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a b s t r a c t

We derive the traveling periodic waves of the discrete modified Korteweg–de Vries equation by using
a nonlinearization method. Modulational stability of the traveling periodic waves is studied from the
squared eigenfunction relation and the Lax spectrum. We use numerical approximations to show that,
similar to the continuous counterpart, the family of dnoidal solutions is modulationally stable and
the family of cnoidal solutions is modulationally unstable. Consequently, algebraic solitons propagate
on the dnoidal wave background and rogue waves (spatially and temporally localized events) are
dynamically generated on the cnoidal wave background.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

The modified Korteweg–de Vries (mKdV) equation is an im-
ortant model for dynamics of long internal waves in the cases
hen the quadratic nonlinearity vanishes [1,2]. This model is in-
egrable with the inverse scattering transform method [3], which
akes it attractive for many studies, e.g., the existence, stability,
nd dynamics of the traveling periodic waves [4,5].
Spatial discretizations of the integrable models are also inte-

rable with the inverse scattering transform method [6]. One of
uch models was obtained in [7] as the spatial discretization of
he modified Korteweg–de Vries (mKdV) equation. We call it the
mKdV equation and write it in the normalized form:

˙n = (1 + u2
n)(un+1 − un−1), n ∈ Z, (1.1)

here the dot represents the derivative of {un(t)}n∈Z ∈ RZ with
respect to the time variable t ∈ R. In the continuum limit, long
waves of small amplitudes can be modeled by

un(t) = εu(ξ, τ ), ξ := ε(n + 2t), τ :=
1
3
ε3t, (1.2)

here ε is a formal small parameter. Substituting (1.2) into (1.1)
nd neglecting higher-order terms beyond the formal order of
(ε4) yield the mKdV equation

τ = 6u2uξ + uξξξ . (1.3)
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Traveling periodic waves of the mKdV equation have been studied
recently in many details. Two families are given by the Jacobi
dnoidal and cnoidal functions [5], namely

u(ξ, τ ) = dn(ξ + (2 − k2)τ ; k),
u(ξ, τ ) = kcn(ξ + (2k2 − 1)τ ; k), (1.4)

here k ∈ (0, 1) is elliptic modulus and the solutions can be
eneralized by using the translational and scaling invariance of
he mKdV equation. The two traveling periodic wave solutions
1.4) are continued into two families expressed by the rational
unctions of the Jacobi elliptic functions [8].

Stability of dnoidal and cnoidal waves of the mKdV equation
ith respect to periodic perturbations of the same period was
tudied in [9–11]. Extension of the stability analysis to the other
amilies of traveling periodic waves was obtained in [12,13].
odulational stability of these solutions with respect to long per-

urbations was studied in [4,5,14], where it was shown that the
noidal waves are modulationally stable and the cnoidal waves
re modulationally unstable. These stability results are illustrated
n Figs. 1 and 2 for the dnoidal and cnoidal waves respectively.
he description of how the figures were generated can be found
n Appendix A. Since the stability spectrum is on the imaginary
xis for the dnoidal waves (Fig. 1), the dnoidal waves are spec-
rally (and modulationally) stable. On the other hand, the stability
pectrum for the cnoidal waves (Fig. 2) contains a band outside
he imaginary axis and the band intersects the origin, hence the
noidal waves are spectrally (and modulationally) unstable.
The immediate consequence of the modulational stability re-

ults is that the rogue waves (spatially and temporally local-
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Fig. 1. Lax spectrum (left) and stability spectrum (right) for the dnoidal wave with k = 0.9.
Fig. 2. Lax spectrum (left) and stability spectrum (right) for the cnoidal wave with k = 0.8 (top) and k = 0.92 (bottom).
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zed events) only arise on the background of the cnoidal waves
hereas a steady propagation of an algebraic soliton (a spa-
ially decaying traveling wave) is observed on the background
f the dnoidal waves [15]. Similar results were extended to the
ore general families of traveling periodic waves of the mKdV
quation [8,16]. A general approach towards analysis of modula-
ional stability of traveling periodic waves of the mKdV and other
elated equations can be found in [17].

The dmKdV equation is a real-valued flow of the integrable
ierarchy of complex-valued discrete equations which starts at
he Ablowitz–Ladik (AL) equation [18]. Rogue waves on the con-
tant background have been constructed for the Ablowitz–Ladik
2

AL) equation [19,20] and the complex dmKdV (Hirota) equa-
ions [21,22]. Rogue waves are related to the modulation instabil-
ty of the constant-amplitude waves which leads to appearance of
reathers localized on the lattice [23,24].
Computations of rogue waves and breathers are usually per-

ormed with the Darboux transformations by using explicit solu-
ions of the Lax equations considered at the constant-amplitude
aves. It is much harder to analyze the Lax equations on the
raveling waves, when they are either spatially periodic or spa-
ially decaying. Constructions of such rogue waves on the periodic
ave background have been elaborated for the continuous sys-
ems such as the NLS equation [25–27], the mKdV equation [8,
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5], the sine–Gordon equation [28,29], and the derivative NLS
quation [30–32]. No such rogue waves have been constructed
or the discrete counterparts of these equations to the best of our
nowledge. On the other hand, exact solutions for the traveling
eriodic solutions of the discrete equations have been previously
onstructed in the literature [33,34].
The nonlinearization method [35] has been used to char-

cterize the traveling periodic waves in the continuous inte-
rable systems, see [8,15,25,26,29,31] and references therein. This
ethod is considerably more complicated when it is applied to

he discrete nonlinear equations such as the hierarchy of the AL
quations [36]. Another complication is that different forms of
he Darboux transformations have been obtained for the AL equa-
ions based on different Lax representations [37]. To study the
odulational stability and to construct rogue wave solutions on

he periodic background, one needs to select the correct Darboux
ransformation.

As the first step towards the ultimate goal of studying traveling
eriodic waves of the AL equation, we consider here the case of
he dmKdV equation and make a precise connection between the
raveling periodic waves and the squared eigenfunctions of the Lax
ystem of linear equations.

Among outcomes of the nonlinearization method, we give
umerically-assisted solutions of the modulational stability prob-
em for the two families of the traveling periodic waves. We
onfirm in a complete analogy with the case of the continu-
us mKdV equation that the dnoidal waves are modulationally
table and the cnoidal waves are modulationally unstable. We
lso construct new solutions of the dmKdV equation by using
he Darboux transformations. The new solutions describe the
teady propagation of an algebraic soliton on the dnoidal wave
ackground and the appearance of a rogue wave on the cnoidal
ave background.
Although the analytical methods of our work rely on inte-

rability of the dmKdV equation, the results are important for
pplications of rogue waves in a variety of physical systems. For
nstance, periodic waves are common in nonintegrable lattices
n the background of numerically approximated breathers [24].
xact solutions constructed for the limiting integrable discrete
ystems can be used as seeds of numerical methods for more
eneral nonintegrable lattices.
The paper is organized as follows. Section 2 presents the

ntegrable symplectic map which arises from the Lax system
n the nonlinearization method. Section 3 shows that the class
f traveling periodic waves of the dmKdV equation is obtained
rom integrability of the symplectic map. Two families of trav-
ling periodic waves are available in the closed analytical form
y means of the Jacobi (dnoidal and cnoidal) elliptic functions.
ection 4 gives a numerically-assisted solution of the modula-
ional stability problem for the two families of traveling peri-
dic waves. Sections 5 and 6 present respectively the one-fold
nd two-fold Darboux transformations, which are then used to
onstruct respectively the algebraic soliton propagating on the
noidal wave background and the rogue waves generated on the
noidal wave background. Section 7 contains the summary and
he roadmap for further studies. Appendix A gives details of the
ax and stability spectra for the dnoidal and cnoidal waves in the
ontinuous mKdV equation. Appendix B presents the proof that
he constant wave solution is modulationally stable in the dmKdV
quation. Appendix C gives the proof of the two-fold Darboux
ransformation for the dmKdV equation assisted with symbolic
omputations.

. Nonlinearization method with a single eigenvalue

Eq. (1.1) is a compatibility condition for the following Lax pair
f linear equations:
3

ϕn+1 = U(un, λ)ϕn,

U(un, λ) =
1√
1+u2n

(
λ un

−un λ−1

)
,

(2.1)

nd

ϕ̇n = V (un, λ)ϕn,

V (un, λ) =

( 1
2

(
λ2 − λ−2

)
λun + λ−1un−1

−λun−1 − λ−1un −
1
2

(
λ2 − λ−2

) )
,

(2.2)

here {ϕn(t)}n∈Z ∈ (C2)Z depends on time t and λ ∈ C is a
pectral parameter which is independent of n and t .

emark 1. There exists another Lax pair of the same dmKdV
q. (1.1) given by

(un, λ) =

(
λ un

−un λ−1

)
nd

(un, λ) =

( 1
2

(
λ2 − λ−2

)
+ unun−1 λun + λ−1un−1

−λun−1 − λ−1un −
1
2

(
λ2 − λ−2

)
+ unun−1

)
.

However, this Lax pair cannot be used to connect the squared
eigenfunctions of the linear equations with the traveling periodic
waves of the dmKdV equation in the nonlinearization method.

Let {ϕn(t)}n∈Z be a nontrivial solution to the linear system (2.1)
and (2.2) for a specific value λ = λ1 ∈ C. The following symmetry
exists:

If ϕn = (pn, qn)T is a solution for λ = λ1, then ϕn = (−qn, pn)T
is a solution for λ = λ−1

1 .

