robustness of soliton pulses with respect to a nunpropagation in randomly birefringent fibers by the method
ber of important perturbations that occur in real-world opti-of Ref. 5(see also references thereiflere we write it for
cal telecommunication systenisee, e.g., Refs. 1 and).2 the vectoru=(u,v)', using the notations similar to those of
Those perturbations tend to affect the soliton parameterf}ef. 3,
such as its energy and time shift relative to the center of the N N 5 o
bit slot, which may lead to an error when detecting the pulse  1UsT 2D (&)U + €(3 Doy + G(O)(Jul*+[v[Hu)=0.
at the receiving end of the system. Thus a perturbation theory 1.9
which can quantify the effect of various detrimental factorsThe average and periodic partD), and D (&), of the dis-
on a dispersion-managéBM) soliton, is needed. In Ref. 3, persion coefficient, are explicitly separated in Efl), with
a perturbation theory based on the Hermite—Gaus$i#®  the average of the periodic part vanishing;™D(¢)dé
expansion for the DM soliton, was developed. The main con=(. The distance and retarded timé are normalized so as
clusion drawn in Ref. 3 was that the variational method,tg haveLl ya= 1 and|D;L4|=|D,L,|=1, respectively. Here
based on a chirped Gaussian approximation for the DM solip, andD, are the values which the piecewise-constant co-
ton, predicts the evolution of the soliton parameters ratheefficient D(¢) takes on in the fiber sections with respective
accurately(within 5% or s9. However, perturbations not |engthsL, andL,, andL;+ Lo=Lmad =1). The coefficient
only shift the soliton parameters but also cause the soliton tG(£) accounts for the periodic compensation of the fiber
emit small-amplitude radiation. This radiation can act ajoss, with the amplification period being assumed to be an
integer fraction ofL 4. (In this way, the dispersion map
¥Electronic mail: lakobati@optics.rochester.edu sets the coarser periodicity of the systeParametek in Eq.
YElectronic mail: dmpeli@math.toronto.edu (1.1) measures the size of the average-dispersion and nonlin-
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ear terms relative to the size of the periodic-dispersion termand small map strength, respectively, and show that this cor-
Explicit relations between the nondimensional parameters afection is the same in both cases. In Sec. Ill, we use the
Eqg. (1.1, on one hand, and dimensional parameters of a reaxplicit form of this correction to show analytically that an
fiber and pulse, on the other, can be found, e.g., in Ref. 6. internal mode bifurcates from the edge of the continuous
Whene<1, Eq.(1.1) can be transforméd®into the fol-  spectrum of the linearized Ed1.1) in the limit e—~0, S
lowing integro-differential form in the frequency domain, = —0. This mode is polarized orthogonally to the background
DM soliton. No copolarized internal mode exists in this

iA,— 1D0w2A+f f dw1dw,A(w)N(w,01,0,) limit. In Sec. IV, we proceed by solving linearized EG.2)
2 numerically, and find a family of internal modes for a wide
Xh((w1— o) (w,— ©))=0, (1.2 range qf values o8 Remarkably, we find a family of copo-
larized internal modes, the lowest of which bifurcates from
wherez= e, the edge of the continuous spectrum for a certain nonzero
Al 1 (1 i w2 value of S Stability of some of the lower-order modes over
A(Z,w)E(B) = Z_J dé eXI{TA(f)} very long propagation distances is confirmed numerically. In
mJo .
Sec. V, we study the case when more than one internal
modes are initially excited and show that the modes undergo
Xf dtu(é,t)expg —iwt], (1.9  slow oscillations which do not decay over distances much
longer than anyrans-oceanic distance. Finally, Sec. VI con-
N(w,01,07) =A(w) A" (01 0~ o) tains a summary of this work.
+B(w,)B* (w1 + wy— ), (1.9
1
— ; Il. REDUCTIONS IN THE LIMIT OF WEAK DISPERSION
h(x) fo exdixA(£)]G(§)dé, (1.9 MANAGEMENT
and Here we first derive corrections to the NLS, starting
¢ from the scalar versions of Egdl.1) and(1.2) in the appro-
A(§)=Ao+ Jo D(¢)d¢’ (1.6)  priate limits, and show that the two procedures result in the

same reduced model. Then we generalize this model to the
with A, arbitrary at this stage. Here and below we do notvector case, thus obtaining a correction to the Manakov
explicitly indicate the integration limits if they are infinite. equations in the limit of weak dispersion management. To
Note that due to the vanishing averagedf¢),A(¢) is a  simplify the calculationsG(£)=1 is assumed in Secs. |l
periodic function. Stationary solutions of the scalar versionsand lll.

(where one of the components identically vanighefsEgs. The Fourier transform of Eq1.2) has the forr
(1.1) and (1.2) were numerically found in Refs. 10 and 8, 1
respectively. _ _ i iu,+ EDOU“”LJJ dtydt,H(ty,t)U(t+t)N(t,t;,t,) =0,
It was first observed in numerical studfés?? and later
justified by a systematic perturbation expansi8if;*3that in 2.)
the limit e<1, all features of a DM soliton depend on a where
single quantity, referred to as the map strength, U
|D1L1—D2L2| U(Z,t)E<V)ZJ' eXF[th]A(Z,w)dw, (2.2
S~ 1.7
P N(t,tl,t2)=U(t+t2)U*(t+t1+t2)
whereT, is a characteristic pulse widtfWe do not need to V(T )V (414 1,), 2.3

specify a numerical factor in the definition & until Sec.
IV.) It can be shown that Eq1.1) reduces to a system of 1

coupled NLS equations, known as the Manakov equatfons ~ H(ty,t2)= (2m)? ff h(w,,)

as the map strength decreas8s+0). Since the latter equa-

tions are integrable by the inverse scattering transform, they Xexd —iwit;—iwst|dwdw,. (2.9
do not have internal modes in the spectrum of the linearize
problem!>*® However, for an arbitrary finite value & nei-
ther Eq.(1.1) nor (1.2) is integrablet”*8 and thus they may
have internal mode¥.[Note: It was pointed out earli€tthat
Eqg. (1.1) in the limit of weak dispersion manageménihich

is equivalent to the limitS—0) is nonintegrablg. In this

(Ij_et us consider reduction of systef®.1) with V=0 in the
limit S—0. First of all, we note tha is the parameter char-
acterizing a solution of that equation, bubt the equation
itself, becausé depends on the pulse widthsf. Eq. (1.7)].

