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1. History of the Dirac equation

The Dirac equation was written down by Paul Dirac in December 1927 as the
relativistically invariant equation for electrons. Its discovery was preceeded by the
following developments in quantum physics.

In 1923, following discussions of Max Planck’s and Albert Einstein’s research
on wave-particle duality in the context of photons, Louis de Broglie formulated an
idea that the electrons could be described as waves. Attracted by this idea, Erwin
Schrödinger wrote down in 1925 a relativistically invariant equation for the wave
function of the electron, which is now known as the Klein–Gordon equation,

(1)
∂2ψ

∂t2
+m2c4ψ − c2∇2ψ = 0,

where ψ(t, x) : R× R
3 �→ C, m is electron’s mass, and c is the speed of light.

The electron energy levels (which were known from experiments) were recovered
from the new equation; however, the relativistic corrections to the energy levels
of the hydrogen atom were inconsistent with the experimental measurements. As
a result, Schrödinger shelved his relativistic equation and retreated to the non-
relativistic limit, where he derived what is now known as the Schrödinger equation:

(2) i
∂ψ

∂t
+

1

2m
∇2ψ = 0.

The main reason why an electron’s wave function cannot be described by the
Klein–Gordon equation (1) is that under spatial rotations, an electron’s wave func-
tion transforms according to the four-dimensional spinorial representation of SO(3),
whereas the Klein–Gordon equation is written for the scalar wave function. The
relativistically invariant equation of Paul Dirac was intended to cure this problem.
In particular, it yielded an accurate explanation of the relativistic corrections to the
energy levels of the hydrogen atom. It also allowed Dirac to predict the existence
of the positron a year before it was triumphally discovered by Carl Anderson in
1932.

As was noted by Viktor Weisskopf and widely cited since then, “a great deal
more was hidden in the Dirac equation than the author had expected when he
wrote it down. Dirac himself remarked in one of his talks that his equation was
more intelligent than its author.”

2. Background on stability of solitary waves

Since the time of developments in quantum mechanics, nonlinear versions of
the Klein–Gordon, Schrödinger, and Dirac equations have been proposed in many
modeling problems, e.g., in atomic physics, nonlinear optics, molecular dynamics,
and general relativity. Supported by the balance between nonlinear and linear
terms, solitary waves appear to be spatially localized solutions which either travel
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or oscillate in time. If such solutions are stable with respect to the time evolution,
they are important in practical applications of such models.

For the nonlinear Schrödinger (NLS) equation of the form

(3) i∂tψ +∇2ψ + |ψ|2κψ = 0,

where ψ(t, x) : R × R
n �→ C and κ > 0, solitary waves are solutions of the form

ψ(t, x) = φω(x)e
iωt, where ω > 0 is a free parameter and φ(x) → 0 as |x| → ∞.

Their stability is defined by using the concept of orbital stability, which is needed to
eliminate transformations of solitary waves along symmetries of the NLS equation.

Definition 1. The solitary wave ψ(t, x) = φω(x)e
iωt of the NLS equation (3) is

called orbitally stable in the Banach space X with the norm ‖ ·‖X if for every ε > 0
there is δ > 0 such that for every initial data ψ0 ∈ X such that ‖ψ0−φ‖X < δ, there
exists a unique global solution ψ ∈ C(R, X) to the NLS equation (3) satisfying the
bound

inf
θ∈R,ξ∈Rn

‖ψ(t, ·)− eiθφω(x− ξ)‖X < ε, t ∈ R.

It was realized in the 1980s that the orbital stability can be proven by exploring
the Hamiltonian formulation of the NLS equation (3) in the energy space, e.g.,
in X = H1(Rn). Moreover, the proof of the orbital stability is developed based
on the spectral information about linearization of the NLS equation (3) at the
solitary wave ψ(t, x) = φω(x)e

iωx. In the case of real-valued φω, this linearization
is achieved by using the decomposition

ψ(t, x) = eiωt [φω(x) + u(t, x) + iv(t, x)] ,

where u and v are real. The linearized equations of motion are

(4) ut = L−v, vt = −L+u,

where

L− = −∇2 + ω − φ2κ
ω ,

L+ = −∇2 + ω − (2κ+ 1)φ2κ
ω .