Following the nonlinearization method [36], we assume that
λ41 ̸= 1 and consider the following constraint between the
potential {un(t)}n∈Z and the squared eigenfunction {ϕn(t)}n∈Z with
ϕn = (pn, qn)T for a single eigenvalue λ = λ1:

n = λ1p2n + λ−1
1 q2n, n ∈ Z. (2.3)

ubstituting (2.3) into the spatial part (2.1) of Lax system with
= λ1, we obtain the discrete map ϕn+1 = (Eϕ)n, n ∈ Z given by

Eϕ)n :=
1√

1 + (λ1p2n + λ−1
1 q2n)2

(
λ1pn + (λ1p2n + λ−1

1 q2n)qn
λ−1
1 qn − (λ1p2n + λ−1

1 q2n)pn

)
.

(2.4)

n addition to the constraint (2.3), another constraint is given by

n−1 = λ−1
1 p2n + λ1q2n, n ∈ Z. (2.5)

his constraint is obtained by using (2.1), (2.3), and the shift
perators E and E−1 defined by (Eϕ)n := ϕn+1 and (E−1ϕ)n :=

n−1 in the following computation:

n−1 = E−1(λ1p2n + λ−1
1 q2n)

= E−1

[
λ1p2n + λ−1

1 q2n + u2
n(λ

−1
1 q2n + λ1p2n)

1 + u2
n

]

= E−1

[
λ−1
1 (λ1pn + unqn)2 + λ1(λ−1

1 qn − unpn)2

1 + u2
n

]
= E−1 [

λ−1
1 (Epn)2 + λ1(Eqn)2

]
= λ−1

1 p2n + λ1q2n.

t follows from (2.3) and (2.5) that the squared eigenfunction
ϕn(t)}n∈Z and the potential {un(t)}n∈Z satisfy the following in-
erse relations:
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2
n =

λ1un − λ−1
1 un−1

λ21 − λ−2
1

, q2n =
λ1un−1 − λ−1

1 un

λ21 − λ−2
1

, (2.6)

here λ41 ̸= 1 is assumed.
The following lemma characterizes the discrete map ϕn+1 =

Eϕ)n given by (2.4) as the symplectic map in C2 with the 2-form
pn ∧ dqn [38].

emma 1. The map E given by (2.4) is symplectic in C2 with the
-form dpn ∧ dqn.

roof. The map is symplectic if dEpn ∧dEqn = dpn ∧dqn. In order
o prove this relation we use (2.3) and obtain that

un = 2λ1pndpn + 2λ−1
1 qndqn.

It follows from (2.1) that

dEpn =
(1 + u2

n)(λ1dpn + undqn + qndun) − (λ1pn + unqn)undun

(1 + u2
n)

3
2

,

Eqn =
(1 + u2

n)(λ
−1
1 dqn − undpn − pndun) − (λ−1

1 qn − unpn)undun

(1 + u2
n)

3
2

.

Since dpn ∧dpn = dqn ∧dqn = 0, it follows by direct computation
that

dEpn ∧ dEqn =
1

(1 + u2
n)2

[
(1 + u2

n)(λ1dpn + undqn + qndun)

∧(λ−1
1 dqn − undpn − pndun)

−un(λ−1
1 qn − unpn)(λ1dpn + undqn) ∧ dun

−un(λ1pn + unqn)dun ∧ (λ−1
1 dqn − undpn)

]
=dpn ∧ dqn

+
1

(1 + u2
n)
(λ−1

1 qndun ∧ dqn − λ1pndpn ∧ dun)

=dpn ∧ dqn,

where the expression for dun has been used to cancel the last
term. This proves the relation dEpn ∧ dEqn = dpn ∧ dqn. □

Substituting now (2.3) and (2.5) into the temporal part (2.2)
f Lax system with λ = λ1, we obtain the following nonlinear
amiltonian system

dpn
dt

=
∂H
∂qn

,
dqn
dt

= −
∂H
∂pn

, (2.7)

here n ∈ Z is fixed and the Hamiltonian H = H(pn, qn) is given
by

H(pn, qn) =
1
2
(λ21 − λ−2

1 )pnqn

+
1
2
(λ1p2n + λ−1

1 q2n)(λ
−1
1 p2n + λ1q2n). (2.8)

ince H(pn, qn) is t-independent, the Hamiltonian system (2.7)–
2.8) is integrable in the Liouville sense.

The following lemma ensures that the Hamiltonian H(pn, qn)
s a constant of motion for the symplectic map given by (2.4).

emma 2. Let F1 := 2H(pn, qn). Then, F1 is independent of n ∈ Z.

Proof. It follows by differentiating of the constraint (2.3) in t that

u̇n = λ31p
2
n + λ−3

1 q2n − un−1 + 2un(λ21 − λ−2
1 )pnqn. (2.9)

By using the dmKdV equation (1.1), the Lax system (2.1) and (2.2)
with λ = λ1, and the relation (2.9), we obtain that

(λ2 − λ−2)p q + u u
1 1 n+1 n+1 n+1 n

4

=
(λ21 − λ−2

1 )
1 + u2

n
(λ1pn + unqn)(λ−1

1 qn − unpn) + un+1un

= (λ21 − λ−2
1 )pnqn + unun+1

+
un

1 + u2
n
(un−1 − λ31p

2
n − λ−3

1 qn − 2unpnqn(λ21 − λ−2
1 ))

= (λ21 − λ−2
1 )pnqn + unun−1,

hich implies that F1 is independent of n ∈ Z. □

Since F1 = 2H(pn, qn) is independent of both n and t , the
quared eigenfunction {ϕn(t)}n∈Z with ϕn = (pn, qn)T and the
otential {un(t)}n∈Z satisfy the following relation:

nqn =
F1 − unun−1

λ21 − λ−2
1

. (2.10)

ubstituting (2.6) and (2.10) into (2.9) yields

˙n = (λ21 + λ−2
1 + 2F1)un − 2un−1(1 + u2

n),

hich together with (1.1) results in the second-order difference
quation

1 + u2
n)(un+1 + un−1) = ωun, n ∈ Z, (2.11)

here ω := λ21 + λ−2
1 + 2F1. Expanding (F1 − unun−1)2 with the

elp of (2.6) and (2.10) yields the conserved quantity for (2.11)
n the form:
2
1 + u2

n + u2
n−1 + u2

nu
2
n−1 = ωunun−1. (2.12)

onsequently, the second-order difference equation (2.11) is an
ntegrable map with the first-order invariant (2.12).

To summarize, the integrable symplectic map E given by (2.4)
nd the integrable Hamiltonian system (2.7)–(2.8) obtained with
he help of the relations (2.3) and (2.5) between the potential
un(t)}n∈Z and the squared eigenfunction {ϕn(t)}n∈Z with ϕn =

pn, qn)T is relevant for the class of solutions of the dmKdV equa-
ion given by solutions of the integrable second-order difference
quation (2.11) with parameter ω := λ21 + λ−2

1 + 2F1, where
1 is an eigenvalue satisfying λ41 ̸= 1 and F1 = 2H(pn, qn) is
ndependent of n ∈ Z and t ∈ R.

. Class of traveling periodic waves

Integrability of the symplectic map E given by (2.4) and the
amiltonian system (2.7)–(2.8) can be deduced by using the
ollowing Lax matrix [36]:

(pn, qn, λ) =⎛⎜⎜⎜⎝
1
2

−
λ21pnqn
λ2 − λ21

+
λ−2
1 pnqn

λ2 − λ−2
1

λλ1p2n
λ2 − λ21

+
λλ−1

1 q2n
λ2 − λ−2

1

−
λλ1q2n
λ2 − λ21

−
λλ−1

1 p2n
λ2 − λ−2

1

−
1
2

+
λ21pnqn
λ2 − λ21

−
λ−2
1 pnqn

λ2 − λ−2
1

⎞⎟⎟⎟⎠ ,

(3.1)

where {ϕn(t)}n∈Z with ϕn = (pn, qn)T is a nontrivial solution of the
ax system (2.1) and (2.2) with λ = λ1 used in the constraints
(2.3) and (2.5) and λ ∈ C is an arbitrary spectral parameter. The
symplectic map ϕn+1 = (Eϕ)n is equivalent to the discrete map
quation

(pn+1, qn+1, λ)U(un, λ1) − U(un, λ1)W (pn, qn, λ) = 0. (3.2)

he Hamiltonian system (2.7)–(2.8) is equivalent to the time-
ependent equation

d
dt

W (pn, qn, λ) = V (un, λ1)W (pn, qn, λ) − W (pn, qn, λ)V (un, λ1).

