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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS
WITH INTENSITY-DEPENDENT DISPERSION\ast 
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Abstract. Black solitons are identical in the nonlinear Schr\"odinger (NLS) equation with
intensity-dependent dispersion and the cubic defocusing NLS equation. We prove that the intensity-
dependent dispersion introduces new properties in the stability analysis of the black soliton. First,
the spectral stability problem possesses only isolated eigenvalues on the imaginary axis. Second,
the energetic stability argument holds in Sobolev spaces with exponential weights. Third, the black
soliton persists with respect to the addition of a small decaying potential and remains spectrally
stable when it is pinned to the minimum points of the effective potential. The same model exhibits
a family of traveling dark solitons for every wave speed and we incorporate properties of these dark
solitons for small wave speeds in the analysis of orbital stability of the black soliton.

Key words. nonlinear Schr\"odinger equation, black solitons, dark solitons, spectral stability,
energetic stability, intensity-dependent dispersion
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1. Introduction. The canonical model of nonlinear optics for dark and black
solitons is the cubic defocusing nonlinear Schr\"odinger (NLS) equation [22, 20], which
can be written in the form

iut + uxx + 2(1 - | u| 2)u= 0,(1.1)

where u(t, x) :\BbbR \times \BbbR \mapsto \rightarrow \BbbC is normalized by the boundary conditions

| u(t, x)| \rightarrow 1 as | x| \rightarrow \infty .(1.2)

Dark solitons are traveling wave solutions of the form

u(t, x) = \gamma tanh(\gamma (x - 2ct)) + ic, \gamma :=
\sqrt{} 
1 - c2,(1.3)

where c \in ( - 1,1) is the parameter for the half wave speed. The limiting solution for
c= 0,

u(t, x) = tanh(x),(1.4)

is referred to as the black soliton as the intensity I := | u| 2 reaches zero at a point of
odd symmetry in x. The dark solitons (1.3) can be extended with two translational
parameters due to the basic symmetries of the NLS equation (1.1):

If u(t, x) is a solution, so is ei\theta 0u(t, x+ \zeta 0), \theta 0, \zeta 0 \in \BbbR .(1.5)
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2522 DMITRY E. PELINOVSKY AND MICHAEL PLUM

The cubic defocusing NLS equation (1.1) is integrable with inverse scattering
such that the dark solitons can be associated with eigenvalues of a self-adjoint lin-
ear (Dirac) operator [37]. Orbital and asymptotic stabilities of the dark and black
solitons were studied in many mathematical papers, e.g., with functional-analytic
methods [3, 4, 16], the inverse scattering transform [10, 15], and higher-order con-
served quantities [12]. Lower-order conserved quantities were recently constructed in
[23, 24] to derive global solutions of the cubic NLS equation (1.1) in spaces of lower
regularity.

Extended models for dark solitons were considered by using the generalized de-
focusing NLS equation, e.g., with the cubic-quintic and saturable nonlinearities [31].
Many results were obtained in the mathematical analysis of the generalized NLS
models such as the local and global existence of solutions to the initial-value problem
in energy space [13, 14], orbital stability of dark and black solitons [2, 5, 27], and
persistence of the black soliton under a small exponentially decaying potential [30].

1.1. NLS models with intensity-dependent dispersion. The objective of
this work is to study orbital stability of the black soliton in a novel NLS model, which
we take in the normalized form

i(1 - | \psi | 2)\psi t +\psi xx = 0,(1.6)

where \psi (t, x) :\BbbR \times \BbbR \mapsto \rightarrow \BbbC is the wave function. We assume that \psi (t, \cdot ) \in \scrF for every
t\in \BbbR , where

\scrF := \{ f \in L\infty (\BbbR ) : | f(x)| < 1, x\in \BbbR and | f(x)| \rightarrow 1 as | x| \rightarrow \infty \} .(1.7)

In other words, we assume that the set \scrF is invariant under the time evolution of the
NLS model (1.6). After the standing wave transformation

\psi (t, x) = e - 2itu(t, x),

the new model is equivalent to the modified cubic defocusing NLS equation in the
form

i(1 - | u| 2)ut + uxx + 2(1 - | u| 2)u= 0,(1.8)

which has the same solution (1.4) for the black soliton. The black soliton can be
extended with two translational parameters \theta 0 and \zeta 0 due to the same symmetries
(1.5). In addition, it can be extended to the family of traveling wave solutions with
the wave speed c:

\psi (t, x) = e - 2itUc(x - 2ct),(1.9)

where Uc(\xi ) with \xi := x - 2ct is a solution of the normalized equation

U \prime \prime 
c  - 2ic(1 - | Uc| 2)U \prime 

c + 2(1 - | Uc| 2)Uc = 0.(1.10)

Dark solitons with the profile Uc are solutions of the differential equation (1.10) in
the set \scrF satisfying the boundary conditions

Uc(\xi )\rightarrow ei\theta \pm (c) as \xi \rightarrow \pm \infty (1.11)

for some phases \theta \pm (c)\in [0,2\pi ). If c= 0, then

\varphi (\xi ) :=Uc=0(\xi ) = tanh(\xi )(1.12)
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2523

is the black soliton with \theta +(0) = 0 and \theta  - (0) = \pi . In addition, (1.6) is invariant under
the scaling transformation:

If \psi (t, x) is a solution, so is \psi (\omega 2t,\omega x), \omega > 0.(1.13)

The starting model (1.6) represents a class of NLS equations with intensity-
dependent dispersion, which have been used for modeling of coherently prepared
multistate atoms [17], quantum well waveguides [25], and fiber-optics communication
systems [26]. Bright solitons of the NLS model with normalized intensity-dependent
dispersion,

i\psi t + (1 - | \psi | 2)\psi xx = 0,(1.14)

were studied in [33, 34]. Bright solitons have cusped singularities at the unit intensity
and the nature of singularities was incorporated in the study of existence and energetic
stability of bright solitons in the energy space [33, 34]. Note that the energetic stability
results were conditional to the existence of local solutions to the initial-value problem
for the NLS model (1.14) in the energy space and the energy conservation.

It was shown in [17] (see Figures 3 and 6) that the dispersion coefficient may
decrease with respect to the intensity as in the NLS model (1.14) but may also increase
with respect to the intensity as in the NLS model (1.6). In this sense, the normalized
forms (1.6) and (1.14) can be used for realistic applications of physical systems with
intensity-dependent dispersion.

1.2. Motivations. The NLS model (1.6) with the inverse behavior of the nor-
malized intensity-dependent dispersion compared to the NLS model (1.14) features
both the dark and black solitons and is the subject of the present work. Similar to the
scopes of [33, 34], we will not address local well-posedness of the initial-value problem
but will focus on the analysis of energetic stability of the black soliton and the novelty
compared to the case of the cubic defocusing NLS equation (1.1).

It is particularly interesting to see how the intensity-dependent dispersion intro-
duces exponential weights in the construction of a Lyapunov functional for the black
soliton.

For the cubic defocusing NLS equation (1.1), it is well-known that the phase of
complex perturbations to the black soliton cannot be controlled in the energy space
due to nonzero boundary conditions. Related to this property, the second variation
of the Lyapunov functional is not coercive in H1(\BbbR ) under the constraint of fixed
(renormalized) momentum and the continuous spectrum of the linearized operator
does not possess a spectral gap near the zero eigenvalue. To remedy the lack of
coercivity, an exponentially weighted H1(\BbbR ) space was introduced in [16], in which
the orbital stability of the black soliton was obtained with the standard Lyapunov
method. The phase of complex perturbations can be controlled in the exponentially
weighted H1(\BbbR ) space. A generalization of the ideas of [16] was used in the higher-
order energy space in [12] due to integrability of the cubic NLS equation (1.1).

The same method of exponentially weighted H1(\BbbR ) spaces was then used in [8]
to study orbital stability of the domain walls which are minimizers of energy with
nonzero boundary conditions at infinity [1]. Recently, these ideas were also used in [2]
to study orbital stability of the black soliton in the quintic defocusing NLS equation.

1.3. Summary of results. As the main outcome of this work, we will show
that the intensity-dependent dispersion gives a natural definition of the exponentially
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2524 DMITRY E. PELINOVSKY AND MICHAEL PLUM

weighted L2(\BbbR ) space in which the second variation of the Lyapunov functional is coer-
cive under the constraints of fixed momentum and mass. The exponentially weighted
H1(\BbbR ) space appears as the form domain of the linearized operator.

The orbital stability of the black soliton is established in the exponentially weighted
L2(\BbbR ) space with the Lyapunov method that incorporates the additional scaling trans-
formation (1.13). Furthermore, the spectrum of the linearized operator in the expo-
nentially weighted L2(\BbbR ) space is shown to be purely discrete with a spectral gap
near the zero eigenvalue. One important ingredient in the analysis of orbital stability
of the black soliton is the asymptotic behavior of the dark solitons with the profile
Uc \in \scrF satisfying (1.10) and (1.11) as c\rightarrow 0. We establish the asymptotic behavior of
Uc with arguments based on the implicit function theorem as the explicit expressions
for Uc are not available.

As a consequence of the spectral gap near the zero eigenvalue, spectral stability
of the black soliton can also be studied for the extended NLS model with a small
decaying potential as in

i(1 - | \psi | 2)\psi t +\psi xx = \varepsilon V (x)\psi ,(1.15)

where \varepsilon is a small parameter and V is a fixed real-valued potential. By using
Lyapunov--Schmidt reduction methods, we will show for V \in W 2,\infty (\BbbR ) \cap L2(\BbbR ) that
the black soliton persists at the nondegenerate extremal points of the effective poten-
tial

\scrV (s) :=
\int 
\BbbR 
V (x+ s)sech2(x)dx.(1.16)

Moreover, we will show for V \in W 2,\infty (\BbbR ) \cap L1(\BbbR ) that the black soliton is linearly
stable if the extremal point is a local minimum of \scrV (s) and linearly unstable if it is
a local maximum of \scrV (s). This suggests robust pinning of the black soliton to the
minima of the effective potential \scrV (s). This outcome of the NLS model (1.6) is a
great improvement compared to the cubic NLS equation (1.1), where pinning of the
black soliton is linearly unstable at both the maximum and minimum points of the
effective potential \scrV (s) [30].

1.4. Organization of the manuscript. Conserved quantities of the NLS model
(1.6) are obtained in section 2. Main results are described in section 3. Linearized
operators in the weighted L2(\BbbR ) space are studied in section 4. Existence of travel-
ing dark solitons and their asymptotic behavior in the limit of c\rightarrow 0 are clarified in
section 5. Energetic stability of the black soliton is proven in section 6. Persistence
and spectral stability of the black soliton under the small decaying potential V in the
NLS model (1.15) are studied in section 7. Section 8 gives the summary and further
directions of study. Appendices A and B contain proofs of technical results used in
sections 4 and 6, respectively.

2. Conserved quantities. Assume that the NLS equation (1.6) admits a smooth
solution \psi (t, \cdot )\in \scrF \cap C\infty (\BbbR ) for some t\in \BbbR satisfying

\psi (t, x) = ei\theta \pm 
\Bigl[ 
1 +A\pm e

 - \alpha \pm | x| + o(e - \alpha \pm | x| )
\Bigr] 

as x\rightarrow \pm \infty (2.1)

for some real \alpha \pm > 0, A\pm < 0, and \theta \pm \in [0,2\pi ) which may depend on time t\in \BbbR . The
asymptotic expansion (2.1) is assumed to be differentiable term by term. Substituting
(2.1) into (1.6) shows that \theta \pm changes in time as \theta \prime \pm (t) = - 1

2\alpha \pm (t)
2.
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2525

The NLS model (1.6) has formally conserved quantities

M(\psi ) :=

\int 
\BbbR 
(1 - | \psi | 2)2dx and E(\psi ) :=

\int 
\BbbR 
| \psi x| 2dx,(2.2)

which have the meaning of mass and energy, respectively. This can be checked directly
with

d

dt
M(\psi ) = - 2

\int 
\BbbR 
(1 - | \psi | 2)( \=\psi \psi t + \=\psi t\psi )dx

= - 2i( \=\psi \psi x  - \=\psi x\psi )| x\rightarrow +\infty 
x\rightarrow  - \infty = 0

and

d

dt
E(\psi ) =

\int 
\BbbR 
( \=\psi x\psi xt + \=\psi xt\psi x)dx

= i
\=\psi x\psi xx  - \=\psi xx\psi x

1 - | \psi | 2
| x\rightarrow +\infty 
x\rightarrow  - \infty = 0,

where in the last line we have used that \psi (t, \cdot )\in \scrF \cap C\infty (\BbbR ) has the exponential decay
(2.1) which ensures that \=\psi x\psi xx - \=\psi xx\psi x converges to zero at infinity with the double
exponential rate compared to 1 - | \psi | 2.

In addition, the NLS equation (1.6) has formally conserved momentum

P (\psi ) =
1

2i

\int 
\BbbR 

(1 - | \psi | 2)2

| \psi | 2
( \=\psi \psi x  - \=\psi x\psi )dx,(2.3)

provided that \psi (t, x) \not = 0 everywhere. To confirm conservation of the momentum, we
write P = P1 + P2, where

P1(\psi ) =
i

2

\int 
\BbbR 
(1 - | \psi | 2)( \=\psi \psi x  - \=\psi x\psi )dx, P2(\psi ) =

1

2i

\int 
\BbbR 
(1 - | \psi | 2)

\biggl( 
\psi x
\psi 

 - 
\=\psi x
\=\psi 

\biggr) 
dx,

(2.4)

and obtain after straightforward computations,

d

dt
P1(\psi ) = - 1

2

\int 
\BbbR 
( \=\psi \psi xxx  - \=\psi x\psi xx  - \=\psi xx\psi x + \=\psi xxx\psi )dx - 

\int 
\BbbR 

| \psi | 2( \=\psi x\psi xx + \=\psi xx\psi x)

1 - | \psi | 2
dx

= - 1

2
( \=\psi \psi xx  - 2| \psi x| 2 + \=\psi xx\psi )| x\rightarrow +\infty 

x\rightarrow  - \infty  - 
\int 
\BbbR 

| \psi | 2(| \psi x| 2)x
1 - | \psi | 2

dx

and

d

dt
P2(\psi ) =

1

2

\int 
\BbbR 

\biggl( 
\psi xxx
\psi 

 - \psi x\psi xx
\psi 2

 - 
\=\psi x \=\psi xx
\=\psi 2

+
\=\psi xxx
\=\psi 

\biggr) 
dx+

\int 
\BbbR 

( \=\psi x\psi xx + \=\psi xx\psi x)

1 - | \psi | 2
dx

=
1

2

\biggl( 
\psi xx
\psi 

+
\=\psi xx
\=\psi 

\biggr) 
| x\rightarrow +\infty 
x\rightarrow  - \infty +

\int 
\BbbR 

(| \psi x| 2)x
1 - | \psi | 2

dx,

from which it follows that P (\psi ) = P1(\psi ) + P2(\psi ) conserves if \psi (t, \cdot ) \in \scrF \cap C\infty (\BbbR )
satisfies (2.1) and \psi (t, x) \not = 0 everywhere.

Remark 2.1. P1(\psi ) and P2(\psi ) in (2.4) generalize the conserved momentum and
phase quantities of the cubic NLS equation (1.1) in the same way as M(\psi ) in (2.2)
generalizes the conserved mass of the cubic NLS equation. The renormalized momen-
tum P = P1+P2 is introduced in the cubic NLS equation (1.1) from the two conserved
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2526 DMITRY E. PELINOVSKY AND MICHAEL PLUM

quantities as the technical tool to prove orbital stability of dark solitons [3, 4, 5, 27].
In the context of the NLS model (1.6), neither P1 nor P2 is a conserved quantity but
their sum is the conserved quantity bearing the same meaning as the renormalized
momentum of the cubic NLS equation (1.1).

Remark 2.2. Using the decomposition P = P1 +P2 given by (2.4), we can rewrite
the momentum P (\psi ) in the form

P (\psi ) =
i

2

\int 
\BbbR 
(2 - | \psi | 2)( \=\psi \psi x  - \=\psi x\psi )dx+ arg(\psi )| x\rightarrow +\infty 

x\rightarrow  - \infty ,(2.5)

where the last term is \theta +  - \theta  - if \psi (t, \cdot ) \in \scrF \cap C\infty (\BbbR ) satisfies (2.1). Compared to
(2.3), the form (2.5) does not require \psi (t, x) \not = 0 everywhere.

The conservation of the momentum P (\psi ) in the form (2.5) can be verified inde-
pendently from the NLS model (1.6) and the exponential decay (2.1) which suggests
\theta \prime \pm (t) = - 1

2\alpha \pm (t)
2. Indeed, differentiating (2.5) and using (1.6) yield

d

dt
P (\psi ) = - 1

2
\alpha 2
+ +

1

2
\alpha 2
 - +

1

2

\int 
\BbbR 

2 - | \psi | 2

1 - | \psi | 2
\bigl( 
\=\psi x\psi xx + \=\psi xx\psi x  - \=\psi \psi xxx  - \=\psi xxx\psi 

\bigr) 
dx

 - 1

2

\int 
\BbbR 

2 - | \psi | 2

(1 - | \psi | 2)2
( \=\psi \psi xx + \=\psi xx\psi )dx

+
1

2

\int 
\BbbR 

1

1 - | \psi | 2
( \=\psi \psi xx  - \=\psi xx\psi )( \=\psi \psi x  - \=\psi x\psi )dx

= - 1

2
\alpha 2
+ +

1

2
\alpha 2
 -  - 1

2

2 - | \psi | 2

1 - | \psi | 2
\bigl( 
\=\psi \psi xx + \=\psi xx\psi 

\bigr) \bigm| \bigm| \bigm| \bigm| x\rightarrow +\infty 

x\rightarrow  - \infty 
+ 4| \psi x| 2

\bigm| \bigm| \bigm| \bigm| x\rightarrow +\infty 

x\rightarrow  - \infty 
= 0,

where the exponential decay (2.1) was used to get cancellation of terms at infinity.
Hence, the momentum P (\psi ) in the form (2.5) is also conserved in time t.

3. Main results. We recall that \psi (t, x) = e - 2it\varphi (x) with \varphi (x) = tanh(x) is the
standing wave solution of the NLS model (1.6) corresponding to the black soliton.
From the conserved quantities M(\psi ) and E(\psi ) in (2.2), we construct the Lyapunov
functional for the black soliton in the form

\Lambda (\psi ) :=E(\psi ) +M(\psi ) =

\int 
\BbbR 

\bigl[ 
| \psi x| 2 + (1 - | \psi | 2)2

\bigr] 
dx.(3.1)

Since it coincides with the Lyapunov functional for the cubic NLS equation (1.1), it is
clear that the black soliton \varphi (x) = tanh(x) is a critical point of \Lambda in the energy space

\Sigma :=
\bigl\{ 
\psi \in H1

loc(\BbbR ) : \psi x \in L2(\BbbR ), 1 - | \psi | 2 \in L2(\BbbR )
\bigr\} 
.(3.2)

The critical point \varphi \in \Sigma of \Lambda is degenerate only due to the translational and phase
symmetries (1.5). We introduce the perturbation u+ iv \in H1

loc(\BbbR ) to \varphi according to
the expansion

\psi (t, x) = e - 2it [\varphi (x) + u(t, x) + iv(t, x)] .(3.3)

The expansion of the Lyapunov functional \Lambda (\psi ) is given by

\Lambda (\psi ) - \Lambda (\varphi ) =Q+(u) +Q - (v) +R(u, v),(3.4)

where the quadratic forms are given by
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2527

Q+(u) =

\int 
\BbbR 

\bigl[ 
(ux)

2 + 2(3\varphi 2  - 1)u2
\bigr] 
dx,(3.5)

Q - (v) =

\int 
\BbbR 

\bigl[ 
(vx)

2 + 2(\varphi 2  - 1)v2
\bigr] 
dx,(3.6)

and the remainder term is given by

R(u, v) =

\int 
\BbbR 

\bigl[ 
(2\varphi u+ u2 + v2)2  - 4\varphi 2u2

\bigr] 
dx.(3.7)

Expansion (3.4) is the same as in the cubic NLS equation (1.1), where the form of the
remainder term (3.7) uses the quantity

\eta := | \varphi + u+ iv| 2  - \varphi 2 = 2\varphi u+ u2 + v2,(3.8)

which belongs to L2(\BbbR ) if \psi belongs to the energy space \Sigma . What appears to be new
is the linearized equations which arise when the decomposition (3.3) is substituted to
the NLS model (1.6) and the quadratic and cubic terms with respect to perturbation
u+ iv are crossed out. Separation of the real and imaginary parts gives the following
linearized equations:

(1 - \varphi 2)ut =L - v, (1 - \varphi 2)vt = - L+u,

where the linear operators L\pm are defined by the differential expressions

L+ = - \partial 2x + 6\varphi 2  - 2,(3.9)

L - = - \partial 2x + 2\varphi 2  - 2.(3.10)

Separation of variables gives the spectral stability problem in the form\biggl[ 
0 L - 

 - L+ 0

\biggr] \biggl[ 
u
v

\biggr] 
= \lambda (1 - \varphi 2)

\biggl[ 
u
v

\biggr] 
\leftrightarrow L - v= \lambda (1 - \varphi 2)u,

 - L+u= \lambda (1 - \varphi 2)v,
(3.11)

which naturally suggests considering the linear operators L\pm in the Hilbert space

\scrH :=
\Bigl\{ 
f \in L2

loc(\BbbR ) :
\sqrt{} 
1 - \varphi 2f \in L2(\BbbR )

\Bigr\} 
,(3.12)

with the associated inner product

(f, g)\scrH :=

\int 
\BbbR 
(1 - \varphi 2) \=fgdx,(3.13)

and the induced norm \| \cdot \| \scrH . The Hilbert space \scrH is nothing but an exponentially
weighted L2(\BbbR ) space since \sqrt{} 

1 - \varphi 2(x) = sech(x).

