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a b s t r a c t

We address a general system of nonlinear Dirac equations in (1+1) dimensions
and prove nonexistence of self-similar blowup solutions in the space of bounded
functions. While this argument does not exclude the possibility of finite-time
blowup, it still suggests that self-similar singularities do not develop in the nonlinear
Dirac equations in (1+1) dimensions in a finite time. In the particular case of the
cubic Dirac equations, we characterize (unbounded) self-similar solutions in the
closed analytical form.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Smooth solutions of many nonlinear dispersive wave equations may blow up in a finite time depending
on the power of nonlinearity. The classical example is the nonlinear Schrödinger equation (NLS) with power
nonlinearity, where smooth solutions are global only in the subcritical case. For critical and supercritical
powers, smooth solutions of the NLS may blow up in a finite time [1,2].

Nonlinear Dirac equations are considered to be the relativistic generalization of the NLS equation, yet
they display many new dynamical properties compared to the NLS equation [3]. In particular, smooth
solutions to many examples of the nonlinear Dirac equations in (1+1) dimensions escape blowup in a finite
time [4–8].

The general system of massless nonlinear Dirac equations in (1+1) dimensions can be written in the form:{
i(∂tU1 + ∂xU1) = ∂Ū1W (U1, U2, Ū1, Ū2),
i(∂tU2 − ∂xU2) = ∂Ū2W (U1, U2, Ū1, Ū2), (1.1)

where (U1, U2) : R × R → C × C, Ū is a complex conjugate of U , and the nonlinear potential W is assumed
to satisfy the following properties:
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(1) Symmetry: W (U1, U2, Ū1, Ū2) = W (U2, U1, Ū2, Ū1)
(2) Phase invariance: W (eiθU1, eiθU2, e−iθŪ1, e−iθŪ2) = W (U1, U2, Ū1, Ū2) with θ ∈ R.
(3) Homogeneous polynomial in (U1, U2, Ū1, Ū2).

It was shown in [9] that the nonlinear potential W can be characterized as a homogeneous polynomial in
variables (|U1|2 + |U2|2), |U1|2|U2|2, and (Ū2U1 + U2Ū1). In particular, the most general quartic polynomial
for W is represented by

W = a1|U1|2|U2|2 + a2(Ū1U2 + Ū2U1)2 + a3(|U1|4 + |U2|4) + a4(|U1|2 + |U2|2)(Ū1U2 + Ū2U1),

where (a1, a2, a3, a4) are real constants.
When W = |U1|2|U2|2, the system (1.1) is called Thirring model [10]. The Cauchy problem for the

Thirring model was found to be globally well-posed in Sobolev space Hs(R) with s ∈ N [4] and in L2(R)
[11–13]. Orbital stability of solitary wave solutions in the massive Thirring model was proven in [14,15].

When W = (Ū1U2 + Ū2U1)2, the system (1.1) is called Gross–Neveu model [16]. The Cauchy problem
for the Gross–Neveu model was proven to be globally well-posed in Hs(R) with s > 1/2 [8,17] by obtaining
bounds on the L∞(R) of the solution and in L2(R) [18,19] by using characteristics. Spectral stability of
solitary wave solutions in the massive Gross–Neveu model was studied numerically in the general case [20–22]
and analytically in the nonrelativistic limit [23,24].

When W = |U1|4 +4|U1|2|U2|2 + |U2|4, the system (1.1) is called the coupled-mode model [5]. The Cauchy
problem for the coupled-mode system was found to be well-posed in Sobolev space Hs(R) with s ∈ N [5,7]
and in L2(R) [6]. Existence and spectral stability of solitary wave solutions have been analyzed in this model
in many details (see [9] and references therein).

Finally, when W = (|U1|2 + |U2|2)(Ū1U2 + Ū2U1), the nonlinear Dirac equation with pseudoscalar
potential [25] occurs in the context of photonic crystals with the nonlinear refractive index [26]. As far
as we know, it has been an open problem for many years to address global existence or finite time blowup
of solutions to the Cauchy problem for this system [7]. This problem is the subject of the present work.