(3.3)
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n both Eqs. (3.2) and (3.3), un and un−1 are related to p2n and q2n
y means of the constraints (2.3) and (2.5).
The following lemma introduces the polynomial P(λ) associ-

ted with the second-order difference equation (2.11), roots of
hich give admissible values for λ1 in the constraints (2.3) and
2.5).

emma 3. For every ω in the second-order difference equa-
ion (2.11) and every F1 in the first-order invariant (2.12), ±λ1 and
λ−1
1 are simple roots of the polynomial P(λ) given by

(λ) := λ8 − 2ωλ6 + (2 + ω2
− 4F 2

1 )λ
4
− 2ωλ2 + 1. (3.4)

roof. Since detW (pn, qn, λ) is a generating function of con-
served quantities for the symplectic map E given by (2.4) and
the Hamiltonian system (2.7)–(2.8) [39,40], it is independent of
n and t . Using (2.8) and (3.1), we compute detW (pn, qn, λ) in the
explicit form

detW (pn, qn, λ) = −
1
4

+
λ2F1

(λ2 − λ21)(λ2 − λ−2
1 )

.

ence ±λ1 and ±λ−1
1 are simple poles of detW (pn, qn, λ). On the

ther hand, we can rewrite W (pn, qn, λ) by using (2.6) and (2.10)
n the form

(pn, qn, λ)

=

⎛⎜⎜⎝
1
2

−
λ2(F1 − unun−1)

(λ2 − λ21)(λ2 − λ−2
1 )

λ(λ2un − un−1)
(λ2 − λ21)(λ2 − λ−2

1 )

−
λ(λ2un−1 − un)

(λ2 − λ21)(λ2 − λ−2
1 )

−
1
2

+
λ2(F1 − unun−1)

(λ2 − λ21)(λ2 − λ−2
1 )

⎞⎟⎟⎠ ,

rom which we compute with the use of the conserved quantity
2.12) that

etW (pn, qn, λ) = −
P(λ)

4(λ2 − λ21)2(λ2 − λ−2
1 )2

,

here P(λ) is given by (3.4). Since detW (pn, qn, λ) has simple
poles at ±λ1 and ±λ−1

1 , then ±λ1 and ±λ−1
1 are roots of the

olynomial P(λ). □

emark 2. Symmetry of coefficients of P(λ) in (3.4) supports the
uadruple symmetry of its roots at {±λ1,±λ

−1
1 }. The polynomial

(λ) has eight simple roots which form two quadruplets:

(λ) = (λ2 − λ21)(λ
2
− λ−2

1 )(λ2 − λ22)(λ
2
− λ−2

2 ),

here λ2 is related to λ1 and F1 by
2
1 + λ−2

1 − λ22 − λ−2
2 + 4F1 = 0.

Two families of periodic solutions are available in the litera-
ure (see, e.g., [41]). We give details of these solutions separately
nd show that they are traveling wave solutions of the dmKdV
quation of the form un(t) = φ(αn+ct) with appropriately chosen
> 0 and c > 0.

emark 3. We have no proof that the second-order difference
quation (2.11) admits no other periodic solutions except for the
wo families of dnoidal and cnoidal waves. Similarly, we have
o proof that a general traveling wave solution of the dmKdV
quation (1.1) in the form un(t) = φ(αn + ct) with some α >

0 and c ∈ R must necessarily be a solution of the second-
order difference equation (2.11). Nevertheless, it is remarkable
that the second-order difference equation (2.11) describes the
real-valued standing wave solutions of the complex-valued AL
equation, which is related to the dmKdV equation in the AL

hierarchy.

5

3.1. Dnoidal periodic wave solutions

These are solutions of the dmKdV equation (1.1) and the
second-order difference equation (2.11) given by the Jacobi dnoida
elliptic function:

un(t) = Adn(ξ ; k), ξ := αn + ct,

where k ∈ (0, 1) is elliptic modulus and A > 0 is defined up to
the reflection symmetry:

If un(t) is a solution, then −un(t) is also a solution.

We are looking for appropriately chosen α > 0 and c > 0 in
ddition to k ∈ (0, 1) and A > 0. Another (translation) parameter

can always be included due to the translational symmetry:

If un(t) is a solution, then un(t + t0) is also a solution for every
t0 ∈ R.

Using the formula for addition of the Jacobi elliptic functions,

dn(ξ ± α; k)

=
dn(ξ ; k)dn(α; k) ∓ k2sn(ξ ; k)cn(ξ ; k)sn(α; k)cn(α; k)

1 − k2sn2(ξ ; k)sn2(α; k)
,

e obtain from (2.11) that

= 2(1 + A2)dn(α; k), ωsn2(α; k) = 2A2dn(α; k).

ince A > 0, this gives the unique expressions for A and ω:

=
sn(α; k)
cn(α; k)

, ω =
2dn(α; k)
cn2(α; k)

, α ∈ (0, K (k)),

here the cutoff K (k) for the range of α corresponds to the first
ositive zero of cn(α; k) = 0. Similarly, we obtain from (1.1) that

= 2(1 + A2) sn(α; k)cn(α; k),

sn2(α; k) = 2A2sn(α; k)cn(α; k),

hich yields c = 2A. The exact dnoidal periodic wave solution
an be written explicitly as

un(t) =
sn(α; k)
cn(α; k)

dn(αn + ct; k),

c =
2sn(α; k)
cn(α; k)

, ω =
2dn(α; k)
cn2(α; k)

,

(3.5)

here α ∈ (0, K (k)) and k ∈ (0, 1) are arbitrary parameters.

• As k → 0, the dnoidal wave degenerates to the constant
wave
un(t) = tan(α), c = 2 tan(α),

ω = 2 sec2(α), α ∈

(
0,
π

2

)
,

(3.6)

• As k → 1, the dnoidal wave degenerates into the solitary
wave
un(t) = sinh(α)sech(αn + ct), c = 2 sinh(α),

ω = 2 cosh(α), α ∈ (0,∞).
(3.7)

Taking the conserved quantity (2.12) at ξ = 0 yields

F 2
1 = A2 (

ωdn(α; k) − 1 − dn2(α; k) − A2dn2(α; k)
)

=
sn2(α; k)
cn4(α; k)

(
2dn2(α; k) − cn2(α; k)

− dn2(α; k)cn2(α; k) − dn2(α; k)sn2(α; k)
)

= (1 − k2)
sn4(α; k)
cn4(α; k)

,
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here we have used the fundamental relation for the Jacobi
lliptic functions. This allows us to compute

1 = σ1

√
1 − k2

sn2(α; k)
cn2(α; k)

, σ1 = ±1, (3.8)

fter which the bi-quadratic equation λ21+λ
−2
1 = ω−2F1 is solved

by

λ21 =
(1 − σ1σ2sn(α; k))(dn(α; k) + σ2

√
1 − k2sn(α; k))

cn2(α; k)
,

2 = ±1.

he product of squared eigenvalues for different values of σ2 and
ame value of σ1 is equal to one. As a result, there exist exactly
our pairs of real eigenvalues {±λ1,±λ

−1
1 ,±λ2,±λ

−1
2 } ordered by

< λ1 < λ2 < 1 < λ−1
2 < λ−1

1 ,

here

1 =

√
(1 − sn(α; k))

(
dn(α; k) −

√
1 − k2sn(α; k)

)
cn(α; k)

(3.9)

nd

2 =

√
(1 − sn(α; k))

(
dn(α; k) +

√
1 − k2sn(α; k)

)
cn(α; k)

, (3.10)

where we have used that dn(α; k) >
√
1 − k2 >

√
1 − k2sn(α; k)

or α ∈ (0, K (k)). In the two limiting cases, we have

• λ2 → 1 as k → 0 and

λ1 →
1 − sin(α)
cos(α)

, α ∈

(
0,
π

2

)
. (3.11)

• λ2 → λ1 as k → 1 with

λ1 →

√
cosh(α) − sinh(α), α ∈ (0,∞). (3.12)

.2. Cnoidal periodic wave solutions

These are solutions of the dmKdV equation (1.1) and the
econd-order difference equation (2.11) given by the Jacobi cnoida
lliptic function:

n(t) = Acn(ξ ; k), ξ := αn + ct,

ith four parameters A > 0, α > 0, c > 0, and k ∈ (0, 1)
s before. Using the formula for addition of the Jacobi elliptic
unctions,

n(ξ ± α; k)

=
cn(ξ ; k)cn(α; k) ∓ sn(ξ ; k)dn(ξ ; k)sn(α; k)dn(α; k)

1 − k2sn2(ξ ; k)sn2(α; k)
,

we obtain similarly to the dnoidal solutions that

A = k
sn(α; k)
dn(α; k)

,

c =
2sn(α; k)
dn(α; k)

, ω =
2cn(α; k)
dn2(α; k)

, α ∈ (0, K (k)),

here K (k) corresponds to the first maximum of sn(α; k). The
xact cnoidal periodic wave solution can be written explicitly as

un(t) = k
sn(α; k)
dn(α; k)

cn(αn + ct; k),

c =
2sn(α; k)
dn(α; k)

, ω =
2cn(α; k)
dn2(α; k)

,

(3.13)
6

where α ∈ (0, K (k)) and k ∈ (0, 1) are arbitrary parameters. The
imit k → 0 gives the trivial solution, whereas the limit k → 1
ives the same solitary wave (3.7). Taking the conserved quantity
2.12) at ξ = 0 yields
2
1 = A2 (

ωcn(α; k) − 1 − cn2(α; k) − A2cn2(α; k)
)

=
k2sn2(α; k)
dn4(α; k)

(
2cn2(α; k) − dn2(α; k) − dn2(α; k)cn2(α; k)

− k2sn2(α; k)cn2(α; k)
)

= −k2(1 − k2)
sn4(α; k)
dn4(α; k)

,

here we have used the fundamental relation for the Jacobi
lliptic functions. This allows us to compute

1 = iσ1k
√
1 − k2

sn2(α; k)
dn2(α; k)

, σ1 = ±1, (3.14)

after which the bi-quadratic equation λ21+λ
−2
1 = ω−2F1 is solved

by

λ21 =
(1 − σ1σ2ksn(α; k))(cn(α; k) + iσ2

√
1 − k2sn(α; k))

dn2(α; k)
,

σ2 = ±1.

here exist exactly two complex quadruplets of eigenvalues {±λ1,

λ−1
1 ,±λ̄1,±λ̄

−1
1 }, where

1 =

√
(1 − ksn(α; k))(cn(α; k) + i

√
1 − k2sn(α; k))

dn(α; k)
, (3.15)

atisfies the ordering |λ1| < 1 < |λ−1
1 |.