The self-adjoint operators L± : H2(Rn) ⊂ L2(Rn) �→ L2(Rn) are bounded from
below. Since ω > 0 and φω(x) → 0 exponentially as |x| → ∞, the absolutely
continuous spectrum of L± is strictly positive and is bounded from below by ω
(by Weyl’s theorem on the essential spectrum). Hence, there exist finitely many
negative eigenvalues of finite multiplicity, the total number of which is denoted by
n(L±), and a zero eigenvalue of finite multiplicty, denoted by z(L±). The zero
eigenvalue exists due to U(1)-invariance and translational symmetries of the NLS
equation (3).

Related to the linearized system (4), one can define a weaker stability concept
for the solitary waves of the NLS equation (3).

Definition 2. The solitary wave ψ(t, x) = φω(x)e
iωt of the NLS equation (3) is

called spectrally stable if λ ∈ iR for every solution (u, v) ∈ H2(Rn) of the non-self-
adjoint spectral problem

(5) L−v = λu, −L+u = λv.

The following theorem was proven by M. Grillakis, J. Shatah, and W. Strauss in
1987 [3] as a generalization of the earlier studies of J. Shatah and W. Strauss [8],
and M. Weinstein [10]. As it happens often, the same result was actually proven as
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early as 1973 in the works of N. G. Vakhitov and A. A. Kolokolov [9] and has been
widely cited in physics literature as the Vakhitov–Kolokolov stability criterion.

Theorem 1 (Weinstein, 1986; Grillakis, Shatah, and Strauss, 1987). The solitary
wave ψ(t, x) = φω(x)e

iωt of the NLS equation (3) is orbitally stable in the sense
of Definition 1 if n(L+) = 1, n(L−) = 0, z(L+) = n, z(L−) = 1, and the map
ω �→ ‖φω‖2L2 is monotonically increasing.

If the spectral information on n(L±) and z(L±) does not allow us to prove
the orbital stability theorem, one can often retreat to analysis of spectral stability
of solitary waves, from which further analysis can be developed to understand
nonlinear dynamics of perturbations to the solitary waves. The spectral stability
results appeared in the papers of M. Grillakis [2] and C. Jones [4], but a complete
development on the subject was only done 15 years later in the works of T. Kapitula,
P. Kevrekidis, and B. Sandstede [5] and in the works of the author of this review
[7] (see also [1, 6] for generalizations).

Theorem 2 (Kapitula, Kevrekidis, and Sandstede, 2004; Pelinovsky, 2005). The
solitary wave ψ(t, x) = φω(x)e

iωt of the NLS equation (3) is spectrally stable in the
sense of Definition 2 if n(L+) = n(L−) + 1, z(L+) = n, z(L−) = 1, the map ω �→
‖φω‖2L2 is monotonically increasing, and there exist n(L−) pairs of purely imaginary
eigenvalues of the spectral problem (5) counting their algebraic multiplicities with
the eigenvectors (u, v) ∈ H2(R) satisfying 〈L+u, u〉+ 〈L−v, v〉 < 0.

Given the success in analysis of orbital and spectral stability of solitary waves
in the NLS equation in Theorems 1 and 2, one can wonder if the same problem
can be easily solved in the nonlinear generalization of the relativistically invariant
Dirac equation. The answer to this question is known to be negative, because the
linearized operators for the nonlinear Dirac equations are unbounded both from
above and from below so that indices n(L±) are not defined. This property is
related to sign-indefiniteness of the energy of the Dirac equations. This is why each
result on stability of solitary waves in the nonlinear Dirac equations is so valuable.
The monograph under review covers some results obtained after the ten-year work
of its two authors (and several other researchers) on the subject.

3. The monograph

As the title suggests, this monograph is devoted to the spectral stability of soli-
tary waves in the nonlinear Dirac equations. In some sense, the entire monograph
of 297 pages is devoted to just one nonlinear partial differential equation written in
the form

i∂tψ = Dmψ − f(ψ∗βψ)βψ,

where ψ(t, x) : R×Rn �→ CN and the Dirac operator Dm with mass m > 0 is given
by

Dm = −iα · ∇+ βm : L2(Rn,CN ) �→ L2(Rn,CN ),

with αi, 1 ≤ i ≤ n, and β being the Dirac matrices. The nonlinearity f is repre-
sented by f ∈ C1(R\{0})∩C(R) satisfying f(z) = |z|κ +O(|z|K) with 0 < κ < K.

The main result of this monograph is the proof of spectral stability of solitary
waves in the weakly relativistic limit for weakly subcritical and critical nonlinearities
κ � 2/n and κ = 2/n, where the criticality is defined for the limiting nonlinear
Schrödinger equation (3).
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In particular, the spectral stability of solitary waves is proven for the quintic
nonlinear Dirac equations in one spatial dimension with n = 1 and κ = 2. Note
that the nonlinear Schrödinger equation (3) is L2-critical for κ = 2/n and that its
solitary waves are unstable in H1 norm in the L2-critical case.

