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We study the extended Korteweg—de Vries equation, that is, the usual Korteweg—de Vries equation
but with the inclusion of an extra cubic nonlinear term, for the case when the coefficient of the cubic
nonlinear term has an opposite polarity to that of the coefficient of the linear dispersive term. As this
equation is integrable, the number and type of solitons formed can be determined from an
appropriate spectral problem. For initial disturbances of small amplitude, the number and type of
solitons generated is similar to the well-known situation for the Korteweg—de Vries equation.
However, our interest here is in initial disturbances of larger amplitude, for which there is the
possibility of the generation of large-amplitude “table-top” solitons as well as small-amplitude
solitons similar to the solitons of the Korteweg—de Vries equation. For this case, and in contrast to
some earlier results which assumed that an initial disturbance in the shape of a rectangular box
would be typical, we show that the number and type of solitons formed depend crucially on the
disturbance shape, and change drastically when the initial disturbance is changed from a rectangular
box to a “sech”-profile. © 2002 American Institute of Physic§DOI: 10.1063/1.1521391

It is well-known that for the classical Korteweg—de Vries  |. INTRODUCTION
equation, the long-time outcome from a localized initial
condition is a set of rank-ordered solitons. This is most
readily established by considering the associated Schro

dinger scattering problgm, whose' eigenvalues in the ,d's' that the Korteweg—de VriedKdV) equation, extended to in-
crete spectrum determine the solitons. Here we consider clude a cubic nonlinear term, with the coefficient of this

the analogous problem for an extended Kortewegde  cybic nonlinear term of the opposite polarity to that of the
Vries equation, which has an additional cubic term whose  Jinear dispersive term, can support a “table-top” soliton as
coefficient has the opposite polarity to the coefficient of the limiting-amplitude member of the soliton famflyFor a

the linear dispersive term. This equation supports a fam- localized initial disturbance, the inverse scattering technique
ily of solitons, ranging from small-amplitude ones similar ~ predicts that, for the KdV equation, the long-time outcome is
to those of the Korteweg_de Vries equatiorh to |arge_ a finite number of solitons, irrespective of whether the initial
amplitude “table-top” solitons. Like the Korteweg—de  disturbance i_s a rectangular bq>_( or of a “sech”-profile. How-
Vrries equation, this extended equation is also integrable, ©Ver, according to the prevailing theory for th“e extend?d
and has a Lax operator and an associated scattering KdV (eKdV) equation, only one Iarg_e—:_implltw_je table-top
problem, whose discrete eigenvalues again determine the soliton can appear from an energetic initial disturbatsee,

. . X o . for instance, Ref. b Here we reexamine the initial-value
solitons which can emerge from a localized initial condi-

> ) - ] problem for the extended KdV equation using the inverse
tion. However, unlike the Korteweg-de Vries equation, scattering technique.

for which rectangular and “sech”-profile initial distur- The initial-value problem for the eKdV equation with a
bances produce qualitatively similar solitons, we show rectangular-box initial disturbance was considered by Miles,
that for this extended Korteweg-de Vries equation, the  who reduced a spectral problem whose discrete eigenvalues
solitons also depend critically on the shape of the initial determine the solitons emitted, to a transcendental equation

Groups of large-amplitude flat “table-top” internal soli-
tary waves are very often observed in the coastal zones of the
World Ocean(see, for instance Refs. 1):-3t is well-known

disturbance. In particular, the number of “table-top” and analyzed the roots of this equation. It was shown that a
solitons formed depends on whether initial shape is a small-amplitude rectangular-box disturbance generates many
rectangular box or of the “sech”-profile type. solitons, while a large-amplitude disturbance generates only
one soliton, which is close to the large-amplitude“table-top”
3Electronic mail: r.h.j.grimshaw@Iboro.ac.uk soliton. We shall confirm this result for a rectangular-box
YElectronic mai: dmpeli@math.mcmaster.ca initial disturbance, but we will also show that this result
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changes for a smooth “sech”-profile initial disturbance. We 1+
will show that a smooth initial disturbance generates many
large-amplitude wide solitons, accompanied by small-
amplitude solitons of smaller width. Thus we will show that .
the rectangular-box initial disturbance is very special for the %
extended KdV equation.

