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Generation of large-amplitude solitons in the extended
Korteweg–de Vries equation
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We study the extended Korteweg–de Vries equation, that is, the usual Korteweg–de Vries equation
but with the inclusion of an extra cubic nonlinear term, for the case when the coefficient of the cubic
nonlinear term has an opposite polarity to that of the coefficient of the linear dispersive term. As this
equation is integrable, the number and type of solitons formed can be determined from an
appropriate spectral problem. For initial disturbances of small amplitude, the number and type of
solitons generated is similar to the well-known situation for the Korteweg–de Vries equation.
However, our interest here is in initial disturbances of larger amplitude, for which there is the
possibility of the generation of large-amplitude ‘‘table-top’’ solitons as well as small-amplitude
solitons similar to the solitons of the Korteweg–de Vries equation. For this case, and in contrast to
some earlier results which assumed that an initial disturbance in the shape of a rectangular box
would be typical, we show that the number and type of solitons formed depend crucially on the
disturbance shape, and change drastically when the initial disturbance is changed from a rectangular
box to a ‘‘sech’’-profile. © 2002 American Institute of Physics.@DOI: 10.1063/1.1521391#
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It is well-known that for the classical Korteweg–de Vries
equation, the long-time outcome from a localized initial
condition is a set of rank-ordered solitons. This is most
readily established by considering the associated Schro¨-
dinger scattering problem, whose eigenvalues in the dis
crete spectrum determine the solitons. Here we conside
the analogous problem for an extended Korteweg–de
Vries equation, which has an additional cubic term whose
coefficient has the opposite polarity to the coefficient of
the linear dispersive term. This equation supports a fam-
ily of solitons, ranging from small-amplitude ones similar
to those of the Korteweg–de Vries equation, to large-
amplitude ‘‘table-top’’ solitons. Like the Korteweg –de
Vries equation, this extended equation is also integrable
and has a Lax operator and an associated scattering
problem, whose discrete eigenvalues again determine th
solitons which can emerge from a localized initial condi-
tion. However, unlike the Korteweg–de Vries equation,
for which rectangular and ‘‘sech’’-profile initial distur-
bances produce qualitatively similar solitons, we show
that for this extended Korteweg–de Vries equation, the
solitons also depend critically on the shape of the initial
disturbance. In particular, the number of ‘‘table-top’’
solitons formed depends on whether initial shape is a
rectangular box or of the ‘‘sech’’-profile type.

a!Electronic mail: r.h.j.grimshaw@lboro.ac.uk
b!Electronic mai: dmpeli@math.mcmaster.ca
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I. INTRODUCTION

Groups of large-amplitude flat ‘‘table-top’’ internal sol
tary waves are very often observed in the coastal zones o
World Ocean~see, for instance Refs. 1–3!. It is well-known
that the Korteweg–de Vries~KdV! equation, extended to in
clude a cubic nonlinear term, with the coefficient of th
cubic nonlinear term of the opposite polarity to that of t
linear dispersive term, can support a ‘‘table-top’’ soliton
the limiting-amplitude member of the soliton family.4 For a
localized initial disturbance, the inverse scattering techniq
predicts that, for the KdV equation, the long-time outcome
a finite number of solitons, irrespective of whether the init
disturbance is a rectangular box or of a ‘‘sech’’-profile. How
ever, according to the prevailing theory for the extend
KdV ~eKdV! equation, only one large-amplitude ‘‘table-top
soliton can appear from an energetic initial disturbance~see,
for instance, Ref. 5!. Here we reexamine the initial-valu
problem for the extended KdV equation using the inve
scattering technique.

The initial-value problem for the eKdV equation with
rectangular-box initial disturbance was considered by Mile5

who reduced a spectral problem whose discrete eigenva
determine the solitons emitted, to a transcendental equa
and analyzed the roots of this equation. It was shown th
small-amplitude rectangular-box disturbance generates m
solitons, while a large-amplitude disturbance generates o
one soliton, which is close to the large-amplitude‘‘table-to
soliton. We shall confirm this result for a rectangular-b
initial disturbance, but we will also show that this resu
0 © 2002 American Institute of Physics
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1071Chaos, Vol. 12, No. 4, 2002 Soliton generation in the EKdV equation
changes for a smooth ‘‘sech’’-profile initial disturbance. W
will show that a smooth initial disturbance generates ma
large-amplitude wide solitons, accompanied by sm
amplitude solitons of smaller width. Thus we will show th
the rectangular-box initial disturbance is very special for
extended KdV equation.

