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Abstract

We consider the conformal flow model derived in Bizoń et al. (2017) as a nor-
mal form for the conformally invariant cubic wave equation on S3. We prove
that the energy attains a global constrained maximum at a family of particular
stationary solutions that we call the ground state family. Using this fact and
spectral properties of the linearized flow (which are interesting in their own right
due to a supersymmetric structure), we prove nonlinear orbital stability of the
ground state family. The main difficulty in the proof is due to the degeneracy of
the ground state family as a constrained maximizer of the energy. © 2019 Wi-
ley Periodicals, Inc.

1 Introduction
Long-time behavior of nonlinear dispersive waves on a compact manifold can be

very rich and complex because, in contrast to unbounded domains, waves cannot
disperse to infinity and keep self-interacting for all times (even the global regularity
of arbitrarily small solutions is a nontrivial issue). A major mathematical challenge
in this context is to describe the energy transfer between eigenmodes of the cor-
responding linearized flow near the zero equilibrium. A simple model for gaining
insight into this problem is the conformally invariant cubic wave equation on the
three-sphere. The key feature of this model is the fully resonant linearized spec-
trum. As a consequence, the long-time behavior of small solutions of this equation
is well approximated by solutions of an infinite-dimensional time-averaged Hamil-
tonian system that governs resonant interactions between the modes. This system,
called the conformal flow on S3, has been introduced and studied in [3].

Among its many remarkable features (in particular, low-dimensional invariant
subspaces), the conformal flow has been found to admit a wealth of stationary
states, i.e., solutions for which no energy transfer between the modes occurs. In
this paper we show that among the stationary states there is a distinguished one,
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hereafter called the ground state, which is a global constrained maximizer of the
energy. The main body of the paper is devoted to proving nonlinear orbital stability
of the ground state.

In terms of complex Fourier coefficients .˛n.t//n2N , the conformal flow system
takes the form (see [3] for the details of the derivation)

(1.1) i.nC 1/
d˛n

dt
D

1X
jD0

nCjX
kD0

Snjk;nCj�k x̨j˛k˛nCj�k;

where
Snjk;nCj�k D min.n; j; k; nC j � k/C 1:

This is the Hamiltonian system with the conserved energy function

(1.2) H.˛/ D

1X
nD0

1X
jD0

nCjX
kD0

Snjk;nCj�k x̨n x̨j˛k˛nCj�k

and symplectic form
P
n 2i.nC1/ d x̨n^.�d˛n/ so that equations of motion (1.1)

can be written in the form

(1.3) i.nC 1/
d˛n

dt
D
1

2

@H

@x̨n
:

The conformal flow system enjoys the following three one-parameter groups of
symmetries:

Scaling: ˛n.t/! c˛n.c
2t /;(1.4)

Global phase shift: ˛n.t/! ei�˛n.t/;(1.5)

Local phase shift: ˛n.t/! ein�˛n.t/;(1.6)

where c, � , and � are real parameters. The latter two symmetries give rise to two
additional conserved quantities:

Q.˛/ D

1X
nD0

.nC 1/j˛nj
2;(1.7)

E.˛/ D

1X
nD0

.nC 1/2j˛nj
2 :(1.8)

NOTATION: We denote the set of nonnegative integers by N and the set of
positive integers by NC. A sequence .˛n/n2N is denoted for short by ˛. The
space of square-summable sequences is denoted by `2. Given s > 0, we define the
weighted space of sequences

(1.9) hs WD

(
˛ 2 `2.N/W

1X
nD0

.nC 1/2sj˛nj
2 <1

)
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endowed with its natural norm. We write X . Y to denote the statement that X �
CY for some universal (i.e., independent of other parameters) constant C > 0.

The following theorem states that the conformal flow is globally well-posed
in h1. This is not an optimal result; however, it is sufficient for our purposes. Note
that all three conserved quantities H , Q, and E are well-defined in h1.

THEOREM 1.1. For every initial data ˛.0/ 2 h1, there exists a unique global-in-
time solution ˛.t/ 2 C.R; h1/ of the system (1.1). Moreover, for every t ,

H.˛.t// D H.˛.0//; Q.˛.t// D Q.˛.0//; E.˛.t// D E.˛.0//:

A solution of (1.1) is called a stationary state if j˛.t/j is time-independent. A
stationary state is called a standing wave if it has the form

(1.10) ˛.t/ D Ae�i�t ;

where the complex amplitudes .An/n2N are time-independent and the parameter �
is real. Substituting (1.10) into (1.1), we get a nonlinear system of algebraic equa-
tions for the amplitudes:

(1.11) .nC 1/�An D

1X
jD0

nCjX
kD0

Snjk;nCj�k xAjAkAnCj�k :

This equation can be written as

�
@Q

@ xAn
D
1

2

@H

@ xAn
I

hence standing waves (1.10) admit a variational characterization as the critical
points of the functional

(1.12) K.˛/ D
1

2
H.˛/ � �Q.˛/:

Equivalently, standing waves (1.10) are critical points of H for fixed Q, where �
is a Lagrange multiplier.

The simplest solutions of (1.11) are the single-mode states, which are given, for
any N 2 N, by

(1.13) An D cınN ; � D jcj2; c 2 C:

In this paper we are concerned with the following family of standing waves that
bifurcates from the N D 0 single-mode state:

(1.14) An D cp
n; � D

jcj2

.1 � jpj2/2
;

where c; p 2 C and jpj < 1. We shall refer to (1.14) as the ground state family
because it is the global maximizer of H for fixed Q, as follows from our next
theorem.
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THEOREM 1.2. For every ˛ 2 h1=2 the following inequality holds:

(1.15) H.˛/ � Q.˛/2:

Moreover,H.˛/ D Q.˛/2 if and only if ˛n D cpn for some c; p 2 C with jpj < 1.

The ground state family (1.14) is parametrized by two complex parameters c
and p with jpj < 1. In what follows, by the ground state we shall mean the
normalized solution A.p/ for � D 1 with

(1.16) An.p/ D .1 � p
2/pn; n 2 N;

parametrized by one real parameter p 2 Œ0; 1/. The conserved quantities H , Q,
and E for the ground state are

(1.17) H.A.p// D 1; Q.A.p// D 1; E.A.p// D
1C p2

1 � p2
:

By the ground state orbit (for a given p) we shall mean the set obtained from the
ground state A.p/ by acting on it with the gauge symmetries (1.5) and (1.6):

(1.18) A.p/ D
˚�
ei�Ci�nAn.p/

�
n2N W .�; �/ 2 S1 � S1

	
:

Our main goal is to show that the ground state is orbitally stable; i.e., a perturbed
ground state with given p stays close to its orbit A.p/ for all later times provided
that the perturbation is small enough. To measure the distance (in some norm X )
between the solution and the ground state orbit, we introduce the metric

(1.19) distX .˛.t/;A.p// WD inf
�;�2S

k˛.t/ � ei�Ci��A.p.t//kX :

We shall study orbital stability using the Lyapunov method based on the vari-
ational formulation (1.12), spectral analysis, and coercivity estimates. The main
difficulty is due to the degeneracy of the ground state as a constrained maximizer
of energy. To eliminate this degeneracy, we shall use the symplectic orthogonal
decomposition, combined with gauge symmetries and conservation laws. In ad-
dition to the conservation of H.˛/, Q.˛/, and E.˛/, we shall use the following
independent conserved quantity

(1.20) Z.˛/ D

1X
nD0

.nC 1/.nC 2/x̨nC1˛n:

Conservation of Z.˛/ in the time evolution of (1.1) is proven in Appendix A.
For p D 0 the ground state reduces to the single-mode state

(1.21) An.0/ D ın0; n 2 N;

and the symmetry orbit (1.18) becomes one-dimensional. We will show that in this
case a two-parameter orthogonal decomposition involving the generators of scaling
(1.4) and gauge (1.5) symmetries suffices to eliminate the degeneracy. Having that
and using the conservation laws, we establish the orbital stability of the single-
mode state, as stated in the following theorem.
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THEOREM 1.3. For every small � > 0, there is ı > 0 such that for every initial
data ˛.0/ 2 h1 with k˛.0/ � A.0/kh1 � ı, the corresponding unique solution
˛.t/ 2 C.R; h1/ of (1.1) satisfies for all t :