The fully extended Korteweg—de Vries equation con-
tains higher-order linear and nonlinear dispersive terms as
well as the cubic nonlinear term. In the context of internal :
solitary waves, such an equation was first derived for inter-
facial waves in a two-layer systérfsee also Refs. 739but
was later shown to hold also for arbitrary oceanic stratifica-
tion in density and shear flo~*® For certain background
conditions, when the coefficient of the quadratic nonlinear
term is close to zergfor instance, when the pycnocline lies
close to the middle depth in a two-layer model of density
stratification), the higher-order linear and nonlinear disper-FIG. 1. The solitary wave solution(x) of the extended KdV equatiof®).
sive terms can be omitted, and then the fully extended equa-
tion takes the form of the so-called Gardner equation, de-

pilaceme
[—J
T

dis

40 20 0 20 40
coordinate

noted here also as the eKdV equation, Ax? @
a=——— 4
M—a,2
au ou LU Pu 114k
g taug talutoe 3 =0, (1) with 0<a<1. The soliton shape is shown in Fig. 1. The

massM and momentun® of Eq. (2), evaluated for this soli-
where u(x,t) is the amplitude of the relevant wave mode ton solution(3), are given by
(e.g.,u may be the vertical displacement of the pycnodline " a
x is a horizontal coordinate, artds time. The coefficientsy, M= f usdx=4tanh *\/=—,
aq, and B are determined by the background density and * 2-a
shear flow stratificatiorisee the review paper, Ref).4tis  gnd
important to note that the dispersive coefficiefitjs always

positive, but that the nonlinear coefficients,and «;, can :J'“’ 2 4y 1 a —
have either sign. P=| usdx=2tanh*y/5——va(2-a). (6)

The Gardner equatiofil) is completely integrable. Its . . .
soliton solutions depend on the sign of coefficient of theThe functionsM(a) and P(a) are monotonic functions of

cubic nonlinear termg; . The “table-top” soliton exists only the soliton amplitude tending to infinity for the “table-top

. . . . . . soliton. We describe the soliton length,, by the value of
if is negative, that is, the cubic nonlinear term has oppo- . -
o1 g bp <= M¢(a)/a. The functionL¢(a) has a minimuni~5.3 at

site polarity to the linear dispersive term. These solitons arg ® = . . .

limited in amplitude and speed, such that limiting “table- a~0._58(;<~0.4?),_se”e Fig. 2. Solitons witl>0.6 can be

top” soliton corresponds to the maximum amplitude andconS|dered as “wide” solitons, while solitons with™>0.99
have the “table-top” shape.

speed. Such wide solitons occur, for instance, in two-layer S )
P Y Multisoliton solutions of Eq(2) can also be found, see

shear flows**The polarity of these solitons is determined : . T
by the sign of the quadratic nonlinear term, For instance, Refs. 14 and 15. In particular, the two-soliton interaction is

when the pycnocline is close to the bottdtap) the soliton

®)

has positive(negative polarity, that is« is positive (nega- 30—
tive).
Using a simple scaling transformation, E¢l) with .
a>0, @,<0, andB>0 can be transformed to the normalized
form, 5& 20 —
[
2
M su-w M T @ £ |
—+6u(l-u)—+—=0. =
: - E N J
The soliton solutions of Eq2) are given by i e
2
Uxt) = 4k 3 ] r T T , T T T , . 1
s\ L) — ’ 0 0.2 04 0.6 0.8 1
1+1-4x” cosh2k(x—4K%t)) soliton amplitude
Wher_e the parametet, 0<«<1/2 characterizes the soliton rig 2 The length of the solitary waue, as a function of its amplitude
amplitude, (solid line—eKdV equation, dashed line—KdV equation
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u(x,0)
A
i2
K
X
K L
- 12 FIG. 4. Rectangular box initial data(x).
A different form of the Lax operator was suggested by
Miles:?°
FIG. 3. Location of the spectrum of the Lax operat@y.
— dy u(x) 3
= y 1
M ux)—1  dy (13

elastic but the soliton of small amplitude moving through a
“table-top” soliton changes its polarity twice. The dynamics .