The fully extended Korteweg–de Vries equation co
tains higher-order linear and nonlinear dispersive terms
well as the cubic nonlinear term. In the context of intern
solitary waves, such an equation was first derived for in
facial waves in a two-layer system6 ~see also Refs. 7–9!, but
was later shown to hold also for arbitrary oceanic stratifi
tion in density and shear flow.10–13 For certain background
conditions, when the coefficient of the quadratic nonline
term is close to zero~for instance, when the pycnocline lie
close to the middle depth in a two-layer model of dens
stratification!, the higher-order linear and nonlinear dispe
sive terms can be omitted, and then the fully extended eq
tion takes the form of the so-called Gardner equation,
noted here also as the eKdV equation,

]u

]t
1au

]u

]x
1a1u2

]u

]x
1b

]3u

]x3
50, ~1!

where u(x,t) is the amplitude of the relevant wave mod
~e.g.,u may be the vertical displacement of the pycnoclin!,
x is a horizontal coordinate, andt is time. The coefficients,a,
a1 , and b are determined by the background density a
shear flow stratification~see the review paper, Ref. 4!. It is
important to note that the dispersive coefficient,b, is always
positive, but that the nonlinear coefficients,a and a1 , can
have either sign.

The Gardner equation~1! is completely integrable. Its
soliton solutions depend on the sign of coefficient of t
cubic nonlinear term,a1 . The ‘‘table-top’’ soliton exists only
if a1 is negative, that is, the cubic nonlinear term has op
site polarity to the linear dispersive term. These solitons
limited in amplitude and speed, such that limiting ‘‘tabl
top’’ soliton corresponds to the maximum amplitude a
speed. Such wide solitons occur, for instance, in two-la
shear flows.10,13 The polarity of these solitons is determine
by the sign of the quadratic nonlinear term,a. For instance,
when the pycnocline is close to the bottom~top! the soliton
has positive~negative! polarity, that isa is positive ~nega-
tive!.

Using a simple scaling transformation, Eq.~1! with
a.0, a1,0, andb.0 can be transformed to the normalize
form,

]u

]t
16u~12u!

]u

]x
1

]3u

]x3
50. ~2!

The soliton solutions of Eq.~2! are given by

us~x,t !5
4k2

11A124k2 cosh~2k~x24k2t !!
, ~3!

where the parameterk, 0,k,1/2 characterizes the solito
amplitude,
Downloaded 23 Dec 2002 to 130.113.69.66. Redistribution subject to AIP
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11A124k2
, ~4!

with 0,a,1. The soliton shape is shown in Fig. 1. Th
massM and momentumP of Eq. ~2!, evaluated for this soli-
ton solution~3!, are given by

M5E
2`

`

us dx54 tanh21A a

22a
, ~5!

and

P5E
2`

`

us
2 dx52 tanh21A a

22a
2Aa ~22a!. ~6!

The functionsM (a) and P(a) are monotonic functions o
the soliton amplitude tending to infinity for the ‘‘table-top
soliton. We describe the soliton length,Ls , by the value of
Ls5M (a)/a. The functionLs(a) has a minimumLs'5.3 at
a'0.58 ~k'0.45!, see Fig. 2. Solitons witha.0.6 can be
considered as ‘‘wide’’ solitons, while solitons witha.0.99
have the ‘‘table-top’’ shape.

Multisoliton solutions of Eq.~2! can also be found, se
Refs. 14 and 15. In particular, the two-soliton interaction

FIG. 1. The solitary wave solutionu(x) of the extended KdV equation~2!.

FIG. 2. The length of the solitary waveLs as a function of its amplitudea
~solid line—eKdV equation, dashed line—KdV equation!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1072 Chaos, Vol. 12, No. 4, 2002 Grimshaw et al.
elastic but the soliton of small amplitude moving through
‘‘table-top’’ soliton changes its polarity twice. The dynamic
of large-amplitude solitons under the action of weak pert
bations~dissipation, forcing, variable environment! has been
studied in Refs. 16–18. Here we consider the initial-va
problem for the eKdV equation~2! using the AKNS spectra
problem.19

II. SPECTRAL PROBLEM FOR EXTENDED KDV
EQUATION

Equation ~2! can be obtained from the modified Kd
~mKdV! equation

]w

]t
26w2

]w

]x
1

]3w

]x3
50 ~7!

by using the Lorentz transformation:

w52 1
2 1u~x1 3

2 t, t !. ~8!