To summarize, the two families of traveling periodic waves of
he dmKdV equation are given by the dnoidal wave (3.5) and the
noidal wave (3.13). We have shown that the dnoidal waves are
elated to four pairs of real roots of P(λ) symmetric about the unit
circle and that the cnoidal waves are related to two quadruplets
of complex roots of P(λ) symmetric about the unit circle.

4. Modulational instability of traveling periodic waves

Let {un(t)}n∈Z be a solution to the dmKdV equation (1.1).
y adding a perturbation {vn(t)}n∈Z and expanding (1.1) up to
he linear terms in {vn(t)}n∈Z, we obtain the linearized dmKdV
quation in the form:

˙n = (1 + u2
n)(vn+1 − vn−1) + 2un(un+1 − un−1)vn, n ∈ Z. (4.1)

useful property of integrable equations is the explicit relation
etween solutions of the linearized equations and solutions of the
inear Lax equations. The following lemma specifies this relation
or the linearized dmKdV equation (4.1).

emma 4. Let {ϕn(t)}n∈Z with ϕn = (pn, qn)T be an arbitrary
olution of the Lax system (2.1) and (2.2) with some arbitrary λ.
hen,

n = λp2n − λ−1q2n + 2unpnqn (4.2)

s a solution to the linearized dmKdV equation (4.1).

roof. The proof is based on direct computations. It follows from
2.1) that

n−1 =
1√

1 + u2

(
λ−1

−un−1
un−1 λ

)
ϕn. (4.3)
n−1
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ifferentiating of (4.2) in t and using the dmKdV equation (1.1)
and thelinear equation (2.2) yield

v̇n =(λ2 − λ−2)(λp2n + λ−1q2n)

+ 2u2
n(λq

2
n − λ−1p2n) + 2unun−1(λ−1q2n − λp2n)

+ 2pnqn[(λ2 + λ−2)un + un+1(1 + u2
n) + un−1(1 − u2

n)].

By using (2.1) and (4.3), we obtain

vn+1 =
(λ3 − λ−1u2

n − 2λunun+1)p2n + (λu2
n − λ−3

+ 2λ−1unun+1)q2n
1 + u2

n

+
2(λ2un + λ−2un + un+1 − u2

nun+1)pnqn
1 + u2

n

and

vn−1 = λ−1p2n − λq2n − 2un−1pnqn,

which yield

(1 + u2
n)(vn+1 − vn−1) + 2un(un+1 − un−1)vn

= (λ2 − λ−2)(λp2n + λ−1q2n)

+ 2u2
n(λq

2
n − λ−1p2n) + 2unun−1(λ−1q2n − λp2n)

+ 2pnqn[(λ2 + λ−2)un + un+1(1 + u2
n) + un−1(1 − u2

n)].

Hence vn(t) obtained from (4.2) satisfies (4.1). □

Remark 4. The constraint (2.3) and the squared eigenfunction
relation (4.2) look similar but we remind readers that pn and qn
in (2.3) are computed for a root λ1 of P(λ), whereas pn and qn
in (4.2) are computed for arbitrary λ. We do not know how the
relation for solutions of the linearized equations can be deduced
from the nonlinearization method. In the particular case of the
dmKdV equation, we have found the relation (4.2) by brutal
computations.

Remark 5. If we use the Lax pair in Remark 1, then we are not
able to connect the squared eigenfunctions of the linear equations
with solutions to the linearized dmKdV equation.

For the traveling periodic wave of the form un(t) = φ(αn+ ct)
ith some α > 0 and c > 0, we can separate variables of the

inearized mKdV equation in the form

n(t) = eΛtw(ξ ), ξ := αn + ct.

here Λ is the spectral parameter and w(ξ ) is an eigenfunction.
he pair (Λ, w) is a solution of the following spectral stability

problem

Λw(ξ ) + cw′(ξ ) = (1 + φ2(ξ )) [w(ξ + α) − w(ξ − α)]

+ 2φ(ξ ) [φ(ξ + α) − φ(ξ − α)]w(ξ ), (4.4)

here w is assumed to be a bounded function of ξ ∈ R.
We give the analytical solution of the linearized dmKdV equa-

ion for the constant wave solution φ(ξ ) = tan(α) in Appendix B,
from which it follows that the constant wave is modulationally
stable. Fig. 3 shows the Lax spectrum for the constant wave
with α =

π
6 . The Lax spectrum is obtained from the explicit

expression (B.5) in Appendix B. The red dots show eigenvalues
{±λ1,±λ

−1
1 ,±λ2,±λ

−1
2 } with λ1 given by (3.11) and λ2 = 1.

In what follows, we construct the numerical solutions for
the Lax spectrum and the modulation stability spectrum for the
dnoidal and cnoidal periodic waves (3.5) and (3.13).

4.1. Dnoidal waves

In order to obtain the Lax spectrum of the spectral problem
(2.1) associated with the dnoidal wave (3.5), we set α = K (k)/M
7

Fig. 3. Lax spectrum for the constant wave with α =
π
6 .

ith integer M ∈ N. Then, the dnoidal wave un(t) = φ(αn + ct)
becomes periodic in n ∈ Zwith the period 2M for any fixed t ∈ R.

Combining (2.1) and (4.3) for ϕn = (pn, qn)T yields the eigen-
alue problem in the form⎧⎨⎩

√
1 + u2

npn+1 +

√
1 + u2

n−1pn−1 − (un − un−1)qn = zpn,

(un − un−1)pn +
√
1 + u2

nqn+1 +

√
1 + u2

n−1qn−1 = zqn,

(4.5)

here z := λ + λ−1. We use the Floquet theorem for differ-
nce equations and look for the Bloch solution of the eigenvalue
roblem (4.5) in the form

pn = p̂n(θ )eiθn, qn = q̂n(θ )eiθn,
pn+2M = pn, qn+2M = qn,

(4.6)

here θ ∈ [0, π/M] is a continuous parameter. Once the spectral
ands z(θ ) are obtained from (4.5) and (4.6), the Lax spectrum
(θ ) is obtained from solutions of the quadratic equation λ(θ ) +

(θ )−1
= z(θ ) for θ ∈ [0, π/M].

Fig. 4 shows the Lax spectrum for the dnoidal wave (3.5) for
= K (k)/M with M = 10. Two cases are shown: k = 0.7 (left)

and k = 0.95 (right). For k = 0.7 the Lax spectrum is similar
to the one shown in Fig. 3. However, the spectral bands on the
real axis are now disjoined from the unit circle. The real spectral
bands are located for |λ| ∈ [λ1, λ2] and |λ| ∈ [λ−1

2 , λ−1
1 ]. The red

ots show eigenvalues {±λ1,±λ
−1
1 ,±λ2,±λ

−1
2 }, where λ1 and λ2

re given by (3.9) and (3.10). For k = 0.95, the real spectral bands
ecomes narrow, and as k → 1 they shrink to four points ±λ1
nd ±λ−1

1 , where λ1 is given by (3.12).
In order to solve the spectral stability problem (4.4) with the

quared eigenfunction relation (4.2), we separate the variables for
he time evolution of eigenfunctions:

pn(t) = p̂(ξ, θ )eiθα
−1(ξ−ct)+γ (θ )t ,

qn(t) = q̂(ξ, θ )eiθα
−1(ξ−ct)+γ (θ )t ,

(4.7)

here p̂(ξ+2K (k), θ ) = p̂(ξ, θ ) and q̂(ξ+2K (k), θ ) = q̂(ξ, θ ). The
efinition of θ in (4.7) coincides with the one in (4.6). After the
eparation of variables, we can reduce the time evolution problem
2.2) to the eigenvalue problem{

−c∂ξ p̂ +
1
2 (λ

2
− λ−2)p̂ +

[
λφ(ξ ) + λ−1φ(ξ − α)

]
q̂ = γ p̂,

−
[
λφ(ξ − α) + λ−1φ(ξ )

]
p̂ − c∂ξ q̂ −

1
2 (λ

2
− λ−2)q̂ = γ q̂,

(4.8)

where the value of λ = λ(θ ) is defined by the Lax spectrum for
the same value of θ ∈ [0, π/M] and the value of γ = γ (θ ) is
computed from the spectral problem (4.8) with periodic coeffi-
cients. The spectral problem (4.8) has been solved numerically by
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Fig. 5. Stability spectrum for the dnoidal wave with α = K (k)/M with M = 20
for k = 0.8.

using the Fourier interpolation method [42]. The stability spec-
trum in the spectral problem (4.4) is obtained from the squared
eigenfunction relation (4.2) by Λ = 2γ (θ ).

Fig. 5 shows the results of numerical approximations for the
dnoidal wave (3.5) with k = 0.8. The spectrum is located on the
imaginary axis, which suggests that the dnoidal wave is spectrally
(and modulationally) stable, similarly to the constant wave in
Appendix B.

Remark 6. The accuracy of numerical approximation deteriorates
for larger values of k and we have observed spurious unstable
eigenvalues for k ≥ 0.9.

4.2. Cnoidal waves

For the cnoidal waves (3.13), the period of Jacobi elliptic
function changes to 4K (k). When we fix α = K (k)/M with M ∈ N,
the potential un(t) becomes periodic in n ∈ Z with the period 4M
for any fixed t ∈ R.