It was shown in Refs. 8 and 9 that the main-order reduction
. : . of Eq. (2.1) in the limit S—0 coincides with the NLS. Now
work, we show that internal modes do indeed exist for EqSWe derive the first-order correction to that result. In order to

(1.1 and(1.2. _ __explicitly include the small paramet& we perform the fol-
This paper is organized as follows: In Sec. I, we obtamlowing scaling of variables:

a correction to the Manakov equations that follows from Egs.
(1.1) and(1.2) in the limit of weak dispersion management Do=dy/S, t=T/ \/§ (2.5
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with doy and|U| beingO(1) quantities. Since the pulse shape whose derivation is outlined in the Appendix. Thus, Eiql)

and functionH(t,,t,) vary on disparate scaleg, and t

in the limit D(¢)=0(e), €e—0, and Eq.(1.2) in the limit S

<T, respectively, then we can use the following formal ex-— 0, are reduced to the same model, which in the scalar case

pansion:
H(ty,t) =5 8(T1)8(Ty) —Sh o' (T1) 6" (Ty)
+35%h,8"(T1) 8" (Ty) +- -1, (2.6)

whereh; =i [§Adé andh,=— [1A%dé. Then Eq.(2.1) be-
comes

iU,+3doUrr+|UJ2U
=Sh[Uf|U[F+U(UUT)1]
— 3 S?h,[UPUSrt 4UULU S+ 4UTUS,

+2U|U1?+4|U|2Urr+ U2 U*]. 2.7
A simple asymptotic transformation,
U=0-1ShU;1+0(SD), (2.9

eliminates theD(S)-term in Eq.(2.7) and modifies the form

modified form, because th®(S)-term can also be elimi-
nated by simply choosing the constayy in the definition of
A(¢) so as to seh;=0. This condition is just the sma8-

is given by Egq. (2.11). This model describes the
O(S?)-correction to the NLS, that arises in the limit of weak
dispersion management.

A generalization of this result to the vector case is
straightforward. For example, from the vector analog of Eq.
(2.1), one can obtain a system generalizing Efj7), which
we do not present here because of its cumbersome form.
Using MATHEMATICA, we found an asymptotic transforma-
tion,

2
[ (lal?+[r|?)ar+ (qaf +rr3)+al,

U= q+ (2.19

which transforms that system into a simpler form,
ig,+ 3 dotrr+ fs(|q|?+(r[q=0, (2.19
whereq=(q,r)", and the functiorf is given by(2.12.

. lll. INTERNAL MODES IN THE LIMIT S—0
of the O(S?)-term. However, we do not need to compute this -

Here we analytically establish the existence of an inter-
nal mode polarized orthogonally to the background DM soli-
ton. Since we consider EqR.15 as a small deformation of

version of the condition that determines the initial chirp of athe Manakov equations, it is appropriate to reduce it to the

DM soliton; cf. Eq. (4.2b below. In our nondimensional
units (D;L,|=|D,L,|=1), the conditionh,=0 yields

Ag=—3sgnD4L,), (2.9

and consequenthh,=—1/12. Then the following transfor-
mation:

SZ
U=0+ 54 (070" +2dlarl* + 4°07,] + O(S"), (2.10

which we found usingnATHEMATICA , takes Eq(2.7) to the
form

iq,+ 3doarr+ fs(]al>)q=0, (2.11
where
2
fs(X) =X+ =—— (2xXp1+ (x1)?) + O(S). (2.12

24d,

standard form by settind,=1. We also introduce a small
parameter,

SZ
=—< .
n=75<L (3.0
to measure how far the model in question is from the inte-
grable one.

The vector soliton of Eq(2.15) is obtained by substitut-
ing
q=Qu(T)e?2, r=R,(T)e'<?? (3.2

into that equation. Here we have used the subscript notation
to indicate that the solution pertains to EQ.15 with a
given value of the parameter. For the vector generalization

of the scalar DM soliton, the propagation constants ofghe
andr components are equd(=1, and

Qu(T)=coso® ,(T), R,(T)=sinod ,(T), (3.3

Now, Eq.(2.11) is to be compared with the equation for where ¢ is an arbitrary polarization angle, adel,(T) is the
(u)=5u(& T)d¢, that was derived in Ref. 21 from the sca- scalar DM soliton. Foru<1, its form is given by the
lar version of Eq(1.1) in the limit of weak dispersion man- asymptotic expressiof,

agement. Here we refer to the form of this reduced equation
obtained in Ref. 22. The limit of weak dispersion manage-

ment corresponds to setti)( &) = ed(£) in Eq. (1.2, with
all the other parameters bein@(1) and, moreover, with

d(&), rather thanD(¢), satisfying the normalization as de-

tailed in the paragraph following Edq1.1). Comparing our
Egs.(2.10 and(2.12) with Egs.(10) and(11) of Ref. 22; we

P, (T)=Do(T)+ D, (T)+0(u?), (3.9
whered,=sechT and
®,=2[2 sechT —sech T—secR T]. (3.5

To study analytically the spectrum of elementary excitations
on the background of the DM soliton in the vector model, we

see that the two sets of equations coincide, except for thassume the expansions,

term gqrr77, Which is missing in our Eq(2.10. However,

this term is recovered once we observe that the relation be-

tween(u) andU is given by

U=(u)—5S*hy(u)rrrr+O(S?), (2.13

q= eiZ/z[(I)#(T) +[1(T) = @o(T) Je2

+eT(T)+¢5(T)]e™ ] (3.6a

and
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r= eiZ/Z[ ¢+(T)efi)\2/2+ I)[l*(T)ei)\Z/ZJ, (36b) Kpar= — 11L

with |@1,¢0,4",¢|<|® ,|. Here we used the rotational
invariance of Eq.(2.15 and thus se¥=0. Linearizing Eq. Thus, we conclude that a nontrivial oscillatory mode does