(1.22) disth1.˛.t/;A.0// � �:

For p 2 .0; 1/, we need to introduce the four-parameter orthogonal decomposi-
tion involving both gauge symmetries (1.5) and (1.6), the scaling symmetry (1.4),
and the parameter p itself. Having that and using the variational characterization
of the constrained maximizers in (1.12), together with the conservation of E.˛/
and Z.˛/, we are able to eliminate the degeneracy of the ground state and to prove
the following nonlinear orbital stability result:

THEOREM 1.4. For every p0 2 .0; 1/ and every small � > 0, there is ı > 0

such that for every initial data ˛.0/ 2 h1 satisfying k˛.0/ � A.p0/kh1 � ı, the
corresponding unique solution ˛.t/ 2 C.R; h1/ of (1.1) satisfies for all t :

(1.23) disth1.˛.t/;A.p0// � �:

Although it is not needed for the orbital stability, we shall give an explicit de-
scription of the spectrum of the linearized operator around the ground state. We
believe that the results of this spectral analysis are interesting on their own. In par-
ticular, some intriguing algebraic properties of the spectrum may provide a hint in
searching for a Lax pair for the conformal flow.

The conformal flow system (1.1) is structurally similar to the Fourier repre-
sentations of the cubic Szegő equation [5–7] and the lowest Landau level (LLL)
equation [1, 8, 9]. These two equations also possess ground states that saturate in-
equalities analogous to (1.15). Their nonlinear orbital stabilities were established
in [5] and [4,8], respectively, by compactness-type arguments. Such arguments are
shorter compared to the Lyapunov approach; however, we prefer the latter because
it gives a hands-on control of the perturbations and, more importantly, can also be
applied to local constrained minimizers (or maximizers).

Let us explain why the proof of nonlinear orbital stability of the ground state
is more difficult in our case. The ground state of the cubic Szegő equation is a
maximizer of energy under two constraints [5] (rather than one, as in our case). On
the other hand, the ground state of the LLL equation is the maximizer of energy
under one constraint (as in our case), but the ground state can be continued with
respect to parameter p by an action of the symmetry transformation (namely, the
magnetic translation) [4, 8]. We eliminate the drift of the ground state with respect
to parameter p by using the conserved quantities E.˛/ and Z.˛/.

The paper is organized as follows. Theorems 1.1 and 1.2 are proved in Sections 2
and 3, respectively. Section 4 introduces the second variation of the energy function
and the spectral stability problem. Sections 5 and 6 are devoted to the spectral
stability analysis of the single-mode states and the ground state. Theorems 1.3 and
1.4 are proved in Sections 7 and 8, respectively. Appendix A gives the proof of
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conservation of Z.˛/. Appendix B summarizes some summation identities that
are used.

2 Global Solutions to the Cauchy Problem
The global well-posedness of the conformal flow for h1 initial data, stated in

Theorem 1.1, is a simple corollary of the following local well-posedness result and
the conservation of E.

LEMMA 2.1. For every initial data ˛.0/ 2 h1, there exists time T > 0 and a
unique solution ˛.t/ 2 C..�T; T /; h1/ of (1.1). Moreover, the map ˛.0/ 7! ˛.t/

is continuous in h1 for every t 2 .�T; T /.

PROOF. Let us rewrite the system (1.1) in the integral form

(2.1) ˛.t/ D ˛.0/ � i

Z t

0

F.˛.�//d�;

where the vector field F is given by

(2.2) ŒF .˛/�n WD

1X
jD0

nCjX
kD0

min.n; j; k; nC j � k/C 1
nC 1

x̨j˛k˛nCj�k :

Let us show that

(2.3) kF.˛/kh1 . k˛k3
h1 :

Indeed, by using the Fourier transform

u.�/ D
X
n2N

j˛nje
in� ; � 2 S;

and the inequality
min.n; j; k; nC j � k/C 1

nC 1
� 1;

we obtain

kF.˛/kh1 �







1X
jD0

nCjX
kD0

j j̨ jj˛kjj˛nCj�kj







h1

. ku3kH1.S/ . kuk3
H1.S/ . k˛k3

h1 ;

where we have used the fact that H 1.S/ is a Banach algebra with respect to point-
wise multiplication. From (2.3) it follows by the Picard method based on the fixed-
point argument on a small time interval .�T; T / that there exists a local solution
to the integral equation (2.1) for every initial data ˛.0/ 2 h1 and the mapping
˛.0/ 7! ˛.t/ is continuous. The time T is inversely proportional to k˛.0/k2

h1 . �
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Conservation ofH ,Q, andE follow from the symmetries of the conformal flow
system (1.1). Since the squared norm k˛.t/k2

h1 D E.˛.t// is conserved in time,
the lifespan T in Lemma 2.1 can be extended to infinity, which concludes the proof
of Theorem 1.1.

Remark 2.2. The global well-posedness result in Theorem 1.1 can be extended to
the spaces hs with s > 1

2
and quite possibly even to the critical space h1=2, in

analogy to the global well-posedness result for the cubic Szegő equation (see the-
orem 2.1 in [5]). However, the result of Theorem 1.1 is sufficient for our purposes
because the orbital stability analysis relies on the global solution in h1 only.

3 Global Energy Bound
The following lemma establishes the inequality (1.15) and shows that it is sat-

urated only for the geometric sequences. Theorem 1.2 is the reinstatement of the
same result.

LEMMA 3.1. For every complex-valued sequence A 2 h1=2 the following inequal-
ity holds:

(3.1)
1X
nD0

1X
jD0

nCjX
kD0

Œmin.n; j; k; nC j � k/C 1� xAn xAjAkAnCj�k �"
1X
nD0

.nC 1/jAnj
2

#2
:

Moreover, this inequality is saturated if and only if An D cpn for c; p 2 C with
jpj < 1.

PROOF. The left-hand side of (3.1) can be written as

(3.2)
1X
nD0

nX
jD0

nX
kD0

Œmin.j; n � j; k; n � k/C 1� xAj xAn�jAkAn�k;

whereas the right-hand side of (3.1) can be written as

(3.3)
1X
nD0

nX
kD0

.k C 1/.nC 1 � k/jAkj
2
jAn�kj

2:

Let us fix n 2 N and denote xk WD AkAn�k for 0 � k � n. To prove the inequality
(3.1), it suffices to show that the following quadratic form is nonnegative:

nX
kD0

.k C 1/.nC 1 � k/jxkj
2
�

nX
jD0

nX
kD0

Œmin.j; n � j; k; n � k/C 1�xjxk :

Let us prove this for odd n D 2N C 1 with N 2 N. The proof for even n is
analogous. Since xk D xn�k by definition, we can simplify the sums (3.2) and
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(3.3) as follows:

(3.4)
nX

jD0

nX
kD0

Œmin.j; n � j; k; n � k/C 1�xjxk D

4

NX
jD0

NX
kD0

Œmin.j; k/C 1�xjxk :

and

(3.5)
nX
kD0

.k C 1/.nC 1 � k/jxkj
2
D 2

NX
kD0

.k C 1/.2N C 2 � k/jxkj
2:

Subtracting (3.4) from (3.5) we obtain the following identity:

(3.6)

2

NX
kD0

.k C 1/.2N C 2 � k/jxkj
2
� 4

NX
jD0

NX
kD0

Œmin.j; k/C 1�xxjxk

D 4

N�1X
jD0

NX
kDjC1

.j C 1/jxj � xkj
2
� 0:

The identity (3.6) is proven by induction in N . The case N D 0 is trivial. The
case N D 1 is verified by inspection. For general N , the difference between the
left-hand sides of (3.6) evaluated at N C 1 and N is

4

NX
kD0

.k C 1/
�
jxkj

2
� xxNC1xk � xNC1xxk

�
C 2.N C 1/.N C 2/jxNC1j

2

D 4

NX
kD0

.k C 1/jxk � xNC1j
2;

which is equal to the difference between the right-hand sides of (3.6) evaluated at
N C1 andN . By induction, the identity (3.6), which holds forN D 0; 1, will hold
for any N 2 N.