Fig. 6 shows the Lax spectrum for the cnoidal wave (3.13) for
α = K (k)/M with M = 20 for the same values of k as in Fig. 4.
For k = 0.7 the spectral bands are complex and they cross the
unit circle. The eight end points of the complex spectral bands
are determined by λ1 given by (3.15) and they are shown by red
dots. For k = 0.95, the complex spectral bands are disjoint from
the unit circle, and as k → 1 they shrink to four points ±λ1 and
λ−1, where λ is given by (3.12).
1 1

8

Fig. 7 shows the stability spectrum for the cnoidal wave (3.13)
with k = 0.8. There are two unstable bands of the spectrum
outside the imaginary axis which are connected near the origin.
As a result, the cnoidal wave is spectrally (and modulationally)
unstable.

To summarize, the Lax spectrum of the dnoidal and cnoidal
waves in the dmKdV equation (Figs. 4 and 6) resembles the Lax
spectrum of the dnoidal and cnoidal waves in the continuous
mKdV equation (left panels on Figs. 1 and 2). The only difference
is that the spectral bands of the dmKdV equation occupy the unit
circle with four bands outside the unit circle, whereas the spectral
bands of the mKdV equation occupy the imaginary axis with two
bands outside the imaginary axis. Also similarly to the case of
the continuous mKdV equation, the dnoidal waves of the dmKdV
equation are spectrally stable, whereas the cnoidal waves of the
dmKdV equation are spectrally unstable.

5. One-fold Darboux transformation

The one-fold Darboux transformation (1-fold DT) with a real
eigenvalue can be used to construct a new solution to the dmKdV
equation from a given solution. The dnoidal wave (3.5) is asso-
ciated with real eigenvalues {±λ1,±λ

−1
1 ,±λ2,±λ

−1
2 } given by

oots of P(λ) in (3.4), where λ1, λ2 ∈ R are given by (3.9) and
3.10). 1-fold DT will be applied to construct algebraic solitons
spatially decaying traveling waves with an algebraic rate of
ecay) propagating on the dnoidal wave background.
The following lemma presents the explicit form of 1-fold DT.
e prove the explicit transformation by direct methods similarly

o the recent work [43].

emma 5. Let {un(t)}n∈Z be a solution of the dmKdV equation (1.1)
nd {ϕn(t)}n∈Z with ϕn = (pn, qn)T be a nontrivial real solution to
he linear system (2.1)–(2.2) with λ = λ1 ∈ R. Then,

ˆn = −
p2n + λ21q

2
n

λ21p2n + q2n
un +

(1 − λ41)pnqn
λ1(λ21p2n + q2n)

(5.1)

resents a new solution of the dmKdV equation (1.1).

roof. Let {ϕn}n∈Z be a solution to the linear Eqs. (2.1) and (2.2)
ith arbitrary λ for {un(t)}n∈Z. We will show that {ϕ̂n}n∈Z is a
olution to the same equations with {ûn(t)}n∈Z given by (5.1) and
he same λ if ϕ̂n = Mn(λ)ϕn, where the Darboux matrix Mn(λ) is
iven by

n(λ) =

√
p2n + λ21q2n√
λ2p2 + q2

(
λ+ λ−1an bn

−bn λan + λ−1

)
(5.2)
1 n n
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Fig. 7. Stability spectrum for the cnoidal wave with α = K (k)/M with M = 20
or k = 0.8.

ith

n = −
λ21p

2
n + q2n

p2n + λ21q2n
, bn =

(1 − λ41)pnqn
λ1(p2n + λ21q2n)

. (5.3)

or this, we need to show validity of the Darboux equations

(ûn, λ)Mn(λ) = Mn+1(λ)U(un, λ) (5.4)

and

V (ûn, λ)Mn(λ) = Ṁn(λ) + Mn(λ)V (un, λ). (5.5)

ubstituting (2.1) and (5.2) into (5.4) and collecting different
owers with respect to λ yields the following system of equations

⎧⎪⎨⎪⎩
an+1 − an − bn+1un + bnûn = 0,
anûn + bn − un = 0,
ûn − an+1un − bn+1 = 0,
an+1(1 + u2

n) − an(1 + û2
n) = 0.

(5.6)

It follows from (2.1) that⎧⎪⎪⎨⎪⎪⎩
p2n+1 + λ21q

2
n+1 = λ21p

2
n + q2n,

(1 + u2
n)(λ

2
1p

2
n+1 + q2n+1) = (λ41 + u2

n)p
2
n + 2(λ31 − λ−1

1 )unpnqn
+ (λ21u

2
n + λ−2

1 )q2n,
(1 + u2

n)pn+1qn+1 = −λ1unp2n + (1 − u2
n)pnqn + λ−1

1 unq2n.

Using these equations together with (5.1) and (5.3), we have
confirmed validity of each equation in system (5.6). Substituting
(2.2) and (5.2) into (5.5) and collecting different powers with
 o

9

respect to λ yields the system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
bnûn − bnun−1 −

1
2a

−1
n ȧn = 0,

bnûn−1 − bnun +
1
2 ȧn = 0,

un − bn − anûn = 0,
ḃn + un−1 + anun −

1
2a

−1
n ȧnbn − ûn − anûn−1 = 0,

ûn−1 − anun−1 − bn = 0,

(5.7)

here the third and fifth equations repeat the last two equations
n (5.6) and the first two equations are equivalent to each other.
hus, system (5.7) is equivalent to just two equations:{
ȧn = −2bn(anun−1 + bn − un),
anḃn = (a2n − b2n − 1)(anun−1 + bn − un).

(5.8)

t follows from (2.2) that
d
dt (λ

2
1p

2
n + q2n) = (λ21 − λ−2

1 )(λ21p
2
n − q2n) + 2unpnqn(λ31 − λ−1

1 ),
d
dt (p

2
n + λ21q

2
n) = (λ21 − λ−2

1 )(p2n − λ21q
2
n) + 2un−1pnqn(λ−1

1 − λ31),
d
dt (pnqn) = un(λ1q2n − λ−1

1 p2n) + un−1(λ−1
1 q2n − λ1p2n).

ogether with (5.3) these equations yield

˙n =
2(1 − λ41)pnqn
λ1(p2n + λ21q2n)2

[
λ1(λ21 − λ−2

1 )pnqn

+ un(p2n + λ21q
2
n) + un−1(λ21p

2
n + q2n)

]
nd

˙n =
1 − λ41

λ1(p2n + λ21q2n)2
[(λ1q2n − λ−1

1 p2n)

× [un(p2n + λ21q
2
n) + un−1(λ21p

2
n + q2n)]

− (λ21 − λ−2
1 )pnqn(p2n − λ21q

2
n)].

sing these equations and (5.3), we have confirmed validity of
ach equation in system (5.8). □

emark 7. Let {un(t)}n∈Z be the dnoidal wave given by (3.5) and
ϕn(t)}n∈Z with ϕn = (pn, qn)T be the associated eigenfunction of
he linear system (2.1)–(2.2) with λ = λ1, where λ1 is a root of
(λ) in (3.4). The 1-fold DT yields

ˆn = −F1u−1
n

= −
σ1sn(α; k)
cn(α; k)

√
1 − k2

dn(ξ ; k)

= −
σ1sn(α; k)
cn(α; k)

dn(ξ + K (k); k)

= −σ1un(t + c−1K (k)),

here we have used (3.8) for F1. The new solution is a translation
f the dnoidal wave (3.5) to a half-period and the flip of the sign
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f σ1 = +1. These transformations are allowed by the symmetries
f the dmKdV equation (1.1).

In order to construct a nontrivial new solution {ûn(t)}n∈Z on
the background of the dnoidal wave (3.5) in Remark 7, we need
to construct the second, linearly independent solution of the
linear system (2.1) and (2.2) for the same eigenvalue λ = λ1.
his solution is denoted by {ϕ̂n(t)}n∈Z with ϕ̂n = (p̂n, q̂n)T. The
ollowing lemma gives the explicit construction of the second
olution.

emma 6. Let {un(t)}n∈Z be a solution of the dmKdV equation (1.1)
atisfying the reduction (2.3) and {ϕn(t)}n∈Z with ϕn = (pn, qn)T
e the associated eigenfunction of the linear system (2.1)–(2.2) with
= λ1, where λ1 is given by a root of the polynomial P(λ) in (3.4).
he second solution {ϕ̂n(t)}n∈Z with ϕ̂n = (p̂n, q̂n)T of the same linear
ystem (2.1)–(2.2) with λ = λ1 is given by

ˆn = pnθn −
qn

p2n + q2n
, q̂n = qnθn +

pn
p2n + q2n

, (5.9)

here the scalar sequence {θn(t)}n∈Z satisfies

θn+1 − θn =
(λ1 + λ−1

1 )2(u2
n − F1)

(1 + u2
n)(un + un−1)(un + un+1)

(5.10)

and

θ̇n =
(λ1 + λ−1

1 )2(u2
n + u2

n−1 − 2F1)
(un + un−1)2

. (5.11)

Proof. Substitution of (5.9) into the linear system (2.1) and
elimination of pn+1 and qn+1 from the same linear system (2.1)
yield the first-order difference equation

θn+1 − θn

=
(λ1 − λ−1

1 )un(p2n − q2n) + (λ−2
1 − λ21)pnqn

(p2n + q2n)
[
λ21p2n + λ−2

1 q2n + u2
n(p2n + q2n) + 2(λ1 − λ−1

1 )unpnqn
] .

his equation is simplified after elimination of the squared eigen-
unctions with the inverse relations (2.6) and (2.10) to the form:

n+1 − θn

=
(λ1 + λ−1

1 )2(u2
n − F1)

(un + un−1)
[
(λ21 + λ−2

1 + 2F1 + 1)un + u3
n − un−1(1 + u2

n)
] .

y using (2.11), we rewrite this equation in the symmetric form
5.10).