(2.15, we arrive at two uncoupled linear problems, not detach from the edge of the continuum fox@<1.
Therefore, no internal mode copolarized to the background
Lrg1=Apot4uMy(T)ey, DM soliton exists for a sufficiently small map strength. Fur-
Lovo=No1+4uMo(T)eg, 3.7 thermore, SiﬂCG(.paﬁ&O iq_this case, th@(ﬂ)—tgrm in.Eq.
(2.195 destroys integrability of the model, which coincides
and with the conclusion obtained earlier by different
71820 & cimni .
Loth™ == Ng™ +4uMy(T) o™, (3.9 methodsl. ' A S|mlla_r result was founq recently for opti
cal solitons in quadratic resonant materf4ls.
where Linear systeni3.8) describes an orthogonal perturbation

2 2 to the DM soliton and, in fact, reduces to two uncoupled
=—97+1— =—97+1— . . .
Ly=—07+1-6sechT, Lo=—d7+1 25ecHT&3 9 Schralinger problems. Sincey (T,—\)=¢"(T,\), in
' what follows we consider only the equation foF . Its spec-
and trum for ©=0 consists of a single continuum branch with
TV= 3P D + 163D it 24022 A=1 and a single bound state at=0. This bound state,
Ma(T) o1 ororT oror " ~dy(T), corresponds to a rotation of the vector DM

+16P3D gror+ 4D, (3.108  soliton by a small angle®. Since theO(u)-term preserves
5 - the rotational invariance of the equation,it cannot alter this
Mo(T) =P P +4D;P o7+ 8PPy (3.10B  bound state. However, it does deform the edge of the con-

; ; 9
Linear systems$3.7) and(3.8) with =0 occur in the analy- tinuum, provided thatkon7 0, wheré

sis of perturbed Manakov equatiotfstor u<1, they can be

analyzed by the bifurcation theory for the linearized NLS * N N

and linear Schidinger operators, respectively. Kortzzj_wd-r% Mo(T) o (3.1
Linear system(3.7) describes a perturbation in the same

vector component as the DM soliton. Far=0, its spectrum N . o ) )

consists of two branches of the continuous spectrum witfNd¥o (T) =tanhT s the limiting eigenfunction at=1. Us-

I\[=1 and four bound states of the discrete spectrum, all"d MATHEMATICA, we find that

located ai\=0. These neutrally stable bound states represent

infinitesimal translations of the DM soliton’s propagation Kon= 2.

constant, phase, velocity, and center. Thgu)-term does

not change the discrete spectrum but deforms the edge of t : . . .
continuum atn==*1, provided that a certain bifurcation pa- %e?c(ezxfg) Ifie?‘gfrlgvtﬁ,eng;;enIgfq[ﬁzsctgriiEﬁgﬁgbssggtrfr::nal: q
rameterk,,, is nonzero, where T

hence destroy integrability of the perturbed Manakov equa-
* tions, but also a discrete eigenvaldg=(1—u?k2,) de-

Kpar= f_de(Q"loMl(T)‘PlO”L P0oMo(T)¢o0):- (31D aches from the edge point=1. The corresponding bound

state(internal modg WV ,(T) is an odd inT, one-node solu-

Here ¢15=1—-2 sechT and ¢o=1 are the limiting eigen- tion of Eq. (3.8), whose exact form can be numerically cal-
functions of the continuous spectrum for-*1. The differ-  culated from Eqs(3) and (4) of Ref. 19.

ence between the nondeformed and deformed edges of the [et us now briefly discuss the role of this new internal
continuous Spectrum is that the former contains the |imitingnode. First, as pointed out in Sec. 1, it can trap some part of
eigenvalues, along with the corresponding eigenfunctiongadiation polarized orthogonally to the DM soliton, so that
(in this case, they are, respectively=*1 and ¢19,¢00,  this radiation would remain in the vicinity of the soliton over
whereas the latter does not contain the limiting eigenvalueg much longer distance than it would if the internal mode
and eigenfunctions, but contains those arbitrarily close tquere absent. Second, we conjecture that a superposition of a

them:? Integrable systems are known to have the edges ofcalar DM soliton and the orthogonally polarized internal
their continuous spectra nondeformed, while a deformegnode, which has the forr(8.2) with K= 2«2, and

edge is an indication of nonintegrability of any given system. or
Returning to Eq.(3.1D), if kpa>0, then a new bound
state with the eigenvalug= *(1— ,uz;cﬁar) arises from the
edge of the continuut?? If «,,<0, a new bound state
does not appear. Yet, the edges of the continuum are devhere v<1, is a member of a new family of asymmetric
formed, so that pointa==*1 no longer belong to it, which vector solitons of Eqs(1.1) or (1.2). A numerical proof of
means that further bifurcations for nonzero but smakre  existence of such family of asymmetric solitons would re-

N

Q,=®,(T)+0(»?), R,=vV¥ (T)+0(+*), (3.13

not possible. quire having a fast algorithm of finding stationary solitons of
We evaluate the integral in Eq3.11) using MATH- Eq. (1.2), which we do not have at the moment. We postpone
EMATICA and find that further qualitative discussion of this issue until Sec. V.
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IV. INTERNAL MODES FOR ARBITRARY MAP
STRENGTH

For arbitrary values of the map strength, it is more con

Oscillations of dispersion-managed solitons 543
Equations(4.1)—(4.4) illustrate the fact, mentioned in

Sec. |, that the only parameter of the family of scalar DM

solitons isTg, or, equivalently, the map strength, which we

define here as

venient to consider equations written in the frequency do-

main, and then transform the solution back into the time

domain by inverting Eq(1.3). Thus, below we numerically
determine internal modes of Edl.2), linearized on the
background of a DM soliton.

First of all, owing to the rotational invariance of these

equations, we are free to take the background soliton bein

polarized along thé\-component. Then the linearized prob-

S=1/(2T3). 4.5

This quantity is by a factor of In2 smalfethan the map
strength originally introduced in Ref. 11. Thus, in what fol-
lows we consider botB , andks, as functions of5, and also
Barametrize the family of internal modes by this quantity.