The self-similar blowup has played an important role in the formation of singularities of partial differential
equations (see [27] and references therein). In particular, self-similar blowup solutions have been investigated
for the nonlinear Schrödinger equation [28,29], the relativistic wave equation [30–32], and for the Navier–
Stokes equations [33].

The main goal of this study is to prove nonexistence of self-similar blowup solutions in the space of
bounded functions to the nonlinear Dirac equation (1.1) with the nonlinear potential in the form:

W = (|U1|2 + |U2|2)k(Ū1U2 + Ū2U1)ℓ, (1.2)

where k, ℓ are nonnegative integers with p := k + ℓ − 1 ∈ N. Besides the space and time translation
invariance, the system of nonlinear Dirac equations (1.1) with (1.2) has the following scaling invariance
property: if [U1(x, t), U2(x, t)] is a solution, then[

λ
1

2p U1(λx, λt), λ
1

2p U2(λx, λt)
]

, λ > 0

is also a solution of the same system. Thanks to the scaling invariance property and the separation of
variables, the self-similar solutions to nonlinear Dirac equations (1.1) with (1.2) are defined in the form:

U1(x, t) = 1
(1 − t)

1
2p

U

(
x

1 − t

)
, U2(x, t) = 1

(1 − t)
1

2p

V

(
x

1 − t

)
, (1.3)

where U and V are functions of y := x/(1 − t). A singularity of the self-similar solutions (1.3) is placed at
the point (x, t) = (0, 1) thanks to the space and time translation symmetries. Thanks to the unit speed of
propagation, the variable y can be restricted to the interval [−1, 1].
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Existence of bounded solutions (U, V ) ∈ L∞([−1, 1]) implies self-similar blowup of smooth solutions to
the Cauchy problem to the nonlinear Dirac equations (1.1) with (1.2) in a finite time because global solutions
(U1, U2) ∈ C(R, Hs(R)) with s > 1/2 belong to L∞(R) for every t ∈ R thanks to the Sobolev embedding of
Hs(R) into L∞(R). While nonexistence of bounded self-similar solutions does not exclude the possibility of
finite-time blowup completely, it still suggests that self-similar singularities do not develop in the nonlinear
Dirac equations in a finite time.

The following theorem presents the main result of this work.

Theorem 1.1. For every p ∈ N, there exist no self-similar solutions in the form (1.3) with (U, V ) ∈
C1(−1, 1) ∩ L∞([−1, 1]).

Theorem 1.1 is proven in Section 2 by using the polar decomposition, dynamical system methods, and a
continuation argument. The proof is simpler in the case of odd ℓ and more technically involved in the case
of even ℓ. Note that the nonexistence of self-similar blowup solutions in Theorem 1.1 is guaranteed by the
global well-posedness results in the particular cases: k ∈ N, ℓ = 0 [5,7] and k = 0, ℓ = 2 [8,17].

Bounded self-similar solutions in the form (1.3) do not exist because U and V break either before they
reach the end points y = ±1 of the interval [−1, 1] or at the end points y = ±1. In the general case, we
are not able to obtain the precise rate of how U and V diverge before or at y = ±1. However, in the case
k = ℓ = 1, which corresponds to the physically relevant model (1.1) with W = (|U1|2 + |U2|2)(Ū1U2 + Ū2U1)
derived in [26], we are able to prove the following theorem.

Theorem 1.2. For k = ℓ = 1, there exists a unique local self-similar solution in the form (1.3) with
|U(0)| = |V (0)| that extends to y → 1 and satisfies the following asymptotic behavior

U(y) ∼ (1 − y) 1
4 , V (y) ∼ (1 − y)− 1

4 as y → 1. (1.4)

However, this solution does not extend to y → −1 in the sense that there exists y0 ∈ (−1, 0) such that
limy→y0 U(y) and limy→y0 V (y) diverge. All other local solutions with |U(0)| = |V (0)| extend neither to
y → 1 nor to y → −1.

Theorem 1.2 is proven in Section 3, where the system of differential equations for U and V with the
initial condition |U(0)| = |V (0)| is integrated in a closed form. Although we are not able to integrate the
system of differential equations for U and V with |U(0)| ̸= |V (0)|, the same method used in the proof of
Theorem 1.2 suggests that more general solutions with |U(0)| ̸= |V (0)| do not extend simultaneously to
y → 1 and y → −1 (see Remark 3.1). Therefore, bounded self-similar solutions in the form (1.3) do not exist
in Theorem 1.1 because they blow up before reaching y = ±1 at least for k = ℓ = 1.