Combining (3.6) with a similar result for n D 2N and summing up with respect
to N 2 N, we obtain the inequality (3.1). The inequality is saturated when the
double sum in (3.6) vanishes, which happens if xk D AkAn�k is independent
of k for every 0 � k � n (but may depend on n for n 2 N). This is true if and
only if Ak D cpk for some c; p 2 C. The constraint jpj < 1 is needed since
A 2 h1=2. �

Remark 3.2. Theorem 1.2 provides an alternative variational characterization of the
ground state family (1.14). Indeed, from Theorem 1.2, we know thatG WD Q2�H
attains the global minimum equal to zero at the geometric sequence An D cpn;
hence its first variation at A vanishes

(3.7) G0.A/ D 2Q.A/Q0.A/ �H 0.A/ D 0:
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Comparing this with the variational characterization (1.12) we see that An D cpn

is a solution of (1.11) with � D Q.A/ D jcj2=.1 � jpj2/2.

4 Second Variation and the Spectral Stability
Here we compute the second variation of the functional K, defined in (1.12), at

a stationary solution and use this result to formulate the spectral stability problem.
Let ˛ D A C a C ib, where A is a real root of the algebraic system (1.11),

whereas a and b are real and imaginary parts of the perturbation. Because the
stationary solution A is a critical point of K, the first variation of K vanishes at
˛ D A, and the second variation of K at ˛ D A can be written as a quadratic form
associated with the Hessian operator. In variables above, we obtain the quadratic
form in the diagonalized form:

(4.1) K.AC aC ib/ �K.A/ D hLCa; ai C hL�b; bi CO.kak3 C kbk3/;
where h � ; � i is the inner product in `2.N/ and k � k is the induced norm.

After straightforward computations, we obtain the explicit form for the self-
adjoint operators L˙W D.L˙/! `2, where D.L˙/ � `2 is the maximal domain
of the unbounded operators L˙. After the interchange of summations, we obtain

(4.2) .L˙a/n D .B˙a/n � .nC 1/�an;

where

.B˙a/n D

1X
jD0

"
2

1X
kDmax.0;j�n/

Snjk;nCk�jAkAnCk�j

˙

nCjX
kD0

Snjk;nCj�kAkAnCj�k

#
aj :

The Hessian operator given by the self-adjoint operators L˙ also defines the
linearized stability problem for the small perturbations to the stationary states. Let
us consider the following decomposition of solutions of the conformal flow (1.1),

(4.3) ˛.t/ D e�i�t ŒAC a.t/C ib.t/�;

with realA, a, and b. When the nonlinear system (1.1) is truncated at the linearized
approximation with respect to a and b, we obtain the linearized evolution system

(4.4) M
da

dt
D L�b; M

db

dt
D �LCa;

where M D diag.1; 2; : : : / is the diagonal matrix operator of positive integers.
Substituting a.t/ D eƒta and b.t/ D eƒtb into (4.4), we get the eigenvalue
problem

(4.5) L�a D ƒMb; LCb D �ƒMa:

We say that the stationary solution A is spectrally stable if all the eigenvalues ƒ
lie on the imaginary axis.
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5 Spectral Stability of the Single-Mode States
Here we compute L˙ and eigenvalues of the spectral stability problem (4.5) for

the single-mode states (1.13). Because of the scaling transformation (1.4), we set
c D 1 and hence � D 1. In this case, the self-adjoint operators L˙ W D.L˙/! `2

are given explicitly by

.L˙a/n D Œ2min.n;N /C 1 � n�an
˙ Œmin.n;N; 2N � n/C 1�a2N�n; n 2 N;

(5.1)

from which it is clear that D.L˙/ D h1.
We prove the following characterization of eigenvalues of L˙, from which we

obtain the spectral stability of the single-mode states (1.13).

LEMMA 5.1. The single-mode state (1.13) with N 2 N is a degenerate saddle
point of K with 2N C 1 positive eigenvalues (counted with multiplicities), the
zero eigenvalue of multiplicity 2N C 3, and infinitely many negative eigenvalues
bounded away from zero.

PROOF. The operators L˙ in (5.1) consist of a .2N C 1/ � .2N C 1/ block
denoted by zL˙ and a diagonal block with entries f2N C 1 � ngn�2NC1. The
latter diagonal block has one zero eigenvalue and all other eigenvalues are strictly
negative. The former block can be written in the form

zLC D

24L11 0 L12
0 2.N C 1/ 0

LT12 0 L22

35; zL� D

24 L11 0 �L12
0 0 0

�LT12 0 L22

35;
where

L11 D diag.1; 2; : : : ; N /;

L12 D antidiag.1; 2; : : : ; N /;

L22 D diag.N;N � 1; : : : ; 1/:

Since the eigenvalue problem for zL˙ decouples into N pairs and one equation, we
can compute the eigenvalues of zL˙. The block zLC hasN C1 positive eigenvalues
and the zero eigenvalue of multiplicity N . The block zL� has N positive eigen-
values and the zero eigenvalue of multiplicity N C 1. The assertion of the lemma
follows by combining the count of all eigenvalues. �

LEMMA 5.2. The single-mode state (1.13) with N 2 NC module to the gauge
symmetry (1.5) is a degenerate saddle point of H under fixed Q with 2N positive
eigenvalues (countedwithmultiplicities), the zero eigenvalue of multiplicity 2NC2,
and infinitely many negative eigenvalues bounded away from zero. The single-
mode state (1.13) with N D 0 module to the gauge symmetry (1.5) is a degenerate
maximizer of H under fixed Q with a double zero eigenvalue.
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PROOF. The count of eigenvalues in Lemma 5.1 is modified by two constraints
as follows. One positive eigenvalue corresponds to the central entry 2.N C 1/

in zLC. This positive eigenvalue is removed by the constraint of fixed Q.˛/ in the
variational formulation (1.12). Indeed, if ˛ D AC a C ib and Q.˛/ is fixed, we
impose the linear constraint on the real perturbation a in the form

(5.2) hMA; ai D

1X
jD0

.j C 1/Ajaj D 0;

which yields the constraint aN D 0 for the single-mode state (1.13). This con-
straint removes the corresponding positive entry of zLC.

Similarly, the zero eigenvalue from the central zero entry in zL� corresponds to
the gauge symmetry (1.5). In order to define uniquely the parameter � due to the
gauge symmetry (1.5), we impose the linear constraint on the perturbation b in the
form

(5.3) hA; bi D

1X
jD0

Aj bj D 0;

which yields the constraint bN D 0 for the single-mode state (1.13). This con-
straint removes the corresponding zero entry of zL�. �

LEMMA 5.3. All single-mode states (1.13) are spectrally stable.

PROOF. Due to the block diagonalization of L˙, one can solve the spectral
stability problem (4.5) explicitly. Associated to the diagonal blocks of L˙, we
obtain an infinite sequence of eigenvalues ƒn D ˙i�n, where

(5.4) �n D
n � 2N � 1

nC 1
; n � 2N C 1:

Note that �2NC1 D 0 corresponds to the zero eigenvalue of L˙ associated with
this entry, whereas�n > 0 for n � 2NC2 corresponds to the negative eigenvalues
of L˙ in the corresponding entries.

For the .2N C1/� .2N C1/ block of L˙ denoted by zL˙, we obtain a sequence
of N eigenvalues ƒn D ˙i�n, where

(5.5) �n D
2.N � n/

2N C 1 � n
; 0 � n � N � 1:

These eigenvalues correspond to the positive eigenvalues of L˙. In addition, we
count the zero eigenvalue � D 0 of geometric multiplicity 2N C 1 and algebraic
multiplicity 2N C 2 in the spectral problem (4.5) associated with the same block
zL˙. No other eigenvalues exist; hence for every N 2 N the single-mode state
(1.13) is spectrally stable. �

Remark 5.4. All eigenvalues of the spectral problem (4.5) for the single-mode state
(1.13) with any N 2 N are semisimple except for the double zero eigenvalue
related to the gauge symmetry (1.5).
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6 Spectral Stability of the Ground State
In the case of the ground state (1.16), the self-adjoint operators L˙ W D.L˙/!