A. Orthogonal internal modes

lem splits into two uncoupled ones, which are counterparts

of Egs.(3.7) and (3.8). Next, since we could not efficiently

The linearization of Eq(1.2) for the orthogonal internal

determine the exact shape of a stationary scalar DM solitodinodeb(w) reads

we have to approximate it by a Gaussian. In selected cases,
we verified that including corrections that arise due to the
next Hermite—Gaussian component in the expansion of the

DM soliton shapé&;?® changed our results only slightly.

Without loss of generality, we set the maximum ampli-

tude(measured in the time domaiof the Gaussian to unity.

In the frequency domain, the corresponding approximate

shape of the DM soliton issee, e.g., Ref.)6
To

2

=Ao(w) exfiksoz]. (4.1)

Here T, is the minimum width of the Gaussian in the time
domain, which is related to the average dispergigrby the
following equation(see Refs. 3, 2, and references therein

1
Ao(z.w)= exp[— 5 (0To) + ke

Do=T3Rel,/v2, (4.2a
wherel, is obtained from
1 1+iA/T3\ ™2 G(¢)d
'n:f : 2) © 54, ~0,1,... (43
o \1-iA/Tg)  J1+A%T]

Integralsl,, appear in expansion of a DM soliton over the
basis of Hermite—Gaussian functiohg/e remind the reader

A+ %wz)b(w)=f do'b(o KV (0", o),

( ksol_ 2

(4.6
whereB(z,w) =b(w)exdi(ks—\)z] and
K(l)(w’,w)=f do"Ag(0")A (0" + 0" — o)
Xh[(0'—w)(0"—o)]. 4.7

An eigenvalue\ =K,,4is that of an internal mode, provided
that the functionv(z,t), found from the corresponding
eigenfunctionb(w), is localized int. For other values oK,
v(z,t) oscillates witht as|t|— .

The stationary DM soliton is an even functiontphence
Ao(w)=Ao(—w) and the kerneKM(w’,w) has a symme-
try

KW (o' o)=KY(-o',—w). (4.9

Another symmetry oK) (w’,w) follows from the relation
h(—x)=h*(x), using which one obtains

Ko o)=KY*(w,o"). (4.9

This means that the Fredholm equati@n6) is self-adjoint,
and its eigenvalues are all real. Symmef4y8) means that
b(w) andb(—w) satisfy the same equation, and therefore

that we use the normalization of the time variable such thagne can look for even and odd internal modes separately.

|D,L4|=|D,L,|=1 (cf. Sec. ). The values of,, depend on
the initial constantd [cf. Eq. (1.6)], which is found from
the equation

Im1,=0. (4.2b
The soliton propagation constait,, is related toT, by®
Kso= (1IAW2)(1g—1,14). (4.9

For a lossless fiber, whei®(£) =1, all integralsl,, can be
evaluated explicitly. Then, E@4.2b yields the value for\,
as given by Eq(2.9), and Eqgs(4.29 and(4.4) become

p— | 1+(1+4THY?
0=Ve o (rrarh ™ N T 2w
and
TS 2 | 1+(1+4Tg)Y?
= - —+ e
Y B A 1 AL NP v

This circumstance is used to reduce the computational time
of solving Eg. (4.6) numrically, since for a mode with a
certain parity, this equation can be rewritten as

D
( I(sol_ At ?O wZ) bo,e(w)

:L do'bo (0 )KG o' ), (4.10
wherew>0 and
Kido o) =KD (o' o) TKD(0',—w). (41D

The label “o” (* €") pertains to oddever) modes. Equation
(4.10 is solved by replacing the integral by a finite sum
(see, e.g., Ref. 26that extends over the sdiw,=(n
—1)6@}22""1X for some dw and n,,5. The discrete vector
f)c,,e={b(wn)}sz‘lx is a solution of a linear algebraic eigen-
value problem,
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TABLE I. Orthogonal internal modes. weakly localized. The critical value of the map strength cor-
Map strengths (kodo Tk (ko)oK responding thO_:O is Scr~3.28._ForS> S_u, we als_o in-
creasen,,, to verify the asymptotic behavior of the internal
0.1 0.998 modes. All the calculations are performed for the lossless
8::5 g:g?g fiber [G(£)=1], but exactly the same procedure can be
0.75 0.931 used, and qualitatively the same results are expected, when
1.0 0.873 the fiber is periodically amplified. We verify that there al-
15 0.745 0.979 ways exists an even eigenfunction wiiw=0; deviations
2'2 8'2‘7“2" g'gig 0.969 06876418 0.918 from the exact zero, for which we always foundkgg
30 0519, 0.734 0.659, 0.786 <7%, are attributed to the fact that the background solution
+5 more modes +5 more modes  Was not an exact DM soliton. It is also interesting to note that
3.28(~Sy) 0.496 0.617 for S>1, the neutral mode withh~0 has “wings” very
- 0:7; more (?) o g;more(?) similar to those of a stationary DM solitoisee, e.g., Refs.
40 0.448 ' 12,10. That is, this neutral mode, whose shape must be ex-
4.5 0.418 actly that of a stationary DM soliton, “tries” to be of the

— , _ proper shape even though the background solution is not.

a;% iﬁcicrr,ngndtje(jsezrzrﬁstt}:c?3|Iocallzed. Eigenvalues of only the first one or For D,>0, we find the eigenvalues of internal modes by
looking for them in the internal (R,,), as explained above.
The number of the internal modes increase$ approaches
the critical value S;,, where the average dispersion changes

Koo+ %202— 50)}“(8()%\,\, Bo,e:)\ﬁo,ev (4.12 sign.. For a g_iverS<Scr, the_ number of .oscillations i,n the

profile of an internal mode increases with the mode’s num-

ber. Also, the eigenvalues of internal modes are seen to oc-

where K5 dmi—Ko(onon) and o?=diag@ies... oS half, k2 kso), Of the allowed inter-
wp, a) The weight matriXV depends on the approximation py only - PP Psob S0l
m val. For S=3.28 (corresponding to the exact valug,

by which the integral is converted into a finite sum, e.g.,_ 4 .
when the Simpson rule is useW/=diag1/3,4/3,2/3,4/3,..., de3.elzr%<slgnn)' thle:grunmbe:rgilr\wﬂtlirg?gnigdoe; df(;l;rédlztrgcgrlly
2/3,4/3,1/3. System(4.12 can be solved using any com- P max: max e