Related to \scrH , the form domain and the operator domain for the linear operators L\pm 
are defined as

\scrH 1
+ :=H1(\BbbR ), \scrH 1

 - :=
\bigl\{ 
f \in \scrH : f \prime \in L2(\BbbR )

\bigr\} 
,(3.14)
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2528 DMITRY E. PELINOVSKY AND MICHAEL PLUM

equipped with the norms

\| f\| \scrH 1
+
:=
\sqrt{} 
\| f \prime \| 2L2 + 4\| f\| 2L2 , \| f\| \scrH 1

 - 
:=
\sqrt{} 

\| f \prime \| 2L2 + \| f\| 2\scrH ,(3.15)

and

\scrH 2
\pm :=

\bigl\{ 
f \in \scrH 1

\pm : cosh2(\cdot )L\pm f \in \scrH 
\bigr\} 
,(3.16)

equipped with the norms (4.5) and (4.11) below. Writing \scrL \pm := cosh2(\cdot )L\pm defines
linear operators \scrL \pm : \scrH 2

\pm \subset \scrH \mapsto \rightarrow \scrH . The linear stability problem (3.11) can be
rewritten with the use of these operators in the form

\scrL  - v= \lambda u,  - \scrL +u= \lambda v.(3.17)

The quadratic forms Q\pm in (3.5)--(3.6) are defined by \scrL \pm in \scrH 1
\pm . We will next present

four main results proven in this work.
The first result (section 4) concerns the spectrum of the linear operators \scrL \pm in

\scrH and the linear stability problem (3.17) in \scrH \times \scrH .

Theorem 1. The spectrum of \scrL \pm in \scrH with the dense domain \scrH 2
\pm \subset \scrH consists

of simple isolated eigenvalues as follows:

\sigma \scrH (\scrL +) = \{ 0, \mu 1, \mu 2, . . .\} , 0<\mu 1 <\mu 2 < . . . ,(3.18)

and

\sigma \scrH (\scrL  - ) = \{  - 2,0, \nu 1, \nu 2, . . .\} , 0< \nu 1 < \nu 2 < . . . .(3.19)

The spectrum of the linear stability problem (3.17) in \scrH \times \scrH consists of pairs of isolated
eigenvalues

\{ \pm i\omega 1,\pm i\omega 2, . . .\} , 0<\omega 1 \leq \omega 2 \leq . . . ,(3.20)

and a quadruple zero eigenvalue associated with the symmetries (1.5).

Remark 3.1. Eigenvalues of \scrL + and \scrL  - in \scrH can be found explicitly as

\mu n := n(n+ 5), \nu n := (n+ 1)(n+ 2) - 2, n\in \BbbN .

Remark 3.2. The linearized operator in the stability problem (3.17) admits a
two-dimensional kernel in \scrH spanned by \{ \vec{}w1, \vec{}w2\} , where

\vec{}w1 =

\biggl[ 
\varphi \prime 

0

\biggr] 
, \vec{}w2 =

\biggl[ 
0
\varphi 

\biggr] 
.(3.21)

These eigenvectors are associated with the symmetries (1.5).

Since the spectrum of \scrL \pm in \scrH is purely discrete but includes negative and zero
eigenvalues, we need to set some constraints on the perturbation term in the decom-
position (3.3) in order to get coercivity of the quadratic forms in the expansion (3.4)
and the energetic stability of the black soliton. The constrained space in \scrH is formed
by the following two orthogonality conditions:

\scrH c :=
\bigl\{ 
f \in \scrH : (1 - \varphi 2, f)\scrH = 0, (\varphi ,f)\scrH = 0

\bigr\} 
,

where we have used that \varphi \prime = 1 - \varphi 2.
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2529

In terms of the perturbation u+ iv to the black soliton \varphi , the constraints

(\varphi ,u)\scrH = 0 and (1 - \varphi 2, v)\scrH = 0(3.22)

are due to fixed mass M(\psi ) and momentum P (\psi ) and can be satisfied in the time
evolution of the NLS model (1.6) by extending the black soliton to the traveling dark
soliton with the wave speed c and by using the scaling transformation (1.13). On the
other hand, the constraints

(1 - \varphi 2, u)\scrH = 0 and (\varphi ,v)\scrH = 0(3.23)

are due to the two symmetries (1.5) and can be satisfied by using modulation param-
eters for the orbit \{ ei\theta \varphi (\cdot + \zeta )\} \theta ,\zeta \in \BbbR of the black soliton with the profile \varphi .

In applications to the spectral stability problem (3.17) and its two-dimensional
kernel (3.21) with \varphi \prime = 1 - \varphi 2, constraints (3.22) represent the symplectic orthogonality
conditions for (u, v) with respect to \{ \vec{}w1, \vec{}w2\} , whereas constraints (3.23) represent the
standard orthogonality conditions for (u, v) with respect to \{ \vec{}w1, \vec{}w2\} .

The second result (section 5) is about the existence of dark solitons with the
profile Uc \in \scrF satisfying the differential equation (1.10) and the boundary conditions
(1.11). We show that the dark solitons exist for every speed c \in \BbbR and converge to
the black soliton as c\rightarrow 0.

Theorem 2. For every c \in \BbbR , there exists a dark soliton with the profile Uc \in 
\scrF \cap C\infty (\BbbR ) satisfying (1.10) and (1.11). The mapping c \mapsto \rightarrow Uc is C\infty on \BbbR \setminus \{ 0\} and

\| Uc  - \varphi \| \scrH 2
 - 
\rightarrow 0 as c\rightarrow 0.(3.24)

Remark 3.3. For every c \in \BbbR , there exists another solitary wave with the profile
U satisfying (1.10) and (1.11) with 1< | U(\xi )| <\infty for every \xi \in \BbbR . However, it is not
relevant for the analysis of the black soliton with the profile \varphi .

Remark 3.4. It follows from the proof of Theorem 2 that the profile Uc has the
exponential rate of decay independently of the speed parameter c\in \BbbR , in particular,

| Uc(\xi )| = 1+Ace
 - 2| \xi | + o(e - 2| \xi | ) as | \xi | \rightarrow \infty ,

where Ac < 0. This is a novel feature compared to the dark solitons (1.3) of the cubic

NLS equation (1.1), where | Uc(\xi )| = 1 + Ace
 - 2

\surd 
1 - c2| \xi | + o(e - 2

\surd 
1 - c2| \xi | ) as | \xi | \rightarrow \infty 

with Ac < 0.

The third result (section 6) establishes the energetic stability of the black soliton
in \Sigma \cap \scrH , which gives the orbital stability under the assumption that the initial-value
problem for the NLS model (1.6) is locally well-posed in \Sigma \cap \scrH , where the distance in
\Sigma \cap \scrH is defined by

\scrD \Sigma \cap \scrH (\psi 1,\psi 2) :=
\sqrt{} 
\| \psi \prime 

1  - \psi \prime 
2\| 2L2 + \| | \psi 1| 2  - | \psi 2| 2\| 2L2 + \| \psi 1  - \psi 2\| 2\scrH .

Since the energy method uses conserved quantities, we also assume that E(\psi ), M(\psi ),
and P (\psi ) are preserved in the time evolution of the NLS model (1.6) in \Sigma \cap \scrH . This
assumption is natural in view of our computations in section 2 where we showed
conservation of these quantities in \scrF subject to the exponential rate of spatial decay
in (2.1).
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2530 DMITRY E. PELINOVSKY AND MICHAEL PLUM

Theorem 3. Assume that the initial-value problem for the NLS model (1.6) is
locally well-posed in \Sigma \cap \scrH and the values of E(\psi ), M(\psi ), and P (\psi ) are independent
of time t. Then the black soliton is orbitally stable in \Sigma \cap \scrH .

Remark 3.5. We use the standard definition of orbital stability and instability. We
say that \varphi is orbitally stable in \Sigma \cap \scrH if for every \epsilon > 0 there exists \delta > 0 such that for
every \psi 0 \in \Sigma \cap \scrH satisfying \scrD \Sigma \cap \scrH (\psi 0,\varphi )< \delta , the unique solution \psi \in C0(\BbbR +,\Sigma \cap \scrH )
satisfies

inf
\theta ,\zeta \in \BbbR 

\scrD \Sigma \cap \scrH 
\bigl( 
\psi (t, \cdot ), ei\theta \varphi (\cdot + \zeta )

\bigr) 
< \epsilon 

for every t > 0. Otherwise, we say that \varphi is orbitally unstable in \Sigma \cap \scrH .

Remark 3.6. In the context of the cubic NLS equation (1.1), only three constraints
were used in [16] for the proof of orbital stability of black solitons: one was defined in
\scrH and two were defined in L2(\BbbR ). A similar approach was used in [2] for the quintic
NLS equation. This relies on two symmetries of the NLS equation in (1.5) and the
momentum conservation. Compared to these works, we are using four orthogonality
conditions, all defined in \scrH , because the new NLS model (1.6) has the additional
scaling transformation (1.13).

Remark 3.7. We do not write down explicitly the time evolution of the modulation
parameters \theta and \zeta of the orbit \{ ei\theta \varphi (\cdot +\zeta )\} \theta ,\zeta \in \BbbR . This can be done with the standard
projection algorithm in \scrH (see [8, 12, 16]) but is not required for the orbital stability
result.

The final result (section 7) is about persistence and stability of the black soliton
in the perturbed NLS model (1.15) with the external potential V . We prove that the
same properties as in Theorem 1 can be extended to the black soliton pinned to the
minimal point of the effective potential \scrV (s) given by (1.16).

Theorem 4. Assume that V \in W 2,\infty (\BbbR ) \cap L1(\BbbR ) and that s \in \BbbR is a simple
root of \scrV \prime (s), where \scrV (s) is given by (1.16). There exists \varepsilon 0 > 0 such that for every
\varepsilon \in (0, \varepsilon 0), there exists a black soliton of the perturbed NLS model (1.15) in the form

\psi (t, x) = e - 2it\phi \varepsilon (x), \phi \varepsilon (x) =\varphi (x - s) + \~\varphi \varepsilon (x),(3.25)

where \varphi (x) = tanh(x) and \~\varphi \varepsilon \in H2(\BbbR ) satisfies \| \~\varphi \varepsilon \| H2 \leq C\varepsilon for some \varepsilon -independent
positive constant C. Moreover,

\bullet if \scrV \prime \prime (s) > 0, the stability spectrum consists of pairs of isolated eigenvalues
(3.20), a double zero eigenvalue, and a pair of isolated eigenvalues \{ \pm i\omega \varepsilon \} 
with \omega \varepsilon > 0;

\bullet if \scrV \prime \prime (s) < 0, the stability spectrum consists of pairs of isolated eigenvalues
(3.20), a double zero eigenvalue, and a pair of simple real eigenvalues \{ \pm \lambda \varepsilon \} 
with \lambda \varepsilon > 0.

In either case, \omega \varepsilon \rightarrow 0 and \lambda \varepsilon \rightarrow 0 as \varepsilon \rightarrow 0.

Remark 3.8. In the case \scrV \prime \prime (s)< 0, the black soliton is orbitally unstable in \Sigma \cap \scrH 
as the linear instability in the NLS models implies orbital instability [18] provided the
initial-value problem is locally well-posed in \Sigma \cap \scrH .

Remark 3.9. In the case \scrV \prime \prime (s) > 0, it is not immediately clear if the black
soliton is orbitally stable because the corresponding Lyapunov functional has two
eigendirections which correspond to two negative eigenvalues of the Hessian operator.
Nevertheless, the spectrum of the linear stability problem is purely discrete in \scrH and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

2/
24

 to
 1

30
.1

13
.1

09
.1

62
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2531

one can expect that the black soliton is orbitally stable in the NLS model (1.15) if
n\omega \varepsilon \not = \omega k for every n \in \BbbN and k \in \BbbN , where \omega \varepsilon is the smallest nonzero eigenvalue
bifurcating from the zero eigenvalue if \varepsilon \rightarrow 0 and \{ \omega k\} k\in \BbbN are eigenvalues in (3.20),
which also depend on \varepsilon . The nonresonance condition is needed to avoid nonlinear
instability induced by eigenvalues of negative Krein signature which are in resonance
with other eigenvalues of positive Krein signature; see [9, 21].

The remainder of this paper is devoted to the proof of Theorems 1, 2, 3, and 4,
concluding with discussions of open problems (section 8).

4. Linear operators \bfscrL \pm in the exponentially weighted \bfitL 2(\BbbR ) space. Here
we analyze the spectra of linear operators \scrL \pm and the linearized operator

\scrL =

\biggl[ 
0 \scrL  - 

 - \scrL + 0

\biggr] 
(4.1)

in the Hilbert space \scrH defined in (3.12). We provide the proof of Theorem 1, which
gives spectral stability of the black soliton and specifies that the spectra of \scrL  - and
\scrL + in \scrH and \scrL in \scrH \times \scrH are purely discrete.

Remark 4.1. It is generally expected that the spectral problem L\pm \psi = \lambda w(x)\psi ,
where L\pm are Schr\"odinger operators as in (3.9) and (3.10) and w(x)\rightarrow 0 as | x| \rightarrow \infty 
exponentially fast, admits a purely discrete spectrum in the weighted L2(\BbbR ) space.
However, there is no general theory for the spectrum of a non-self-adjoint linear op-
erator as in the spectral stability problem (3.11). The corresponding result is one of
the novelties of our work.

4.1. Spectrum of \bfscrL  - in \bfscrH . It follows from (3.10) that L - = - \partial 2x - 2 sech2(x).
The spectral problem for \scrL  - in \scrH takes the form

 - v\prime \prime (x) - 2 sech2(x) v(x) = \nu sech2(x) v(x), x\in \BbbR .(4.2)

The first two eigenvalues of the spectral problem (4.2) are available explicitly:

\nu = - 2 : v(x) = 1,

\nu = 0 : v(x) = tanh(x).

The bounded solutions of the second-order differential equation (4.2) belong to the
form domain \scrH 1

 - given by (3.14), whereas the linearly growing solutions do not belong
to \scrH 1

 - . Hence, eigenvalues of the spectral problem (4.2) coincide with the admissible
values of \nu for which the Schr\"odinger operator

\scrS \nu := - \partial 2x  - (2 + \nu )sech2(x) :H2(\BbbR )\subset L2(\BbbR )\rightarrow L2(\BbbR )

admits the end-point resonance at the zero energy level with a bounded eigenfunction
v(x). This problem is well-known in mathematical physics (see [28, Chapter 6, pp.
768--769]), for which the differential equation (4.2) is converted to the hypergeometric
equation. It is also well-known that the power series for the hypergeometric function
is truncated into a polynomial which admits a bounded eigenfunction if and only if

2 + \nu = n(n+ 1), where n\in \BbbN 0 := \{ 0,1,2, . . .\} .

This gives the exact location of the simple eigenvalues (Remark 3.1).

Remark 4.2. Each eigenvalue is simple because if one solution of the second-order
differential equation (4.2) is bounded, the second solution is linearly growing in x at
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2532 DMITRY E. PELINOVSKY AND MICHAEL PLUM

infinity. Moreover, Sturm's oscillation theorem states that the bounded eigenfunctions
for the nth eigenvalue has (n - 1) zeros on \BbbR . Hence 0 is the second eigenvalue of \scrL  - 
in \scrH .

We are going to make the picture above precise and give the proof that the linear
operator \scrL  - in the Hilbert space\scrH has a purely discrete spectrum consisting of simple
isolated eigenvalues. In order to do so, we define a positive linear operator

M - := - \partial 2x + sech2(x)

or equivalently,

\scrM  - :\scrH 2
 - \rightarrow \scrH , \scrM  - := - cosh2(x)\partial 2x + 1,(4.3)

where the operator domain \scrH 2
 - is given by (3.16). It follows from the triangle in-

equality that the operator domain \scrH 2
 - can be written in the equivalent form

\scrH 2
 - =

\bigl\{ 
f \in \scrH : f \prime \in L2(\BbbR ), cosh(\cdot )f \prime \prime \in L2(\BbbR )

\bigr\} 
(4.4)

equipped with the norm

\| f\| \scrH 2
 - 
:=
\sqrt{} 

\| cosh(\cdot )f \prime \prime \| 2L2 + \| f \prime \| 2L2 + \| f\| 2\scrH .(4.5)

The first result ensures that 0 does not belong to the spectrum of the operator
\scrM  - in \scrH .

Lemma 4.1. The linear operator \scrM  - given by (4.3) is bijective and symmetric,
whereas \scrM  - 1

 - is a bounded operator from \scrH to \scrH 2
 - .

Proof. For injectivity, we use the integration by parts formula (Lemma A.2),
which ensures that if u\in \scrH 2

 - , then \langle  - u\prime \prime , u\rangle L2 = \| u\prime \| 2L2 . Hence, if there exists u\in \scrH 2
 - 

such that \scrM  - u= 0, then\int 
\BbbR 

\bigl( 
| u\prime (x)| 2 + sech2(x)| u(x)| 2

\bigr) 
dx= 0,

which implies that u= 0 in \scrH . Hence, Ker(\scrM  - ) is trivial in \scrH .
For surjectivity, let f \in \scrH and consider the resolvent equation for \scrM  - in the

weak form:

(u,\phi )\scrH 1
 - 
= (f,\phi )\scrH \forall \phi \in \scrH 1

 - ,(4.6)

where the inner product in \scrH 1
 - is defined by

(u,\phi )\scrH 1
 - 
:= (u,\phi )\scrH + \langle u\prime , \phi \prime \rangle L2 \forall u,\phi \in \scrH 1

 - ,

together with the induced norm \| \cdot \| \scrH 1
 - 
, also defined in (3.15). Due to the Cauchy--

Schwarz inequality

| (f,\phi )\scrH | \leq \| f\| \scrH \| \phi \| \scrH \leq \| f\| \scrH \| \phi \| \scrH 1
 - 

\forall \phi \in \scrH 1
 - 

and the Riesz representation theorem, there exists a unique solution u \in \scrH 1
 - of (4.6)

such that \| u\| \scrH 1
 - 
\leq \| f\| \scrH . This yields

\langle u\prime , \phi \prime \rangle L2 =

\int 
\BbbR 
sech2(\cdot )( \=f  - \=u)\phi dx \forall \phi \in \scrH 1

 - 
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2533

with sech2(\cdot )(f - u)\in L2(\BbbR ). Therefore, if we take \phi \in C\infty 
c (\BbbR )\subset \scrH 1

 - , then u
\prime is weakly

differentiable and  - u\prime \prime = sech2(\cdot )(f - u)\in L2(\BbbR ). Hence,  - cosh(\cdot )u\prime \prime = sech(\cdot )(f - u)\in 
L2(\BbbR ) so that u\in \scrH 2

 - is a strong solution of \scrM  - u= f for every f \in \scrH .
The bound on the inverse operator \scrM  - 1

 - from \scrH to \scrH 2
 - follows from \| u\| \scrH 1

 - 
\leq 

\| f\| \scrH and

\| cosh(\cdot )u\prime \prime \| L2 \leq \| f\| \scrH + \| u\| \scrH \leq 2\| f\| \scrH ,

so that the definition (4.5) implies that \| \scrM  - 1
 - f\| \scrH 2

 - 
\leq 
\surd 
5\| f\| \scrH holds for every f \in \scrH .

Finally, the integration by parts formula (Lemma A.2) ensures for any u, v \in \scrH 2
 - 

that

(\scrM  - u, v)\scrH =

\int 
\BbbR 
( - \=u\prime \prime + sech2(\cdot )\=u)vdx=

\int 
\BbbR 
\=u( - v\prime \prime + sech2(\cdot )v)dx= (u,\scrM  - v)\scrH ,

so that the linear operator (4.3) is symmetric.