`2 defined by (4.2) take the following form

ŒL˙.p/a�n D

1X
jD0

ŒB˙.p/�njaj � .nC 1/an;(6.1)

where

ŒB˙.p/�nj D .1 � p
2/2

"
2

1X
kDmax.0;j�n/

Snjk;nCk�jp
nC2k�j

˙

nCjX
kD0

Snjk;nCj�kp
nCj

#
D 2pjn�j j � 2p2CnCj ˙ .1 � p2/2.j C 1/.nC 1/pnCj :

(6.2)

To derive this expression we have used relations (B.4)–(B.6) from Appendix B.
Note that the first term inB˙.p/ is given by the Toeplitz operator, while the second
and third terms in B˙.p/ are given by outer products.

First, we establish commutativity of the linear operators given by (6.1)–(6.2).

LEMMA 6.1. For every p 2 Œ0; 1/, we have

(6.3) ŒLC.p/; L�.p/� D 0

and

(6.4) ŒM�1LC.p/;M
�1L�.p/� D 0:

PROOF. In order to verify the commutation relation (6.3), we use (6.1)–(6.2)
and write

ŒLC.p/L�.p/ � L�.p/LC.p/�nj D 2.1 � p
2/2Cnj ;(6.5)

where

Cnj D

1X
kD0

.1C k/.1C n/pnCk
�
2pjk�j j � 2pkCjC2 � .k C 1/ıkj

�
� .1C k/.1C j /pkCj

�
2pjk�nj � 2pkCnC2 � .k C 1/ıkn

�
:

To show that Cnj D 0, we proceed for j � n (the proof for j � n is analogous):

Cnj D 2

1X
kD0

.1C k/.1C n/pnCkCjk�j j � 2

1X
kD0

.1C k/.1C j /pjCkCjk�nj

C 2

1X
kD0

.1C k/.j � n/pnCjC2kC2 C .1C n/.1C j /.n � j /pnCj



GROUND STATE OF THE CONFORMAL FLOW 1135

such that

Cnj D 2

jX
kD0

.1C k/.1C n/pnCj C 2

1X
kDjC1

.1C k/.1C n/pnC2k�j

� 2

1X
kD0

.1C k/.1C j /pnCj � 2

1X
kDnC1

.1C k/.1C j /pjC2k�n

C 2

1X
kD0

.1C k/.j � n/pnCjC2kC2 C .1C n/.1C j /.n � j /pnCj :

This yields Cnj D 0 in view of identities (B.1)–(B.3) from Appendix B.
In order to verify the commutation relation (6.4), we use (6.1)–(6.2) and write�

LC.p/M
�1L�.p/ � L�.p/M

�1LC.p/
�
nj
D 2.1 � p2/2Dnj ;(6.6)

where

Dnj D

1X
kD0

.1C n/pnCk
�
2pjk�j j � 2pkCjC2 � .k C 1/ıkj

�
� .1C j /pkCj

�
2pjk�nj � 2pkCnC2 � .k C 1/ıkn

�
:

As previously, we proceed for j � n (the proof for j � n is analogous):

Dnj D 2

1X
kD0

.1C n/pnCkCjk�j j � 2

1X
kD0

.1C j /pjCkCjk�nj

C 2

1X
kD0

.j � n/pnCjC2kC2

D 2

1X
kDjC1

.1C n/pnC2k�j � 2

1X
kDnC1

.1C j /pjC2k�n

C 2

1X
kD0

.j � n/pnCjC2kC2:

This yields Dnj D 0 in view of the identity (B.1) from Appendix B. �

Because of the commutation relation (6.3), the operators L˙.p/ have a com-
mon basis of eigenvectors. The following lemma fully characterizes the spectra of
L˙.p/ in `2.

LEMMA 6.2. For every p 2 Œ0; 1/, the spectra of the operators L˙.p/ W h1 �
`2 ! `2 given by (6.1) consist of the following isolated eigenvalues:

(6.7) �.L�/ D f : : : ;�3;�2;�1; 0; 0g;
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and

(6.8) �.LC/ D f : : : ;�3;�2;�1; 0; ��.p/g;

where ��.p/ D 2.1C p2/=.1 � p2/ > 0.

PROOF. For every p 2 Œ0; 1/ we have A.p/ 2 hm for every m 2 N. Hence
B˙.p/ are bounded operators from `2 to `2, whereas the diagonal parts of L˙.p/
are unbounded operators from `2 to `2 with the domain h1. Since the diagonal parts
of L˙.p/ (of the Hilbert-Schmidt type) have compact resolvent and the B˙.p/
operators are bounded perturbations to the diagonal parts, the operators L˙.p/
have compact resolvent. Hence, the spectra of L˙.p/ consist of infinitely many
isolated eigenvalues.

By the symmetries (1.5) and (1.6), we have

(6.9) L�.p/A.p/ D 0; L�.p/MA.p/ D 0;

where M D diag.1; 2; : : : /. On the other hand, by differentiating (1.16) with
respect to p, we obtain

(6.10) LCA
0.p/ D 0 where A0.p/ D �

.1C p2/

p.1 � p2/
A.p/C

1

p
MA.p/:

By differentiating the scaling symmetry (1.4) with respect to c at c D 1, we get the
explicit solution a D A.p/, b D �2tA.p/ of the linear equation (4.4), hence

(6.11) LC.p/A.p/ D 2MA.p/:

Combined with (6.10), this yields

(6.12) LC.p/MA.p/ D
1C p2

1 � p2
LC.p/A.p/ D

2.1C p2/

1 � p2
MA.p/;

which gives the positive eigenvalue ��.p/ in (6.8).
It remains to prove that the rest of the spectrum of L˙.p/ coincides with the set

of negative integers. Since the same two-dimensional subspace

X0.p/ D spanfA.p/;MA.p/g

is associated with the double zero eigenvalue of operator L�.p/ and with the two
simple nonnegative eigenvalues of operator LC.p/, we introduce the orthogonal
complement

(6.13) ŒX0.p/�
?
WD fa 2 `2W hA.p/; ai D hMA.p/; ai D 0g:

Eigenvectors for negative eigenvalues of L˙.p/ belong to ŒX0.p/�?. Due to the
second orthogonality condition in (6.13), we compute

ŒB˙.p/a�n D
X
j2N

�
2pjn�j j � 2p2CnCj

˙ .1 � p2/2.j C 1/.nC 1/pnCj
�
aj D 2ŒT .p/a�n;

(6.14)
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where ŒT .p/�nj WD pjn�j j � pnCjC2. Hence, the negative eigenvalues of L˙.p/
are identical to the negative eigenvalues of 2T .p/�M , and hence they are identical
to each other.

In order to prove that the negative eigenvalues of 2T .p/ �M are negative inte-
gers, let us define the shift operator S W `2 ! `2 by

S W .a0; a1; a2; : : : / 7! .0; a0; a1; a2; : : : /;

and its left inverse operator S�W `2 ! `2 by

S�W .a0; a1; a2; : : : / 7! .a1; a2; a3; : : : /:

Let us show that for every a 2 ŒX0.p/�?,

(6.15) Œ2T .p/ �M;S�a D �Sa; Œ2T .p/ �M;S��a D S�a:

Indeed, the first identity in (6.15) is verified if the following two expressions are
equal to each other:

Œ.2T .p/ �M/Sa�n D 2

1X
jD1

.pjn�j j � p2CnCj /aj�1 � .nC 1/an�1

D 2

1X
kD0

.pjn�1�kj � p3CnCk/ak � .nC 1/an�1

and

ŒS.2T .p/ �M � I /a�n D Œ.2T .p/ �M � I /a�n�1

D 2

1X
kD0

.pjn�1�kj � p1CnCk/ak � .nC 1/an�1:

Since
P1
kD0 p

kak D 0 thanks to the first orthogonality condition in (6.13), the
two expressions are equal to each other so that the first identity in (6.15) is verified.
Now, the second identity in (6.15) is verified if the following two expressions are
equal to each other:

Œ.2T .p/ �M/S�a�n D 2

1X
jD0

.pjn�j j � p2CnCj /ajC1 � .nC 1/anC1

D 2

1X
kD1

.pjnC1�kj � p1CnCk/ak � .nC 1/anC1

D 2

1X
kD0

.pjnC1�kj � p1CnCk/ak � .nC 1/anC1
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and

ŒS�.2T .p/ �M C I /a�n D Œ.2T .p/ �M C I /a�nC1

D 2

1X
kD0

.pjnC1�kj � p3CnCk/ak � .nC 1/anC1:

The two expressions are equal to each other again thanks to the first orthogonality
condition in (6.13), so that the second identity in (6.15) is verified.