of large-amplitude solitons under the action of weak pertur-WIth the spectral problem,
bations(dissipation, forcing, variable environmeitas been

studied in Refs. 16—18. Here we consider the initial-value ~MY=#Y. (14)
problem for the eKdV equatio(2) using the AKNS spectral ) _
problem?® These spectral problems are equivalent, provided that
wl=1+\2 (15)
Il. SPECTRAL PROBLEM FOR EXTENDED KDV
EQUATION Indeed,
Equation(2) can be obtained from the modified KdV
(mKdV) equation 22— (u— %2 —u’(x)
ow oW (93W EZ: u’(x) (92 ( 1)2 ! (16)
NP T - x—(U—3
P 6W p + e 0 (7)
2 Y Y
by using the Lorentz transformation: 2_ dxtu—u u’(x)
M - ’ 2 20 (17)
. 5 —u'(x) dytu—u
w=— 5 +Uu(x+ 5t, t). (8)
The Lax operator for the eKdV equatidi2) can then be and
obtained from that for the mKdV equatidii), see Ref. 19,
“o, —itu) M2W=(L2+ PW=(\>+ YW= p’W. (18)
= 9
[ 2 —u(x) dy ] The spectral problenil4) is more convenient for numerical

computations than the spectral probléh®) because its dis-
crete spectrum is real with=«, which is the soliton param-
LU=\, (10 eter for the exact solutiofB).

We solve the eigenvalue problefid) for positive initial
atau(x) of various forms, such that(x) —0 as|x|— .

Rectangular boxLet the initial disturbanceu(x) be a
rectangular box of amplitud& and widthL, as shown in Fig.
4. The eigenfunctio¥(x) of Eq. (14) with such potential
u(x) should be continuous &|=L/2 and vanish at infinity
W(x)=Week  Im(\)== 1 1+4K2 (1)  (Ix|—=). Such an eigenfunctio®’(x) exists if u(=«) sat-

) ) ) isfies the transcendental equation
The discrete spectrum corresponds to localized eigenfunc-

tions at infinity, that is,

The spectrum of the Lax operator,

determines the inverse scattering transform for the eKd\{j
equation. Sincel is a skew-symmetric operatof:* = — L,
the spectrum of lies on the imaginary axis of. The con-
tinuous spectrum can be found from E@O0) by letting
u(x)—0, so that

=22 AZA) e p1-A)- k(19
W) =W, e, Im(\)==1/1- 42 (12 tan(ol)= Z_1-ome T (1-A)=«" (19
Thus the discrete spectrum is located in the gap of the con-
tinuous spectrum;-1/2<Im(\)<1/2, see Fig. 3. for 0<k<A(1—-A), and
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_ 2kx(A—1) o 2 0.5 === == mmmmm e — oo ——
tant(yL) izl XK A(1-A) (20 W |

0.4

for k>A(1—A). The behavior of the eigenvalues is differ-
ent for weak disturbancesAK 1/2), moderate disturbances i
(1/2<A<1), and strong disturbances$1). 0.3
For weak disturbances the eigenvalues are bounded by |
k<~NA(1-A), (21 0.2
while the number of eigenvalues depends on the widdf )
the initial box. A new eigenvalue appears wheneleex- 01—
ceeds the bifurcation value: |

7Tn 0 T | T |

L>—, 22
VA(1L-A) 2

wheren=1,2,... . The eigenvalues(=«) as a function of  057—
L are shown in Figs. ®-5(c) for A=0.45 (weak, A=0.8 |V f
(moderatg and A=1.2 (strong. For weak disturbances (0
<A<1/2) the pattern is similar to that for the KdV equation,
when the eigenvalues are determined by the Sthger ]
equation with a square-wall potential. &A—1/2 and L 03—
—oo, the eigenvalues correspond to many “wide” solitons
with near-limiting amplitudea~1 whenx~1/2.