. . |Iocalized modes, while fon,,,,=241, the number of each
puter linear algebra package. Let us note that the matrix el- : . . .
type of modes increases to 26. With our numerical resolution

ement_s Kg?g)m“ can be effi_ciently evaluated by any stgndard(lof 16)we cannot see any oscillating tails; all the 26 modes
numerical integration routine using the known analytical €X-2re localized. Therefore, we think that 8= S,,, an infinite

pressions foh(w; wz) andAg(w). . . number of internal modes exist. FB, <0, all the eigenval-
Before presenting the results of numerical solution of . .
Eq. (4.12), let us discuss what its spectrum is expected to o> occupy the reglon—(oo,_ks_ol), and the mte_rval (G0
look like. As noted above, this spectrum is purely real. More_coptalns eigenvalues pertaining to .bOth Iocallzed' qnd nonlo-
over, \=0 is always an eigenvalue, corresponding to thecahzed modes. In that case, we fII’S.t @k ax suff|C|en_tIy
rotational invariance of the DM soliton. If we now assumesmaII (Nmax=81) .and visually e>_<am|ne.all of the eigen-
that the inverse Fourier transform of the integral term in Eq.,mOdeS' Whoge eigenvalues are in that-mterval; those local-
(4.6) vanishes faster than the linear one ftjr—, as is the ized are_the internal modes. Next, we increagg, to 509
case for Eq(3.9), then, forD,>0, the continuous and pos- and _verlfy tha_t these modes remain elt_her_ Ioca!lzed or
sible discrete eigenvalues occupy the regianske, and 0 quasfllocallz_ec_ll._e., develop very small oscillating fcalls ex-
<M\ <Ke,, respectively. Any internal mode is to detach from tending to infinity. In fact,' we flnd that all of the internal
the edge poink =k, of the continuous spectrum. Now, to Mmodes do become quasilocalized <0, whereas the
our knowledge, the above assumption about the asymptotfieeutral mode withh~0 remains localized even then, at least
behavior of the integral term in E¢4.6) or its Fourier trans-  Within our numerical resolution. Thus, the internal modes do
form has not been rigorously proven. Nonetheless, the resulf¥ot exist forDo<<0 in the strict sense. Nonetheless, for the
we find for D,>0 are as predicted above. FP<0, the reasons that we explain shortly, we still list the eigenvalues
situaton is not so obvious, and it will be clarified as we Of @ few lowest quasilocalized modes.
proceed. Finally, let us mention that the Fourier transforms ~ As it was explained in Sec. I, the main role played by
of the odd and even solutiors, . are counterparts of the internal modes in the dynamics of a soliton is that they trap
following solutions of the linear Schdinger equatior(3.8)  part of radiation and force it to remain in the soliton’s vicin-
with u=0; exdikT](—ik+tanhT)*exd —ikT](ik+tanhT), ity over a very long distance. In particular, if a perturbation
respectively, wher&= A —1. of the soliton’s profile initially coincides with an internal
The normalized eigenvalues of odd0”) and even mode, then this perturbation preserves its shape over a long
(“€”) internal modes, obtained by numerically solving Eq.distance. This is illustrated in Figs. 1-3, which are obtained
(4.12 with sw=27/(MT,) andn,,,=81, are presented in by numerically solving Eq(1.1) with e=0.2 andG(§)=1
Table 1. We useM =100 for all values ofS, except forS  over 600 map periods. Figure 1 shows, f&+ 1.5, evolu-
=0.1, for which we have to use a wider interval in titvath tions of the odd internal modé-ig. 1(a)] and a perturbation
M =120), because for smal§ the internal mode is very [Fig. 1(b)] whose profile at the chirp-free point of the map is
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FIG. 1. Evolutions of the orthogonal odd internal mddgand perturbation
(4.13 for S=1.5. Solid, profile ag=600_4,; dashed, initial profile.

voe(1—2t%/T3)exd —t2/(2T3)].

(4.13

Perturbation(4.13 is orthogonal to both the odd internal

mode and the Gaussian approximation of the neutral mode

Oscillations of dispersion-managed solitons
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0.08

0.06

IVl .04

0.02

0.06

V6,04

0.02

0.06

(Here orthogonality is used in the sense of a functional inner
product as in, e.g., Ref. 16, rather than in the sense of polar

ization) It is also approximately orthogonal to the even in-
ternal mode(cf. Table ), because the latter is only weakly
localized(its eigenvalue lies close to the edge of the continu-

ous spectrum Thus, perturbatiori4.13 consists mostly of

the continuous spectrum eigenfunctions, and is seen to cor

0.02

Vi o.04+

siderably spread out over 600 map periods, while the interna'®

mode remains almost unchanged over the same distanclg

Figures 2a) and Zb) show similar evolutions, but fos
=3. In this case, a significant part of perturbati@nl3 is
found in the firsteveninternal modd compare Figs. () and
2(c)], and therefore it decays much less than in Fig).1
Finally, Figs. 3a) and 3b) show evolutions of, respectively,

a localized initial perturbation, which was obtained by “cut-

for S=4.5, and a perturbation of the for(#.13 for the same

0
-8
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G. 2. Evolutions of the lowest orthogonal oda and even(c) internal
modes and perturbation4.13 (b) for S=3.0. Solid, profile at¢
=600. qp; dashed, initial profile.

region whereD;<<0, so as to ensure that only one quasilo-
calized mode has tails whose amplitude is much less than
ting off” the oscillating tails of the quasilocalized odd mode that of the mode’s central part. That is, all the other modes
are indistinguishable from the modes of the continuous spec-
value ofS. This value was chosen sufficiently “far” into the trum. Figure 3 clearly shows that a perturbation that is ini-
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FIG. 3. Evolutions of the orthogonal odd quasi-localized mdaeand
perturbation(4.13 (b) for S=4.5. Solid, profile até=600L,,,; dashed,
initial profile.

tially close to even a quasilocalized mode decays at a much

slower rate than a perturbation consisting of an arbitrary )
combination of the continuous spectrum modes. ThusOMY if
quasilocalized modes can play similar part in the dynamic
of a DM soliton forDy<0 as frue internal modes play for @mple,

Dy>0.