The two identities in (6.15) imply that the operators S and S� play the role of
creation and annihilation operators for elements of ŒX0.p/�?. In particular, they
generate the (same) set of eigenvectors of L˙.p/ for the (same) eigenvalues of
L˙.p/. More precisely, the second equation in (6.15) shows that the negative
eigenvalues of 2T .p/ �M are located at negative integers, �m D �m, m 2 NC,
whereas the corresponding eigenvectors v.m/, defined by

L˙.p/v
.m/
D .2T .p/ �M/v.m/ D �mv

.m/; m 2 NC;

are related by
S�v.m/.p/ D v.m�1/.p/; m � 2;

and
S�v.1/.p/ 2 ker.2T .p/ �M/ D ker.LC.p// D spanfA0.p/g:

The first equation in (6.15) gives the relation

v.mC1/.p/ D Sv.m/.p/; m � 1;

which can be used to generate all eigenvectors from v.1/.p/. Using summation
formulae (B.7)–(B.8) from Appendix B, we have verified that the first eigenvector
is given by

(6.16) Œv.1/.p/�n D

(
p2 if n D 0;
.1 � p2/Œ�.1C p2/C n.1 � p2/�pn�2 if n 2 NC;

so that S�v.1/.p/ D .1 � p2/A0.p/ 2 ker.LC.p// D ker.2T .p/ �M/. �

Because of the commutation relation (6.4), the operators M�1L˙.p/ also have
a common basis of eigenvectors, which coincide with eigenvectors of the spectral
problem (4.5) for nonzero eigenvaluesƒ. The following lemma fully characterizes
eigenvalues of the spectral problem (4.5) in `2.

LEMMA 6.3. Eigenvalues of the spectral problem (4.5) are purely imaginaryƒm D
˙i�m, where

(6.17) �0 D �1 D 0; �m D
m � 1

mC 1
; m � 2;

independently of p 2 .0; 1/.
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PROOF. The spectral problem (4.5) can be written in the matrix form

(6.18) L.p/Ea D ƒMEa;
where

L.p/ D
�

0 L�.p/

�LC.p/ 0

�
; M D

�
M 0

0 M

�
; Ea D

�
a
b

�
:

The geometric kernel of L.p/ is three-dimensional and spanned by the three lin-
early independent eigenvectors

(6.19)
�
0

A.p/

�
;

�
0

MA.p/

�
;

�
A0.p/

0

�
;

according to (6.9) and (6.10). The generalized kernel of M�1L.p/ is obtained
from solutions of the inhomogeneous equation

(6.20) L.p/Ea1 DMEa0;
where Ea0 2 ker.L.p//. We have

(6.21) hMA0.p/; A.p/i D 0; hMA0.p/;MA.p/i ¤ 0;

thanks to equations (6.11), (6.12), and the explicit computation

hMA0.p/;MA.p/i D

1X
nD0

.nC 1/2p2nŒn.1 � p2/ � 2p2�

D
2p2

.1 � p2/3
> 0:

(6.22)

Therefore, the Jordan blocks are simple for the second and third eigenvectors in
(6.19) and at least double for the first eigenvector in (6.19). Indeed, the follow-
ing generalized eigenvector Ea1 follows from (6.11) and satisfies (6.20) with the
eigenvector Ea0, where

(6.23) Ea1 D �
1

2

�
A.p/

0

�
; Ea0 D

�
0

A.p/

�
:

The corresponding Jordan block is exactly double because MA.p/ is not orthogo-
nal to ker.L�.p//. Hence the zero eigenvalue has multiplicity 4 with three eigen-
vectors in (6.19) and one generalized eigenvector in (6.23).

It remains to study the nonzero eigenvalues of the spectral problem (4.5). To
do so, we study negative eigenvalues of the commuting operators M�1L˙.p/.
Due to the presence of the operators M , we introduce a different complement of
the two-dimensional subspace X0.p/ D spanfA.p/;MA.p/g compared to (6.13).
Namely, we define

(6.24) ŒXc.p/�
?
WD fa 2 `2W hMA.p/; ai D hM 2A.p/; ai D 0g:

Eigenvectors for negative eigenvalues of M�1L˙.p/ belong to ŒXc.p/�?. Due
to the first orthogonality condition in (6.24), we have B˙.p/a D 2T .p/a as in
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(6.14). Hence, the negative eigenvalues ofM�1L˙.p/ are identical to the negative
eigenvalues of 2M�1T .p/ � I , and hence they are identical to each other. The
spectral problem L˙v D �Mv for � < 0 can be rewritten in the equivalent form

(6.25) T .p/v D �Mv; � WD
1C �

2
:

Let us prove that the spectral problem (6.25) admit a countable set of eigenvalues

(6.26) �m D
1

mC 1
; m 2 N;

with the corresponding eigenvectors given by

(6.27) v.m/ DMmA.p/ �

m�1X
jD0

˛
.m/
j .p/M jA.p/;

where the coefficients f˛.m/j .p/gm�1jD0 are uniquely found from orthogonality con-
ditions

hM jA.p/; v.m/i D 0; 1 � j � m:

Consequently, v.m/ 2 ŒXc.p/�? for every m � 2. Indeed, we have the first few
eigenvalues and eigenvectors explicitly:

�0 D 1W v
.0/
D A.p/;

�1 D
1

2
W v.1/ DMA.p/ �

1C p2

1 � p2
A.p/;

�2 D
1

3
W v.2/ DM 2A.p/C 3

1C p2

1 � p2
MA.p/ � 2

1C p2 C p4

.1 � p2/2
A.p/;

where we recognize the same eigenvectors A.p/ and A0.p/ for the first two (posi-
tive and zero) eigenvalues of M�1L˙.p/. In order to prove (6.26) and (6.27) for
every m 2 N, we represent

(6.28)

ŒT .p/MmA.p/�n

D .1 � p2/
hX
j2N

.1C j /mpjn�j jpj �
X
j2N

.1C j /mp2CnC2j
i

D

� nX
jD0

.1C j /m C

1X
jDnC1

.1C j /mp2.j�n/ �

1X
jD0

.1C j /mp2C2j
�
An.p/

D

�nC1X
kD1

km C p2
1X
kD0

Œ.1C k C 1C n/m � .1C k/m�p2k
�
An.p/:

The first sum in (6.28) is computed explicitly as
nC1X
kD1

km D
.nC 1/mC1

mC 1
C
1

2
.nC 1/m C

Œm=2�X
jD1

B2j

2j

�
m

2j � 1

�
.nC 1/mC1�2j ;
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where B2j are Bernoulli numbers and the last term is either .nC 1/ or .nC 1/2.
The last sum in (6.28) is expanded in the binomial formula with the highest term
.nC 1/m and the lowest term .nC 1/. As a result, the right-hand side of (6.28) is
written in positive powers of .nC 1/, namely,

T .p/MmA.p/ D

mC1X
jD1

ˇ
.m/
j .p/M jA.p/;(6.29)

where fˇ.m/j .p/gmC1jD1 are uniquely defined and ˇ.m/mC1.p/ D
1

mC1
. The balance

of the highest term .n C 1/mC1 yields the eigenvalue �m D 1
mC1

of the spectral
problem (6.25). Now, adding a linear combination of m terms fM jA.p/gm�1jD0 to
MmA.p/ as in (6.27) and using expressions (6.29) recursively from j D m� 1 to
j D 0, we obtain a linear system ofm equations form coefficients f˛.m/j .p/gm�1jD0 .
The linear system is associated with a triangular matrix with nonzero diagonal co-
efficients; hence, it admits a unique solution for f˛.m/j .p/gm�1jD0 . Hence, the validity
of (6.26) and (6.27) is proven.