The next goal is to prove compactness of the embedding of \scrH 2
 - into \scrH . This will

ensure that the spectrum of the operator \scrM  - in \scrH is purely discrete.

Lemma 4.2. The embedding \scrH 2
 - \lhook \rightarrow \scrH is compact.

Proof. Let \{ un\} denote a bounded sequence in \scrH 2
 - so that \{ cosh(\cdot )u\prime \prime n\} , \{ u\prime n\} , and

\{ sech(\cdot )un\} are bounded in L2(\BbbR ). In particular, since cosh(\cdot ) \geq 1, \{ u\prime n\} is bounded
in H1(\BbbR ). Since the mapping H1(\BbbR ) \ni v \mapsto \rightarrow sech(\cdot )v \in L2(\BbbR ) is compact, there exists
a subsequence \{ unk

\} such that \{ sech(\cdot )u\prime nk
\} is convergent in L2(\BbbR ).

Furthermore, (sech(\cdot )un)\prime = sech(\cdot )u\prime n  - tanh(\cdot )sech(\cdot )un is bounded in L2(\BbbR ),
hence \{ sech(\cdot )un\} is bounded in H1(\BbbR ). By Sobolev's embedding of H1(\BbbR ) into
C0(\BbbR )\cap L\infty (\BbbR ), \{ un(0)\} is bounded in \BbbC so that without loss of generality, \{ unk

(0)\} 
converges in \BbbC . Using

un(x) = un(0) +

\int x

0

cosh(t)sech(t)u\prime n(t)dt,

we obtain

sech(x)| unk
(x) - unj

(x)| \leq sech(x)| unk
(0) - unj

(0)| 

+ sech(x)

\int x

0

cosh(t)sech(t)| u\prime nk
(t) - u\prime nj

(t)| dt.

The first term in the right-hand side is bounded in L2(\BbbR ) by
\surd 
2| unk

(0) - unj
(0)| ,

which vanishes in L2(\BbbR ) as k, j\rightarrow \infty due to convergence of \{ unk
(0)\} . Using the bound

(A.3) (Lemma A.1), the second term in the right-hand side is bounded in L2(\BbbR ) by

2\| sech(\cdot )(u\prime nk
 - u\prime nj

)\| L2 ,

which vanishes as k, j\rightarrow \infty due to convergence of \{ sech(\cdot )u\prime nk
\} . Hence, \{ sech(\cdot )unk

\} 
converges in L2(\BbbR ), and thus \{ unk

\} converges in \scrH , which verifies that the embedding
\scrH 2

 - \lhook \rightarrow \scrH is compact.

Combining the inverse operator \scrM  - 1
 - :\scrH \rightarrow \scrH 2

 - in Lemma 4.1 and the compact
embedding \scrH 2

 - \lhook \rightarrow \scrH in Lemma 4.2, we can define a compact operator

\scrK  - =\scrM  - 1
 - :\scrH \rightarrow \scrH 2

 - \lhook \rightarrow \scrH .(4.7)

The following corollary gives the desired result for the proof of Theorem 1.
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2534 DMITRY E. PELINOVSKY AND MICHAEL PLUM

Corollary 4.1. The spectrum of \scrL  - in \scrH consists of isolated eigenvalues.

Proof. The compact operator \scrK  - has a purely discrete spectrum of eigenvalues
accumulating at 0. Hence the linear operator \scrM  - :\scrH 2

 - \subset \scrH \rightarrow \scrH has a purely discrete
spectrum of eigenvalues. Since \scrL  - = \scrM  -  - 3, the spectrum of \scrL  - in \scrH consists of
isolated eigenvalues.

Remark 4.3. Isolated eigenvalues of \scrL  - in \scrH given by Corollary 4.1 satisfy the
ordering (3.19) because each eigenvalue is simple and \nu = 0 is the second eigenvalue
of the spectral problem (4.2) (Remark 4.2).

4.2. Spectrum of \bfscrL + in \bfscrH . It follows from (3.9) that L+ =  - \partial 2x + 4  - 
6 sech2(x). The spectral problem for \scrL + in \scrH takes the form

 - u\prime \prime (x) + 4u(x) - 6 sech2(x) u(x) = \mu sech2(x) u(x), x\in \BbbR .(4.8)

The first eigenvalue of the spectral problem (4.8) is available explicitly:

\mu = 0 : u(x) = sech2(x).

The differential equation (4.8) has exponentially growing and exponentially decaying
solutions at infinity. By Levinston's theorem (Proposition 8.1 in [7]), the growth and
decay rates are \pm 2, hence the exponentially growing solutions do not belong to \scrH .
Thus, we conclude that eigenvalues of the spectral problem (4.8) coincide with the
admissible values of \mu for which the Schr\"odinger operator

\scrR \mu := - \partial 2x  - (6 + \mu )sech2(x) :H2(\BbbR )\subset L2(\BbbR )\rightarrow L2(\BbbR )

admits an eigenvalue at the energy level  - 4 with a bounded and exponentially decay-
ing eigenfunction u(x). By using the exact solution from the hypergeometric equation
(see [28, Chapter 6, pp. 768--769]), the bounded and exponentially decaying eigen-
function exists at the energy level  - 4 if and only if

\mu = n(n+ 5), where n\in \BbbN 0 := \{ 0,1,2, . . .\} .

This gives the exact location of the simple eigenvalues (Remark 3.1).

Remark 4.4. Each eigenvalue is simple because if one solution of the second-
order differential equation (4.8) is exponentially decaying, then the second solution is
exponentially growing in x at infinity. Moreover, Sturm's oscillation theorem states
that the bounded eigenfunctions for the nth eigenvalue has (n - 1) zeros on \BbbR . Hence
0 is the first eigenvalue of \scrL  - .

We will complete the picture above with the proof that the linear operator \scrL +

in the Hilbert space \scrH has a purely discrete spectrum consisting of simple isolated
eigenvalues. In order to do so, we define a positive linear operator

M+ := - \partial 2x + 4

or equivalently,

\scrM + :\scrH 2
+ \rightarrow \scrH , \scrM + := cosh2(x)( - \partial 2x + 4),(4.9)

where the operator domain \scrH 2
+ given by (3.16) can be rewritten in the equivalent

form

\scrH 2
+ =

\bigl\{ 
f \in H1(\BbbR ) : cosh(\cdot )( - \partial 2x + 4)f \in L2(\BbbR )

\bigr\} 
,(4.10)
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2535

equipped with the norm

\| f\| \scrH 2
+
:=
\sqrt{} 

\| cosh(\cdot )( - f \prime \prime + 4f)\| 2L2 + \| f \prime \| 2L2 + 4\| f\| 2L2 .(4.11)

We also recall that \scrH 1
+ \equiv H1(\BbbR ).

The next two lemmas give equivalent results to those in Lemmas 4.1 and 4.2.

Lemma 4.3. The linear operator \scrM + given by (4.9) is bijective and symmetric,
whereas \scrM  - 1

+ is a bounded operator from \scrH to \scrH 2
+.

Proof. For injectivity, we again use the integration by parts formula (Lemma A.3),
which yields for every u\in \scrH 2

+

(\scrM +u,u)\scrH =

\int 
\BbbR 

\bigl( 
| u\prime (x)| 2 + 4| u(x)| 2

\bigr) 
dx.

If u\in \scrH 2
+ is a solution of \scrM +u= 0, then u= 0 in \scrH and Ker(\scrM +) is trivial in \scrH .

For surjectivity, let f \in \scrH and consider the resolvent equation for \scrM + in the
weak form:

(u,\phi )\scrH 1
+
= (f,\phi )\scrH \forall \phi \in \scrH 1

+,(4.12)

where we recall that \scrH 1
+ \equiv H1(\BbbR ) and use the inner product

(u,\phi )\scrH 1
+
:= 4\langle u, v\rangle L2 + \langle u\prime , \phi \prime \rangle L2 \forall u,\phi \in \scrH 1

+,

together with the induced norm \| \cdot \| \scrH 1
+
, also defined in (3.15). By the Riesz repre-

sentation theorem and the Cauchy--Schwarz inequality, there exists a unique solution
u\in \scrH 1

+ of (4.12) such that \| u\| \scrH 1
+
\leq \| f\| \scrH . This yields

\langle u\prime , \phi \prime \rangle =
\int 
\BbbR 
(sech2(\cdot ) \=f  - 4\=u)\phi dx \forall \phi \in \scrH 1

+.

In particular, this holds for \phi \in C\infty 
c (\BbbR ) implying  - u\prime \prime = sech2(\cdot )f  - 4u \in L2(\BbbR ) and

cosh(\cdot )( - u\prime \prime + 4u) = sech(\cdot )f \in L2(\BbbR ) so that u \in \scrH 2
+ is a strong solution of the

resolvent equation \scrM +u= f and this holds for every f \in \scrH .
The bound on the inverse operator \scrM  - 1

+ from \scrH to \scrH 2
+ follows from

\| cosh(\cdot )( - u\prime \prime + 4u)\| L2 = \| f\| \scrH 

so that the definition (4.11) implies that \| \scrM  - 1
+ f\| \scrH 2

 - 
\leq 
\surd 
2\| f\| \scrH holds for every f \in \scrH .

The symmetry of \scrM + : \scrH 2
+ \subset \scrH \rightarrow \scrH follows from the integration by parts

formula (Lemma A.3).

Lemma 4.4. The embedding \scrH 2
+ \lhook \rightarrow \scrH is compact.

Proof. Since the mapping H1(\BbbR ) \ni v \mapsto \rightarrow sech(\cdot )v \in L2(\BbbR ) is compact and \scrH 1
+ \equiv 

H1(\BbbR ), the embedding \scrH 1
+ \lhook \rightarrow \scrH is compact and so is the embedding \scrH 2

+ \lhook \rightarrow \scrH since
\scrH 2

+ \subset \scrH 1
+ with continuous embedding.

Combining the inverse operator \scrM  - 1
+ :\scrH \rightarrow \scrH 2

+ in Lemma 4.3 and the compact
embedding \scrH 2

+ \lhook \rightarrow \scrH in Lemma 4.4, we can define a compact operator

\scrK + =\scrM  - 1
+ :\scrH \rightarrow \scrH 2

+ \lhook \rightarrow \scrH .(4.13)

The following corollary gives the desired result for the proof of Theorem 1.
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2536 DMITRY E. PELINOVSKY AND MICHAEL PLUM

Corollary 4.2. The spectrum of \scrL + in \scrH consists of isolated eigenvalues.

Proof. The compact operator \scrK + has a purely discrete spectrum of eigenvalues
accumulating to 0. Hence the linear operator \scrM + :\scrH 2

+ \subset \scrH \rightarrow \scrH has a purely discrete
spectrum of eigenvalues. Since \scrL + = \scrM +  - 6, the spectrum of \scrL + in \scrH consists of
isolated eigenvalues.

Remark 4.5. Isolated eigenvalues of \scrL + in \scrH given by Corollary 4.2 satisfy the
ordering (3.18) because each eigenvalue is simple and \mu = 0 is the first eigenvalue of
the spectral problem (4.8) (Remark 4.4).

4.3. Spectrum of \bfscrL in \bfscrH \times \bfscrH . The following lemma characterizes the quadru-
ple zero eigenvalue of the stability problem (3.17).

Lemma 4.5. The zero eigenvalue \lambda = 0 of the stability problem (3.17) has double
geometric multiplicity and quadruple algebraic multiplicity.

Proof. Recall the two eigenvectors (3.21) of the stability problem (3.17) for \lambda = 0.
Since the linearized operator \scrL in (4.1) is antidiagonal, eigenvectors for \lambda = 0 are
given by solutions of \scrL +u= 0 and \scrL  - v = 0 in \scrH . Hence the two eigenvectors (3.21)
are the only solutions of these equations in \scrH (Remarks 4.3 and 4.5) so that \lambda = 0 is
an eigenvalue of geometric multiplicity two.

Generalized eigenvectors of the stability problem (3.17) for \lambda = 0 can be written
in the form

\vec{}wg1 =

\biggl[ 
0
v\varphi 

\biggr] 
, \vec{}wg2 =

\biggl[ 
u\varphi 
0

\biggr] 
,

\scrL  - v\varphi =\varphi \prime ,
 - \scrL +u\varphi =\varphi .

(4.14)

Since \varphi (x) = tanh(x), the inhomogeneous equations (4.14) can be solved in \scrH exactly
as

v\varphi (x) =
1

4
sech2(x) - 1

2
, u\varphi (x) = - 1

4
x sech2(x),(4.15)

where the homogeneous solutions are set to zero without loss of generality. In order
to prove that \lambda = 0 is an eigenvalue of algebraic multiplicity four, we need to show
that the inhomogeneous linear equations

 - \scrL +\~u= v\varphi ,
\scrL  - \~v= u\varphi 

(4.16)

do not admit solutions in \scrH . Since (\scrL +\~u,\varphi \prime )\scrH = 0 for every \~u\in \scrH 2
+ due to integration

by parts (Lemma A.3) and \scrL +\varphi 
\prime = 0, it follows that \~u \in \scrH 2

+ \subset \scrH in (4.16) exists
if and only if (v\varphi ,\varphi 

\prime )\scrH = 0. However, this is a contradiction since (v\varphi ,\varphi 
\prime )\scrH < 0

because v\varphi (x) < 0 and \varphi \prime (x) > 0 for every x \in \BbbR . One can compute exactly that
(v\varphi ,\varphi 

\prime )\scrH = - 2
5 .

Since (\scrL  - \~v,\varphi )\scrH = 0 for every \~v \in \scrH 2
 - due to integration by parts (Lemma A.2)

and \scrL  - \varphi = 0, it follows that \~v \in \scrH 2
 - \subset \scrH in (4.16) exists if and only if (u\varphi ,\varphi )\scrH = 0.

However, this is again a contradiction since (u\varphi ,\varphi )\scrH < 0 because u\varphi (x) < 0 and
\varphi (x)> 0 for every x> 0 and u\varphi , \varphi are odd functions. One can compute exactly that
(u\varphi ,\varphi )\scrH = - 1

12 .
Thus, the Jordan chain of generalized eigenvectors of the stability problem (3.17)

is truncated at the two generalized eigenvectors (4.14) so that \lambda = 0 is eigenvalue of
algebraic multiplicity four.

We will further prove that the spectrum of the stability problem (3.17) is purely
discrete and consists of eigenvalues with the eigenfunctions (u, v) \in \scrH 2

+ \times \scrH 2
 - . To do

so, we rewrite the resolvent equation in the form
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2537

\scrL  - v= \lambda u+ f,
 - \scrL +u= \lambda v+ g

(4.17)

for a given (f, g) \in \scrH \times \scrH . Since the quadruple eigenvalue \lambda = 0 is prescribed by
Lemma 4.5, the resolvent equation (4.17) is considered for \lambda \not = 0.

By using the compact operators \scrK \pm given by (4.7) and (4.13), we rewrite the
resolvent equation (4.17) in the equivalent form

(I  - 3\scrK  - )v= \lambda \scrK  - u+\scrK  - f,
 - (I  - 6\scrK +)u= \lambda \scrK +v+\scrK +g,

(4.18)

where I is the identity in \scrH . Before progressing further, we recall the generalized
kernel of the stability problem in Lemma 4.5 from solutions of the linear equations

\scrL +\varphi 
\prime = 0, \scrL  - \varphi = 0, \scrL +u\varphi = - \varphi , \scrL  - v\varphi =\varphi \prime ,

which we can reproduce in the equivalent form

(I  - 6\scrK +)\varphi 
\prime = 0, (I  - 3\scrK  - )\varphi = 0, (I  - 6\scrK +)u\varphi = - \scrK +\varphi , (I  - 3\scrK  - )v\varphi =\scrK  - \varphi 

\prime .

The following lemma will ensure that projections to the eigenfunctions of the gener-
alized kernel are nondegenerate.

Lemma 4.6. The following two matrices are invertible:

A+ :=

\biggl[ 
(\varphi \prime ,\scrK +\varphi )\scrH (\varphi \prime ,\scrK +v\varphi )\scrH 
(u\varphi ,\scrK +\varphi )\scrH (u\varphi ,\scrK +v\varphi )\scrH 

\biggr] 
(4.19)

and

A - :=

\biggl[ 
(\varphi ,\scrK  - \varphi 

\prime )\scrH (\varphi ,\scrK  - u\varphi )\scrH 
(v\varphi ,\scrK  - \varphi 

\prime )\scrH (v\varphi ,\scrK  - u\varphi )\scrH 

\biggr] 
.(4.20)

Proof. The first diagonal entries of A\pm are zero because

(\varphi \prime ,\scrK +\varphi )\scrH = (\scrK +\varphi 
\prime ,\varphi )\scrH =

1

6
(\varphi \prime ,\varphi )\scrH = 0

and

(\varphi ,\scrK  - \varphi 
\prime )\scrH = (\scrK  - \varphi ,\varphi 

\prime )\scrH =
1

3
(\varphi ,\varphi \prime )\scrH = 0.

We will show that the off-diagonal entries of A\pm are all nonzero. This will ensure
invertibility of A\pm irrespective of the last diagonal entries of A\pm . For two off-diagonal
entries, we obtain

(\varphi \prime ,\scrK +v\varphi )\scrH = (\scrK +\varphi 
\prime , v\varphi )\scrH =

1

6
(\varphi \prime , v\varphi )\scrH < 0

and

(\varphi ,\scrK  - u\varphi )\scrH = (\scrK  - \varphi ,u\varphi )\scrH =
1

3
(\varphi ,u\varphi )\scrH < 0,

where the signs of the last terms are computed in the proof of Lemma 4.5. For the
other two off-diagonal entries, we claim the following explicit expressions:
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2538 DMITRY E. PELINOVSKY AND MICHAEL PLUM

(\scrK  - \varphi 
\prime )(x) =

4

7
+

1

7
sech2(x),(4.21)

(\scrK +\varphi )(x) = x cosh(2x) - sinh(2x) log(2 cosh(x)) +
1

2
tanh(x).(4.22)

The expression (4.21) is obtained by solving the inhomogeneous equation

( - \partial 2x + sech2(x))(\scrK  - \varphi 
\prime ) = ( - \partial 2x  - 2sech2(x))v\varphi = sech4(x),

from which we obtain (v\varphi ,\scrK  - \varphi 
\prime )\scrH < 0 since v\varphi (x) < 0 and (\scrK  - \varphi 

\prime )(x) > 0 for every
x\in \BbbR .

The expression (4.22) is obtained by solving the inhomogeneous equation

( - \partial 2x + 4)(\scrK +\varphi ) = - ( - \partial 2x + 4 - 6sech2(x))u\varphi = tanh(x)sech2(x)

with the homogeneous solution chosen to satisfy the requirement that \scrK +\varphi \in \scrH . To
show this, we can rewrite the right-hand side of (4.22) for x> 0 as

xe - 2x  - 1

2
g(x) +

1

2
(g(x) + 1)e - 4x  - e - 2x

1 + e - 2x
,(4.23)

where

g(x) := e2x [log(2 cosh(x)) - x] - 1 = e2x log(1 + e - 2x) - 1.

Taylor expansion shows that g(x) = - 1
2e

 - 2x+\scrO (e - 4x) as x\rightarrow +\infty so that the explicit
expression (4.23) decays to 0 as x\rightarrow +\infty exponentially fast. Since it is odd in x, it
belongs to H1(\BbbR )\subset \scrH so that it coincides with (\scrK +\phi ). Moreover, since (\scrK +\varphi )(x)\rightarrow 0
as x\rightarrow +\infty and

d

dx

(\scrK +\varphi )(x)

sinh(2x)
=

tanh(x) - x

2 sinh2(x) cosh2(x)
< 0, x > 0,

we have (\scrK +\varphi )(x)> 0 for x> 0, from which we obtain (u\varphi ,\scrK +\varphi )\scrH < 0 since u\varphi (x)< 0
for x > 0 and both functions are odd. Thus, all four off-diagonal terms in A\pm are
nonzero so that A\pm are invertible.

Let us now define the following two subspaces of \scrH :

\scrU := span(\varphi \prime , u\varphi )
\bot , \scrV := span(\varphi ,v\varphi )

\bot ,

and denote the orthogonal projection operators \Pi \scrU :\scrH \mapsto \rightarrow \scrU and \Pi \scrV :\scrH \mapsto \rightarrow \scrV .
The following lemma describes decompositions of \scrH into two direct sums, which

are generally nonorthogonal.

Lemma 4.7. \scrH can be decomposed into the following direct sums:

\scrH = \scrU \oplus span(\scrK +\varphi ,\scrK +v\varphi ) = \scrV \oplus span(\scrK  - \varphi 
\prime ,\scrK  - u\varphi ).