Similarly, substitution of (5.9) into the linear system (2.2) and
limination of ṗn and q̇n from the same linear system (2.2) yields
he first-order differential equation

˙n =
(λ1 − λ−1

1 )(un − un−1)(p2n − q2n) − 2(λ21 − λ−2
1 )pnqn

(p2n + q2n)2
.

his equation is simplified after elimination of the squared eigen-
unctions with the inverse relations (2.6) and (2.10) to the form
5.11). □

emark 8. The Wronskian between the two solutions {ϕn(t)}n∈Z
nd {ϕ̂n(t)}n∈Z with ϕn = (pn, qn)T and ϕ̂n = (p̂n, q̂n)T is normal-
zed to unity as follows:

n(t)q̂n(t) − p̂n(t)qn(t) = 1, ∀n ∈ Z, ∀t ∈ R.

emark 9. System (5.10) and (5.11) is compatible if {un(t)}n∈Z
atisfies (2.11) and (2.12). Indeed, taking derivative of (5.10) in t
nd substituting (5.11) gives a constraint on {un(t)}n∈Z, which is

quivalent to system (2.11) and (2.12).

10
We are now ready to construct a new solution on the back-
round of the dnoidal wave. Hence we take

n(t) =
sn(α; k)
cn(α; k)

dn(ξ ; k), ξ = αn + ct.

y separation of variables, the solution of system (5.10) and (5.11)
an be written in the form

n(t) = an + bt + χ (ξ ), (5.12)

here χ (ξ + 2K (k)) = χ (ξ ) is periodic with the same period
s dn(ξ ; k). It follows from (5.11) with the help of (3.8) that b
s uniquely found in the form

=
(λ1 + λ−1

1 )2

2K (k)

×

∫ 2K (k)

0

dn2(ξ ; k) + dn2(ξ − α; k) − 2σ1
√
1 − k2

[dn(ξ ; k) + dn(ξ − α; k)]2
dξ,

and χ with normalization χ (0) = 0 is uniquely found in the form

cχ (ξ ) = (λ1 + λ−1
1 )2

×

∫ ξ

0

dn2(ξ ′
; k) + dn2(ξ ′

− α; k) − 2σ1
√
1 − k2

[dn(ξ ′; k) + dn(ξ ′ − α; k)]2
dξ ′

− bξ,

where σ1 is defined by (3.8). It follows from (5.10) evaluated at
ξ = 0 that a is uniquely found from

a + χ (α) =
(λ1 + λ−1

1 )2 cn2(α; k) [1 − σ1
√
1 − k2]

[1 + dn(α; k)]2
.

The 1-fold DT with the second solution (5.9), where θn(t) is
given by (5.12), yields a new solution to the dmKdV equation (1.1)
in the form:

ûn = −
p̂2n + λ21q̂

2
n

λ21p̂2n + q̂2n
un +

(1 − λ41)p̂nq̂n
λ1(λ21p̂2n + q̂2n)

. (5.13)

Fig. 8 shows the solution surface for the new solution (5.13)
ssociated with the dnoidal wave (3.5) for the eigenvalues given
y either (3.9) (top) or (3.10) (bottom). In both cases, we have
elected α = K (k)/4 and k = 0.95 for illustration. The solutions
re shown in the continuous coordinates ξ and t , where ξ = αn+

t . The background wave is obtained from the limit |θn| → ∞, for
hich

ˆn(t) → −σ1un(t + c−1K (k)).

or λ1, the background wave is positive since σ1 = −1. If λ1
s replaced by λ2 given by (3.10), then the background wave
s negative since σ1 = +1. In both cases, an algebraic soliton
ropagates on the background wave. The algebraic soliton is
ound from (5.12), which can be rewritten as

n(t) = α−1aξ + χ (ξ ) + (b − α−1ac)t.

e have detected numerically that a, b > 0 with a−1b > α−1c
or λ1 (top) and a, b < 0 with a−1b < α−1c for λ2 (bottom).
s a result, the algebraic soliton moves to the left relative to the
noidal wave (which also moves to the left since α > 0 and
> 0) in the former case and it moves to the right relative to

he dnoidal wave in the latter case.
To summarize, the 1-fold DT has been used for the dnoidal

ave (3.5) with the real eigenvalues λ1 and λ2 found from roots
f the polynomial P(λ) in (3.4). We have shown that two distinct
lgebraic solitons propagate on the dnoidal wave background for
wo quadruplets of real eigenvalues associated with λ1 and λ2
iven by (3.9) and (3.10). Stable propagation of algebraic solitons
s related to the modulational stability of the dnoidal waves.
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6. Two-fold Darboux transformation

The two-fold Darboux transformation (2-fold DT) with two
eigenvalues can be used to generate a new real solution to the
dmKdV equation both if the two eigenvalues are real and if
they are complex-conjugate to each other. Therefore, it will be
used to obtain two algebraic solitons propagating on the dnoidal
wave background and a rogue wave arising on the cnoidal wave
background.

The following lemma presents the explicit form of 2-fold DT.
Although similar expressions for 2-fold DT have appeared in the
literature [22] based on a different Lax pair, we have checked
computationally how to generalize the 2-fold DT from the Lax
pair (2.1) and (2.2). The technical details of computations are
presented in Appendix C.

Lemma 7. Let {un(t)}n∈Z be a solution of the dmKdV equation
(1.1). Let {ϕ1n(t)}n∈Z with ϕ1n = (p1n, q1n)T and {ϕ2n(t)}n∈Z with
ϕ2n = (p2n, q2n)T be nontrivial solutions to the linear system (2.1)–
(2.2) with λ = λ1 and λ = λ2 such that λ21 ̸= λ22 and λ21λ

2
2 ̸= 1.

Then, a new solution of the dmKdV equation (1.1) is given by

ûn =
Υn

∆n
un −

Σn

λ1λ2∆n
, (6.1)

here

Υn =λ22(q
2
2n + λ22p

2
2n)(p

2
1n + λ61q

2
1n) + λ21(q

2
1n + λ21p

2
1n)(p

2
2n + λ62q

2
2n)

− 2λ21λ
2
2(p

2
1n + λ21q

2
1n)(p

2
2n + λ22q

2
2n)

− 2p1nq1np2nq2nλ1λ2(λ41 − 1)(λ42 − 1),

=(λ2 − λ2)(λ2λ2
[ 4 2 2 2
n 1 2 1 2 − 1) λ1(λ2 − 1)p2nq2n(q1n + λ1p1n)

11
− λ2(λ41 − 1)p1nq1n(q22n + λ22p
2
2n)

]
,

∆n =(λ21λ
2
2 − 1)2(λ21p

2
1nq

2
2n + λ22p

2
2nq

2
1n)

+ (λ21 − λ22)
2(λ21λ

2
2p

2
1np

2
2n + q21nq

2
2n)

− 2p1nq1np2nq2nλ1λ2(λ41 − 1)(λ42 − 1).

Let us first apply the 2-fold DT to the bounded eigenfunctions
atisfying the reduction (2.3) and (2.5) with the eigenvalues λ1
nd λ2 found from the roots of P(λ) in (3.4).

emark 10. By using (2.6) and (2.10), we eliminate squared
igenfunctions from Υn, Σn, and ∆n in terms of un and un−1.
he resulting expressions can be simplified due to the conserved
uantity (2.12) with F1 for λ1 and F2 for λ2:

Υn = (F1 − F2)2λ31λ
3
2,

n = (F2 − F1)λ21λ
2
2(λ

2
1 − λ22)(λ

2
1λ

2
2 − 1)un,

∆n = (F1 − F2)2λ31λ
3
2.

he 2-fold DT yields

ˆn = un +
(λ21 − λ22)(λ

2
1λ

2
2 − 1)

λ21λ
2
2(F1 − F2)

un.

or the dnoidal wave (3.5), we use (3.8), (3.9), and (3.10) to obtain
ˆn = un − 2un = −un so that the new solution is a flip of
he sign of the dnoidal wave. For the cnoidal wave (3.13), we
se (3.14) and (3.15) with λ2 = λ̄1 to obtain the same result:

ˆn = un − 2un = −un.

When bounded periodic solutions of the linear system (2.1)
nd (2.2) for λ = λ and λ = λ in Remark 10 are replaced
1 2
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by the unbounded solutions constructed in Lemma 6, the 2-
fold DT produces a new solution to the dmKdV equation in the
form of two algebraic solitons propagating on the dnoidal wave
background. Fig. 9 shows the solution surface for the new solution
with α = K (k)/4 and k = 0.95. On comparison with Fig. 8, we
can recognize the same two algebraic solitons associated with
the eigenvalues λ1 and λ2 but superposed together and flipped
in their signs. They are propagating on the background given by
the flipped dnoidal wave −un according to Remark 10.

emark 11. Eigenvalues λ1 and λ2 determine two particular al-
ebraic solitons propagating on the dnoidal wave background. We
o not know if there exist other algebraic solitons which propa-
ate on the dnoidal wave background with different characteristic
peeds.