Thanks to the relation between � and � in (6.25), we have shown that the nega-
tive eigenvalues of M�1L˙.p/ are given by

(6.30) �m D 2�m � 1 D �
m � 1

mC 1
; m � 2:

The common set of eigenvectors of M�1LC.p/ and M�1L�.p/ for negative
eigenvalues � coincides with the set of eigenvectors of the spectral problem (4.5)
for nonzero eigenvalues ƒ. Thus, the nonzero eigenvalues of the spectral problem
(4.5) are given by ƒ2m D ��

2
m, which yields the explicit expression (6.17) thanks

to (6.30). �

Remark 6.4. All eigenvalues of the spectral problem (4.5) for the ground state
(1.16) are simple except for the zero eigenvalue, which has geometric multiplicity 4
and algebraic multiplicity 3. The p-independent eigenvalues (6.17) coincide with
the eigenvalues (5.4) with N D 0, since the N D 0 single-mode state (1.13) is the
limit of the ground state (1.16) as p ! 0.

7 Orbital Stability of the N D 0 Single-Mode State
Here we prove Theorem 1.3, which states the orbital stability of the N D 0

single-mode state (1.13) with the normalization c D 1 or � D 1. Since this is the
limit p ! 0 of the ground state (1.16), we will use the expression An.0/ D ın0 as
in (1.21). In order to prove Theorem 1.3, we decompose a solution of the conformal
flow (1.1) into a sum of the two-parameter orbit of the ground state generated by
the symmetries (1.4) and (1.5), as well as the symplectically orthogonal remainder
term. The following lemma provides a basis for such a decomposition.
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LEMMA 7.1. There exists ı0 > 0 such that for every ˛ 2 `2 satisfying

(7.1) ı WD inf
�2S
k˛ � ei�A.0/k`2 � ı0;

there exists a unique choice of real-valued numbers .c; �/ and real-valued se-
quences a; b 2 `2 in the orthogonal decomposition

(7.2) ˛n D e
i� .cAn.0/C an C ibn/;

subject to the orthogonality conditions

(7.3) hMA.0/; ai D hMA.0/; bi D 0;

satisfying the estimate

(7.4) jc � 1j C kaC ibk`2 . ı:

PROOF. The proof is based on the inverse function theorem applied to the vector
function F.c; � I˛/ W R2 � `2 7! R2 given by

F.c; � I˛/ WD

�
hMA.0/;Re.e�i�˛ � cA.0//i
hMA.0/; Im.e�i�˛ � cA.0//i

�
:

The Jacobian matrix DF at A.0/ is diagonal and invertible

DF.1; 0IA.0// D �

�
hMA.0/; A.0/i 0

0 hMA.0/; A.0/i

�
:

For sufficiently small ı > 0, there exists a unique root .c; �/ near .1; �0/ where �0
is an argument in the infimum (7.1), with the bound

jc � 1j C j� � �0j . ı:

This proves the bound for c in (7.4). By using the definition of .a; b/ in the decom-
position (7.2) and the triangle inequality for .c; �/ near .1; �0/, it is then straight-
forward to show that .a; b/ are uniquely defined and satisfy the second bound in
(7.4). �

By Lemma 7.1, any global solution ˛.t/ 2 h1 of the conformal flow system
(1.1) satisfying for a sufficiently small positive � and for every t ,

(7.5) inf
�2S
k˛.t/ � ei�A.0/k`2 � �

admits a unique decomposition in the form

(7.6) ˛n.t/ D e
i�.t/.c.t/An.0/C an.t/C ibn.t//;

where the remainder terms satisfy the symplectic orthogonality conditions

(7.7) hMA.0/; a.t/i D hMA.0/; b.t/i D 0:

Now we shall apply this decomposition to control the global solution starting from
a small perturbation of the N D 0 single-mode state.
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LEMMA 7.2. Assume that initial data ˛.0/ 2 h1 satisfy

(7.8) k˛.0/ � A.0/kh1 � ı

for some sufficiently small ı > 0. Then, the corresponding unique global solution
˛.t/ 2 C.R; h1/ of (1.1) can be represented by the decomposition (7.6)–(7.7)
satisfying for all t 2 R:

(7.9) jc.t/ � 1j . ı; ka.t/C ib.t/kh1 . ı1=2:

PROOF. Since An.0/ D ın0, the orthogonality conditions (7.7) yield a0 D
b0 D 0. Substituting the representation (7.6) into the conservation laws (1.7) and
(1.8), we obtain

Q.˛.0// D Q.˛.t// D c.t/2 C

1X
nD1

.nC 1/
�
a2n C b

2
n

�
;(7.10)

and

E.˛.0// D E.˛.t// D c.t/2 C

1X
nD1

.nC 1/2
�
a2n C b

2
n

�
:(7.11)

Thanks to (7.8) we have

(7.12) jQ.˛.0// � 1j . ı; jE.˛.0// � 1j . ı:

Subtracting (7.10) from (7.11) and using (7.12), we obtain
1X
nD1

n.nC 1/
�
a2n C b

2
n

�
. ı;

which yields the second bound in (7.9). Substituting this bound into (7.11) we
obtain the first bound in (7.9). By continuity of the solution ˛.t/ 2 C.R; h1/
of (1.1), the bound (7.5) is satisfied for every t 2 R if it is satisfied for t D 0.
Therefore, by Lemma 7.1, the decomposition (7.6)–(7.7) holds for every t and the
bounds (7.9) are continued for every t . �

Theorem 1.3 is the reinstatement of the result of Lemma 7.2 with � D O.ı1=2/
or, equivalently, ı D O.�2/.

Remark 7.3. Bounds in (7.9) can be improved for perturbations with ˛0.0/ D 1

since then c.0/ D 1, a0.0/ D b0.0/ D 0 in the decomposition (7.6). In this case,
ı is replaced by ı2 in (7.12); hence ı1=2 is replaced by ı in the bounds (7.9).

8 Orbital Stability of the Ground State
Here we prove Theorem 1.4. As the first step we establish some coercivity esti-

mates for the operators L˙.p/ defined in (6.1) and (6.2). Let us redefine ŒXc.p/�?

in (6.24) by using a different but equivalent choice of the two orthogonality condi-
tions:

(8.1) ŒXc.p/�
?
WD fa 2 `2.N/W hMA.p/; ai D hMA0.p/; ai D 0g:
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This is a symplectically orthogonal subspace to X0.p/ D spanfA.p/; A0.p/g, the
two-dimensional subspace associated with the positive and zero eigenvalues of
L˙.p/ (recall (6.10), which relates A0.p/ to A.p/ and MA.p/). Let us introduce
the symplectically orthogonal projection operator …c.p/W `2.N/ ! ŒXc.p/�

? �

`2.N/. The following lemma shows that the operators …c.p/L˙.p/…c.p/ are
negative and coercive on ŒXc.p/�? and that the coercivity constant is independent
of p 2 Œ0; 1/.

LEMMA 8.1. Given a 2 h1=2, for every p 2 Œ0; 1/ we have

(8.2) h…c.p/L˙.p/…c.p/a; ai . �kak2
h1=2 :

PROOF. Recall that LC.p/ has the simple positive eigenvalue ��.p/ with the
eigenvector MA.p/ and the simple zero eigenvalue with the eigenvector A0.p/,
whereas the remaining eigenvalues are negative. Using (6.11), we have

(8.3) hŒLC.p/�
�1MA.p/;MA.p/i D

1

2
hA.p/;MA.p/i > 0:

By theorem 4.1 in [10], this implies that the positive eigenvalue ofLC.p/ becomes
a strictly negative eigenvalue of LC.p/ WD …c.p/LC.p/…c.p/ under the first
constraint in (8.1). On the other hand, since

(8.4) hMA0.p/; A0.p/i > 0;

the zero eigenvalue of LC.p/ becomes a strictly negative eigenvalue of LC.p/
under the second constraint in (8.1). Thus, LC.p/ is strictly negative with the
spectral gap (the distance between the negative spectrum of LC.p/ and zero). The
coercivity bound (8.2) for LC.p/ follows from standard spectral theorem and the
Gårding inequality since the quadratic form for LC.p/ is bounded in h1=2.N/.