Proof. First we show that

\xi 1 :=\scrK +\varphi  - \Pi \scrU (\scrK +\varphi ), \xi 2 :=\scrK +v\varphi  - \Pi \scrU (\scrK +v\varphi )

are linearly independent. Letting (c1, c2)\in \BbbC 2 such that c1\xi 1 + c2\xi 2 = 0 implies

c1\scrK +\varphi + c2\scrK +v\varphi \in \scrU .
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2539

Taking inner products in \scrH with \varphi \prime and u\varphi yields the linear homogeneous system

A+

\biggl[ 
c1
c2

\biggr] 
=

\biggl[ 
0
0

\biggr] 
,

which has no nontrivial solutions by Lemma 4.6. Hence, c1 = c2 = 0. Thus, \{ \xi 1, \xi 2\} 
is a basis of \scrU \bot := span(\varphi \prime , u\varphi ) so that every f \in \scrH can be written as

f = u+ \alpha \xi 1 + \beta \xi 2 = \~u+ \alpha \scrK +\varphi + \beta \scrK +v\varphi ,

with uniquely determined u \in \scrU and (\alpha ,\beta ) \in \BbbC 2, and with \~u := u  - \Pi \scrU (\alpha \scrK +\varphi +
\beta \scrK +v\varphi ).

The decomposition of \scrH into \scrV \oplus span(\scrK  - \varphi 
\prime ,\scrK  - u\varphi ) follows analogously but with

using invertibility of A - in Lemma 4.6.

With the help of Lemma 4.7, we define the projection operator P\scrU from \scrH to \scrU 
along span(\scrK +\varphi ,\scrK +v\varphi ) as

P\scrU (u+ \alpha \scrK +\varphi + \beta \scrK +v\varphi ) = u \forall u\in \scrU , \forall (\alpha ,\beta )\in \BbbR 2.

Similarly, the projection operator P\scrV from \scrH to \scrV along span(\scrK  - \varphi 
\prime ,\scrK  - u\varphi ) is defined

as

P\scrV (v+ \alpha \scrK  - \varphi 
\prime + \beta \scrK  - u\varphi ) = v \forall v \in \scrV , \forall (\alpha ,\beta )\in \BbbR 2.

The following lemma gives invertibility of the linear operators in the resolvent equa-
tion (4.18) after appropriate projection operators.

Lemma 4.8. The two operators

\scrS + := P\scrU (I  - 6\scrK +)| \scrU : \scrU \mapsto \rightarrow \scrU 

and

\scrS  - := P\scrV (I  - 3\scrK  - )| \scrV : \scrV \mapsto \rightarrow \scrV 

are invertible with bounded inverse.

Proof. Since \scrK + and \scrK  - are compact, the operators \scrS + and \scrS  - are compact
perturbations of the identity operators in \scrU and \scrV . Therefore, the assertion follows
from Fredholm's alternative theorem, once we have proven injectivity of \scrS + and \scrS  - .

To prove injectivity of \scrS +, we let u\in \scrU satisfy \scrS +u= 0, which implies

(I  - 6\scrK +)u= \alpha \scrK +\varphi + \beta \scrK +v\varphi 

for some (\alpha ,\beta )\in \BbbC 2. Taking the inner product in \scrH with \varphi \prime yields

0 = \alpha (\varphi \prime ,\scrK +\varphi )\scrH + \beta (\varphi \prime ,\scrK +v\varphi )\scrH .

Since (\varphi \prime ,\scrK +\varphi )\scrH = 0 and (\varphi \prime ,\scrK +v\varphi )\scrH \not = 0 by Lemma 4.6, we have \beta = 0. With the
help of (I  - 6\scrK +)u\varphi = - \scrK +\varphi , we obtain

u= - \alpha u\varphi + \gamma \varphi \prime 

for some \gamma \in \BbbR , but since u\in \scrU , we obtain \alpha = \gamma = 0 so that u= 0 and \scrS + is injective.
Injectivity of \scrS  - follows analogously.

With the preliminary results in Lemmas 4.6, 4.7, and 4.8, we now obtain the
desired result in the following theorem.
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Theorem 5. The spectrum of the linear stability problem (3.17) consists only of
isolated eigenvalues of finite multiplicity and admits no finite accumulation points.

Proof. By Lemma 4.6, \{ \scrK +\varphi ,\scrK +v\varphi \} is linearly independent of \{ \varphi \prime , u\varphi \} so that

Null(P\scrU )\cap Null(I  - \Pi \scrU ) =Null(P\scrV )\cap Null(I  - \Pi \scrV ) = \{ 0\} .

As a result, the resolvent problem (4.18) is identical to the following two systems:

P\scrV (I  - 3\scrK  - )v= P\scrV (\lambda \scrK  - u+\scrK  - f),
 - P\scrU (I  - 6\scrK +)u= P\scrU (\lambda \scrK +v+\scrK +g)

(4.24)

and

(I  - \Pi \scrV )(I  - 3\scrK  - )v= (I  - \Pi \scrV )(\lambda \scrK  - u+\scrK  - f),
 - (I  - \Pi \scrU )(I  - 6\scrK +)u= (I  - \Pi \scrU )(\lambda \scrK +v+\scrK +g).

(4.25)

Since \scrH is given by the orthogonal sums \scrU \oplus \scrU \bot and \scrV \oplus \scrV \bot , we decompose

u= \~u+ \alpha \varphi \prime + \beta u\varphi , v= \~v+ \gamma \varphi + \delta v\varphi ,(4.26)

where \~u\in \scrU , \~v \in \scrV , and \alpha ,\beta , \gamma , \delta \in \BbbC . Since

P\scrU (I  - 6\scrK +)\varphi 
\prime = 0, P\scrU (I  - 6\scrK +)u\varphi = 0, P\scrU (\scrK +\varphi ) = 0, P\scrU (\scrK +v\varphi ) = 0,

P\scrV (I  - 3\scrK  - )\varphi = 0, P\scrV (I  - 3\scrK  - )v\varphi = 0, P\scrV (\scrK  - \varphi 
\prime ) = 0, P\scrV (\scrK  - u\varphi ) = 0,

the first system (4.24) with the decomposition (4.26) is equivalent to

P\scrV (I  - 3\scrK  - )\~v= P\scrV (\lambda \scrK  - \~u+\scrK  - f),
 - P\scrU (I  - 6\scrK +)\~u= P\scrU (\lambda \scrK +\~v+\scrK +g).

By Lemma 4.8, the linear operators in the left-hand side can be inverted so that the
system can be rewritten in the equivalent form:\biggl[ 

\~u
\~v

\biggr] 
= \lambda 

\biggl[ 
0  - \scrS  - 1

+ P\scrU \scrK +| \scrV 
\scrS  - 1
 - P\scrV \scrK  - | \scrU 0

\biggr] \biggl[ 
\~u
\~v

\biggr] 
+

\biggl[ 
 - \scrS  - 1

+ P\scrU \scrK +g
\scrS  - 1
 - P\scrV \scrK  - f

\biggr] 
.

Since the matrix operator in the right-hand side is a compact operator from \scrU \times \scrV to
itself, Fredholm's alternative theorem tells us that either the inhomogeneous system
has a unique solution (\~u, \~v) \in \scrU \times \scrV for every (f, g) \in \scrH \times \scrH or \lambda is an isolated
eigenvalue of finite multiplicity of the homogeneous system with f = g= 0. Moreover,
isolated eigenvalues have no finite accumulation points.

Let us show that the Fredholm's alternative carries over to the original system
(4.18). To do so, we analyze the second system (4.25) with the decomposition (4.26).
Since

(\varphi \prime , (I  - 6\scrK +)u)\scrH = 0, (\varphi , (I  - 3\scrK  - )v)\scrH = 0,

and

(u\varphi , (I  - 6\scrK +)u)\scrH = ((I  - 6\scrK +)u\varphi , u)\scrH = - (\scrK +\varphi ,u)\scrH ,
(v\varphi , (I  - 3\scrK  - )v)\scrH = ((I  - 3\scrK  - )v\varphi , v)\scrH = (\scrK  - \varphi 

\prime , v)\scrH ,
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2541

we obtain the following system of four equations:

0 = \lambda [(\varphi ,\scrK  - \~u)\scrH + \alpha (\varphi ,\scrK  - \varphi 
\prime )\scrH + \beta (\varphi ,\scrK  - u\varphi )\scrH ] + (\varphi ,\scrK  - f)\scrH ,

(\scrK  - \varphi 
\prime , \~v)\scrH + \delta (\scrK  - \varphi 

\prime , v\varphi )\scrH 

= \lambda [(v\varphi ,\scrK  - \~u)\scrH + \alpha (v\varphi ,\scrK  - \varphi 
\prime )\scrH + \beta (v\varphi ,\scrK  - u\varphi )\scrH ] + (v\varphi ,\scrK  - f)\scrH ,

0 = \lambda [(\varphi \prime ,\scrK +\~v)\scrH + \gamma (\varphi \prime ,\scrK +\varphi )\scrH + \delta (\varphi \prime ,\scrK +v\varphi )\scrH ] + (\varphi \prime ,\scrK +g)\scrH ,

 - (\scrK +\varphi , \~u)\scrH  - \beta (\scrK +\varphi ,u\varphi )\scrH 

= \lambda [(u\varphi ,\scrK +\~v)\scrH + \gamma (u\varphi ,\scrK +\varphi )\scrH + \delta (u\varphi ,\scrK +v\varphi )\scrH ] + (u\varphi ,\scrK +g)\scrH ,

where we have used

(\scrK  - \varphi 
\prime ,\varphi )\scrH = (\scrK +\varphi ,\varphi 

\prime )\scrH = 0

and our definition (3.13) with the complex conjugation applied to the first element of
the inner product in \scrH .

The system can be written in the matrix-vector form by using matrices A+ and
A - in (4.19) and (4.20):

\lambda A - 

\biggl[ 
\alpha 
\beta 

\biggr] 
 - A - 

\biggl[ 
\delta 
0

\biggr] 
=

\biggl[ 
0

(\scrK  - \varphi 
\prime , \~v)\scrH 

\biggr] 
 - \lambda 

\biggl[ 
(\varphi ,\scrK  - \~u)\scrH 
(v\varphi ,\scrK  - \~u)\scrH 

\biggr] 
 - 
\biggl[ 

(\varphi ,\scrK  - f)\scrH 
(v\varphi ,\scrK  - f)\scrH 

\biggr] 
,

\lambda A+

\biggl[ 
\gamma 
\delta 

\biggr] 
+A+

\biggl[ 
\beta 
0

\biggr] 
= - 

\biggl[ 
0

(\scrK +\varphi , \~u)\scrH 

\biggr] 
 - \lambda 

\biggl[ 
(\varphi \prime ,\scrK +\~v)\scrH 
(u\varphi ,\scrK +\~v)\scrH 

\biggr] 
 - 
\biggl[ 

(\varphi \prime ,\scrK +g)\scrH 
(u\varphi ,\scrK +g)\scrH 

\biggr] 
,

where we have used

A - 

\biggl[ 
1
0

\biggr] 
=

\biggl[ 
0

(v\varphi ,\scrK  - \varphi 
\prime )\scrH 

\biggr] 
, A+

\biggl[ 
1
0

\biggr] 
=

\biggl[ 
0

(u\varphi ,\scrK +\varphi )\scrH 

\biggr] 
and all entries of A+ and A - are real-valued. By Lemma 4.6, matrices A+ and A - 
are invertible and so is the matrix

\biggl[ 
A - 0
0 A+

\biggr] \left[    
\lambda 0 0  - 1
0 \lambda 0 0
0 1 \lambda 0
0 0 0 \lambda 

\right]    , \lambda \not = 0.

Therefore, for every \lambda \not = 0, there exists a unique solution (\alpha ,\beta , \gamma , \delta ) \in \BbbC 4 for every
(\~u, \~v)\in \scrU \times \scrV and (f, g)\in \scrH \times \scrH .

We recall that the resolvent equation (4.18) is considered for \lambda \not = 0 since the
quadruple eigenvalue \lambda = 0 is prescribed by Lemma 4.5. Thus, by Fredholm's alter-
native theorem, if the inhomogeneous system has a unique solution (\~u, \~v)\in \scrU \times \scrV , then
there exists a unique solution (\alpha ,\beta , \gamma , \delta )\in \BbbC 4 and a unique solution (u, v)\in \scrH \times \scrH to
the resolvent equation (4.18) for every (f, g) \in \scrH \times \scrH . Hence, this \lambda belongs to the
resolvent set of the linear stability problem (3.17). Alternatively, there are finitely
many linearly independent solutions for (\~u, \~v) \in \scrU \times \scrV to the homogeneous system
with f = g = 0, and together with the unique solutions for (\alpha ,\beta , \gamma , \delta ) \in \BbbC 4, this gives
the same number of linearly independent solutions for (u, v) \in \scrH \times \scrH to the homo-
geneous system (4.18) with f = g = 0. Hence, this \lambda is an isolated eigenvalue of the
linear stability problem (3.17).
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2542 DMITRY E. PELINOVSKY AND MICHAEL PLUM

4.4. Proof of Theorem 1. By Corollaries 4.1 and 4.2, the spectrum of \scrL  - and
\scrL + in \scrH consists of simple isolated eigenvalues. The orderings (3.18) and (3.19)
follow from the ordering of the zero eigenvalue of \scrL  - and \scrL + in Remarks 4.3 and 4.5,
respectively.

By Theorem 5, the spectrum of the stability problem (3.17) consists of isolated
eigenvalues of finite multiplicity and admits no finite accumulation points. By Lemma
4.5, it includes a quadruple zero eigenvalue associated to the symmetries (1.5). The
nonzero isolated eigenvalues occur in pairs \pm \lambda since if \lambda is an eigenvalue of the linear
stability problem (3.17) with the eigenvector (u, v)T , then  - \lambda is an eigenvalue with the
eigenvector (u, - v)T . It remains to prove that all eigenvalues are purely imaginary and
hence satisfy the ordering (3.20). This follows from the characterization of nonzero
eigenvalues \lambda of the stability problem (3.17) for (u, v)\in \scrV \times \scrU .

To be precise, let us define the following constrained operators:

\scrT + :=\scrL +| \{ \varphi \prime \} \bot : \scrH 2
+| \{ \varphi \prime \} \bot \mapsto \rightarrow \scrH | \{ \varphi \prime \} \bot ,

\scrT  - :=\scrL  - | \{ \varphi \} \bot : \scrH 2
 - | \{ \varphi \} \bot \mapsto \rightarrow \scrH | \{ \varphi \} \bot .

It is clear that \scrT + and \scrT are invertible operators with bounded inverses \scrT  - 1
+ and

\scrT  - 1
 - .

If (\varphi \prime , v)\scrH = 0 and (u\varphi , v)\scrH = 0, then the second equation of system (3.17) is
solved by

u= - \lambda 

\Biggl( 
\scrT  - 1
+ v - 

(\scrT  - 1
+ v, v\varphi )\scrH 

(\varphi \prime , v\varphi )\scrH 
\varphi \prime 

\Biggr) 
,

where (\varphi \prime , v\varphi )\scrH < 0. By construction, (v\varphi , u)\scrH = 0 is satisfied. In addition, (\varphi ,u)\scrH =
0 since

(\varphi ,u)\scrH = - (\scrL +u\varphi , u)\scrH = - (u\varphi ,\scrL +u)\scrH = \lambda (u\varphi , v)\scrH = 0.

Thus, if v \in \scrU and \lambda \not = 0, a unique solution of the second equation of system (3.17)
exists for u \in \scrV . The first equation of system (3.17) can then be written as the
generalized eigenvalue problem

\scrL  - v= - \lambda 2
\Biggl( 
\scrT  - 1
+ v - 

(\scrT  - 1
+ v, v\varphi )\scrH 

(\varphi \prime , v\varphi )\scrH 
\varphi \prime 

\Biggr) 
,(4.27)

for which the smallest eigenvalue  - \lambda 20 can be obtained from the Rayleigh quotient

 - \lambda 20 = inf
v \in \scrH \setminus \{ 0\} 
(\varphi \prime , v)\scrH = 0
(u\varphi , v)\scrH = 0

Q - (v)

(\scrT  - 1
+ v, v)\scrH 

,(4.28)

where Q - (v) := (\scrL  - v, v)\scrH is given by (3.6). Since (\varphi \prime , v)\scrH = 0 and the spectrum of
\scrL + satisfies (3.18), we have (\scrT  - 1

+ v, v)\scrH > 0, which implies that  - \lambda 2 is real for the
eigenvalues of the generalized eigenvalue problem (4.27). We refer to Appendix E in
[35], which states that

\bullet Q - (v)\geq 0 for v satisfying (\varphi \prime , v)\scrH = 0,
\bullet Q - (v) = 0 is attained only at v \in span(\varphi )\subset \scrH ,
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2543

provided that

(\scrT  - 1
 - \varphi \prime ,\varphi \prime )\scrH = (v\varphi ,\varphi 

\prime )\scrH < 0,

which is satisfied. However, (u\varphi ,\varphi )\scrH \not = 0, so that if v \in \scrU , then Q - (v) > 0. Hence
 - \lambda 20 > 0 follows from the Rayleight quotient (4.28) so that all nonzero eigenvalues of
the stability problem (3.17) satisfy  - \lambda 2 > 0 and are thus located on i\BbbR away from the
quadruple zero eigenvalue.

The proof of Theorem 1 is complete.

5. Existence of traveling dark solitons. Here we study the construction of
traveling dark solitons for arbitrary wave speed c and in the limit c \rightarrow 0 and thus
provide the proof of Theorem 2.

If Uc is a solution of the differential equation (1.10), then \=Uc is the solution of
the same equation for  - c. Therefore, it is sufficient to prove the existence result for
c > 0. The following lemma yields the existence of traveling dark solitons.

Lemma 5.1. For every c \in (0,\infty ), there exists the dark soliton with the profile
Uc \in \scrF \cap C\infty (\BbbR ) satisfying (1.10) and (1.11) such that the mapping c \mapsto \rightarrow Uc is C\infty on
(0,\infty ).

Proof. By using the polar form Uc =
\surd 
\rho ce

i\phi c , we rewrite the differential equa-
tion (1.10) as the following system:\biggl\{ 

(\rho c\phi 
\prime 
c)

\prime  - c(1 - \rho c)\rho 
\prime 
c = 0,

2\rho c\rho 
\prime \prime 
c  - (\rho \prime c)

2 + 8(1 - \rho c)\rho 
2
c + 8c(1 - \rho c)\rho 

2
c\phi 

\prime 
c  - 4\rho 2c(\phi 

\prime 
c)

2 = 0.
(5.1)

The first equation in system (5.1) can be integrated under the boundary conditions
(1.11) to the form

\phi \prime c = - c

2\rho c
(1 - \rho c)

2,(5.2)

so that lim| \xi | \rightarrow \infty \phi \prime c(\xi ) = 0 if lim| \xi | \rightarrow \infty \rho c(\xi ) = 1.
Substituting (5.2) to the second equation in system (5.1) and using the transfor-

mation \rho c = q2c , we obtain the second-order differential equation

q\prime \prime c + 2(1 - q2c )qc  - 
c2

qc
(1 - q2c )

3  - c2

4q3c
(1 - q2c )

4 = 0,

which can be integrated under the boundary conditions (1.11) to the form

(q\prime c)
2  - (1 - q2c )

2 +
c2

4q2c
(1 - q2c )

4 = 0.

Unfolding the transformation \rho c = q2c yields

(\rho \prime c)
2 = (1 - \rho c)

2
\bigl[ 
4\rho c  - c2(1 - \rho c)

2
\bigr] 
,(5.3)

which is the first-order invariant of the second-order equation

\rho \prime \prime c + 2(1 - \rho c)(3\rho c  - 1 - c2(1 - \rho c)
2) = 0,(5.4)

with the unique choice of the integration constant due to the boundary conditions
(1.11). Orbits of the second-order equation (5.4) are shown in Figure 1 on the phase
plane (\rho , \rho \prime ).
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Fig. 1. Orbits of the second-order equation (5.4) for c = 2 on the phase plane (\rho , \rho \prime ). Orbits
are obtained from the level curves of the function F (\rho , \rho \prime ) := (\rho \prime )2 + (1 - \rho )2[c2(1 - \rho )2  - 4\rho ].

The critical point (\rho , \rho \prime ) = (1,0) is a saddle point of the second-order equa-
tion (5.4) with two homoclinic orbits located in [\rho  - (c),1] \times \BbbR and [1, \rho +(c)] \times \BbbR ,
where \rho \pm (c) are turning points of the homoclinic orbits; see Figure 1. The turning
points correspond to the values of \xi 0 for which \rho \prime (\xi 0) = 0 and hence are obtained
from the roots of the quadratic equation 4\rho = c2(1 - \rho )2 that follows from (5.3). The
turning points are given explicitly by

\rho \pm (c) =
c2 + 2\pm 2

\surd 
1 + c2

c2

and they exist for every c > 0. Moreover,

\rho  - (c) =
1

4
c2 +\scrO (c4), \rho +(c) =

4

c2
+\scrO (1), as c\rightarrow 0.