B. Parallel internal modes

T. |. Lakoba and D. E. Pelinovsky

K(w', o)= f do"Ay(w") A0’ — 0"+ o)

Xh*[(0'— ") (0—o")], (4.19

and

0 1 0 —i 1 0
71701 o) 727l o) *Tlo -1

are the Pauli matricegmatrix o is referred to later on
Kernel K has the following symmetries:

K0, 0)=K? (-, -), (4.16
K0 o)=K?(w,o"). (4.1

Symmetry (4.16 means that even and odd eigenmodes
can be considered separately. They are counterparts of the
following eigenfunctions of the linearized NLSp(T,K)
+=y(—T,—K)+ (T, — k) = (—T,k).?” Symmetry (4.19

has no obvious consequences. Replacing the integral term in
Eq. (4.14 by a discrete sum, we obtain for the vector

é=(a(w1),...,a(wnma),a*(wl),...,a*(wnma))

Xexg —iNz],
the following linear algebraic equation:

D D
)\éz—[diag{ksoﬁ 7%2,— Keort 70(:)2 ]a
2KMwW  KPw
_Row —2rw/” (418

Matrix K@) is defined similar t& ") and is symmetri¢see
(4.17], whereask V) is Hermitian. As a collateral remark,
serving to make comparison with the linearized N{'Sye
note that the solutio,q; of an equation adjoint t¢4.18) is
related to the solution of Eq4.18 by

2

G,q=034%, O3=diag(1,1,..,1,—1,—1,..,— 1),

~ v

Mmax Mmax

(4.19
K@ is also Hermitian. This can only be so when all
{he elements of this matrix are real, which occurs, for ex-
in the case of a lossless fiber, whenéx)
=sin(/2)/(x/2). In the NLS limit(i.e., S—0), K@ is also
real, even for a periodically amplified fiber.

Since the eigenvalue proble@.18) is not Hermitian, its
spectrum cannot be guaranteed to be eeptiori. However,
in all our numerical simulations, we found that it is indeed

The procedure of finding internal modes parallel to theréal, except for the eigenvalues corresponding to the two
DM soliton is similar to that described above. Substitutinglowest odd eigenmodes. If the exact stationary DM soliton is

A=(Ap+a)exdiksz], B=0, |a|<|Aq| into Eq. (1.2) and

substituted forA, in Eq. (4.16 or (4.18, these equations

linearizing, one obtains the following equation for the vectorhave four neutral modes with the same eigenvale® (cf.

a=(a,a*) " exd —i\z]:

Na(w)=—o03

D
Keot 7%2 a(w)—i—J' (203K P (0, 0)

+io,KP (0" 0w))a(w)do’,

(4.19

where

Sec. lll). However, since in our procedurdy, is not the
exact DM solition, this fourfold degenerate eigenvalue splits
into four simple eigenvalues located around zerda (
|<0.1kg,). Two of them, corresponding to the even neutral
modes, remain real, while the other two, corresponding to
the odd eigenmodes,become imaginary. A similar fact re-
garding the latter eigenmodes was earlier note(Rief. 3.
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TABLE Il. Parallel internal modes. 0.06 T T
Map strengthS (kmodge/ksol (kmodgo /ksol
0.7 0.995
1.0 0.917 o
15 0.675 0.935 Bo.0at
2.0 0.472, 0.867 0.699, 0.971 £
2.5 0.335, 0.652 0.511, 0.755 ©
+2 more modes +2 more modes GEJ
3.0 0.244, 0.484 0.379, 0.560 c
+8 more modes +7 more modes %0 ool
3.28 0.207, 0.409 0.323, 0.469 _
+o0 more (?) +o more(?) =
3.5 0.182 0.285
4.2 0.137 0.215
aSee footnote in Table . 0
-8
(a)

0.06

For Dy>0 the continuous spectrum occupies the
branches(— o, —k¢y] and[kg,,), and thus any localized
modes may only be found inside the intervat Ks,Ks) -

For Dy<0, the two branches of the continuous spectrum
intersect over this interval, and therefore the localized Bo.04}
modes can only be found by visual examination, as ex-
plained earlier for orthogonal eigenmodes. Our numerical re-
sults are summarized in Table II. Since the eigenvalues al-
ways come in pairs ast\,%’ we only list the positive
eigenvalue. The corresponding eigenfunctions are related b
a(—\)=o,a*(\).?” Note that in contrast to the case of or-
thogonal internal modes, the first parallel internal mode that
detaches from the edge of the continuum is even(or w).
Similar to the case of orthogonal modes, there appear to b
an infinite number of internal modes 8= S, while these -8
modes becomes quasilocalized #r S, . (b)
. Numerical V.enflcatlon of Iong-tgrm stability of parallel FIG. 4. Evolutions of the lowest ever) and odd(b) parallel internal modes
internal modes is somewhat more involved than that of Orgyer ¢=100a.,,,, (e=0.1) for S=2.0. Solid, profile até=1000
thogonal modes. The Gaussian approximation for the DMiashed, initial profile.

soliton, which we have to use, is a superposition ofakact

DM soliton and some combination of internal modes with ) ) ) )
small amplitudes. These modes evolve each with its owf*here\ is the corresponding eigenvalue. Then, calculating
propagation constant, thus making extraction of the desire§eParatelyevolutions of two initial perturbations, one with
one mode not a straightforward task. Furthermore, the ap®’ 0 an2d the other witll =0, one can obtain profiles of both
proximately determined internal mode contains a small com@ =& for arbitrarily long distances of propagation. The
ponent of the exact neutral mode. The latter, when added tegsults obtained in this way for evolution of an initial pertur-
the background soliton, leads to linear increase of its overbation corresponding ta+a® and fors=2.0 are shown
all phase, which becomes appreciable over long distanced! Fig. 4. Note that if one only calculates evolution of just
Thus, to compare the initial and final mode profiles, the com9n€ of the above perturbatiort@ith either c=0 or d=0)
ponent arising due to the slow accumulation of the soliton’s?nd then attempts to use the known values of X@sénd
phase should always be subtracted. Novas#f(a®,a®)T  Sin(\2) to extracta®’+a®, one may fail to achieve that

is any eigenfunction of Eq(4.14), then the corresponding 1S sufficiently large, because of limited accuraspme few
initial condition for the scalar quantity is (c+id)a® percent with which the eigenvalues are determined.