For the cnoidal wave (3.13), the expressions (5.9) for un-
ounded second solutions of the linear system (2.1) and (2.2) are
o longer useful because

2
n + q2n =

un + un−1

λ1 + λ−1
1

with un + un−1 being sign-indefinite. Therefore, (p̂n, q̂n) given by
5.9) are singular if un is given by (3.13). In order to obtain a non-
ingular expression for the second solution, we follow our work
n [8,15] and modify the representation of the second solution.
he following lemma gives the explicit construction.

emma 8. Let {un(t)}n∈Z be a solution of the dmKdV equation (1.1)
atisfying the constraint (2.3) and {ϕn(t)}n∈Z with ϕn = (pn, qn)T
e the associated eigenfunction of the linear system (2.1)–(2.2) with
= λ1 given by a root of the polynomial P(λ) in (3.4). The second

olution {ϕ̂n(t)}n∈Z with ϕ̂n = (p̂n, q̂n)T of the same linear system
2.1)–(2.2) with λ = λ1 is given by

ˆn = pnθn −
1

2qn
, q̂n = qnθn +

1
2pn

, (6.2)

here the scalar sequence {θn(t)}n∈Z satisfies

θn+1 − θn =
(λ21 − λ−2

1 )2u2
n

2(1 + u2
n)(F1 − unun−1)(F1 − un+1un)

(6.3)

and

θ̇n =
(λ21 − λ−2

1 )2unun−1

(F1 − unun−1)2
. (6.4)

roof. Substitution of (6.2) into the linear system (2.1) and
limination of p and q from the same linear system (2.1)
n+1 n+1

12
yield the first-order difference equation

θn+1 − θn =
un(λ1p2n + λ−1

1 q2n)

2pnqn
[
(1 − u2

n)pnqn + un(−λ1p2n + λ−1
1 q2n)

] ,
hich together with (2.6) and (2.10) yields

n+1 − θn

=
(λ21 − λ−2

1 )2u2
n

2(F1 − unun−1)[F1(1 − u2
n) + unun−1(1 + u2

n) − u2
n(λ

2
1 + λ−2

1 )]
.

y using (2.11), we rewrite this equation in the symmetric form
6.3).

Substitution of (6.2) into the linear system (2.2) and elimina-
ion of ṗn and q̇n from the same linear system (2.2), we arrive
t

˙n =
λ1un−1 + λ−1

1 un

2q2n
+
λ1un + λ−1

1 un−1

2p2n
,

which together with (2.6) and (2.10) yields

θ̇n =
(λ21 − λ−2

1 )2unun−1

(λ21 + λ−2
1 )unun−1 − u2

n − u2
n−1

.

y using (2.12), we rewrite this equation in the symmetric form
6.4). □

emark 12. The Wronskian between the two solutions {ϕn(t)}n∈Z
and {ϕ̂n(t)}n∈Z with ϕn = (pn, qn)T and ϕ̂n = (p̂n, q̂n)T is again
ormalized to unity as below:

n(t)q̂n(t) − p̂n(t)qn(t) = 1, ∀n ∈ Z, ∀t ∈ R.

Remark 13. System (6.3) and (6.4) is compatible if {un(t)}n∈Z
satisfies (2.11) and (2.12).

We take now the cnoidal wave in the form

un(t) = k
sn(α; k)
dn(α; k)

cn(ξ ; k), ξ = αn + ct.

By separation of variables, the solution of system (6.3) and (6.4)
can be written in the form (5.12) with periodic χ (ξ + 4K (k)) =

(ξ ) of the same period as cn(ξ ; k). Since λ1 ∈ C, a, b, and χ are
lso complex-valued. It follows from (6.4) with the help of (3.14)
hat b is uniquely found in the form

=
(λ21 − λ−2

1 )2

4K (k)

×

∫ 4K (k) dn2(α; k)cn(ξ ; k)cn(ξ − α; k)
√ dξ,
0 sn2(α; k)[i 1 − k2 − kcn(ξ ; k)cn(ξ − α; k)]2
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Fig. 10. The solution surface for the rogue wave arising on the background of
he cnoidal wave with α = K (k)/2 and k = 0.95 for eigenvalues λ2 = λ̄1 .

nd χ with normalization χ (0) = 0 is uniquely found in the form

χ (ξ ) = (λ21 − λ−2
1 )2

×

∫ ξ

0

dn2(α; k)cn(ξ ′
; k)cn(ξ ′

− α; k)

sn2(α; k)[i
√
1 − k2 − kcn(ξ ′; k)cn(ξ ′ − α; k)]2

dξ ′
− bξ .

t follows from (6.3) evaluated at ξ = 0 that a is uniquely found
n the form

+ χ (α) =
(λ21 − λ−2

1 )2dn4(α; k)

2sn2(α; k)[i
√
1 − k2 − kcn(α; k)]2

.

ow we take the unbounded solutions constructed in Lemma 8
n the 2-fold DT with λ2 = λ̄1 for the cnoidal wave (3.13). The
ew solution shown in Fig. 10 is a proper rogue wave arising
nd disappearing on background of the flipped cnoidal wave −un.
he solution surface was constructed for α = K (k)/2 and k =

.95. The rogue wave provides four-times magnification of the
mplitude of the cnoidal wave.

emark 14. Higher-order rogue waves may also exist on the
noidal wave background similar to the higher-order rogue waves
xisting on the constant background [20].

To summarize, the 2-fold DT has been used for the dnoidal
ave (3.5) to construct a solution with two algebraic solitons
ropagating in two different directions. By using the 2-fold DT
ith complex-conjugate eigenvalues for the cnoidal wave (3.13),
e have shown that the algebraically decaying solutions corre-
pond to a rogue wave with high magnification of the wave am-
litude. Generation of rogue waves is related to the modulational
nstability of the cnoidal waves.

. Conclusion

We have developed the nonlinearization method in order to
haracterize the traveling periodic waves of the dmKdV equation.
e obtained the characteristic polynomial P(λ) with eight roots

or the end points of the spectral bands of the Lax spectrum out-
ide the unit circle. We showed with numerical approximations
hat the dnoidal waves are spectrally and modulationally stable
nd the cnoidal waves are spectrally and modulationally unstable.
ith the help of Darboux transformations, we constructed local-

zed waves on the background of the traveling periodic waves.
n the case of dnoidal waves, we found two algebraic solitons
ith steady propagation speeds. In the case of cnoidal waves, we

ound a rogue wave which appears from nowhere and disappears
ithout any trace on the wave background.
13
Several questions are opened for further studies. First, it is
nclear if there exists a completeness result which would guar-
ntee that the set of traveling periodic wave solutions of the
mKdV equation coincides with the set of real-valued standing
eriodic wave solutions of the AL equation expressed by the
econd-order difference equation (2.11). Second, compared to the
ontinuous mKdV equation (Appendix A), we do not know if
here exists a relation between the spectral parameter Λ of the
spectral stability problem (4.4) and the characteristic polynomial
P(λ). Third, the question is open if other algebraic solitons or
higher-order rogue waves can be constructed on the background
of traveling periodic waves in the same way as they exist on the
constant background [20]. Finally, numerical accuracy of compu-
tations of the stability spectrum (Figs. 5 and 7) is low and more
sophisticated numerical methods need to be elaborated to obtain
better numerical approximations of the modulation instability of
the cnoidal waves.
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Appendix A. Lax and stability spectra in the continuous case

Let u = u(ξ, τ ) be a solution of the continuous mKdV equation
neqrefmKdV-cont. Then, it is a compatibility condition of the Lax
pair of linear equations:

ϕξ =

(
λ u

−u −λ

)
ϕ (A.1)

and

ϕτ =(
4λ3 + 2λu2 4λ2u + 2λuξ + 2u3 + uξξ

−4λ2u + 2λuξ − 2u3 − uξξ −4λ3 − 2λu2

)
ϕ.

(A.2)

By adding a perturbation v = v(ξ, τ ) to u = u(ξ, τ ) and
xpanding (1.3) up to the linear terms, we obtain the linearized
KdV equation

τ = 6(u2v)ξ + vξξξ . (A.3)

irect computations show that if ϕ = ϕ(ξ, τ ) with ϕ = (p, q)T
s a solution of the Lax system (A.1) and (A.2), then v = p2 − q2
s a solution of the linearized mKdV equation (A.3). This yields
he squared eigenfunction relation which can be used for relating
he Lax spectrum, which consists of the admissible values of
in the spectral problem (A.1) for which the eigenfunctions ϕ

re bounded, to the stability spectrum of the traveling periodic
aves.
Traveling periodic waves u = φ(ξ + cτ ) with the wave speed

satisfy
′′′

− cφ′
+ 6φ2φ′

= 0,
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hich can be integrated twice to obtain
′′
− cφ + 2φ3

= b

nd

φ′)2 − cφ2
+ φ4

= 2bφ + d,

here b and d are integration constants. As is well-known, see [15]
he dnoidal wave in (1.4) corresponds to b = 0, c = 2 − k2,

= k2 − 1, whereas the cnoidal wave in (1.4) corresponds to
b = 0, c = 2k2 − 1, d = k2(1 − k2).

For stability analysis of traveling periodic waves (see, e.g.,
44]), we separate the variables as ϕ = ϕ̂(ξ + cτ )eγ τ and obtain
rom (A.2) the linear homogeneous system, nontrivial solutions of
hich exists if and only if the following characteristic equation is
atisfied:⏐⏐⏐⏐ 4λ3 + 2λφ2

− cλ− γ 4λ2φ + 2λφ′
+ 2φ3

+ φ′′
− cφ

−4λ2φ + 2λφ′
− 2φ3

− φ′′
+ cφ −4λ3 − 2λφ2

+ cλ− γ

⏐⏐⏐⏐
= 0.

xpanding the characteristic equation and using the integration
onstants for the traveling periodic waves, we obtain γ 2

= P(λ),
here the characteristic polynomial for the traveling periodic
aves is

(λ) := 16λ6 − 8cλ4 + (4d + c2)λ2 − b2.

hus, if λ belongs to the Lax spectrum, which is the Floquet spec-
rum of the spectral problem (A.1) associated with the periodic
ave u = φ(ξ + cτ ), then the perturbation v = ψ(ξ + cτ )eΛτ
atisfies the linearized mKdV equation (A.3) with Λ = 2γ =

2
√
P(λ).