There exists exactly one (up to translation) solution \rho c \in [\rho  - (c),1] of the first-order
invariant (5.3) in the set \scrF . For every c\in (0,\infty ), the solution satisfies

\rho c(\xi )\geq \rho  - (c)> 0 \forall \xi \in \BbbR 

so that Uc \in C\infty (\BbbR ) in the polar form. Moreover, \rho c, \phi c, and thus Uc are C\infty with
respect to c on (0,\infty ).

Remark 5.1. Another solution of the first-order invariant (5.3) exists for \rho \in 
[1, \rho +(c)]. This solution is not used for the scope of this work.

Remark 5.2. Linearization of the second-order equation (5.4) at (\rho , \rho \prime ) = (1,0)
shows that the saddle point is associated with the same exponential rate \pm 2 indepen-
dently of the speed parameter c\in \BbbR . Consequently, up to translation in \xi , \rho c satisfies
\rho c(\xi ) = 1+Ace

 - 2| \xi | + o(e - 2| \xi | ) as | \xi | \rightarrow \infty with a unique choice for Ac < 0.

Remark 5.3. The C\infty smoothness of Uc at c = 0 cannot be concluded from the
polar form. Indeed, we have \rho c = \rho 0 +\scrO H2(c2) (see the proof of Theorem 6), where
\rho 0(\xi ) = tanh2(\xi ) is the suitable solution of (\rho \prime 0)

2 = 4\rho 0(1  - \rho 0)
2. However, since

\rho 0(0) = 0, the phase factor \phi c(\xi ) is singular at \xi = 0. If we use the formal expansion
\phi \prime c = c\phi \prime 1 +\scrO (c3), then

\phi \prime 1 = - (1 - \rho 0)
2

2\rho 0
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2545

so that \phi 1(\xi ) = coth(2\xi ) is singular at \xi = 0. The polar form Uc =
\surd 
\rho ce

i\phi c gives
formally

Uc(\xi ) = tanh(\xi ) +
ic cosh(2\xi )

2 cosh2(\xi )
+\scrO (c2),

where the second term coincides with the explicit expression for  - 2icv\varphi ; see (4.15).
This formal expansion cannot be justified from the polar form because of the singu-
larity at \xi = 0.

The following theorem justifies the expansion of Uc as c\rightarrow 0 by using the real and
imaginary coordinates for Uc = uc + ivc in addition to the variable \rho c = | Uc| 2.

Theorem 6. There exists c0 > 0 and A0 > 0 such that for every c\in ( - c0, c0), we
have

\| Uc  - \varphi + 2icv\varphi \| \scrH 2
 - 
\leq A0c

2,(5.5)

where v\varphi is defined by (4.15).

Proof. Let us substitute Uc = uc + ivc in the differential equation (1.10) and
obtain the following system:\biggl\{ 

u\prime \prime c + 2(1 - u2c  - v2c )uc + 2c(1 - u2c  - v2c )v
\prime 
c = 0,

v\prime \prime c + 2(1 - u2c  - v2c )vc  - 2c(1 - u2c  - v2c )u
\prime 
c = 0.

(5.6)

The relevant analysis is developed in three steps.
Step 1. By Lemma 5.1, \rho c = | Uc| 2 is a solution of the second-order differential

equation (5.4). We decompose \rho c = \rho 0+\eta c, where \rho 0 :=\varphi 2 is a solution of the limiting
equation

\rho \prime \prime 0 + 2(1 - \rho 0)(3\rho 0  - 1) = 0(5.7)

and \eta c is a suitable solution of the residual equation

L0\eta c + 2c2(1 - \varphi 2  - \eta c)
2 + 6\eta 2c = 0,(5.8)

associated with the Schr\"odinger operator L0 :H
2(\BbbR )\subset L2(\BbbR ) \mapsto \rightarrow L2(\BbbR ) given by

L0 := - \partial 2\xi + 4 - 12sech2(\cdot ).

We note that \rho \prime = 2\varphi \varphi \prime is in the kernel of L0 due to the translational symmetry of
(5.7). Since the continuous spectrum of L0 is located in [4,\infty ), the zero eigenvalue
of L0 is isolated from the continuous spectrum and is thus simple. Hence, Ker(L0) =
span(\varphi \varphi \prime ) and since \varphi \varphi \prime is odd, the linear operator L0 is injective on the space of even
functions in H2(\BbbR ) denoted as H2

even(\BbbR ). Since  - 12sech2(\cdot ) is a relatively compact
perturbation to the unbounded positive operator  - \partial 2\xi + 4, it is also surjective in
L2(\BbbR ). Thus, L0 : H2

even(\BbbR ) \subset L2(\BbbR ) \mapsto \rightarrow L2(\BbbR ) is invertible with a bounded inverse.
By the implicit function theorem, there exist c1 > 0, A1 > 0, and a unique solution
\eta c \in H2

even(\BbbR ) to (5.8) for every c\in ( - c1, c1) such that

\| \eta c\| H2 \leq A1c
2, c\in ( - c1, c1).(5.9)

We also claim that there exists B1 > 0 such that

| \eta c(\xi )| \leq B1c
2(1 - \varphi (\xi )2) \forall \xi \in \BbbR ,(5.10)
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2546 DMITRY E. PELINOVSKY AND MICHAEL PLUM

which agrees with the c-independent rate \eta c(\xi ) =\scrO (e - 2| \xi | ) as | \xi | \rightarrow \infty (Remark 5.2).
In order to justify the bound (5.10), we rewrite the residual equation (5.8) in the
integral form,

\eta c(\xi ) = f1(\xi )

\int \xi 

0

f2(\xi 
\prime )F (\xi \prime )d\xi \prime  - f2(\xi )

\int \xi 

 - \infty 
f1(\xi 

\prime )F (\xi \prime )d\xi \prime ,(5.11)

where f1,2 are homogeneous solutions of L0f = 0 normalized by their Wronskian

f1(\xi )f
\prime 
2(\xi ) - f \prime 1(\xi )f2(\xi ) = 1 \forall \xi \in \BbbR ,

and F := - 2c2(1 - \varphi 2  - \eta c)
2  - 6\eta 2c . We choose

f1(\xi ) =\varphi (\xi )\varphi \prime (\xi ) = sech2(\xi ) tanh(\xi ),

so that f2 is obtained computationally as

f2(\xi ) =
1

8

\bigl[ 
2cosh2(\xi ) + 5 - 15sech2(\xi ) + 15\xi sech2(\xi ) tanh(\xi )

\bigr] 
=: cosh2(\xi )f(\xi ).

Note that the constant of integrations in (5.11) has been chosen to ensure that \eta c is
even if F is even in \xi and that \eta c(\xi )\rightarrow 0 as | \xi | \rightarrow \infty . The integral equation (5.11) can
be rewritten in the exponentially weighted form for \gamma c := cosh2(\cdot )\eta c as the fixed-point
equation \gamma c =\scrA (\gamma c), where

\scrA (\gamma c) := f cosh4(\cdot )
\int \xi 

 - \infty 
sech6(\cdot )\varphi 

\bigl[ 
2c2(1 - \gamma c)

2  - 6\gamma 2c
\bigr] 
d\xi \prime 

 - \varphi 

\int \xi 

0

sech2(\cdot )f
\bigl[ 
2c2(1 - \gamma c)

2  - 6\gamma 2c
\bigr] 
d\xi \prime .

Since the integral operator is closed in the space of even and bounded functions and
satisfies the estimates

\| A(\gamma c)\| L\infty \leq C1(c
2 + \| \gamma c\| 2L\infty ),

\| A(\gamma c) - A(\gamma \prime c)\| L\infty \leq C2(c
2 + \| \gamma c\| L\infty )\| \gamma c  - \gamma \prime c\| L\infty 

for some c-independent constants C1,C2 > 0, the bound (5.10) follows by the implicit
function theorem for \gamma c \in L\infty (\BbbR ) satisfying \| \gamma c\| L\infty \leq B1c

2.
Step 2. We are now ready to analyze system (5.6) for uc and vc. Using the

decomposition uc =\varphi + \~uc, vc = \~vc, we obtain the following system of equations:\biggl\{ 
L+\~uc = 2c(1 - \varphi 2  - \eta c)\~v

\prime 
c  - 2\eta c\~uc  - 2\varphi (\~u2c + \~v2c ),

L - \~vc = - 2c(1 - \varphi 2  - \eta c)(\varphi 
\prime + \~u\prime c) - 2\eta c\~vc,

(5.12)

where L+ and L - are given by (3.9) and (3.10) and \eta c := \rho c  - \rho 0 = 2\varphi \~uc + \~u2c + \~v2c .
We are looking for solutions \~uc \in \scrH 2

 - being odd in \xi and \~vc \in \scrH 2
 - being even in

\xi . For such functions, the right-hand side of the first equation in system (5.12) is odd
in \xi and the right-hand side of the second equation in system (5.12) is even in \xi .

Since Ker(\scrL  - ) = span(\varphi ) \subset \scrH is odd in \xi , the operator \scrL  - is invertible on even
functions in \scrH . Due to the exponential decay (5.10) and smallness of c, 2\eta c is a small
perturbation to L - so that \scrL  - + 2cosh2(\cdot )\eta c is also invertible on even functions in
\scrH . By the implicit function theorem, there exists c2 > 0, A2 > 0 and a unique even
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2547

solution \~vc \in \scrH 2
 - to the second equation in system (5.12) for every c \in ( - c2, c2) and

every odd \~uc \in \scrH 2
 - such that

\| \~vc\| \scrH 2
 - 
\leq A2| c| , c\in ( - c2, c2).(5.13)

We claim that there exists the limit

\beta c := lim
| \xi | \rightarrow \infty 

\~vc(\xi )(5.14)

and there exists B2 > 0 such that

| \~vc(\xi ) - \beta c| \leq B2| c| | \xi | (1 - \varphi (\xi )2) \forall \xi \in \BbbR .(5.15)

In order to justify (5.14) and (5.15), we again write the second equation in system
(5.12) as the integral equation

\~vc(\xi ) = tanh(\xi )

\int \xi 

0

[\xi \prime tanh(\xi \prime ) - 1]G(\xi \prime )d\xi \prime  - [\xi tanh(\xi ) - 1]

\int \xi 

 - \infty 
tanh(\xi \prime )G(\xi \prime )d\xi \prime ,

(5.16)

where we have used two solutions of L - g = 0 given by g1 = \varphi and g2 = \xi \varphi  - 1
normalized by the Wronskian identity

g1(\xi )g
\prime 
2(\xi ) - g\prime 1(\xi )g2(\xi ) = 1 \forall \xi \in \BbbR 

and G :=  - 2c(1 - \varphi 2  - \eta c)(\varphi 
\prime + \~u\prime c) - 2\eta c\~vc. The limit of integration in the second

term in (5.16) ensures that the second term converges to 0 exponentially fast as
| \xi | \rightarrow \infty since G is even and has the exponential weight if \~uc, \~vc \in \scrH 2

 - due to the
exponential decay (5.10). The first term in (5.16) is even and converges to a finite
limit as | \xi | \rightarrow \infty , which defines \beta c uniquely since \~vc \in \scrH 2

 - is already uniquely defined
for a given \~uc \in \scrH 2

 - . Thus, the limit (5.14) has been confirmed. The bound (5.15)
is obtained due to the linearly growing terms in the integral equation (5.16) and the
exponentially decaying weights 1 - \varphi 2 under the integration signs.

A simple computation shows that

\~vc = - 2cv\varphi +\scrO \scrH 2
 - 
(c3),

where v\varphi is given by (4.15) and where the \scrO \scrH 2
 - 
(c3) order is justified if \~uc =\scrO \scrH 2

 - 
(c2)

as c\rightarrow 0. Using (5.14), we also obtain \beta c = c+\scrO (c3) so that \beta c =\scrO (c).
Step 3. Finally, we use the decomposition \~uc = \alpha c\varphi + \^uc with

\alpha c :=
\sqrt{} 
1 - \beta 2

c  - 1 =\scrO (c2)

obtained from the appropriate root of the quadratic equation 2\alpha +\alpha 2+\beta 2 = 0. With
this decomposition, we rewrite the first equation in system (5.12) in the form

L+\^uc = 2c(1 - \varphi 2  - \eta c)\~v
\prime 
c  - 2\eta c(\alpha c\varphi + \^uc) - 2\varphi (\alpha 2

c\varphi 
2 + 2\alpha c\varphi \^uc + \^u2c + \~v2c ) - 4\alpha c\varphi 

3,

where we have used L+\varphi = 4\varphi 3. Since 2\alpha c+\alpha 
2
c+\beta 

2
c = 0, the right-hand side converges

to 0 exponentially fast due to the exponential bounds (5.10) and (5.15). Therefore, we
can consider the linear operator L+ :H2(\BbbR )\subset L2(\BbbR ) \mapsto \rightarrow L2(\BbbR ) without the exponential
weights. Since Ker(L+) = span(\varphi \prime )\subset L2(\BbbR ) is even in \xi , the operator L+ is invertible
on odd functions in L2(\BbbR ). By the implicit function theorem, there exists c3 > 0,
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2548 DMITRY E. PELINOVSKY AND MICHAEL PLUM

A3 > 0, and a unique odd solution \^uc \in H2(\BbbR ) for every c \in ( - c3, c3) and every even
\~vc \in \scrH 2

 - satisfying (5.13), (5.14), and (5.15) such that

\| \^uc\| H2 \leq A3c
2, c\in ( - c3, c3).(5.17)

The decompositions uc =\varphi +\alpha c\varphi +\scrO H2(c2) and vc = - 2cv\varphi +\scrO \scrH 2
 - 
(c3) with \alpha c =\scrO (c2)

justify the bound (5.5) for some A0 and c0 :=min(c1, c2, c3).

Remark 5.4. The decomposition of Uc in the proof of Theorem 6 can be written
in the form Uc = (1+\alpha c)\varphi + \^uc+ i\~vc. Since \varphi (\xi )\rightarrow \pm 1, \^uc(\xi )\rightarrow 0, and \~vc(\xi )\rightarrow \beta c as
| \xi | \rightarrow \infty , the phases \theta \pm (c) in the boundary conditions (1.11) are computed explicitly
as

\theta +(c) = arctan
\beta c

1 + \alpha c
, \theta  - (c) = \pi  - arctan

\beta c
1 + \alpha c

.

Substituting 1 + \alpha c =
\sqrt{} 
1 - \beta 2

c yields

\theta +(c) = arcsin\beta c, \theta  - (c) = \pi  - arcsin\beta c,

where \beta c =\scrO (c) as c\rightarrow 0

Remark 5.5. It follows from the bound (5.10) that there is A > 0 such that for
every c\in ( - c0, c0) and every f \in \scrH , it holds that\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 
| Uc| 2f2dx - 

\int 
\BbbR 
\varphi 2f2dx

\bigm| \bigm| \bigm| \bigm| \leq Ac2\| f\| 2\scrH .(5.18)

In order to obtain the energetic stability of the black soliton, we need to compute
the asymptotic expansion of the mass M(u) and the momentum P (u) at u = Uc as
c\rightarrow 0. This asymptotic expansion is given by the following lemma.

Lemma 5.2. Let Uc be the dark soliton of Lemma 5.1 and Theorem 6. Then,

M(Uc) =
4

3
+\scrO (c2) as c\rightarrow 0(5.19)

and

P (Uc) = - \pi +
16

5
c+\scrO (c3) as c\rightarrow 0,(5.20)

where M(u) and P (u) are given by (2.2) and (2.5).

Proof. Since M(Uc) =
\int 
\BbbR (1 - \rho c)

2d\xi , the expansion (5.19) is justified due to the
bound (5.9) on \rho c =\varphi 2 + \eta c and the explicit computation\int 

\BbbR 
(1 - \varphi 2)2d\xi =

4

3
.

For the expansion (5.20), we use the representation (2.5), the polar form Uc =\surd 
\rho 
c
ei\phi c with \phi \prime c given by (5.2), and the boundary conditions (1.11). This yields

P (Uc) = \theta +(c) - \theta  - (c) +
c

2

\int 
\BbbR 
(2 - \rho c)(1 - \rho c)

2d\xi 

= - \pi + 2arcsin\beta c +
c

2

\int 
\BbbR 
(2 - \rho c)(1 - \rho c)

2d\xi ,
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2549

where we have used the phases given in Remark 5.4 in the second equality. We recall
that \rho c =\varphi 2+\scrO H2(c2) and Uc =\varphi  - 2icv\varphi +\scrO \scrH 2

 - 
(c2) with v\varphi given by (4.15) so that

\beta c = c+\scrO (c3). Hence, P (Uc) = - \pi + cP1 +\scrO (c3) with

P1 = 2+
1

2

\int 
\BbbR 
(2 - \varphi 2)(1 - \varphi 2)2d\xi =

16

5
,

which justifies the assertion.

Theorem 2 is proven with Lemma 5.1 and Theorem 6. Lemma 5.2 is used for the
stability analysis of the black solitons in the proof of Theorem 3.

6. Energetic stability of the black soliton. Here we study the energetic
stability of the black soliton in \Sigma \cap \scrH from the Lyapunov functional constructed from
conserved quantities of the NLS model (1.6). This yields the proof of Theorem 3.
The energetic stability is equivalent to orbital stability provided that the initial-value
problem is locally well-posed in \Sigma \cap \scrH and the energy, mass, and momentum are
conserved in the time evolution of the NLS model (1.6).

We start with coercivitity of the Lyapunov functional \Lambda defined by (3.1) at the
black soliton with the profile \varphi . This follows from Theorem 1 and Lemma 4.5.

Lemma 6.1. There exists C > 0 such that for every \psi = \varphi + u + iv \in \Sigma \cap \scrH 
satisfying

(\varphi ,u)\scrH = 0, (\varphi \prime , u)\scrH = 0, (\varphi ,v)\scrH = 0, (\varphi \prime , v)\scrH = 0,(6.1)

we have

\Lambda (\varphi + u+ iv) - \Lambda (\varphi )\geq C(\| u\| 2\scrH 1
 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2),(6.2)

where \eta is given by (3.8).

Proof. The expansion (3.4) can be rewritten equivalently as

\Lambda (\varphi + u+ iv) - \Lambda (\varphi ) =Q - (u) +Q - (v) + \| \eta \| 2L2 ,

where Q - (v) is given by (3.6). It suffices to show coercivity of the quadratic form
Q - (v) under the two constraints:

Q - (v)\geq C0\| v\| 2\scrH 1
 - 
, (\varphi ,v)\scrH = 0, (\varphi \prime , v)\scrH = 0.(6.3)

Since the spectrum of \scrL  - in \scrH is purely discrete and v satisfies the constraints
(\varphi ,v)\scrH = 0 and (\varphi \prime , v)\scrH = 0, it follows from the two items in the end of the proof of
Theorem 1 that there exists C0 > 0 such that

Q - (v)\geq C0\| v\| 2\scrH , (\varphi ,v)\scrH = 0, (\varphi \prime , v)\scrH = 0.(6.4)

The coercivity bound (6.3) in \scrH 1
 - with the norm in (3.15) follows from the bound

(6.4) and the standard G\r arding's inequality by adjusting the constant C0 > 0.

The four constraints (6.1) are not generally preserved in the time evolution of the
NLS model (1.6). In order to ensure their preservation, we need to introduce four
parameters in the family of solutions near the black soliton with the profile \varphi . Two
parameters are given by translations along the symmetries (1.5). One parameter is
the wave speed c in the family of dark solitons Uc given by (1.9). One more parameter
is the scaling parameter \omega in the scaling transformation (1.13).
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2550 DMITRY E. PELINOVSKY AND MICHAEL PLUM

The existence of Uc for every c\in \BbbR is given by Theorem 2. In the limit c\rightarrow 0, the
bound (5.5) can be written as

Uc =\varphi  - 2icv\varphi +\scrO \scrH 2
 - 
(c2) as c\rightarrow 0 ,(6.5)

where \scrO \scrH 2
 - 
(c2) is small in the \scrH 2

 - norm and v\varphi is defined in (4.15).
To incorporate c and \omega , we consider an extended Lyapunov functional in the form

\Lambda c,\omega (\psi ) :=E(\psi ) + \omega 2M(\psi ) + c\omega P (\psi ).(6.6)

Since E\prime (\psi ) = - \psi \prime \prime ,M \prime (\psi ) = - 2(1 - | \psi | 2)\psi , and P \prime (\psi ) = 2i(1 - | \psi | 2)\psi \prime (see Lemma 6.3
below), the Euler--Lagrange equation for \Lambda c,\omega is given by

U \prime \prime + 2\omega 2(1 - | U | 2)U  - 2ic\omega (1 - | U | 2)U \prime = 0.(6.7)

If Uc solves the differential equation (1.10), then Uc,\omega (x) :=Uc(\omega x) solves the Euler--
Lagrange equation (6.7) and hence Uc,\omega is a critical point of the Lyapunov functional
\Lambda c,\omega in (6.6).