2. Proof of Theorem 1.1

Substituting (1.3) into (1.1) with W in (1.2) yields the following system of differential equations for U

and V : {
i
[
(y + 1)U ′ + 1

2p U
]

= FV + GU,

i
[
(y − 1)V ′ + 1

2p V
]

= FU + GV,
(2.1)

where the prime denotes derivative in y, p = k + ℓ − 1, and

F = ℓ(|U |2 + |V |2)k(UV̄ + ŪV )ℓ−1, G = k(|U |2 + |V |2)k−1(UV̄ + ŪV )ℓ.

We are studying existence of bounded solutions to the system (2.1) on the interval [−1, 1] including the
limits y → ±1, hence we require (U, V ) ∈ L∞([−1, 1]). By the ODE theory, bounded solutions to the system
(2.1) belong to (U, V ) ∈ C1(−1, 1).
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By inspecting the integrating factors for the left-hand side of the system (2.1), we introduce the new
variables:

u(y) := (1 + y)1/2pU(y), v(y) := (1 − y)1/2pV (y). (2.2)

New variables allow us to rewrite the system (2.1) in the equivalent form:{
i(1 + y)1− 1

2p u′ = Fv(1 − y)− 1
2p + Gu(1 + y)− 1

2p ,

−i(1 − y)1− 1
2p v′ = Fu(1 + y)− 1

2p + Gv(1 − y)− 1
2p ,

(2.3)

where

F = ℓ

(
|u|2

(1 + y)
1
p

+ |v|2

(1 − y)
1
p

)k
(uv̄ + ūv)ℓ−1

(1 − y2)
ℓ−1
2p

and

G = k

(
|u|2

(1 + y)
1
p

+ |v|2

(1 − y)
1
p

)k−1
(uv̄ + ūv)ℓ

(1 − y2)
ℓ

2p

.

If (U, V ) ∈ C1(−1, 1) ∩ L∞([−1, 1]), then (u, v) ∈ C1(−1, 1) ∩ L∞([−1, 1]) with u(−1) = 0 and v(1) = 0.
Let us use the polar decomposition for complex-valued amplitudes:

u = |u|eiα, v = |v|eiβ , (2.4)

where all functions depend on y and the phases (α, β) are defined uniquely on the torus T := [−π, π] closed
with the periodic boundary conditions. Because (u, v) ∈ C1(−1, 1),

d|u|
dy

,
d|v|
dy

, |u|dα

dy
, |v|dβ

dy

are all bounded and piecewise continuous on the interval (−1, 1). Therefore, substituting the polar
decomposition (2.4) into (2.3) and separating the real and imaginary parts yield the following system of
differential equations for amplitudes and phases:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d|u|
dy

= F |v| sin(β − α)
(1 + y)1− 1

2p (1 − y)
1

2p

,

d|v|
dy

= F |u| sin(β − α)
(1 + y)

1
2p (1 − y)1− 1

2p

,

(2.5)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−|u|dα

dy
= F |v| cos(β − α)

(1 + y)1− 1
2p (1 − y)

1
2p

+ G|u|
(1 + y) ,

|v|dβ

dy
= F |u| cos(β − α)

(1 + y)
1

2p (1 − y)1− 1
2p

+ G|v|
(1 − y) ,

(2.6)

where

F = ℓ

(
|u|2

(1 + y)
1
p

+ |v|2

(1 − y)
1
p

)k
[2|u||v| cos(β − α)]ℓ−1

(1 − y2)
ℓ−1
2p

and

G = k

(
|u|2

(1 + y)
1
p

+ |v|2

(1 − y)
1
p

)k−1
[2|u||v| cos(β − α)]ℓ

(1 − y2)
ℓ

2p

.
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The vector field of the system (2.5) and (2.6) is piecewise continuous on (−1, 1). We shall now proceed
differently depending whether ℓ is zero, odd, or even.