+(c—id)a®", wherec andd are real constant<.For the
case of a lossless fiber, the componaffs? of an internal V- SIMULTANEOUS EXCITATION OF SEVERAL
mode can always be taken to be real. Then the evolution dNTERNAL MODES

m

0.02r

lul of internal

map:

such a perturbation igcompare with Eq(3.63] Here we study nonlinear dynamics of small orthogonal
perturbations to the DM soliton. A generic perturbation is a
a=c[a(aV+a?)cogrz)+i(aY—a?)sin(\z)] superposition of localized modes, both netral and internal,

. . and modes of the continuous spectrum. The latter decay as

(D_ 52 (14 4(2)

+dli(a—a")cogrz)+ (@™ +a)sinAz)], O(z '?) and thus can be neglected in comparison with the
(4.20 long-living localized modes. In other words, after the con-
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tinuous spectrum component is “washed out” over a dis- £1W3=(1_w’u)w4+4Mle3+q)luf’S[q)i](q)M\pM),
tanceO(e ?), there is left a “skeleton” of the initial per- 5.
turbation, consisting only of the localized modes. The

motivation for studying nonlinear interaction of these modes Lows=(1—w,)W3+4uMow,, 5.8

is provided by the results of a recent pafewhere such pere operatorg, , £, and functionsM, , M, are defined in

interaction. was considgred for the case of solitons in &gs. (3.9 and(3.10, andfx](y) is the Freshet derivative
constant-birefringence fiber. The authors of Ref. 28 showed {,o operator functiorig(x). Now, since the vector soliton

that the lower-order internal modes, orthogonal to the back(3_3) is an exact solution of Eqg2.15, we find an exact

ground scalar soliton, may suppress higher-order ones by, tion of Eq.(5.5) asw;=—3® ,(T). The correction term
causing them to decay into continuum radiation €xponeny, (Ty represents the second-order correction to the asym-
tially fast. Thus, in the case considered in Ref. 28, only theatric soliton in the asymptotic expansiof8.4). The

lowest-order localized mode from the initial perturbation z-dependent terms i), are shown below to lead to interac-
would survive and form, together with the background scalat;,, ang oscillatory dynamics of the two orthogonal modes.
soliton, a new vector soliton. The main result obtained in thisgjce the eigenvalur=1—k, lies in the gap of the con-

y23

section is that in the case of a DM soliton of HG.1), the i ,0us spectrum of the linear eigenvalue probi@ny), the
nonlinear interaction among the localized modes does n%nctionswg,(x) andw,(x) are real and localized ifi. Thus,

lead to suppression of any of them, at least on the length, [adiation occurs at the ord®(»?) of the asymptotic
scale considered in Ref. 28. Instead, the modes undergo O8xpansion.

cillations that do not decay visibly over a few thousand map
periods, which by far exceeds the length of arns-oceanic _ _
fiber link. Re=01(25, T)€¥2+ v,(2,,T)eku??
We consider the simplest case where the initial pertur- 2 % (29— % 2 i1

bation consists of only two orthogonal modes, and further T eicsvs(T)e! e 2 el cou (e (22,
restrict our analysis to the limit of smali where fully ana- (5.9
lytical treatment is possible. For a finite nonzero value of the.l_he first two terms inR. have the same fast-scale
map strength, similar considerations can be shown to giv%—dependence as the Iowesst-order terdd). It is well-
que_llitatively the same res_ults. F@<1, the model is d_e- known (see, e.g., Ref. 3%hat in such a case'coefficien@
Zgﬁbgd:bi Er?éiis)sz/lzsw:slclz stgcuslﬁ t?ﬁ:??:&ggg;ﬁg;i and v, will grow Iinearly on the fast scale un.Iess certain
turb’ati%n to the DM soliton(3.3) vv'ith.0=0 has the form secular conditions are imposed on the amplitudgsc,.

) '. . These conditions are found using the method of Ref. 28,
given by Eqgs.(3.2 and(3.13), with v being a small param-

The correction ternR;(z,T) has the following form:

eter measuring the size of the orthogonal component. Using ~  dc, 5
an asymptotic multiscale method, we extend this form to 'ald—22:512|02| C1, (5.10
higher orders inv as follows:
: dc
q=e"Qo(T)+1°Qx(z,T)+0(vH], (5.9 i012d—z2 =(821/Ca|?+ 82dcyl?)c,. (5.11
2
— 3 5
r=vRy(z,T)+»"Ry(2,T) +0(7), (5.2 Here the parameters are
whereQ,=® ,(T) and " "
. ) — 2 — 2
Ri=Ci(2) 0, (e Co2) ¥ ,(TEM2 (53 @ | ata=0. = | wiaT-o,

The first term in Eq(5.3) is the neutral mode and the second %
one is the internal mode. They have even and odd parify in 81p=— f dT[PLF Y PL] (V5 +2D ,w,)
respectively. The parametky, = w?rk2, (cf. end of Sec. II) o
is the propagation constant of the internal mode, and the +q>M\pr’s[q>fL](<Dﬂ‘lfﬂ+ 2® ,w3)],
amplitudesc; andc, are constant on the scafebut may
evolve on the slower scalg;= 1v°z.

The correction ternQ,(z,T) to q is induced by a term
that is quadratic in the orthogonal perturbatign

Q2= [ca[Pw(T) +[cal *wa(T) S22~ — f_de\Ififg[@,i](\P%z@#wg).