For moderate disturbances (¥2<1) the behavior of %27
the eigenvalues is different from the KdV-case; one eigen- -
value tends to the limiting value=1/2 asL is large and it

corresponds to the “table-top” soliton. All other eigenvalues o

are bounded away from the limiting value=1/2 and they ] /
correspond to “KdV-type” solitons of small amplitudeee 0 T , . I T , T

Fig. 8(b) for A=0.8]. Their amplitudes and numbers are still ., 0 10 20 3 L %

bounded by the constan{®1) and (22). When A—1, the
amplitudes of these solitons tend to zero, and the wave mo
mentum concentrates into just one “table-top” soliton.

For strong disturbance®\(&>1), there is always just one u T
eigenvalue determined from EO0), see Fig. &). This im- 0.4
plies that a large initial disturbance evolves into just one
soliton and a dispersive tail. If the initial disturbance is suf-
ficiently wide, i.e.,L>2 for A=1.2, the soliton has the
“table-top” crest. Similar results were obtained by Miles. 1

Smooth initial disturbancelLet the initial disturbance g2
u(x) be given by

u(x,0)=Asecli2x/L), (23 04+
where A is the amplitude and. is the width. Such distur-
bances have the same momentBm AZL as the “box” dis- 0 : I : I : I : |
turbance, but a slightly larger mabé= wAL/2. The AKNS ) 10 20 30 L
C

system(14) is here integrated numerically, using a finite dif-

ference method. The eigenvalugé=«) found numerically g, 5. piscrete spectrum for the rectangular box initial datd.ver (a)

are shown in Figs. @ and &b) for A=0.8 (below the lim-  A=0.48, (b) A=0.8, and(c) A=1.2. Dotted horizontal lines ite) and (b)

iting soliton amplitude and for A=1.2 (above the limiting show the limiting amplit_qde defingd by E@1). Dashed horizqntal lines in

soliton amplitudé& For this smooth initial disturbance, the (b) and(c) show the limiting amplitude for the “table-top” solitons.

number of eigenvalues grows with even for large ampli-

tudesA. ForL>1, the eigenvalues are distributed uniformly

from zero to the limiting value, 1/2. This means that thethe eigenvalues occur in closely positioned pairs, such that

number of the “wide” solitons can be large if the initial the distance between the two adjacent eigenvalues decreases

disturbance is large enough. with larger values ofA. The first eigenvalue slightly in-
Figure 7 shows eigenvalugs(=«) as function of the creases as the amplitudeincreases and it tends to the lim-

amplitudeA, for L=10. For all except the first eigenvalue, iting value k=1/2 asA gets large. All other eigenvalues de-
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crease slightly with larger amplitudés For small-amplitude characterizes the discrete spectrum of a spectral problem

smooth initial disturbances, all eigenvalues are different andjuite well. The main properties of the solitons generated

do not appear in closely positioned pairs, see Fig. 7. from an initial disturbance are explained quite well with the
We conclude that the smooth initial disturban@8) of use of a rectangular box initial disturbance for the KdV

large amplitudeA produces several eigenvalues, whereas thequatior?* the modified KdV equation, and the nonlinear

rectangular-box initial disturbance on Fig. 4 of large ampli-Schralinger equatiod®?® For the eKdV equation with a

tude A produces only one eigenvalue. Our analysis confirmsiegative coefficient of the cubic nonlinear term, we have

the results of numerical simulations of the eKdV equatfidn. shown that the rectangular box potential is not typical, and

The initial disturbanc€23) with A=1.2 andL=10 evolves does not reflect the general properties of the discrete spec-

into one “table-top” soliton and a group of small solitons trum. To explain this, we reduce the spectral probléi®

with amplitudesa=0.225 anca=0.035 fort=150. Accord- and (14) for ¥=(¥,,¥,)" to the Schrdinger spectral

ing to the spectral problerti4), the eigenvalueg=0.32 and  problem,

u=0.13 correspond to solitons with amplitudas=0.225

and a=0.035, as obtained in the numerical simulations. [(9)2(+v(x)]<1>:y(13, (29

These additional eigenvaluep=0.32 and ©=0.13 are

double(see Fig. 6, with a difference in the eigenvalyeand ~ Where

soliton amplitudea being only a few percent.

v(X)=u(x)—u?(x)—u’(x), (25)