2.1. The case of ℓ = 0

In this case, F = 0 and the system (2.5) implies that |u(y)| and |v(y)| are constant in y. Therefore, it is
impossible to satisfy u(−1) = 0 and v(1) = 0 except for the trivial (zero) solution.

2.2. The case of odd ℓ

Since ℓ is odd, we have F ≥ 0 and G cos(β − α) ≥ 0. Combining the two equations in the system (2.6)
yields

|u||v| d

dy
sin(β − α) = F cos2(β − α)

(
|v|2

(1 + y)1− 1
2p (1 − y)

1
2p

+ |u|2

(1 + y)
1

2p (1 − y)1− 1
2p

)

+2G|u||v| cos(β − α)
1 − y2 ≥ 0. (2.7)

From here, we obtain a contradiction against the existence of solutions (u, v) ∈ C1(−1, 1) ∩ L∞([−1, 1])
satisfying u(−1) = 0 and v(1) = 0.

Indeed, if u(−1) = 0, then d
dy |u| ≥ 0 at least near y = −1. The first equation of the system (2.5) with

odd ℓ implies sin(β − α) ≥ 0 at least near y = −1. Thanks to monotonicity (2.7), we have sin(β − α) ≥ 0 for
every y ∈ (−1, 1). The second equation of the system (2.5) with odd ℓ implies then that d

dy |v| ≥ 0 for every
y ∈ (−1, 1). Hence |v(y)| ≥ |v(−1)| for every y ∈ (−1, 1) and it is impossible to satisfy v(1) = 0 except for
the trivial (zero) solution.

2.3. The case of even ℓ

Since ℓ is even, we have G ≥ 0 and F cos(β − α) ≥ 0. Combining the two equations in the system (2.6)
yields

|u||v| d

dy
(β − α) = F cos(β − α)

(
|v|2

(1 + y)1− 1
2p (1 − y)

1
2p

+ |u|2

(1 + y)
1

2p (1 − y)1− 1
2p

)

+2G|u||v|
1 − y2 ≥ 0. (2.8)

As ℓ ≥ 2, we have F = G = 0 if cos(β − α) = 0, hence β − α = ± π
2 are invariant lines, which cannot

be crossed for finite y ∈ (−1, 1). From here, we obtain a contradiction against the existence of solutions
(u, v) ∈ C1(−1, 1) ∩ L∞([−1, 1]) satisfying u(−1) = 0 and v(1) = 0.

Indeed, if u(−1) = 0, then d
dy |u| ≥ 0 at least near y = −1. The first equation of the system (2.5) with

even ℓ implies sin(β − α) cos(β − α) ≥ 0 at least near y = −1. Thanks to monotonicity (2.8) and invariance
of β − α = ± π

2 , we have

either 0 ≤ β − α ≤ π

2 or π ≤ β − α ≤ 3π

2 ,

for every y ∈ (−1, 1), which means that sin(β −α) cos(β −α) ≥ 0 for every y ∈ (−1, 1). The second equation
of the system (2.5) with even ℓ implies then that d

dy |v| ≥ 0 for every y ∈ (−1, 1). Hence |v(y)| ≥ |v(−1)| for
every y ∈ (−1, 1) and it is impossible to satisfy v(1) = 0 except for the trivial (zero) solution.
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3. Proof of Theorem 1.2

Here we investigate the case of k = ℓ = 1 in the system (2.5) and (2.6). The system is rewritten explicitly
as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d|u|
dy

= |v| sin(β − α)√
1 − y2

[
|u|2

1 + y
+ |v|2

1 − y

]
,

d|v|
dy

= |u| sin(β − α)√
1 − y2

[
|u|2

1 + y
+ |v|2

1 − y

]
,

(3.1)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−|u|dα

dy
= |v| cos(β − α)√

1 − y2

[
3|u|2

1 + y
+ |v|2

1 − y

]
,

|v|dβ

dy
= |u| cos(β − α)√

1 − y2

[
|u|2

1 + y
+ 3|v|2

1 − y

]
.