The operator L�.p/ has a double zero eigenvalue and the remaining eigenval-
ues are negative. The eigenvectors for the double zero eigenvalue coincide with
MA.p/ andA0.p/, thanks to (6.10), which relatesA0.p/ toA.p/ andMA.p/. The
same argument as above yields the bound (8.2) for L�.p/ WD …c.p/L�.p/…c.p/.

�

In the second step we decompose a solution of the system (1.1) into a four-
parameter family of ground states generated by the scaling (1.4) and gauge sym-
metries (1.5) and (1.6), the parameter p 2 Œ0; 1/, as well as the symplectically
orthogonal remainder term. More precisely, we have:

LEMMA 8.2. For every p0 2 .0; 1/, there exists ı0 > 0 such that for every ˛ 2 `2

satisfying

(8.5) ı WD inf
�;�2S

k˛ � ei.�C�C��/A.p0/k`2 � ı0;

there exists a unique choice for real-valued numbers .c; p; �; �/ and real-valued
sequences a; b 2 `2 in the orthogonal decomposition

(8.6) ˛n D e
i.�C�C�n/.cAn.p/C an C ibn/;
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subject to the orthogonality conditions

(8.7) hMA.p/; ai D hMA0.p/; ai D hMA.p/; bi D hMA0.p/; bi D 0

satisfying the estimate

(8.8) jc � 1j C jp � p0j C kaC ibk`2 . ı:

PROOF. The proof is based on the inverse function theorem applied to the vector
function F.c; p; �; �I˛/ W R4 � `2 7! R4 given by

F.c; p; �; �I˛/ WD

2664
hMA.p/;Re.e�i.�C�Ci��/˛ � cA.p//i
hMA0.p/;Re.e�i.�Ci�Ci��/˛ � cA.p//i
hMA.p/; Im.e�i.�Ci�Ci��/˛ � cA.p//i
hMA0.p/; Im.e�i.�Ci�Ci��/˛ � cA.p//i

3775;
The Jacobian matrix DF at ˛ D A.p0/ is block diagonal

DF.1; p0; 0; 0IA.p0// D

�
D1 0

0 D2

�
;

where

D1 D �

�
hMA.p0/; A.p0/i 0

hMA0.p0/; A.p0/i hMA
0.p0/; A

0.p0/i

�
and

D2 D �

�
hMA.p0/; A.p0/i hMA.p0/;MA.p0/i

0 hMA0.p0/;MA.p0/i

�
:

Therefore, DF.1; p0; 0; 0IA.p0// is invertible with the O.1/ bound on the inverse
matrix for every p0 2 .0; 1/. Hence, for sufficiently small ı > 0, there exists a
unique root .c; p; �; �/ near .1; p0; �0; �0/, where .�0; �0/ are arguments in the
infimum (8.5), with the bound

jc � 1j C jp � p0j C j� � �0j C j� � �0j . ı:

Thus, the first two bounds in (8.8) are satisfied for c and p. By using the definition
of .a; b/ in the decomposition (8.6) and the triangle inequality for .c; p; �; �/ near
.1; p0; �0; �0/, it is then straightforward to show that .a; b/ are uniquely defined
and satisfies the last bound in (8.8). �

For any global solution ˛.t/ 2 C.R; h1/ of (1.1) that stays close to the ground
state orbit A.p0/ in `2, i.e.,

(8.9) inf
�;�2S

k˛.t/ � ei.�C�C��/A.p0/k`2 � �

for a sufficiently small positive �, Lemma 8.2 yields the unique decomposition in
the form

(8.10) ˛n.t/ D e
i.�.t/C.nC1/�.t//.c.t/An.p.t//C an.t/C ibn.t//;

where the remainder terms satisfy the symplectic orthogonality conditions

(8.11) hMA.p.t//; a.t/i D hMA0.p.t//; a.t/i D 0
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and

(8.12) hMA.p.t//; b.t/i D hMA0.p.t//; b.t/i D 0:

By the coercivity bounds in Lemma 8.1, we control c.t/, a.t/, and b.t/ as fol-
lows.

LEMMA 8.3. Assume that the initial data ˛.0/ 2 h1 satisfy

(8.13) k˛.0/ � A.p0/kh1 � ı

for some p0 2 Œ0; 1/ and a sufficiently small ı > 0. Then, the corresponding unique
global solution ˛.t/ 2 C.R; h1/ of (1.1) can be represented by the decomposition
(8.10) with (8.11) and (8.12) satisfying for all t :

(8.14) jc.t/ � 1j C ka.t/C ib.t/kh1=2 . ı:

PROOF. Let us define the function

�.c/ WD c2.Q.˛/ � 1/ �
1

2
.H.˛/ � 1/:

Evaluating this function for the decomposition (8.10) with (8.11) and (8.12), and
using the variational characterization of the ground state (1.12), we obtain

(8.15)

�.c.t// D c2.t/.Q.˛.t// � 1/ �
1

2
.H.˛.t// � 1/

D
1

2

�
c.t/2 � 1

�2
� c.t/2hLC.p/a.t/; a.t/i

� c.t/2hL�.p/b.t/; b.t/i CN.a.t/; b.t/; c.t//;

where the cubic and quartic terms in N satisfy the bound

(8.16) jN.a; b; c/j . jcjkaC ibk3
h1=2 C kaC ibk

4
h1=2 :

On the other hand, we have

(8.17) �.c.t// D �.1/C .c.t/2 � 1/.Q.˛.t// � 1/;

where, thanks to (8.13) and the conservation of Q.˛.t// and H.˛.t//, we have

(8.18) j�.1/j . ı2; jQ.˛.0// � 1j . ı:

Combining (8.15) with (8.17), using the bounds (8.16) and (8.18), as well as the
coercivity bounds (8.2) in Lemma 8.1, we obtain

.c.t/2 � 1/2 C ka.t/k2
h1=2 C kb.t/k

2
h1=2 . ı2;

which yields the proof of the bound (8.14). �

The bound (8.14) controls the drift of the parameter c.t/ and the perturbation
terms a.t/ and b.t/ in the h1=2-norm. The following lemma uses the conservation
of E.˛/ and Z.˛/ to control the drift of the parameter p.t/ and the perturbation
terms a.t/ and b.t/ in the h1-norm.
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LEMMA 8.4. Under the same assumption (8.13) for the initial data ˛.0/ as in
Lemma 8.3, the corresponding solution ˛.t/ 2 C.R; h1/ of (1.1) can be repre-
sented by the decomposition (8.10) with (8.11) and (8.12) satisfying for all t :

(8.19) jp.t/ � p0j . ı; ka.t/C ib.t/kh1 . ı1=2:

PROOF. Substituting the decomposition (8.10) into the expression for E.˛/ and
using the orthogonality conditions (8.11) and (8.12), we obtain

E.˛.t// D
1C p.t/2

1 � p.t/2
c.t/2 C hMa.t/;Ma.t/i C hMb.t/;Mb.t/i:(8.20)

Thanks to (8.13) and the conservation of E.˛.t//, we have E.˛.t// D E.˛.0//

with

(8.21)
ˇ̌̌̌
E.˛.0// �

1C p20

1 � p20

ˇ̌̌̌
. ı:

Combining (8.20) and (8.21) and using jc.t/ � 1j . ı from the bound (8.14), we
obtain

(8.22)
2.p.t/2 � p20/

.1 � p.t/2/.1 � p20/
C ka.t/C ib.t/k2

h1 . ı;

which eliminates the drift of p.t/ towards larger values thanks to the upper bound
p.t/ � p0 . ı.