Solitary waves of the nonlinear Dirac equation enjoy better stability properties
than their nonrelativistic counterparts in the nonlinear Schrödinger equation. This
is rather surprising because the kinetic energy of the Dirac equation is sign-indefinite
which could potentially lead to developing instabilities. Even more surprisingly, the
nonlinear Dirac equation does not seem to have blow-up instability, which makes
it particularly attractive from the modeling point of view. This stability of solitary
waves in the nonlinear Dirac equation does not have a consistent explanation yet,
being hidden under the wealth of features such as its internal symmetries. Further
interpretations of these facts are expected to be achieved in the future from both
physical and mathematical viewpoints.

As the authors admit on the first page, their argument only applies for subcritical
values of κ ∈ (0, 2/n) sufficiently close to 2/n since the point spectrum of the
limiting nonlinear Schrödinger equation linearized at the solitary wave becomes
rich for small κ.

The main result described above is based on the authors’ research published in
the sequence of papers:

• J. Funct. Anal. 271 (2016), 1462–1524;
• SIAM J. Math. Anal. 49 (2017), 2527–2572;
• Commun. Pure Appl. Anal. 17 (2018), 1331–1347;
• J. Funct. Anal. 277 (2019), 108289.

The proof of the main result requires many specialized analytical tools to be
mastered, such as the limiting absorption principle and the Carleman–Berthier–
Georgescu estimates. The authors describe all these technical tools in great detail
before they focus on the particular studies of the nonlinear Dirac equations; this is
why the proof of the main result has been expanded as the full-scale monograph.

The overview of specialized analytical tools follows a remarkable introduction to
functional-analytic methods for partial differential equations, comprehensive and
self-contained spectral theory for non-self-adjoint linear operators, where, in par-
ticular, Weyl’s theorem on the essential spectrum is proven in the general frame-
work of Banach spaces, and mathematical properties of the nonlinear Dirac and
Schrödinger equations. These introductory chapters feature many examples and
problems suitable for graduate students and useful for many researchers. Thus, the
book starts as a graduate text, evolves like a specialized monograph, and ends with
the state-of-the-art in the study of the nonlinear Dirac equations and the spectral
stability of solitary waves.

Next, I will describe the structure of this book. The first five chapters cover the
introductory material suitable for graduate students and general audience:

(1) the history of the electron theory and the nonlinear Dirac equations;
(2) the distribution theory, Sobolev spaces (with a detailed derivation of the

Gagliardo–Nirenberg–Sobolev inequalities), the Pólya–Szegő inequality,
and the Paley–Wiener theorem;
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(3) the spectral theory of non-self-adjoint linear operators in Banach spaces,
with the Gohberg–Krein theory of normal eigenvalues (the discrete spec-
trum), the Weyl theorem on the essential spectrum, the Schur complement
theory, and the Keldysh theory of characteristic roots;

(4) the linear stability of solitary waves in the nonlinear Schrödinger equation;
(5) the existence theory for solitary waves in the nonlinear Schrödinger equa-

tion.

The next three chapters give the tools needed for specialized analysis of the Dirac
operators:

(6) the limiting absorption principle;
(7) the Carleman–Berthier–Georgescu estimates;
(8) the Dirac–Pauli theorem on the choice of the Dirac matrices.

The final five chapters collect together the main technical results on the spectral
stability of weakly relativistic solitary waves in the nonlinear Dirac equation with
weakly subcritical and critical nonlinearities. The presentation covers

(9) properties of the Soler model;
(10) the bifrequency solitary waves (this is a new class of solutions discovered

by the authors and is important for their arguments);
(11) bifurcations of eigenvalues from the essential spectrum;
(12) nonrelativistic asymptotics of solitary waves;
(13) spectral stability in the nonrelativistic limit.

The spectral stability results obtained in this monograph open the way to the
proofs of asymptotic stability of solitary waves, with only very few results obtained
presently in the context of the nonlinear Dirac equations. Thus, this monograph
can be considered an introduction to an active area of research with much more
work to be done in the future.

In summary, the monograph is clearly written and includes a historical perspec-
tive, the results are well-motivated and ample background is provided, numerous
well-chosen references are given, and the subject of studies is properly focused.
The book is suitable as a textbook on spectral theory and as an introduction into
nonlinear wave equations.
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