Remark 6.1. Since Uc,\omega extends \varphi for (c,\omega ) near (0,1), we can define a modified
Hilbert space \scrH c,\omega with the modified inner product

(f, g)\scrH c,\omega :=

\int 
\BbbR 
(1 - | Uc,\omega | 2) \=fgdx, f, g \in \scrH c,\omega ,

and the induced norm \| \cdot \| \scrH c,\omega 
. Due to the proximity result (5.18) in Remark 5.5 and

the closeness of (c,\omega ) to (0,1), the norm \| \cdot \| \scrH c,\omega is equivalent to the norm \| \cdot \| \scrH .

The following lemma gives the decomposition of a point in a local neighborhood
of the black soliton \varphi with four modulation parameters defined near Uc,\omega .

Lemma 6.2. There exists \epsilon 0 > 0 and C0 > 0 such that for every \psi \in \Sigma \cap \scrH 
satisfying

\epsilon := inf
\theta ,\zeta \in \BbbR 

\| \psi  - ei\theta \varphi (\cdot + \zeta )\| \scrH 1
 - 
\leq \epsilon 0,(6.8)

there exists unique \theta , \zeta , c,\omega \in \BbbR such that

\psi = ei\theta [Uc,\omega (\cdot + \zeta ) + u(\cdot + \zeta ) + iv(\cdot + \zeta )](6.9)

and

| c| + | \omega  - 1| + \| \psi  - ei\theta Uc,\omega (\cdot + \zeta )\| \scrH 1
 - 
\leq C0\epsilon ,(6.10)

where u, v \in \scrH 1
 - satisfy the four orthogonality conditions

(Uc,\omega , u)\scrH c,\omega = 0, (U \prime 
c,\omega , u)\scrH c,\omega = 0, (Uc,\omega , v)\scrH c,\omega = 0, (U \prime 

c,\omega , v)\scrH c,\omega = 0,(6.11)

whereas Uc,\omega :=Uc(\omega \cdot ) is the dark soliton of Theorem 2.

Proof. Let us define the vector function \vec{}F (c,\omega , \theta , \zeta ;\psi ) : \BbbR 4 \times \Sigma \cap \scrH \mapsto \rightarrow \BbbC 4 repre-
senting the constraints (6.11):

\vec{}F (c,\omega , \theta , \zeta ;\psi ) :=

\left[    
(Uc,\omega ,Re(e

 - i\theta \psi (\cdot  - \zeta ) - Uc,\omega ))\scrH c,\omega 

(U \prime 
c,\omega ,Re(e

 - i\theta \psi (\cdot  - \zeta ) - Uc,\omega ))\scrH c,\omega 

(Uc,\omega , Im(e - i\theta \psi (\cdot  - \zeta ) - Uc,\omega ))\scrH c,\omega 

(U \prime 
c,\omega , Im(e - i\theta \psi (\cdot  - \zeta ) - Uc,\omega ))\scrH c,\omega 

\right]    .
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2551

For a given \psi \in \Sigma \cap \scrH , \theta in the infimum (6.8) is defined on the compact interval
[0,2\pi ] due to periodicity of ei\theta and there exists C\infty > 0 such that

lim
\zeta \rightarrow \infty 

\| \psi  - ei\theta \varphi (\cdot + \zeta )\| \scrH 1
 - 
\geq C\infty .

Therefore, the infimum in (6.8) is attained if \epsilon 0 \in (0,C\infty ) is properly chosen. Let
(\theta 0, \zeta 0) be arguments of the infimum in (6.8). Since \varphi ,\varphi \prime \in \scrH , the Cauchy--Schwarz
inequality implies that there exists C > 0 such that

| \vec{}F (0,1, \theta 0, \zeta 0;\psi )| \leq C\epsilon ,

where | \cdot | denotes the standard Euclidean norm for vectors in \BbbC 4. We can write

\vec{}F (0,1, \theta 0, \zeta 0;\psi ) =\scrO (\epsilon )

to indicate the remainder term for \psi = ei\theta 0\varphi (\cdot + \zeta 0) +\scrO \scrH 1
 - 
(\epsilon ).

Recall that the mapping (c,\omega ) \mapsto \rightarrow Uc,\omega is C1 near (c,\omega ) = (0,1). Hence the

function \vec{}F is C1 with respect to its arguments and we can compute the Jacobian of
\vec{}F with respect to (c,\omega , \theta , \zeta ) at (0,1, \theta 0, \zeta 0) and for fixed \psi \in \Sigma \cap \scrH satisfying (6.8).
By using (6.5) and Uc,\omega :=Uc(\omega \cdot ), we compute

(Uc,\omega , (e
 - i\theta \psi (\cdot  - \zeta ) - Uc,\omega ))\scrH c,\omega 

= (\varphi (\omega \cdot ), (e - i\theta \psi (\cdot  - \zeta ) - \varphi (\omega \cdot )))\scrH c,\omega 

+ 2ic(v\varphi (\omega \cdot ), (e - i\theta \psi (\cdot  - \zeta ) - \varphi (\omega \cdot )))\scrH c,\omega 

+ 2ic(\varphi (\omega \cdot ), v\varphi (\omega \cdot )))\scrH c,\omega 
+\scrO (c2)

and similarly for (U \prime 
c,\omega , (e

 - i\theta \psi (\cdot  - \zeta ) - Uc,\omega ))\scrH c,\omega 
. The Jacobian evaluated at (c,\omega , \theta , \zeta )

= (0,1, \theta 0, \zeta 0) is computed by using the proximity bound (6.8) and is given by the
following matrix:

 - 

\left[    
0 (\varphi ,x\varphi \prime )\scrH 0 0
0 0 0 (\varphi \prime ,\varphi \prime )\scrH 
0 0 (\varphi ,\varphi )\scrH 0

 - 2(\varphi \prime , v\varphi )\scrH 0 0 0

\right]    +\scrO (\epsilon ),

where we have used that \varphi is odd and v\varphi is even. We recall from the proof of
Lemma 4.5 that (\varphi \prime , v\varphi )\scrH \not = 0 and (\varphi ,x\varphi \prime )\scrH \not = 0, since u\varphi (x) =  - 1

4x\varphi 
\prime (x). By

choosing \epsilon 0 small enough in (6.8), the Jacobian for \vec{}F is invertible. By the local
inverse mapping theorem, for any \psi \in \Sigma \cap \scrH satisfying (6.8) there exists a unique
solution (c,\omega , \theta , \zeta )\in \BbbR 4 of \vec{}F (c,\omega , \theta , \zeta ;\psi ) = 0 satisfying

| c| + | \omega  - 1| + | \theta  - \theta 0| + | \zeta  - \zeta 0| \leq C\epsilon 

for some \epsilon -independent C > 0. Thus, the decomposition (6.9) is justified. The last
bound in (6.10) follows by the triangle inequality from the C1 property of Uc,\omega in x
and (c,\omega ).

We will use the following expansion of the mass and momentum functionals.

Lemma 6.3. For every c,\omega \in \BbbR and \psi \in \Sigma \cap \scrH satisfying (6.8), (6.9), (6.10), and
(6.11) with \epsilon \in (0, \epsilon 0), where \epsilon 0 > 0 is defined in Lemma 6.2, we have the expansions

M(Uc,\omega + u+ iv) =M(Uc,\omega ) - 2\| u\| 2\scrH c,\omega 
 - 2\| v\| 2\scrH c,\omega 

+ \| \eta \| 2L2(6.12)
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2552 DMITRY E. PELINOVSKY AND MICHAEL PLUM

and

P (Uc,\omega + u+ iv) = P (Uc,\omega ) + \^P (u, v),(6.13)

where

\eta := | Uc,\omega + u+ iv| 2  - | Uc,\omega | 2 = 2uRe(Uc,\omega ) + 2vIm(Uc,\omega ) + u2 + v2

and there is C > 0 such that

| \^P (u, v)| \leq C
\bigl( 
\| u\prime \| 2L2 + \| v\prime \| 2L2 + \| u\| 2\scrH + \| v\| 2\scrH + \| \eta \| 2L2

\bigr) 
.(6.14)

Proof. Since \eta = | Uc,\omega + u+ iv| 2  - | Uc,\omega | 2, we have \eta \in L2(\BbbR ) if \psi ,Uc,\omega \in \Sigma . The
expansion (6.12) follows from direct computations:

M(Uc,\omega + u+ iv) =M(Uc,\omega ) - 2

\int 
\BbbR 
(1 - | Uc,\omega | 2)\eta dx+ \| \eta \| 2L2

=M(Uc,\omega ) - 2

\int 
\BbbR 
(1 - | Uc,\omega | 2)(u2 + v2)dx+ \| \eta \| 2L2 ,

where the second line is obtained due to the first and third orthogonality conditions
in (6.11). The expansion (6.13) is proven in Appendix B, where the second and
fourth orthogonality conditions in (6.11) are used to remove the linear term of the
expansion.

The following lemma generalizes the coercivity result of Lemma 6.1 by using the
four-parameter decomposition of Lemma 6.2.

Lemma 6.4. For every c,\omega \in \BbbR and \psi \in \Sigma \cap \scrH satisfying (6.8), (6.9), (6.10), and
(6.11) with \epsilon \in (0, \epsilon 0), where \epsilon 0 > 0 is defined in Lemma 6.2, there is C > 0 such that

\^\Lambda c,\omega (u, v)\geq C
\Bigl( 
\| u\| 2\scrH 1

 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2  - c2  - (\omega  - 1)2

\Bigr) 
,(6.15)

where

\^\Lambda c,\omega (u, v) :=E(Uc,\omega + u+ iv) - E(\varphi ) + \omega 2 [M(Uc,\omega + u+ iv) - M(\varphi )]

+ c\omega [P (Uc,\omega + u+ iv) + \pi ]

and \eta := | Uc,\omega + u+ iv| 2  - | Uc,\omega | 2.
Proof. Since Uc,\omega is a critical point for \Lambda \omega ,c in \Sigma , we obtain with the help of the

expansions (6.12) and (6.13) in Lemma 6.3 that

\^\Lambda c,\omega (u, v) =\Delta (c,\omega ) + \| u\prime \| 2L2 + \| v\prime \| 2L2

+ \omega 2
\Bigl( 
 - 2\| u\| 2\scrH c,\omega 

 - 2\| v\| 2\scrH c,\omega 
+ \| \eta \| 2L2

\Bigr) 
+ c\omega \^P (u, v),

where

\Delta (c,\omega ) :=E(Uc,\omega ) - E(\varphi ) + \omega 2 [M(Uc,\omega ) - M(\varphi )] + c\omega [P (Uc,\omega ) + \pi ] .

Since

\partial \Delta 

\partial c
= \omega [P (Uc,\omega ) + \pi ] ,

\partial \Delta 

\partial \omega 
= 2\omega [M(Uc,\omega ) - M(\varphi )] + c [P (Uc,\omega ) + \pi ] ,
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2553

it follows from (5.19) and (5.20) that (c,\omega ) = (0,1) is a critical point of \Delta (c,\omega ). Since
\Delta (0,1) = 0, there is A> 0 such that

\Delta (c,\omega )\geq  - A
\bigl[ 
c2 + (\omega  - 1)2

\bigr] 
for every (c,\omega ) near (0,1). Due to the bound (6.14) and Young's inequality, there is
A> 0 such that

c\omega \^P (u, v)\geq  - A
\biggl[ 
c2 +

\Bigl( 
\| u\| 2\scrH 1

 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2

\Bigr) 2\biggr] 
for every (c,\omega ) near (0,1). A similar lower bound is obtained for

(\omega 2 - 1)( - 2\| u\| 2\scrH c,\omega 
 - 2\| v\| 2\scrH c,\omega 

+\| \eta \| 2L2)\geq  - A
\Bigl[ 
(\omega  - 1)2+c4+

\bigl( 
\| u\| 2\scrH +\| v\| 2\scrH +\| \eta \| 2L2

\bigr) 2\Bigr] 
,

due to the proximity result (5.18) in Remark 5.5. The remaining terms in \^\Lambda c,\omega (u, v)
are

\| u\prime \| 2L2 + \| v\prime \| 2L2  - 2\| u\| 2\scrH c,\omega 
 - 2\| v\| 2\scrH c,\omega 

+ \| \eta \| 2L2 =Qc,\omega (u) +Qc,\omega (v) + \| \eta \| 2L2 ,

where Qc,\omega (u) := \| u\prime \| 2L2 - 2\| u\| 2\scrH c,\omega 
. The coercivity Qc,\omega (u) under the two constraints

is obtained similarly to the proof of Lemma 6.1:

Qc,\omega (u)\geq C
\Bigl( 
\| u\prime \| 2L2 + \| u\| 2\scrH c,\omega 

\Bigr) 
, (Uc,\omega , u)\scrH c,\omega = 0, (U \prime 

c,\omega , u)\scrH c,\omega = 0.(6.16)

Combining all lower bounds and using the proximity of norms in Remark 6.1 yields

\^\Lambda c,\omega (u, v)\geq C
\Bigl( 
\| u\| 2\scrH 1

 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2

\Bigr) 
 - A

\biggl[ 
c2 + (\omega  - 1)2 +

\Bigl( 
\| u\| 2\scrH 1

 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2

\Bigr) 2\biggr] 
.

This justifies the bound (6.15) due to smallness of \| u\| 2\scrH 1
 - 
+\| v\| 2\scrH 1

 - 
+\| \eta \| 2L2 by adjusting

the constant C > 0.

We are now in position to complete the proof of Theorem 3.
Let \psi 0 \in \Sigma \cap \scrH satisfy

\scrD \Sigma \cap \scrH (\psi 0,\varphi )< \delta (6.17)

for some small \delta \in (0, \epsilon 0), where \epsilon 0 is defined in Lemma 6.2. Since we are assuming
that the initial-value problem for the NLS model (1.6) is locally well-posed in \Sigma \cap \scrH ,
there exists a unique solution \psi \in C0([ - \tau 0, \tau 0],\Sigma \cap \scrH ) of the NLS model (1.6) for
some small \tau 0 > 0 such that \psi (0, \cdot ) = \psi 0. Therefore, at least for small \tau 0 > 0, the
bound (6.8) holds true so that the orthogonal decomposition (6.9) and (6.11) can be
used for t\in [ - \tau 0, \tau 0].

Assuming conservation of energy E(\psi ), mass M(\psi ), and momentum P (\psi ), there
is C > 0 such that \left\{   | E(\psi ) - E(\varphi )| = | E(\psi 0) - E(\varphi )| \leq C\delta ,

| M(\psi ) - M(\varphi )| = | M(\psi 0) - M(\varphi )| \leq C\delta ,
| P (\psi ) + \pi | = | P (\psi 0) + \pi | \leq C\delta ,

(6.18)

where the upper bounds are due to (6.17) and the expansion of E(\psi 0), M(\psi 0), and
P (\psi 0) near \varphi . Compared to Lemma 6.3, no orthogonality conditions are imposed on
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2554 DMITRY E. PELINOVSKY AND MICHAEL PLUM

the perturbation term \psi 0  - \varphi so that the linear terms of the expansion of the \scrO (\delta )
order are generally nonzero.

By using the orthogonal decomposition (6.9) and (6.11) for t\in [ - \tau 0, \tau 0] with small
\tau 0 > 0, it follows from the symmetry (1.5) that

M(\psi ) - M(\varphi ) =M(Uc,\omega + u+ iv) - M(\varphi ),
P (\psi ) + \pi = P (Uc,\omega + u+ iv) + \pi ,

(6.19)

where (c,\omega ) depend on time t\in [ - \tau 0, \tau 0]. Using now expansions (6.12) and (6.13), we
claim that there is C > 0 such that

| c| + | \omega  - 1| \leq C(\delta + \| u\| 2\scrH 1
 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2).(6.20)

This follows from the implicit function theorem if the Jacobian of the transformation

(c,\omega ) \mapsto \rightarrow (M(Uc,\omega ) - M(\varphi ), P (Uc,\omega ) + \pi )(6.21)

is invertible at (c,\omega ) = (0,1). Due to the scaling transformation with Uc,\omega := Uc(\omega \cdot ),
we have

M(Uc,\omega ) = \omega  - 1 \^M(c), P (Uc,\omega ) = \^P (c),

where \^M(c) :=M(Uc) and \^P (c) := P (Uc), so that the determinant of the Jacobian is\bigm| \bigm| \bigm| \bigm| \omega  - 1 \^M \prime (c)  - \omega  - 2 \^M(c)
\^P \prime (c) 0

\bigm| \bigm| \bigm| \bigm| = \omega  - 2 \^M(c) \^P \prime (c).

By using expansions (5.19) and (5.20) in Lemma 5.2, the determinant at (c,\omega ) = (0,1)
is equal to 64

15 \not = 0 so that the transformation is invertible. Hence, expansions (6.12)
and (6.13) with the bounds (6.14) and (6.18) yield (6.20) from (6.19).

Finally, we substitute (6.20) into (6.15) and use conservation of E(\psi ), M(\psi ), and
P (\psi ) with the bound (6.18). This yields the bound

\| u\| 2\scrH 1
 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2 \leq C\delta ,(6.22)

which shows that the perturbations of the orthogonal decomposition (6.9) and (6.11)
for t \in [ - \tau 0, \tau 0] with small \tau 0 > 0 are controlled uniformly in time. Moreover, using
the triangle inequality, the bounds (6.20) and (6.22), and the expansion (6.5), we
obtain

\scrD \Sigma \cap \scrH 
\bigl( 
\psi ,ei\theta \varphi (\cdot + \zeta )

\bigr) 
\leq \scrD \Sigma \cap \scrH 

\bigl( 
\psi ,ei\theta Uc,\omega (\cdot + \zeta )

\bigr) 
+\scrD \Sigma \cap \scrH (Uc,\omega ,\varphi )

\leq C
\Bigl( 
\| u\| \scrH 1

 - 
+ \| v\| \scrH 1

 - 
+ \| \eta \| L2 + | c| + | \omega  - 1| 

\Bigr) 
\leq C\delta 1/2.(6.23)

Thus for every \epsilon \in (0, \epsilon 0) there is \delta < min(\epsilon 2/C2, \epsilon 0) such that the bound (6.8) is
satisfied for every t \in [ - \tau 0, \tau 0] so that the orthogonal decomposition (6.9) and (6.11)
can be extended beyond the times t = \pm \tau 0 with the same estimate (6.22) and the
same bound (6.23). Hence, the local solution \psi \in C0([ - \tau 0, \tau 0],\Sigma \cap \scrH ) near ei\theta \varphi (\cdot + \zeta )
is extended globally in time with the bound (6.23) for every t\in \BbbR .

The proof of Theorem 3 is complete.
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2555

7. Persistence and stability of black solitons in potentials. Here we con-
sider a small and decaying potential in the framework of the perturbed NLS model
(1.15) and prove persistence and stability of the black soliton. This yields the proof
of Theorem 4. The following two lemmas give the persistence and stability results
separately.

The standing wave solution \psi (t, x) = e - 2it\phi \varepsilon (x) of the perturbed NLS model
(1.15) are found from the second-order differential equation

\phi \prime \prime \varepsilon + 2(1 - | \phi \varepsilon | 2)\phi \varepsilon = \varepsilon V (x)\phi \varepsilon .(7.1)

Since V (x) : \BbbR \mapsto \rightarrow \BbbR , we consider real solutions \phi \varepsilon (x) : \BbbR \mapsto \rightarrow \BbbR which converge to
\varphi pointwise in x as | \varepsilon | \rightarrow 0, where \varphi (x) := tanh(x). The following lemma uses the
Lyapunov--Schmidt reduction method to get the existence result.

Lemma 7.1. Assume that V \in W 2,\infty (\BbbR ) \cap L2(\BbbR ) and that s \in \BbbR is a simple root
of \scrV \prime , where \scrV is given by (1.16). There exists \varepsilon 0 > 0 such that for every \varepsilon \in ( - \varepsilon 0, \varepsilon 0),
there exists a real solution of (7.1) in the form \phi \varepsilon =\varphi s+ \~\varphi \varepsilon , where \varphi s(x) :=\varphi (x - s)
and \~\varphi \varepsilon \in H2(\BbbR ) satisfies \| \~\varphi \varepsilon \| H2 \leq C| \varepsilon | for some \varepsilon -independent positive constant C.

Proof. We use the decomposition

\phi \varepsilon =\varphi s+a +\psi ,(7.2)

where s \in \BbbR is a simple root of \scrV \prime (s), a \in \BbbR is a parameter to be determined, and
\psi \in H2(\BbbR ) is a correction term to be determined. The decomposition (7.2) allows us
to rewrite (7.1) in the equivalent form

L+\psi + \varepsilon V [\varphi s+a +\psi ] +N(\psi ) = 0,(7.3)

where L+ := - \partial 2x + 6\varphi 2
s+a  - 2 is the translated version of the linearized operator L+

in (3.9) and N(\psi ) := 6\varphi s+a\psi 
2 + 2\psi 3 is the nonlinear part of the cubic nonlinearity.