The Lax operator for the eKdV equation~2! can then be
obtained from that for the mKdV equation~7!, see Ref. 19,

L5H 2]x 2 1
2 1u~x!

1
2 2u~x! ]x

J . ~9!

The spectrum of the Lax operator,

LC5lC, ~10!

determines the inverse scattering transform for the eK
equation. SinceL is a skew-symmetric operator:L 152L,
the spectrum ofL lies on the imaginary axis ofl. The con-
tinuous spectrum can be found from Eq.~10! by letting
u(x)→0, so that

C~x!5C0eikx: Im~l!56 1
2 A114k2. ~11!

The discrete spectrum corresponds to localized eigenfu
tions at infinity, that is,

C~x!→C`e2æuxu, Im~l!56 1
2A124æ2. ~12!

Thus the discrete spectrum is located in the gap of the c
tinuous spectrum,21/2,Im~l!,1/2, see Fig. 3.

FIG. 3. Location of the spectrum of the Lax operator~9!.
Downloaded 23 Dec 2002 to 130.113.69.66. Redistribution subject to AIP
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A different form of the Lax operator was suggested
Miles:20

M5H 2]x u~x!

u~x!21 ]x
J , ~13!

with the spectral problem,

MC5mC. ~14!

These spectral problems are equivalent, provided that

m25 1
4 1l2. ~15!

Indeed,

L 25H ]x
22~u2 1

2!
2 2u8~x!

2u8~x! ]x
22~u2 1

2!
2J , ~16!

M 25H ]x
21u2u2 2u8~x!

2u8~x! ]x
21u2u2J , ~17!

and

M 2C5~L 21 1
4!C5~l21 1

4!C5m2C. ~18!

The spectral problem~14! is more convenient for numerica
computations than the spectral problem~10! because its dis-
crete spectrum is real withm5k, which is the soliton param-
eter for the exact solution~3!.

We solve the eigenvalue problem~14! for positive initial
datau(x) of various forms, such thatu(x)→0 asuxu→`.

Rectangular box. Let the initial disturbanceu(x) be a
rectangular box of amplitudeA and widthL, as shown in Fig.
4. The eigenfunctionC(x) of Eq. ~14! with such potential
u(x) should be continuous atuxu5L/2 and vanish at infinity
(uxu→`). Such an eigenfunctionC(x) exists if m~5k! sat-
isfies the transcendental equation

tan~sL !5
2ks~12A!

s22~122A!k2
, s25A~12A!2k2 ~19!

for 0,k,AA(12A), and

FIG. 4. Rectangular box initial datau(x).
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1073Chaos, Vol. 12, No. 4, 2002 Soliton generation in the EKdV equation
tanh~xL !5
2kx~A21!

x21~122A!k2
, x25k22A~12A! ~20!

for k.AA(12A). The behavior of the eigenvalues is diffe
ent for weak disturbances (A,1/2), moderate disturbance
(1/2,A,1), and strong disturbances (A.1).

For weak disturbances the eigenvalues are bounded

k,AA~12A!, ~21!

while the number of eigenvalues depends on the widthL of
the initial box. A new eigenvalue appears wheneverL ex-
ceeds the bifurcation value:

L.
pn

AA~12A!
, ~22!

wheren51,2, . . . . The eigenvaluesm~5k! as a function of
L are shown in Figs. 5~a!–5~c! for A50.45 ~weak!, A50.8
~moderate!, and A51.2 ~strong!. For weak disturbances (0
,A,1/2) the pattern is similar to that for the KdV equatio
when the eigenvalues are determined by the Schro¨dinger
equation with a square-wall potential. IfA→1/2 and L
→`, the eigenvalues correspond to many ‘‘wide’’ solito
with near-limiting amplitudea'1 whenk'1/2.

For moderate disturbances (1/2,A,1) the behavior of
the eigenvalues is different from the KdV-case; one eig
value tends to the limiting valuek51/2 asL is large and it
corresponds to the ‘‘table-top’’ soliton. All other eigenvalu
are bounded away from the limiting valuek51/2 and they
correspond to ‘‘KdV-type’’ solitons of small amplitude@see
Fig. 5~b! for A50.8]. Their amplitudes and numbers are s
bounded by the constants~21! and ~22!. When A→1, the
amplitudes of these solitons tend to zero, and the wave
mentum concentrates into just one ‘‘table-top’’ soliton.