+C1C5 (Wa(T) —wy(T))e't kw2

091= — f,xdTCD#qjuf,S[q)i](q)ﬂq,#—’_ 2CI>MW§),

All coefficients «; and &;; are real. Therefore, at order the
+ Y C(WE(T)+wj(T))e (k22 (5.4  distancesz~O(v?), where z,~0(1), Egs. (5.10 and
(5.11) describe self-consistent oscillations between the two

Herew;(T) to wy(T) solve the equations orthogonal modes

£1W1:4,U~M1W1+(D#f's[‘bi](cbi), (5.9 C,=C e Mz2 ¢ —C alv?Akszl2 (5.12

— ’ 2 2
LW, =Apu MW+ @, fJDL1(V), (5.6)  whereC,,C, are constant on the scate and
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1 0.145
Aky=— o 512|Cz|2’
1 ()
©
(5.13 g
= 0.14
1 2 2 g
Aky=— — (6,1 Cq|*+ 62J Co|*). 3
ao €
Zo.135}
Equations(5.12) are the main result of this section. They <

show that neither of the modes decays on the scaled
2,(0O(e *»™2)). This is the key difference between the in-
ternal modes dynamics in the present model and that in thég
model considered in Ref. 28. The reason for the different<
behaviors of the two models is the following. The cross-

tude

0.13

terms (proportional tocjc, and c,c3) in Eq. (5.4 have 0.125] 2000 40'00. .eoloo 3000 10000
propagation constants; (1-k,)/2, that lie insidethe gapof (a) Propagation distance, §
the continuous spectrum of the linear problé€dn?). There- 0.15 : :

fore, the corresponding termsg andw,, are both localized.
On the contrary, for the model considered in Ref. 28, propa-
gation constants of the cross-terms lie inside the continuous
spectrum proper. Therefore, the counterpartsvgfand w,
for that case are not localized and describe radiation with &
certain frequency generated away from the soliton. This ra- —
diation causes the higher-order internal mode to lose its en
ergy exponentially fast. Such rapidn the scale,) decay of
that mode was confirmed by numerical simulatiéhs. 0.05
Now, similar considerations suggest that radiation-
mediated decay of one of the localized modes can also taki
place in our model, but on a much longer scale. Indeed, the
last term in expressio(b.9) for R; has the propagation con- 0
stant—(1—2k,)/2 that lies inside the continuous spectrum b -50
of the linear problen{3.8). Therefore, the correction,(T)
IS nOt localized I_nT and corresp_onds to Ijadlatlon by the FIG. 5. (a) Evolution of the amplitude of théodd) internal mode, recorded
solition at a certain frequency. This correction can be shown every 50th map period. Other parameters are specified in S¢o) Vhe
to be even inT; thus the radiation is expected to have thatinitial (dashed lingand final(solid line) profiles of the same mode.
parity and magnitude of ord@®(»°%). However, such a weak
radiation might only lead to very small effects which are . . s .
definitely negligible for any practical situation and, more- order in v This is a str'ong |nd|c§1t|on at that a stationary
over, whose resolution is beyond our numerical capability.asymmemc DM soliton indeed exists.
To illustrate this, we simulate propagation of a backgroun
DM soliton with S=0.5 and the orthogonal component givenq”' CONCLUSION
by Egs.(5.2), (5.3 with v=0.13 over 10 000 dispersion map In this work, we have demonstrated that both orthogonal
periods. Other parameters in Ed..1) are e=0.2 andG(¢) and parallel internallocalized modes exist on the back-
=1. Our numerical simulations clearly show that both modeground of a DM soliton. Our analysis was performed for the
undergo small oscillations that do not decay visibly overso called low-energy limit, where the nonlinearity and aver-
10 000 map periods. Figure 5 shows this for the odd internahge dispersion affect the soliton evolution on a much longer
mode; changes in both the amplitude and shape of the neutratale than the local dispersion does. We found that the or-
mode are even smaller. Let us specifically note that the smathogonal modes exist for arbitrarily small map strength,
“bumps” seen in Fig. Bb) are not related to the radiation whereas the parallel ones exist only when the map strength
vy4, because only the odd-parity part of theomponent is exceeds a certain threshold value. As the map strength ap-
shown in that figure. Instead, those “bumps” are likely to be proaches another critical value where the average dispersion
the result of the interaction between the weakly localizedchanges its sign from positive to negative, the number of
internal mode and the absorbing boundary used in our simunternal modes increases. Our numerical results suggest that
lations. for this critical value of the map strength, the number of both
To conclude this section, let us remark on existence of arthogonal and parallel internal modes is infinite. As one
stationary asymmetric soliton, mentioned in Sec. lll. A lim- moves into the parameter region where the average disper-
iting case of such a soliton would be the given by E2313), sion is negative, these modes become quasilocalized, i.e.,
with its r-component consisting of a single internal mode. Ifthey develop oscillatory tails fdt|—c. Yet, the numerical
we repeat the analysis of this section while setting 0, we  simulations demonstrate that if an initial perturbation to the
do not find terms that can cause the soliton to radiate, at angxact DM soliton has a shape similar to that of a quasilocal-
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ized mode near the soliton’s central part, then the decay rat€inally, substituting Eqs(A2) and (A3) into Eq. (A1) and

of such a perturbation into continuum radiation is very small.using the definition oh,, found after Eq(2.6), we arrive at
We have also considered propagation of an orthogondkq. (2.13.

perturbation that consists of more than one internal mode.

FOI’. the purpose of studying a long-term eVO_IUt,Ion’ any 9€-1y 3. smith, N. J. Doran, W. Forysiak, and F. M. Knox, J. Lightwave
neric perturbation can be thought of as consisting only of a Technol.15, 1808(1997.
finite number of internal modes, because the components ofS. K. Turitsyn, V. K. Mezentsev, and E. G. Shapiro, Opt. Fiber Technol.:

the continuous spectrum are “washed out” over shorter dis-,Mater., Devices Syst, 384 (1998.
t We h h that h turbati hibit T. I. Lakoba and D. J. Kaup, Phys. Rev.5B, 6728(1998.
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