The linearized operator L+ can be considered in L2(\BbbR ), where 0 is a simple
isolated eigenvalue of L+ at the bottom of \sigma (L+) with Null(L+) = span(\varphi \prime 

s+a). The
Lyapunov--Schmidt reduction method relies on the orthogonal decomposition by using
the orthogonal projection

\Pi a\psi :=\psi  - 
\langle \varphi \prime 
s+a,\psi \rangle 

\| \varphi \prime 
s+a\| 2L2

\varphi \prime 
s+a,

where \langle \cdot , \cdot \rangle is the inner product in L2(\BbbR ). Assuming \Pi a\psi =\psi (that is, \langle \varphi \prime 
s+a,\psi \rangle = 0)

for uniqueness of definitions of a \in \BbbR and \psi \in H2(\BbbR ) allows us to split (7.3) into two
parts:

F (\varepsilon , a,\psi ) :=L+\psi +\Pi a (\varepsilon V [\varphi s+a +\psi ] +N(\psi )) = 0,(7.4)

f(\varepsilon , a,\psi ) := \langle \varphi \prime 
s+a, \varepsilon V [\varphi s+a +\psi ] +N(\psi )\rangle = 0.(7.5)

Since
\bullet F (\varepsilon , a,\psi ) : \BbbR \times \BbbR \times H2(\BbbR )| \{ \varphi \prime 

s+a\} \bot \rightarrow L2(\BbbR )| \{ \varphi \prime 
s+a\} \bot is C\infty for every V \in 

L2(\BbbR ),
\bullet F (0, a,0) = 0,
\bullet D\psi F (0, a,0) =L+ :H2(\BbbR )| \{ \varphi \prime 

s+a\} \bot \mapsto \rightarrow L2(\BbbR )| \{ \varphi \prime 
s+a\} \bot is an invertible operator

with a bounded inverse from L2(\BbbR )| \{ \varphi \prime 
s+a\} \bot to H2(\BbbR )| \{ \varphi \prime 

s+a\} \bot ,
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2556 DMITRY E. PELINOVSKY AND MICHAEL PLUM

the implicit function theorem gives the existence of a unique C\infty mapping (\varepsilon , a) \mapsto \rightarrow 
\psi \varepsilon ,a \in H2(\BbbR )| \{ \varphi \prime 

s+a\} \bot which solves (7.4) for every small (\varepsilon , a) \in \BbbR \times \BbbR with the
estimate

\| \psi \varepsilon ,a\| H2 \leq C| \varepsilon | (1 + | a| )(7.6)

for some (\varepsilon , a)-independent constant C > 0.
The first term of f(\varepsilon , a,\psi ) can be simplified after integration by parts:\int 

\BbbR 
V (x)\varphi (x - s - a)\varphi \prime (x - s - a)dx=

1

2

\int 
\BbbR 
V \prime (x)

\bigl[ 
1 - \varphi 2(x - s - a)

\bigr] 
dx

=
1

2

\int 
\BbbR 
V \prime (x)sech2(x - s - a)dx

=
1

2
\scrV \prime (s+ a).

Since V \in W 2,\infty (\BbbR ), \scrV is a C2 function of its argument. If s \in \BbbR is a simple root of
\scrV \prime , then

lim
a\rightarrow 0

\scrV \prime (s+ a) - \scrV \prime \prime (s)a

a
= 0.

Substituting the C\infty mapping (\varepsilon , a) \mapsto \rightarrow \psi \varepsilon ,a \in H2(\BbbR )| \{ \varphi \prime 
s+a\} \bot from (7.4) into (7.5)

gives the implicit equation

\^f(\varepsilon , a) := \varepsilon  - 1f(\varepsilon , a,\psi \varepsilon ,a) = 0,(7.7)

where \^f(\varepsilon , a) :\BbbR \times \BbbR \rightarrow \BbbR is C1 in its arguments, \^f(0,0) = 0, and

\partial a \^f(0,0) =
1

2
\scrV \prime \prime (s) \not = 0.

The implicit function theorem gives the existence of a unique C1 mapping \varepsilon \mapsto \rightarrow a\varepsilon \in \BbbR 
which solves (7.7) for every small \varepsilon \in \BbbR with the estimate

| a\varepsilon | \leq C| \varepsilon | (7.8)

for some \varepsilon -independent constant C > 0. Combining the two estimates (7.6) and (7.8)
yields \phi \varepsilon =\varphi s + \~\varphi \varepsilon with \| \~\varphi \varepsilon \| H2 \leq C| \varepsilon | after the triangle inequality.

Remark 7.1. We cannot generally state that \phi \varepsilon \in \scrF , where \scrF is given by (1.7).

Using the black soliton \phi \varepsilon from Lemma 7.1, we can define the spectral stability
problem in the form

L - (\varepsilon )v= \lambda (1 - \phi 2\varepsilon )u,
 - L+(\varepsilon )u= \lambda (1 - \phi 2\varepsilon )v,

(7.9)

where

L+(\varepsilon ) = - \partial 2x + 6\phi 2\varepsilon  - 2 + \varepsilon V,

L - (\varepsilon ) = - \partial 2x + 2\phi 2\varepsilon  - 2 + \varepsilon V.

The Hilbert space \scrH given by (3.12) is replaced by

\scrH \varepsilon :=
\Bigl\{ 
f \in L2

loc(\BbbR ) :
\sqrt{} 
1 - \phi 2\varepsilon f \in L2(\BbbR )

\Bigr\} 
.
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2557

The following lemma ensures that under the additional condition V \in L1(\BbbR ), L\pm (\varepsilon )
have the same properties as L\pm (0) except for one eigenvalue which bifurcates from
the zero eigenvalue of L+(0) as \varepsilon \rightarrow 0. Consequently, the location of this eigenvalue
gives a definite result on the spectral stability or instability within the linear stability
problem (7.9).

Lemma 7.2. Assume that V \in W 2,\infty (\BbbR )\cap L1(\BbbR ) and that s\in \BbbR is a simple root of
\scrV \prime (s), where \scrV (s) is given by (1.16). There exists \varepsilon 0 > 0 such that for every \varepsilon \in (0, \varepsilon 0)

\bullet if \scrV \prime \prime (s)> 0, then the spectrum of the linear stability problem (7.9) in \scrH \varepsilon \times \scrH \varepsilon 

consists of pairs of isolated eigenvalues (3.20), a double zero eigenvalue, and
a pair of isolated eigenvalues \{ \pm i\omega \varepsilon \} with \omega \varepsilon > 0;

\bullet if \scrV \prime \prime (s)< 0, then the spectrum of the linear stability problem (7.9) in \scrH \varepsilon \times \scrH \varepsilon 

consists of pairs of isolated eigenvalues (3.20), a double zero eigenvalue, and
a pair of simple real eigenvalues \{ \pm \lambda \varepsilon \} with \lambda \varepsilon > 0.

In either case, \omega \varepsilon \rightarrow 0 and \lambda \varepsilon \rightarrow 0 as \varepsilon \rightarrow 0.

Proof. The profile \phi \varepsilon is obtained from the second-order differential equation (7.1)
with the boundary conditions \phi \varepsilon (x) \rightarrow \pm 1 as x \rightarrow \pm \infty . By Levinson's theorem
(Theorem 8.1 on p. 92 in [7]), if V \in L1(\BbbR ), then \phi \varepsilon \rightarrow \pm 1 exponentially fast with the
same exponential rate 2 as \varphi . Consequently, the weighted norm in \scrH \varepsilon is equivalent
to the one in \scrH and the proof of Theorem 5 extends to the stability problem (7.9).
Thus, all eigenvalues of the spectral problem (7.9) for (u, v)\in \scrH \varepsilon \times \scrH \varepsilon are isolated.

Since L - (\varepsilon )\phi \varepsilon = 0, the zero eigenvalue in \scrH \varepsilon persists in \varepsilon \in ( - \varepsilon 0, \varepsilon 0). Since \varphi 
has a simple zero at x = 0, the decomposition (7.2) with small \| \~\varphi \varepsilon \| H2 implies that
\phi \varepsilon has only one zero on \BbbR . Consequently, by Sturm's oscillation theorem, L - (\varepsilon ) has
only one simple negative eigenvalue for every \varepsilon \in ( - \varepsilon 0, \varepsilon 0).

On the other hand, L+(\varepsilon ) may not have the zero eigenvalue for \varepsilon \not = 0 because the
translational symmetry is broken by the potential V satisfying \scrV \prime \prime (s) \not = 0. To study
the sign of this small eigenvalue of L+(\varepsilon ), we expand

L+(\varepsilon ) =L+(0) + \varepsilon V + 12\varphi s \~\varphi \varepsilon + 6\~\varphi 2
\varepsilon ,(7.10)

where L+(0) := - \partial 2x + 6\varphi 2
s  - 2. Since \| \~\varphi \varepsilon \| H2 =\scrO (\varepsilon ) as \varepsilon \rightarrow 0, we can write

\~\varphi \varepsilon = \varepsilon \~\varphi (1) +\scrO H2(\varepsilon 2),(7.11)

where \~\varphi (1) is uniquely determined by Lemma 7.1. Perturbation theory for isolated
eigenvalues of a self-adjoint operator gives the small eigenvalue of L+(\varepsilon ) in the form

\mu (\varepsilon ) =
1

\| \varphi \prime 
s\| 2L2

\Bigl[ 
\varepsilon \langle \varphi \prime 

s, (V + 12\varphi s \~\varphi 
(1))\varphi \prime 

s\rangle +\scrO (\varepsilon 2)
\Bigr] 
.(7.12)

Differentiating (7.1) with respect to x yields

L+(\varepsilon )\phi 
\prime 
\varepsilon = - \varepsilon V \prime \phi \varepsilon ,

from which we derive at the \scrO (\varepsilon ) order:

L+(0)( \~\varphi 
(1))\prime + (V + 12\varphi s \~\varphi 

(1))\varphi \prime 
s = - V \prime \varphi s.
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2558 DMITRY E. PELINOVSKY AND MICHAEL PLUM

Therefore, we obtain by integration by parts that

\langle \varphi \prime 
s, (V + 12\varphi s \~\varphi 

(1))\varphi \prime 
s\rangle = - 

\int 
\BbbR 
V \prime (x)\varphi (x - s)\varphi \prime (x - s)dx

= - 1

2

\int 
\BbbR 
V \prime \prime (x)

\bigl[ 
1 - \varphi 2(x - s)

\bigr] 
dx

= - 1

2

\int 
\BbbR 
V \prime \prime (x)sech2(x - s)dx

= - 1

2
\scrV \prime \prime (s),

where we have used the condition V \in W 2,\infty (\BbbR ). Thus, it follows from (7.12) that

\mu (\varepsilon ) = - 1

2\| \varphi \prime 
s\| 2L2

\bigl[ 
\varepsilon \scrV \prime \prime (s) +\scrO (\varepsilon 2)

\bigr] 
.

Since \scrV \prime \prime (s) \not = 0 by assumption, we conclude that for \varepsilon \in (0, \varepsilon 0) with sufficiently small
\varepsilon 0 > 0, L+(\varepsilon ) admits no negative eigenvalues if \scrV \prime \prime (s) < 0 and a simple negative
eigenvalue if \scrV \prime \prime (s)> 0, since all other eigenvalues of L+(0) in \scrH are strictly positive.

It remains to compute splitting of the double zero eigenvalue for \varepsilon \not = 0 in the
spectral stability problem (7.9) due to the broken translational symmetry. The double
zero eigenvalue due to the rotational symmetry persists in \varepsilon , whereas all eigenvalues
on i\BbbR also persist in \varepsilon since they are associated with positive Q+(u) and Q - (v) [6].
To compute the splitting of the double zero eigenvalue, we use the method of Puiseux
expansions [36] and expand the eigenvector (u, v) \in \scrH \varepsilon \times \scrH \varepsilon and the eigenvalue \lambda of
the stability problem (7.9) for \varepsilon \in (0, \varepsilon 0):\left\{   

u=\varphi \prime 
s + \varepsilon u1 +\scrO (\varepsilon 2),

v= \varepsilon 1/2v1 +\scrO (\varepsilon 3/2),
\lambda = \varepsilon 1/2\lambda 1 +\scrO (\varepsilon 3/2).

As \varepsilon = 0, the Puiseux expansions recover the double isolated eigenvalue \lambda = 0 of the
unperturbed stability problem (3.11) with the eigenvector (u, v) = (\varphi \prime 

s,0)
T and the

generalized eigenvector (u, v) = (0, v\varphi (\cdot  - s))T , where v\varphi is given by (4.15). By using
(7.10) and (7.11), we obtain from (7.9) that v1 = \lambda 1v\varphi (\cdot  - s) and u1 \in \scrH \varepsilon is found
from the linear inhomogeneous equation

L+u1 + (V + 12\varphi s \~\varphi 
(1))\varphi \prime 

s = - \lambda 21(1 - \varphi 2
s)v\varphi (\cdot  - s).

A solution u1 \in \scrH \varepsilon exists if and only if the Fredholm condition is satisfied,

\lambda 21(\varphi 
\prime , v\varphi )\scrH + \langle \varphi \prime 

s, (V + 12\varphi s \~\varphi 
(1))\varphi \prime 

s\rangle = 0,

which yields

\lambda 21 =
1

2(\varphi \prime , v\varphi )\scrH 
\scrV \prime \prime (s).

Since it follows from the proof of Lemma 4.5 that (\varphi \prime , v\varphi )\scrH < 0, we conclude that for
\varepsilon \in (0, \varepsilon 0) with sufficiently small \varepsilon 0 > 0, the spectral stability problem (7.9) admits
a pair of real eigenvalues if \scrV \prime \prime (s) < 0 and a pair of purely imaginary eigenvalues
if \scrV \prime \prime (s) > 0. In both cases, the pair of eigenvalues \{ \pm \lambda \varepsilon \} is given by the Puiseux
expansion \lambda \varepsilon = \varepsilon 1/2\lambda 1 + \scrO (\varepsilon 3/2) with either \lambda 21 > 0 or \lambda 21 < 0, respectively. This
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2559

complete the proof of lemma in view of the other eigenvalues of the spectral eigenvalue
problem (7.9) on i\BbbR .

Remark 7.2. An alternative proof of instability in Lemma 7.2 can be developed
based on the Rayleigh quotient

 - \lambda 2\varepsilon = inf
v\in \scrH \varepsilon \setminus \{ 0\} 

Q - (v) + \varepsilon 
\int 
\BbbR V v

2dx

(\scrL +(\varepsilon ) - 1v, v)\scrH \varepsilon 

,(7.13)

where Q - (v) is exactly the same as in (3.6) and \scrL +(\varepsilon ) := (1 - \phi 2\varepsilon ) - 1L+(\varepsilon ) is invertible
on \scrH \varepsilon for \varepsilon \in (0, \varepsilon 0). No constraint on v \in \scrH \varepsilon is used in (7.13) compared to (4.28).
If \scrV \prime \prime (s) < 0, then \scrL +(\varepsilon ) is strictly positive in \scrH \varepsilon so that the denominator in (7.13)
is positive. However, the numerator in (7.13) attains negative values since \scrL  - (\varepsilon ) :=
(1  - \phi 2\varepsilon )

 - 1L - (\varepsilon ) has a simple negative eigenvalue in \scrH \varepsilon for \varepsilon \in (0, \varepsilon 0) and v \in \scrH \varepsilon 

does not satisfy any orthogonality condition. Therefore, the smallest eigenvalue  - \lambda 2\varepsilon 
is negative so that there exists a pair of real eigenvalues \{ \pm \lambda \varepsilon \} for \varepsilon \in (0, \varepsilon 0).

Remark 7.3. The method based on the Rayleigh quotient (7.13) is inconclusive
if \scrV \prime \prime (s)> 0 because both the numerator and the denominator attain negative values
for some v \in \scrH \varepsilon .

8. Conclusion. This work can be summarized as follows. We have considered
a new NLS model with intensity-dependent dispersion (1.6) as an alternative of the
cubic defocusing NLS equation (1.1). We have shown that the same black soliton has
better stability properties in the NLS model (1.6) in several aspects. The NLS model
provides a natural Hilbert L2 space with exponential weights, where the linearized
stability problem admits only isolated eigenvalues of finite multiplicity and no finite
accumulation points. The energetic stability argument is obtained with four rather
than three orthogonality conditions, where the additional constraint is due to the
new scaling symmetry (1.13). The black soliton is continued to the family of traveling
dark solitons for every speed compared to the finite speed cutoff in the cubic NLS
equation (1.1). Finally, the black soliton remains spectrally stable in the presence of a
small decaying potential if it is pinned to the minimum point of the effective potential
compared to the oscillatory instability of the black soliton of the cubic NLS equation
with a small decaying potential [30].

We end this paper with a list of further open problems.
1. We have not attempted to address local well-posedness of the new NLS model

(1.6) in \Sigma \cap \scrH , where \Sigma is the energy space (3.2) and \scrH is the exponentially
weighted L2(\BbbR ) space (3.12). We conjecture that the initial-value problem is
locally well-posed in the set of functions \scrF in (1.7) for which | u(t, x)| \leq 1 for
(t, x) \in \BbbR \times \BbbR , but this problem is a subject on its own. Recent results on
local well-posedness of such NLS models with zero boundary conditions can
be found in [19].

2. Another related problem is the asymptotic stability of black solitons. By using
ideas of [16], the asymptotic stability analysis can be developed provided that
the local well-posedness problem for the NLS model (1.6) is solved first.

3. Orbital stability of the continuous family of dark solitons with any speed c\in \BbbR 
can be considered by using the exponentially weighted Hilbert space \scrH c,\omega =1

in Remark 6.1. According to the standard orbital stability criterion [5, 27],
the dark soliton with profile Uc is orbitally stable if the mapping c \mapsto \rightarrow P (Uc)
is monotonically increasing. It follows from the expansion (5.20) that the
stability is satisfied for small c\in ( - c0, c0) with some c0 > 0. However, since Uc
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2560 DMITRY E. PELINOVSKY AND MICHAEL PLUM

is only available implicitly, the precise stability criterion can only be checked
numerically for larger values of c\in \BbbR or verified with computer-assisted proofs
[29].

4. It would be interesting to justify the new NLS model (1.6) as a reduction of the
Maxwell equations in the framework of either temporal or spatial nonlinear
optics. Justification of the extended NLS models of the type

i(1 - \epsilon 2\partial 2x)ut + uxx + 2(1 - | u| 2)u= 0(8.1)

was considered in [11, section 4.1.4] in the framework of the NLS models with
a full dispersion relation. However, the relevant analysis did not incorporate
the intensity-dependent dispersion. Justification of the NLS model (1.6) is
open for further studies. In our recent paper [32], we studied stability of the
black solitons in the model (8.1).

5. One can think of the regularization of the NLS model (1.6) with bounded
intensity-dependent dispersion,

i(1 + \epsilon 2  - | u| 2)ut + uxx + 2(1 - | u| 2)u= 0.(8.2)

Local well-posedness of the regularized model (8.2) in the space of functions
with the boundary conditions (1.2) can be shown by using the general analy-
sis of [13]; see also [32]. It is expected that the stability properties of the
black solitons analyzed in our work will persist in the time evolution of the
regularized NLS model (8.2).

Appendix A. Integration by parts in \bfscrH . We start with the following tech-
nical estimates.

Lemma A.1. For every w \in L2(\BbbR ), it is true that\bigm\| \bigm\| \bigm\| \bigm\| cosh(\cdot )\int \infty 

\cdot 
sech(t)w(t)dt

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(0,\infty )

\leq 2\| w\| L2(0,\infty ),(A.1)

\bigm\| \bigm\| \bigm\| \bigm\| cosh(\cdot )\int \cdot 

 - \infty 
sech(t)w(t)dt

\bigm\| \bigm\| \bigm\| \bigm\| 
L2( - \infty ,0)

\leq 2\| w\| L2( - \infty ,0),(A.2)

and \bigm\| \bigm\| \bigm\| \bigm\| sech(\cdot )\int \cdot 

0

cosh(t)w(t)dt

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbR )

\leq 2\| w\| L2(\BbbR ).(A.3)

Proof. In order to prove (A.1), we integrate by parts and obtain for each y > 0,\int y

0

cosh2(x)

\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx
=

\Biggl[ 
1

2
(x+ cosh(x) sinh(x))

\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] \bigm| \bigm| \bigm| \bigm| x=y
x=0

+

\int y

0

(xsech(x) + sinh(x))Re

\biggl( 
\=w(x)

\int \infty 

x

sech(t)w(t)dt

\biggr) 
dx.
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2561

The first and second terms are estimated separately with the Cauchy--Schwarz in-
equality as

1

2
(y+ cosh(y) sinh(y))

\bigm| \bigm| \bigm| \bigm| \int \infty 

y

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2
\leq 1

2
(y+ cosh(y) sinh(y))(1 - tanh(y))

\int \infty 

y

| w(t)| 2dt

\leq 
\int \infty 

y

| w(t)| 2dt

and \int y

0

(xsech(x) + sinh(x))| \=w(x)| 
\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| dx
\leq 2

\int y

0

cosh(x)| \=w(x)| 
\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| dx
\leq 2

\Biggl( \int y

0

cosh2(x)

\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx
\Biggr) 1/2\biggl( \int y

0

| w(x)| 2dx
\biggr) 1/2

\leq 1

2

\int y

0

cosh2(x)

\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx+ 2

\int y

0

| w(x)| 2dx,

where we have used 2ab \leq 1
2a

2 + 2b2 in the last line. Combining the estimates, we
obtain\int y

0

cosh2(x)

\bigm| \bigm| \bigm| \bigm| \int \infty 

x

sech(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx\leq 2

\int \infty 

y

| w(x)| 2dx+ 4

\int y

0

| w(x)| 2dx,

which yields the bound (A.1) in the limit y \rightarrow \infty . A similar bound (A.2) follows
analogously for y < 0.