For strong disturbances (A.1), there is always just one
eigenvalue determined from Eq.~20!, see Fig. 5~c!. This im-
plies that a large initial disturbance evolves into just o
soliton and a dispersive tail. If the initial disturbance is s
ficiently wide, i.e., L.2 for A51.2, the soliton has the
‘‘table-top’’ crest. Similar results were obtained by Miles.5

Smooth initial disturbance. Let the initial disturbance
u(x) be given by

u~x,0!5A sech~2x/L !, ~23!

where A is the amplitude andL is the width. Such distur-
bances have the same momentumP5A2L as the ‘‘box’’ dis-
turbance, but a slightly larger massM5pAL/2. The AKNS
system~14! is here integrated numerically, using a finite d
ference method. The eigenvaluesm~5k! found numerically
are shown in Figs. 6~a! and 6~b! for A50.8 ~below the lim-
iting soliton amplitude! and for A51.2 ~above the limiting
soliton amplitude!. For this smooth initial disturbance, th
number of eigenvalues grows withL even for large ampli-
tudesA. For L@1, the eigenvalues are distributed uniform
from zero to the limiting value, 1/2. This means that t
number of the ‘‘wide’’ solitons can be large if the initia
disturbance is large enough.

Figure 7 shows eigenvaluesm~5k! as function of the
amplitudeA, for L510. For all except the first eigenvalu
Downloaded 23 Dec 2002 to 130.113.69.66. Redistribution subject to AIP
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the eigenvalues occur in closely positioned pairs, such
the distance between the two adjacent eigenvalues decre
with larger values ofA. The first eigenvalue slightly in-
creases as the amplitudeA increases and it tends to the lim
iting valuek51/2 asA gets large. All other eigenvalues de

FIG. 5. Discrete spectrum for the rectangular box initial data vsL for ~a!
A50.48, ~b! A50.8, and~c! A51.2. Dotted horizontal lines in~a! and~b!
show the limiting amplitude defined by Eq.~21!. Dashed horizontal lines in
~b! and ~c! show the limiting amplitude for the ‘‘table-top’’ solitons.
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FIG. 6. Discrete spectrum for a smooth sech-profile in
tial data~23! vs L for ~a! A50.8 and~b! A51.2.
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crease slightly with larger amplitudesA. For small-amplitude
smooth initial disturbances, all eigenvalues are different
do not appear in closely positioned pairs, see Fig. 7.

We conclude that the smooth initial disturbance~23! of
large amplitudeA produces several eigenvalues, whereas
rectangular-box initial disturbance on Fig. 4 of large amp
tudeA produces only one eigenvalue. Our analysis confir
the results of numerical simulations of the eKdV equation15

The initial disturbance~23! with A51.2 andL510 evolves
into one ‘‘table-top’’ soliton and a group of small soliton
with amplitudes,a50.225 anda50.035 fort5150. Accord-
ing to the spectral problem~14!, the eigenvaluesm50.32 and
m50.13 correspond to solitons with amplitudesa50.225
and a50.035, as obtained in the numerical simulation
These additional eigenvaluesm50.32 and m50.13 are
double~see Fig. 6!, with a difference in the eigenvaluem and
soliton amplitudea being only a few percent.

III. DISCUSSION

In nonlinear wave physics, the rectangular-box poten
is often used to obtain explicit solutions, and typically
Downloaded 23 Dec 2002 to 130.113.69.66. Redistribution subject to AIP
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characterizes the discrete spectrum of a spectral prob
quite well. The main properties of the solitons genera
from an initial disturbance are explained quite well with t
use of a rectangular box initial disturbance for the Kd
equation,21 the modified KdV equation, and the nonline
Schrödinger equation.22,23 For the eKdV equation with a
negative coefficient of the cubic nonlinear term, we ha
shown that the rectangular box potential is not typical, a
does not reflect the general properties of the discrete s
trum. To explain this, we reduce the spectral problems~10!
and ~14! for C5(C1 ,C2)T to the Schro¨dinger spectral
problem,

@]x
21v~x!#F5gF, ~24!

where

v~x!5u~x!2u2~x!2u8~x!, ~25!

F(x)5C1(x)1C2(x), and g5m2. We note that the rela-
tion ~25! is the Miura transformation20 between the eKdV
equation~2! and the KdV equation forv(x,t):
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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]v
]t

16v
]v
]x

1
]3v

]x3
50. ~26!