In order to get the lower bound for the drift of p.t/, we substitute the decompo-
sition (8.10) into the expression for Z.˛/ and obtain

(8.23) Z.˛.t// D e�i�.t/

"
2p.t/

1 � p.t/2
c.t/2 C

1X
nD0

.nC 1/.nC 2/ x̌nC1.t/ˇn.t/

#
;

where the linear terms vanish thanks to the orthogonality conditions (8.11) and
(8.12) and we have denoted ˇ.t/ WD a.t/C ib.t/. Since

jZ.˛.t//j �
2p.t/

1 � p.t/2
c.t/2 C

1X
nD0

.nC 1/.nC 2/jˇnC1.t/jjˇn.t/j;

we obtain

E.˛.t// � jZ.˛.t//j �
1 � p.t/

1C p.t/
c.t/2 C

1X
nD0

.nC 1/2jˇn.t/j
2

�

1X
nD0

.nC 1/.nC 2/jˇnC1.t/jjˇn.t/j

D
1 � p.t/

1C p.t/
c.t/2 C

1

2
jˇ0.t/j

2

C
1

2

1X
nD0

Œ.nC 1/jˇn.t/j � .nC 2/jˇnC1.t/j�
2;
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which yields

E.˛.t// � jZ.˛.t//j �
1 � p.t/

1C p.t/
c.t/2:(8.24)

Thanks to (8.13) and the conservation of E.˛.t// and Z.˛.t//, we have

E.˛.t// � jZ.˛.t//j D E.˛.0// � jZ.˛.0//j(8.25)

with ˇ̌̌̌
E.˛.0// � jZ.˛.0//j �

1 � p0

1C p0

ˇ̌̌̌
. ı:(8.26)

Combining (8.24), (8.25), and (8.26) and using jc.t/ � 1j . ı from the bound
(8.14), we obtain

(8.27)
p0 � p.t/

.1C p.t//.1C p0/
. ı;

which eliminates the drift of p.t/ towards smaller values thanks to the lower bound
p0 � p.t/ . ı. Bounds (8.22) and (8.27) yield (8.19). �

Theorem 1.4 is a reinstatement of the results of Lemmas 8.3 and 8.4 with � D
O.ı1=2/ or, equivalently, ı D O.�2/.

Appendix A Conservation of Z.˛/
Here we prove that the quantity Z.˛/ in (1.20) is conserved by the flow (1.1).

Differentiating Z.˛/ with respect to time and using (1.1) yields

i
dZ

dt
D

X
nCjDkCl

.nC 2/Snjkl x̨nC1 x̨j˛k˛l

�

X
nCjC1DkCl

.nC 1/SnC1;jkl˛n j̨ x̨k x̨l ;

where the summation sign denotes triple summations with respect to .n; j; k/ with
the constraint on l . By shifting the index n to n � 1 in the first sum, relabeling
the indices (n $ k; j $ l) in the second sum, and employing the symmetries of
Snjkl , we rewrite the result as

i
dZ

dt
D

X
nCjDkClC1

�
.nC 1/Sn�1;jkl � .k C 1/Snj;kC1;l

�
x̨n x̨j˛k˛l ;

where we adopt the convention that Snjkl � 0 whenever any index is negative. It
is easy to verify with the explicit expression Snjkl D minfn; j; k; lg C 1 that the
symmetric part of the expression in the square bracket

Injkl D .nC 1/Sn�1;jkl C .j C 1/Sn;j�1;kl

� .k C 1/Snj;kC1;l � .l C 1/Snjk;lC1
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vanishes for every nC j D kC l C 1, hence dZ
dt
D 0. We remark that the identity

Injkl D 0 is a special case of a general identity that ensures the conservation of a
quantity analogous to Z for general cubic resonant flows [2].

Appendix B Some Useful Identities
Let us record identities for partial sums of geometric series:

nX
kD0

p2k D
1 � p2nC2

1 � p2
;(B.1)

nX
kD0

kp2k D
p2.1 � .nC 1/p2n C np2nC2/

.1 � p2/2
;(B.2)

nX
kD0

k2p2k D
p2
�
1C p2 � .nC 1/2p2n

�
.1 � p2/3

C
p2
�
.2n2 C 2n � 1/p2nC2 � n2p2nC4/

.1 � p2/3
:

(B.3)

In order to verify the expression (6.2), we have used the following computations:

j � nW

1X
kD0

Snjk;nCk�jp
nC2k�j

D

jX
kD0

.k C 1/pnC2k�j C

1X
kDjC1

.j C 1/pnC2k�j

D
1

.1 � p2/2
.pn�j � p2CjCn/;

(B.4)

j � nW

1X
kDj�n

Snjk;nCk�jp
nC2k�j

D

jX
kDj�n

.nC k � j C 1/pnC2k�j C

1X
kDjC1

.nC 1/pnC2k�j

D
1

.1 � p2/2
.pj�n � p2CjCn/;

(B.5)
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j � nW

nCjX
kD0

Snjk;nCj�k

D

nX
kD0

.k C 1/C

jX
kDnC1

.nC 1/C

jCnX
kDjC1

.nC j � k C 1/

D .1C j /.1C n/;

(B.6)

where the identities (B.1)–(B.3) have been used.
In order to verify the expression (6.16) for the eigenvector to the eigenvalue �1

of the operators L˙.p/, or equivalently, of the operator 2T .p/ � M , we write
explicitly�
.2T .p/ �M/v.1/

�
n
D p2

�
2pn � ın0

�
C .1 � p2/

1X
kD1

�
2pjn�kj � .nC 1/ınk

�
�
�
k.1 � p2/ � .1C p2/

�
pk�2:

By using the identities
1X
kD1

pkCjn�kj D
p2 C n.1 � p2/

.1 � p2/
pn;(B.7)

1X
kD1

kpkCjn�kj D
2p2 C n.1 � p4/C n2.1 � p2/2

2.1 � p2/2
pn;(B.8)

we have verified that L˙v.1/ D .2T .p/ �M/v.1/ D �v.1/.
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[3] Bizoń, P.; Craps, B.; Evnin, O.; Hunik, D.; Luyten, V.; Maliborski, M. Conformal flow on

S3 and weak field integrability in AdS4. Comm. Math. Phys. 353 (2017), no. 3, 1179–1199.
doi:10.1007/s00220-017-2896-8

[4] Faou, E.; Germain, P.; Hani, Z. The weakly nonlinear large-box limit of the 2D cubic nonlinear
Schrödinger equation. J. Amer. Math. Soc. 29 (2016), no. 4, 915–982. doi:10.1090/jams/845
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Institute of Physics
Jagiellonian University
Łojasiewicza 11, 30-348 Kraków
POLAND
E-mail: bizon@th.if.uj.edu.pl

DMITRY E. PELINOVSKY
Department of Mathematics
McMaster University
Hamilton, Ontario L8S 4K1
CANADA
E-mail: dmpeli@

math.mcmaster.ca

DOMINIKA HUNIK-KOSTYRA
Institute of Physics
Jagiellonian University
Łojasiewicza 11, 30-348 Kraków
POLAND
E-mail: dominika.hunik@

uj.edu.pl

Received June 2017.
Revised March 2018.

http://dx.doi.org/doi:10.1007/s00222-011-0342-7
http://dx.doi.org/doi:10.1090/S0002-9947-2014-06310-1
http://dx.doi.org/doi:10.1016/j.matpur.2015.10.002
http://dx.doi.org/doi:10.1002/cpa.21594
http://dx.doi.org/doi:10.1017/CBO9780511997754
mailto:bizon@th.if.uj.edu.pl
mailto:dmpeli@\math.mcmaster.ca
mailto:dominika.hunik@\uj.edu.pl

	1. Introduction
	2. Global Solutions to the Cauchy Problem
	3. Global Energy Bound
	4. Second Variation and the Spectral Stability
	5. Spectral Stability of the Single-Mode States
	6. Spectral Stability of the Ground State
	7. Orbital Stability of the N = 0 Single-Mode State
	8. Orbital Stability of the Ground State
	Appendix A. Conservation of Z()
	Appendix B. Some Useful Identities
	Bibliography