In order to prove (A.3), we again integrate by parts and obtain for each y > 0,\int y

0

sech2(x)

\bigm| \bigm| \bigm| \bigm| \int x

0

cosh(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx
=

\Biggl[ 
(tanh(x) - 1)

\bigm| \bigm| \bigm| \bigm| \int x

0

cosh(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] \bigm| \bigm| \bigm| \bigm| x=y
x=0

+ 2

\int y

0

(cosh(x) - sinh(x))Re

\biggl( 
\=w(x)

\int x

0

cosh(t)w(t)dt

\biggr) 
dx.

The first term is negative while the second term is again estimated with the Cauchy--
Schwarz inequality as

2

\int y

0

sech(x)| w(x)| 
\bigm| \bigm| \bigm| \bigm| \int x

0

cosh(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| dx
\leq 2

\Biggl( \int y

0

sech2(x)

\bigm| \bigm| \bigm| \bigm| \int x

0

cosh(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx
\Biggr) 1/2\biggl( \int y

0

| w(x)| 2dx
\biggr) 1/2

.

In the limit y\rightarrow \infty , this gives the bound\int \infty 

0

sech2(x)

\bigm| \bigm| \bigm| \bigm| \int x

0

cosh(t)w(t)dt

\bigm| \bigm| \bigm| \bigm| 2 dx\leq 4

\int \infty 

0

| w(t)| 2dt.
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2562 DMITRY E. PELINOVSKY AND MICHAEL PLUM

A similar result is obtained analogously for y < 0, which yields together the bound
(A.3).

Using the estimates in Lemma A.1, we prove the integration by parts formula for
both function spaces. Here \langle \cdot , \cdot \rangle denotes the standard inner product in L2(\BbbR ).

Lemma A.2. For every f \in \scrH 2
 - and g \in \scrH 1

 - , it is true that \langle f \prime , g\prime \rangle = - \langle f \prime \prime , g\rangle .
Proof. First, we check that if f \in \scrH 2

 - , then cosh(\cdot )f \prime \in L2(\BbbR ) and so sinh(\cdot )f \prime \in 
L2(\BbbR ). Indeed, if f \in \scrH 2

 - , then f \prime \in L2(\BbbR ) and cosh(\cdot )f \prime \prime \in L2(\BbbR ). It is then clear
that f \prime \in H1(\BbbR ) so that f \prime \in C(\BbbR ) and f \prime (x)\rightarrow 0 as | x| \rightarrow \infty by Sobolev's embedding.
Therefore, we write

f \prime (x) = - 
\int \infty 

x

f \prime \prime (t)dt= - 
\int \infty 

x

sech(t) [cosh(t)f \prime \prime (t)]dt,

so that cosh(\cdot )f \prime \in L2(0,\infty ) by the bound (A.1) with w := cosh(\cdot )f \prime \prime \in L2(\BbbR ). Simi-
larly, we obtain cosh(\cdot )f \prime \in L2( - \infty ,0) by the bound (A.2).

Next, since

d

dx
[cosh(x)f \prime (x)] = cosh(x)f \prime \prime (x) + sinh(x)f \prime (x),(A.4)

we infer that if f \in \scrH 2
 - , then cosh(\cdot )f \prime \in H1(\BbbR ), which implies that cosh(x)f \prime (x)\rightarrow 0

as | x| \rightarrow \infty . Similarly, if g \in \scrH 1
 - , we have sech(\cdot )g \in H1(\BbbR ) since sech(\cdot )g \in L2(\BbbR ),

sech(\cdot )g\prime \in L2(\BbbR ), and

d

dx
[sech(x)g(x)] = sech(x)g\prime (x) - sech(x) tanh(x)g(x).(A.5)

This implies that sech(x)g(x)\rightarrow 0 as | x| \rightarrow \infty so that

f \prime (x)g(x) = [cosh(x)f \prime (x)] [sech(x)g(x)]\rightarrow 0 as | x| \rightarrow \infty 

and integration by parts yields \langle f \prime , g\prime \rangle = - \langle f \prime \prime , g\rangle .
Lemma A.3. For every f \in \scrH 2

+ and g \in \scrH 1
+, it is true that \langle f \prime , g\prime \rangle = - \langle f \prime \prime , g\rangle .

Proof. Here we recall that \scrH 1
+ \equiv H1(\BbbR ) and that if f \in \scrH 2

+, then f \in H1(\BbbR )
and cosh(\cdot )( - f \prime \prime + 4f) \in L2(\BbbR ). This implies that ( - f \prime \prime + 4f) \in L2(\BbbR ) and hence
f \in H2(\BbbR ) so that f(x), f \prime (x)\rightarrow 0 as | x| \rightarrow \infty and the integration by parts holds.

Appendix B. Proof of the expansion (6.13) with the bound (6.14). We
follow the ideas in the proof of Propositions 4 and 5 in [16] and the proof of Lemma
4.2 in [12] but we give a self-contained presentation.

It is trivial to see that if u\in \scrH 1
 - , then

\| 
\sqrt{} 
1 - \varphi 2u\| L\infty \leq \| u\| \scrH 1

 - 
.(B.1)

Indeed, since \| 
\sqrt{} 
1 - \varphi 2u\prime \| L2 \leq \| u\prime \| L2 , the product rule (A.5) implies that

\| 
\sqrt{} 
1 - \varphi 2u\| H1 \leq \| u\| \scrH 1

 - 
,

which yields (B.1) by Sobolev's embedding of H1(\BbbR ) into L\infty (\BbbR ). On the other hand,
it is rather nontrivial that the decomposition

\psi = ei\theta [Uc,\omega (\cdot + \zeta ) + u(\cdot + \zeta ) + iv(\cdot + \zeta )] ,(B.2)
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STABILITY OF BLACK SOLITONS IN OPTICAL SYSTEMS 2563

with

| c| + | \omega  - 1| + \| u\| \scrH 1
 - 
+ \| v\| \scrH 1

 - 
+ \| \eta \| L2 \leq C0\epsilon ,(B.3)

where

\eta := | \psi | 2  - | Uc,\omega | 2 = 2uRe(Uc,\omega ) + 2vIm(Uc,\omega ) + u2 + v2,(B.4)

controls the L\infty norm of the perturbation. Nevertheless, this result is given in the
following lemma used for the proof of the bound (6.14). In what follows, the constant
C > 0 may change from one line to another line.

Lemma B.1. For every c,\omega \in \BbbR and \psi \in \Sigma \cap \scrH satisfying (B.2) and (B.3), there
exists C > 0 such that

\| u\| L\infty + \| v\| L\infty \leq C, \| \eta \| L\infty \leq C\epsilon .(B.5)

Proof. Since

(u+Re(Uc,\omega ))
2 + (v+ Im(Uc,\omega ))

2 = | Uc,\omega | 2 + \eta ,

there exists C > 0 such that

\| u\| L\infty + \| v\| L\infty \leq C(1 + \| \eta \| L\infty ).(B.6)

Using the bound

\| \eta \| 2L\infty \leq \| \eta \| L2\| \eta \prime \| L2 ,

the product rule for \eta in (B.4), and the triangle inequality yields

\| \eta \| 2L\infty \leq 2\| \eta \| L2

\bigl( 
\| Re( \=Uc,\omega (u\prime + iv\prime ))\| L2 + \| Re( \=U \prime 

c,\omega (u+ iv))\| L2 + \| uu\prime \| L2 + \| vv\prime \| L2

\bigr) 
\leq C\| \eta \| L2

\Bigl( 
\| u\| \scrH 1

 - 
+ \| v\| \scrH 1

 - 
+ \| u\| L\infty \| u\prime \| L2 + \| v\| L\infty \| v\prime \| L2

\Bigr) 
\leq C (1 + \| u\| L\infty + \| v\| L\infty )

\Bigl( 
\| u\| 2\scrH 1

 - 
+ \| v\| 2\scrH 1

 - 
+ \| \eta \| 2L2

\Bigr) 
,

where we have used the properties of Uc,\omega :=Uc(\omega \cdot ) from Theorem 6 and the proximity
of the norm in \scrH c,\omega and \scrH due to Remark 5.5 for (c,\omega ) near (0,1). Using the bounds
(B.3) and (B.6) yields

\| \eta \| 2L\infty \leq C(1 + \| \eta \| L\infty )\epsilon 2.

Since \epsilon > 0 is small, this is equivalent to \| \eta \| L\infty \leq C\epsilon , which yields (B.5) due
to (B.6).

We are now ready to give the proof of the expansion (6.13) with the bound
(6.14). Since P (\psi ) is invariant under the two symmetries (1.5), we translate \psi \rightarrow 
e - i\theta \psi (\cdot  - \zeta ). After translation, we fix R > 0 and split the integral in P (\psi ) on
( - \infty , - R] \cup [ - R,R] \cup [R,\infty ). The outer and inner integrals are treated differently
based on the two representations (2.3) and (2.5).
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2564 DMITRY E. PELINOVSKY AND MICHAEL PLUM

B.1. Outer integrals on ( - \infty , - \bfitR ]\cup [\bfitR ,\infty ). We use the following expres-
sion for this part of P (\psi ) denoted by PR(\psi ):

PR(\psi ) :=
1

2i

\int 
( - \infty , - R]\cup [R,\infty )

(1 - | \psi | 2)2

| \psi | 2
( \=\psi \psi x  - \=\psi x\psi )dx.

The integrand is nonsingular because | \psi | 2 \geq | Uc,\omega | 2  - | \eta | is bounded away from zero
on ( - \infty , - R]\cup [R,\infty ) which follows from the boundedness of | Uc,\omega | 2 away from zero
and smallness of \| \eta \| L\infty according to the bound (B.5). We expand

\=\psi \psi x  - \=\psi x\psi = \=Uc,\omega U
\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega + \nu + 2i(uv\prime  - u\prime v),

where

\nu := 2iIm(U \prime 
c,\omega )u - 2iRe(U \prime 

c,\omega )v - 2iIm(Uc,\omega )u
\prime + 2iRe(Uc,\omega )v

\prime ,

so that

PR(Uc,\omega + u+ iv) = PR(Uc,\omega ) + P1 + P2,

where

P1 :=
1

2i

\int \biggl[ 
(1 - | Uc,\omega | 2)2

| Uc,\omega | 2
\nu  - (1 - | Uc,\omega | 4)

| Uc,\omega | 4
( \=Uc,\omega U

\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega )\eta 

\biggr] 
dx

and

P2 :=

\int 
(1 - | Uc,\omega | 2  - \eta )2

| Uc,\omega | 2 + \eta 
(uv\prime  - u\prime v)dx

+
1

2i

\int \biggl[ 
(1 - | Uc,\omega | 2  - \eta )2

| Uc,\omega | 2 + \eta 
 - (1 - | Uc,\omega | 2)2

| Uc,\omega | 2

\biggr] 
\nu dx,

+
1

2i

\int \biggl[ 
(1 - | Uc,\omega | 2 - \eta )2

| Uc,\omega | 2+\eta 
 - (1 - | Uc,\omega | 2)2

| Uc,\omega | 2
+
(1 - | Uc,\omega | 4)

| Uc,\omega | 4
\eta 

\biggr] 
( \=Uc,\omega U

\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega )dx,

and the integration is performed over ( - \infty , - R]\cup [R,\infty ). Substituting \nu into P1 and
integrating u\prime and v\prime by parts yield

P1 =
(1 - | Uc,\omega | 2)2

| Uc,\omega | 2
( - Im(Uc,\omega )u+Re(Uc,\omega )v)

\Biggl( \bigm| \bigm| \bigm| \bigm| x\rightarrow +\infty 

x=R

+

\bigm| \bigm| \bigm| \bigm| x= - R

x\rightarrow  - \infty 

\Biggr) 
+ 4

\int 
(1 - | Uc,\omega | 2)( - Im(U \prime 

c,\omega )u+Re(U \prime 
c,\omega )v)dx

+
i

2

\int 
(1 - | Uc,\omega | 4)

| Uc,\omega | 4
( \=Uc,\omega U

\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega )(u
2 + v2)dx,

where the second term in P1 is obtained as follows:

2

\int 
(1 - | Uc,\omega | 2)2

| Uc,\omega | 2
\bigl[ 
Im(U \prime 

c,\omega )u - Re(U \prime 
c,\omega )v

\bigr] 
dx

 - 2

\int 
(1 - | Uc,\omega | 4)

| Uc,\omega | 4
[Im(Uc,\omega )u - Re(Uc,\omega )v]

\bigl[ 
Re(Uc,\omega )Re(U

\prime 
c,\omega )+Im(Uc,\omega )Im(U \prime 

c,\omega )
\bigr] 
dx

+ 2

\int 
(1 - | Uc,\omega | 4)

| Uc,\omega | 4
[Re(Uc,\omega )u+Im(Uc,\omega )v]

\bigl[ 
Im(Uc,\omega )Re(U

\prime 
c,\omega ) - Re(Uc,\omega )Im(U \prime 

c,\omega )
\bigr] 
dx

= 4

\int 
(1 - | Uc,\omega | 2)( - Im(U \prime 

c,\omega )u+Re(U \prime 
c,\omega )v)dx.
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The first term in P1 is zero in the limits x\rightarrow \pm \infty due the boundedness of u and
v in (B.5). The limits x = \pm R are combined with the inner intergrals on [ - R,R].
The second term in P1 combined with a similar term on [ - R,R] is zero due to the
second and fourth orthogonality conditions (6.11). The third term in P1 is bounded
by \| u\| 2\scrH + \| v\| 2\scrH due to proximity of norms in \scrH c,\omega and \scrH given by (5.18) for (c,\omega )
near (0,1) according to (B.3).

The terms in P2 are analyzed by using the facts that | Uc,\omega | 2 is bounded away from
zero on ( - \infty , - R] \cup [R,\infty ), \| \eta \| L\infty is small, and the perturbation u+ iv is bounded
according to (B.5). The first term in P2 is estimated by using the Cauchy--Schwarz
inequality:\int 

(1 - | Uc,\omega | 2  - \eta )2

| Uc,\omega | 2 + \eta 
(uv\prime  - u\prime v)dx\leq C

\int 
(1 - | Uc,\omega | 2  - \eta )2(| u| | v\prime | + | u\prime | | v| )dx

\leq C
\bigl( 
(1 + \| \eta \| L\infty )\| u+ iv\| \scrH c,\omega \| u\prime + iv\prime \| L2 + \| \eta \| L\infty \| u+ iv\| L\infty \| u\prime + iv\prime \| L2\| \eta \| L2

\bigr) 
\leq C

\bigl( 
\| u\prime + iv\prime \| 2L2 + \| u+ iv\| 2\scrH + \| \eta \| 2L2

\bigr) 
,

where bounds (B.5) and the proximity between the norms in\scrH c,\omega and\scrH (Remark 6.1)
have been used. The second and third terms in P2 are estimated similarly:\int 

\eta 2| Uc,\omega | 2  - \eta (1 - | Uc,\omega | 4)
| Uc,\omega | 2(| Uc,\omega | 2 + \eta )

\bigl( 
Im(U \prime 

c,\omega )u - Re(U \prime 
c,\omega )v - Im(Uc,\omega )u

\prime +Re(Uc,\omega )v
\prime \bigr) dx

\leq C
\bigl( 
\| u\prime + iv\prime \| 2L2 + \| u+ iv\| 2\scrH + \| \eta \| 2L2

\bigr) 
and

1

2i

\int 
\eta 2

| Uc,\omega | 4(| Uc,\omega | 2 + \eta )
( \=Uc,\omega U

\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega )dx\leq C\| \eta \| 2L2 .

B.2. Inner integrals on [ - \bfitR ,\bfitR ]. We use the following expression for this part
of P (\psi ) denoted by \^PR(\psi ):

\^PR(\psi ) :=
i

2

\int 
[ - R,R]

(2 - | \psi | 2)( \=\psi \psi x  - \=\psi x\psi )dx+ \theta (R) - \theta ( - R),

where \theta (x) = arg(\psi (x)). Expanding \psi =Uc,\omega +u+ iv and \theta = arg(Uc,\omega )+\theta 1+\theta 2 with

\theta 1 =
Re(Uc,\omega )v - Im(Uc,\omega )u

| Uc,\omega | 2
,

\theta 2 = arg(Uc,\omega + u+ iv) - arg(Uc,\omega ) - 
Re(Uc,\omega )v - Im(Uc,\omega )u

| Uc,\omega | 2

yields the expansion

\^PR(Uc,\omega + u+ iv) = \^PR(Uc,\omega ) + \^P1 + \^P2,

where

\^P1 :=
i

2

\int \bigl[ 
(2 - | Uc,\omega | 2)\nu  - ( \=Uc,\omega U

\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega )\eta 
\bigr] 
dx+ \theta 1(R) - \theta 1( - R)

and

\^P2 := - 
\int 
(2 - | Uc,\omega | 2)(uv\prime  - u\prime v)dx+

1

2i

\int 
\eta \nu dx+ \theta 2(R) - \theta 2( - R),
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and the integration is performed over [ - R,R]. Substituting \nu into \^P1 and integrating
u\prime and v\prime by parts yield after simplifications:

\^P1 = (2 - | Uc,\omega | 2) (Im(Uc,\omega )u - Re(Uc,\omega )v)

\bigm| \bigm| \bigm| \bigm| x=R
x= - R

+ 4

\int 
(1 - | Uc,\omega | 2)( - Im(U \prime 

c,\omega )u+Re(U \prime 
c,\omega )v)dx

+
1

2i

\int 
( \=Uc,\omega U

\prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega )(u
2 + v2)dx+ \theta 1(R) - \theta 1( - R).

The quadratic term in \^P1 is bounded by \| u\| 2\scrH + \| v\| 2\scrH because there is CR > 0 such
that \int R

 - R

\bigm| \bigm| \=Uc,\omega U \prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega 
\bigm| \bigm| (u2 + v2)dx

\leq CR

\int 
\BbbR 
(1 - \varphi 2)

\bigm| \bigm| \=Uc,\omega U \prime 
c,\omega  - \=U \prime 

c,\omega Uc,\omega 
\bigm| \bigm| (u2 + v2)dx,

and Uc,\omega ,U
\prime 
c,\omega \in L\infty (\BbbR ). The linear integral term in \^P1 combined together with a

similar term in P1 yields

4

\int 
\BbbR 
(1 - | Uc,\omega | 2)( - Im(U \prime 

c,\omega )u+Re(U \prime 
c,\omega )v)dx,

which vanish due to the second and fourth orthogonality conditions (6.11). Finally,
the terms at x=\pm R are combined together in P1 and \^P1 to yield

Im(Uc,\omega )u - Re(Uc,\omega )v

| Uc,\omega | 2

\bigm| \bigm| \bigm| \bigm| x=R
x= - R

+ \theta 1(R) - \theta 1( - R) = 0.

All integral terms in \^P2 are bounded by \| u\prime + iv\prime \| 2L2 + \| u + iv\| 2\scrH + \| \eta \| 2L2 because
integration on [ - R,R] is bounded by integration on \BbbR with the weight (1  - \varphi 2).
Similarly, by using the Sobolev embedding of H1([ - R,R]) to L\infty ([ - R,R]) and the
Taylor expansion with | Uc,\omega (\pm R)| 2 being bounded away from zero, we obtain

| \theta 2(\pm R)| \leq CR(| u(\pm R)| 2 + | v(\pm R)| 2)\leq CR\| u+ iv\| 2H1([ - R,R]),

which is bounded by \| u\prime + iv\prime \| 2L2 + \| u+ iv\| 2\scrH since [ - R,R] is compact and 1 - \varphi 2 is
bounded away from zero on [ - R,R].
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