(3.2)

We are looking for local solutions (u, v) ∈ C1(−1, 1) satisfying the constraint |u(0)| = |v(0)| on the initial
condition. The system (3.1) yields the first-order invariant

|u(y)|2 = |v(y)|2 + C, (3.3)

where C is constant. It follows from the constraint |u(0)| = |v(0)| that C = 0, hence |u(y)| = |v(y)| for every
y ∈ [−1, 1]. With this reduction, the system (3.1) and (3.2) reduces to a simpler form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d|v|
dy

= 2|v|3 sin(β − α)√
(1 − y2)3

,

d(β − α)
dy

= 8|v|2 cos(β − α)√
(1 − y2)3

.

(3.4)

Let us introduce the independent variable τ : [−1, 1] ↦→ R by

τ(y) :=
∫ y

0

dy√
(1 − y2)3

. (3.5)

Then, τ(y) → ±∞ as y → ±1. Let us also rewrite the system (3.4) in dependent variables

ξ := |v|, η := sin(β − α). (3.6)

Then, the system (3.4) can be written as the autonomous planar dynamical system:{
ξ̇ = 2ξ3η,

η̇ = 8ξ2(1 − η2),
(3.7)

where the dot denotes derivative with respect to τ . The line segment Σ0 := {ξ = 0, η ∈ [−1, 1]} consists of
the degenerate critical points, whereas Σ± := {ξ ∈ R, η = ±1} are invariant lines with the one-dimensional
flow in ξ given by ξ̇ = ±2ξ3.

The system (3.7) is integrable with the first invariant E(ξ, η) := ξ8(1 − η2), where the values of E are
constant and E ≥ 0 since η ∈ [−1, 1]. The value E = 0 is not isolated since Σ0 intersects Σ±. The flow on
Σ± is given by ξ̇ = ±2ξ3. For both signs, ξ(τ) does not exist for every τ ∈ R since it blows up in a finite τ

either before τ → −∞ or before τ → +∞. For the minus sign, the solution satisfies limτ→+∞ ξ(τ) = 0 (that
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is, |u(y)| → 0 as y → 1) and moreover

ξ(τ) ∼ τ−1/2 ⇒ |u(y)| ∼ (1 − y)1/4.

This provides the asymptotic scaling (1.4) in variables U and V thanks to the transformation (2.2).
For every E > 0, the level curve E(ξ, η) = E > 0 is unbounded in ξ and does not intersect Σ0 or Σ±. It

follows from the second equation in the system (3.7) that η̇ > 0, hence the map τ → η is strictly increasing
along the flow with η ∈ (−1, 1). It follows from the first equation of the system (3.7) with η ≥ η0 > 0 that
ξ̇ ≥ 2η0ξ3. Since the sub-solution of ξ̇− = 2η0ξ3

− with ξ−(0) > 0 blows up in a finite time, the comparison
principle implies that ξ(τ) ≥ ξ−(τ) for all τ > 0 so that the map τ → ξ blows up before τ → +∞ in the
positive flow in τ . Similarly, it follows from the first equation of the system (3.7) with η ≤ −η0 < 0 that
ξ̇ ≤ −2η0ξ3. By the comparison principle, the map τ → ξ blows up before τ → −∞ in the negative flow in
τ . Therefore, no other solutions bounded near y = 1 exist.

Remark 3.1. For general initial conditions with |u(0)| ≠ |v(0)|, we have C ̸= 0 in the local invariant
(3.3). For solutions bounded near y = 1, we have v(1) = 0 and C = |u(1)|2 > 0. For solutions bounded near
y = −1, we have u(−1) = 0 and C = −|v(−1)|2 < 0. In the former case C > 0, the system of differential
equations takes the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d|v|
dy

=

√
C + |v|2 sin(β − α)√

(1 − y2)3

[
2|v|2 + C(1 − y)

]
,

d(β − α)
dy

= cos(β − α)√
(1 − y2)3|v|

√
C + |v|2

[
8|v|2 + 2C(4 − y)|v|2 + C2(1 − y)

]
,

(3.8)

so that the same definitions for τ , ξ and η as in (3.5) and (3.6) can be employed. The same monotonicity
argument for the map τ → η and the same comparison principle for the map τ → ξ can be employed to
show that the solutions bounded near y = 1 blow up at a finite y0 ∈ (−1, 0) before the other end y = −1.
However, if C ̸= 0, solutions extending to y → 1 do not satisfy the same asymptotic behavior as in (1.4).
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