The potential in the Schro¨dinger equation V(x)
52v(x) is expressed throughu(x) by virtue of Eq.~25!. In
particular, the rectangular box initial disturbance transfor
into the potential shown in Fig. 8 forA.1 ~a! and for A
,1 ~b!. The potentialV(x) contains two parts, namely, twod
functions of opposite polarities atx56L/2, and a box for
2L/2,x,L/2 ~positive for A.1 and negative forA,1).
For the Schro¨dinger equation~24!, a nonempty discrete spec
trum is related with negative parts of the potentialV(x). For
the caseA.1 there is only one negative well, ad function at
x5L/2, see Fig. 8~a!. The d-function negative potential al
ways traps a single discrete eigenvalue, see for instance
21. As a result, there is always only one eigenvalueg5m2

for a large-amplitude initial box withA.1. For the caseA
,1, there is an additional negative square well potential,
Fig. 8~b!. The square well potential traps additional discre
eigenvalues, depending on its height and width~related toA
and L). This qualitative analysis confirms the results of d
rect calculations: a large-amplitude rectangular box evol
into only one soliton, while a small-amplitude box evolv
into several solitons, see Figs. 5~a! and 5~c!.

For smooth initial profilesu(x) of the eKdV equation
~2!, the corresponding potentialV(x) for the Schro¨dinger
equation~24! contains an antisymmetric part equivalent
the pair of thed functions in the box potential due to the ter
u8(x), and a symmetric part due to the termu(12u) in Eq.
~25!. The potentialV(x) for the sech-profile initial distur-
bance~23! is shown in Fig. 9 forA.1 ~a! andA,1 ~b!. The
antisymmetric part ofV(x) may trap eigenvaluesg in the
negative d-function-like potential. The symmetric part o
V(x) for A.1 displays two wells separated by a crest, s
Fig. 9~a!. The two symmetric wells support double eigenv
ues of the discrete spectrum, depending on the well’s he
and width. The double eigenvalues are split due to the se
ration of these same wells in space and the quantum tun
ing effect. The symmetric part ofV(x) for A,1 displays a
single well, see Fig. 9~b!. The single well generates a finit
set of single eigenvalues similar to that for the KdV equ

FIG. 7. Eigenvalues of the discrete spectrum for a smooth sech-profile
tial data~23! vs A for L510.
Downloaded 23 Dec 2002 to 130.113.69.66. Redistribution subject to AIP
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tion. This qualitative analysis confirms the behavior of t
eigenvaluesm in the numerical calculations, see Figs. 6 a
7. We believe that this behavior is typical for any smoo
initial profiles u(x). Numerical calculations of the spectrum
of the AKNS system~9!, performed with a combination o
rectangular boxes~a small-amplitude wide box and a large
amplitude narrow box! and with a trapezoidal large
amplitude box, confirm these conclusions: new eigenval
appear for smooth large-amplitude profilesu(x) ~the details
of these calculations are not given here!.

We conclude that the large-amplitude rectangular b
u(x) is not a typical initial disturbance for the spectral pro
lems ~10! and ~14! and it generates only one soliton of th
eKdV equation~2!, while a smooth disturbanceu(x) gener-
ates a group of several solitons, depending on the height
width of the initial profile.

IV. CONCLUSION

We have studied the initial-value problem for the eKd
equation~2! with a negative cubic nonlinear term. As th
equation is integrable, we have used the Lax opera
method to find the number of solitons generated from
initial data u(x,0). The spectral AKNS problems~10! and

i-

FIG. 8. The potentialV(x) of the Schro¨dinger equation~24! for the rectan-
gular box in Fig. 4 for~a! A.1 and~b! A,1.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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~14! are solved for both smooth and rectangular box pot
tials. We show that a nonempty discrete spectrum exists
any positive datau(x,0). The previous result by Miles5 for
the rectangular box disturbances is confirmed and expla
by analyzing the Miura transformation~25!, which trans-
forms the spectral problems~10! and ~14! into the classical
Schrödinger equation~24!. A rectangular box initial data
leads to a singular potential in the Schro¨dinger equation, and
the number of eigenvalues for large-amplitude rectang
box does not exceed one. For a smooth initial data of la
amplitude, the potential in the Schro¨dinger equation contain
at least two wells and the number of eigenvalues depend
the height and width of these wells. Thus the generation
large-amplitude ‘‘table-top’’ solitons depends both on the
tensity of the initial disturbance, and on its shape. This re
is sensitive to the initial form when it is close to the box-lik
form, and this is the main difference from other associa
spectral problems analyzed in the classical soliton theori
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FIG. 9. The potentialV(x) of the Schro¨dinger equation~24! for a smooth
sech-profile initial data~23! for ~a! A.1 and~b! A,1.
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