Lax spectrum is shown in the left panels of Figs. 1 and 2,
here the end points are nonzero roots of the polynomial P(λ).

Lax spectrum is computed numerically from the spectral problem
(A.1) by using the 12-point central discretization of the first
derivative as in [26]. The stability spectrum is obtained from the
image of the curve γ = ±

√
P(λ), where λ belongs to the Lax

pectrum. It is shown in the right panels of Figs. 1 and 2.

ppendix B. Modulation stability of the constant wave solu-
ion

Let A = tan(α) with α ∈ (0, π2 ) be the amplitude of the
onstant wave φ(ξ ) = A. This coincides with the limiting solution
3.6) of the dnoidal periodic wave (3.5) as k → 0. The linearized
mKdV equation (4.1) becomes

˙n = (1 + A2)(vn+1 − vn−1), n ∈ Z.

With the band-limited Fourier transform,

vn(t) =
1
2π

∫ π

−π

v̂(t, θ )eiθndθ,

e can solve the linearized dmKdV equation in the exact form:

ˆ(t, θ ) = v̂0(θ )e2i(1+A2) sin(θ )t . (B.1)

he spectrum of the difference operator (1 + A2)(E − E−1) is
urely imaginary and can be parameterized by θ ∈ [−π, π] of
he band-limited Fourier transform as follows:

= Λ(θ ) := 2i(1 + A2) sin(θ ), θ ∈ [−π, π], (B.2)

in agreement with the solution (B.1). Hence we conclude that

The constant wave is linearly and spectrally stable.

Let us recover the exact solution (B.1) and the stability spec-
rum (B.2) from Lemma 4. With explicit parameterization A =
14
tan(α), the spectral problem (2.1) is given by

ϕn+1 =

(
λ cos(α) sin(α)
− sin(α) λ−1 cos(α)

)
ϕn. (B.3)

By using the band-limited Fourier transform, the first-order map
(B.3) reduces to an algebraic system(

eiθ − λ cos(α) − sin(α)
sin(α) eiθ − λ−1 cos(α)

)
ϕ̂(t, θ ) = 0. (B.4)

A nonzero solution for ϕ̂(t, θ ) exists if and only if λ belongs to
the Lax spectrum defined from the quadratic equation

λ+ λ−1
= 2

cos(θ )
cos(α)

.

The Lax spectrum is computed explicitly as

λ = λ±(θ ) :=
cos(θ ) ±

√
cos2(θ ) − cos2(α)
cos(α)

, (B.5)

where θ ∈ [−π, π]. The Lax spectrum fills the unit circle for
|θ | ∈ (α, π − α) and the real segments between [λ1, λ

−1
1 ] for

∈ [−α, α] and [−λ−1
1 ,−λ1] for |θ | ∈ [π − α, π], where λ1 is

given by (3.11). Lax spectrum is shown in Fig. 3 for α =
π
6 .

Since

λ(θ ) − λ(θ )−1
= ±2

√
cos2(θ ) − cos2(α)

cos(α)
,

the time evolution of the eigenfunction {ϕn(t)}n∈Z is given by the
system (2.2) defined at the Lax spectrum (B.5). This yields

ϕ̇n = 2
cos(θ )
cos2(α)

×

(
±

√
cos2(θ ) − cos2(α) sin(α)

− sin(α) ∓

√
cos2(θ ) − cos2(α)

)
ϕn.

(B.6)

olving (B.3) and (B.6) yields the solution in the Fourier form

ˆ (t, θ ) = ϕ̂0(θ )eγ (θ )t ,

here ϕ̂0(θ ) is the eigenvector of the homogeneous system (B.4)
ith λ = λ±(θ ). Since the eigenvector is defined up to scalar
ultiplication, we write

ˆ0(θ ) =

(
sin(α)

∓

√
cos2(θ ) − cos2(α) + i sin(θ )

)
and obtain the unique solution for γ (θ ) in the form

γ (θ ) = i
sin(2θ )
cos2(α)

, θ ∈ [−π, π].

Comparing this expressions with the one given by (B.2) shows
that

Λ(2θ ) = 2γ (θ ),

which represents the squared eigenfunction relation (4.2) for a
single Fourier mode ϕn(t) = ϕ̂0(θ )eiθn+γ (θ )t , which gives a single
Fourier mode vn(t) = v̂0(θ )e2iθn+2γ (θ )t with some v̂0(θ ) defined up
to the scalar multiplication.

Appendix C. Verification of the two-fold Darboux transforma-
tion

Let {ϕn(t)}n∈Z be a solution to the linear system (2.1) and (2.2)
with {un(t)}n∈Z for an arbitrary λ. We will show that {ϕ̂n(t)}n∈Z
is a solution of the same equations with {û (t)} given by (6.1)
n n∈Z
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nd the same λ if ϕ̂n = Nn(λ)ϕn, where the Darboux matrix Nn(λ)
is given by

Nn(λ) = |Bn|
−

1
2

(
λ2 + An + λ−2Bn λCn + λ−1Dn
−λDn − λ−1Cn λ2Bn + An + λ−2

)
, (C.1)

where An, Bn, Cn, and Dn are properly chosen.
We need to show validity of the Darboux equations

Un(ûn, λ)Nn(λ) = Nn+1(λ)Un(un, λ), (C.2)

and

Vn(ûn, λ)Nn(λ) = Ṅn(λ) + Nn(λ)Vn(un, λ). (C.3)

Substituting (2.1) and (C.1) into (C.2) and collecting different
powers with respect to λ yields the system of equations

An+1 − unCn+1 − An + ûnDn = 0, (C.4)

Bn+1 − unDn+1 − Bn + ûnCn = 0, (C.5)

un − ûnBn − Cn = 0, (C.6)

unAn+1 + Cn+1 − ûnAn − Dn = 0, (C.7)

unBn+1 + Dn+1 − ûn = 0, (C.8)

|Bn+1|(1 + u2
n) − |Bn|(1 + û2

n) = 0. (C.9)

On the other hand, inserting (2.2) and (C.1) into the Darboux
Eq. (C.3) and collecting different powers with respect to λ yields
the system of equations

ûnDn − un−1Cn −
1
2
B−1
n Ḃn = 0, (C.10)

ûnCn + ûn−1Dn − unCn − un−1Dn + Ȧn −
1
2
AnB−1

n Ḃn = 0, (C.11)

ûn−1Cn − unDn +
1
2
Ḃn = 0, (C.12)

ûnBn − un + Cn = 0, (C.13)

ûn−1 − un−1Bn − Dn = 0, (C.14)

ûnAn + ûn−1Bn − un−1 − unAn + Dn − Ċn +
1
2
CnB−1

n Ḃn = 0,

(C.15)

ûn + ûn−1An − unBn − un−1An − Cn − Ḋn +
1
2
DnB−1

n Ḃn = 0.

(C.16)

We claim that systems (C.4)–(C.9) and (C.10)–(C.16) are satisfied
by the explicit expressions

An =
An

λ1λ2Υn
, Bn =

∆n
Υn
,

Cn =
Σn

λ1λ2Υn
, Dn =

Dn
λ1λ2Υn

,
(C.17)

where Υn, Σn, and ∆n are given in Lemma 7, whereas An and Dn
re given by

n = p1nq1np2nq2n(λ41 − 1)(λ42 − 1)(λ21 + λ22)(λ
2
1λ

2
2 + 1)

− λ1λ2(λ21 − λ22)
2(λ21 + λ22)(p

2
1np

2
2n + q21nq

2
2n)

− λ1λ2(λ21λ
2
2 − 1)2(λ21λ

2
2 + 1)(p22nq

2
1n + p21nq

2
2n),

Dn = (λ21 − λ22)(λ
2
1λ

2
2 − 1)

[
p1nq1nλ2(p22n + λ22q

2
2n)(λ

4
1 − 1)

− p2nq2nλ1(p21n + λ21q
2
1n)(λ

4
2 − 1)

]
.

Thanks to (C.17), the identity (C.6) gives the two-fold Darboux
ransformation (6.1). By using (2.1), the identity (C.6), and the
ransformation (C.17), we have confirmed validity of Eqs. (C.4),
C.5), (C.7), (C.8), and (C.9) by using Wolfram’s Mathematica
ymbolic computations.
It is further obvious that (C.13) and (C.14) are the same as (C.6)

nd (C.8). With the aid of (C.13) and (C.14), the identities (C.10)
15
nd (C.12) are equivalent to

˙n = 2[unDn − Cn(Dn + un−1Bn)], (C.18)

nd the formulas (C.11), (C.15), and (C.16) are reduced to

Ȧn = un[Cn + B−1
n (AnDn − Cn)] + un−1(Dn − AnCn − BnDn)

+ B−1
n Cn(Cn − AnDn) − D2

n, (C.19)

Ċn = un[B−1
n (An + CnDn) − An] + un−1(B2

n − C2
n − 1)

+ Dn(Bn + 1) − B−1
n Cn(An + CnDn), (C.20)

˙ n = un[B−1
n (D2

n + 1) − Bn] + un−1[An(Bn − 1) − CnDn]

− B−1
n Cn(D2

n + 1) + AnDn − Cn. (C.21)

y using (2.2) and the transformation (C.17), we have confirmed
alidity of Eqs. (C.18), (C.19), (C.20), and (C.21) by using Wol-
ram’s Mathematica symbolic computations.
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