N3

lll. DISCUSSION D(x)=W,(X)+W¥,(x), and y=pu2. We note that the rela-

In nonlinear wave physics, the rectangular-box potentiation (25) is the Miura transformaticfi between the eKdV
is often used to obtain explicit solutions, and typically it equation(2) and the KdV equation foo (x,t):
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potential, V

T T T ! T ! T 1
4 6 8 A 10

FIG. 7. Eigenvalues of the discrete spectrum for a smooth sech-profile ini- @
tial data(23) vs A for L=10.

potential, V

Jv v Pu
E-F Uﬁ_Xdl—%_o. (26)
The potential in the Schdinger equation V(x)
=—v(x) is expressed through(x) by virtue of Eq.(25). In
particular, the rectangular box initial disturbance transforms ,
into the potential shown in Fig. 8 foA>1 (a) and for A
<1 (b). The potentiaM(x) contains two parts, namely, twd
functions of opposite polarities at=*=L/2, and a box for
—L/2<x<L/2 (positive forA>1 and negative foA<1).
For the Schrdinger equatiori24), a nonempty discrete spec-
trum is related with negative parts of the potentidk). For
the caseA>1 there is only one negative well,&function at (b)
x=L/2, see Fig. 8). The 5-function negative potential al-
ways traps a single discrete eigenvalue, see for instance RéfiG. 8. The potentiaV/(x) of the Schidinger equatior{24) for the rectan-
21. As a result, there is always only one eigenvajuey?  gular box in Fig. 4 for@ A>1 and(b) A<1.
for a large-amplitude initial box witth>1. For the casé\
=1, there is an additional negative square well potential, SCfon. This qualitative analysis confirms the behavior of the
Fjg. ab). The square'well pgtentigl traps adgiitional OliscrEzteeige.nvalues,u in the numerical calculations, see Figs. 6 and
elgenvalue_s, depgno!mg on Its _helght _and wigitated toA . 7. We believe that this behavior is typical for any smooth
andL). Th's. qua.lltanve analys_ls confirms the results of di- initial profiles u(x). Numerical calculations of the spectrum
rect calculations: a large-amplitude rectangular box evolve%]c the AKNS system(), performed with a combination of
into only one soliton, while a small-amplitude box evolves rectangular boxesa smr;lll—amplitude wide box and a large-
into Ifgrviﬁloz?rl]lt?nr;zélsgfolf:illgia(li?no?‘ ?hct)a eKdV equation amplitude narrow box and with a trapezoidal large-
(2), the corresponding potential(x) for the Schidinger amplitude box, confirm these conclusions: new eigenvalues

equation(24) contains an antisymmetric part equivalent to appear for smoo_t h Iarge-amplrFude profile)) (the details
th ir of thes functi in the b tential due to the t of these calculations are not given here
,e pair Od unc |(;.>psm tf; O)t( ptc;]er: 'a Lie 0 E erm We conclude that the large-amplitude rectangular box
?Zé)X),TEn atsyrtr?n&? fe ?ar thue 0 h € eftlrﬁl "?)Ilr(]j' f u(x) is not a typical initial disturbance for the spectral prob-
ban.ce(zg) po f}g Ian r(1xlz O; fo;ielc(e-l)p;%:jeA?llz(ib) ITShLér- lems (10) and (14) and it generates only one soliton of the
. IS shown in =g . . eKdV equation(2), while a smooth disturbana&x) gener-
antisymmetric part olV(x) may trap eigenvaluey in the

) S 4 7 f | soli i he heigh
negative &function-like potential. The symmetric part of ates a group of several solitons, depending on the height and

V(x) for A>1 displays two wells separated by a crest, seeWldth of the initial profile.

Fig. 9a). Thg two symmetric wells sup_port double elgenvgl- V. CONCLUSION
ues of the discrete spectrum, depending on the well's height
and width. The double eigenvalues are split due to the sepa- We have studied the initial-value problem for the eKdV
ration of these same wells in space and the quantum tunnetquation(2) with a negative cubic nonlinear term. As this
ing effect. The symmetric part of(x) for A<1 displays a equation is integrable, we have used the Lax operator
single well, see Fig. @). The single well generates a finite method to find the number of solitons generated from an
set of single eigenvalues similar to that for the KdV equa-initial data u(x,0). The spectral AKNS problem&0) and
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