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Abstract
We propose a gauge-invariant system of the Chern–Simons–Schrödinger type on a
one-dimensional lattice. By using the spatial gauge condition, we prove local and
global well-posedness of the initial-value problem in the space of square summable
sequences for the scalar field. We also study the existence region of the stationary
bound states, which depends on the lattice spacing and the nonlinearity power. Amajor
difficulty in the existence problem is related to the lack of variational formulation of
the stationary equations. Our approach is based on the implicit function theorem in
the anti-continuum limit and the solvability constraint in the continuum limit.

Keywords Chern–Simons–Schrödinger equations · Initial-value problem · Discrete
solitons · Continuum limit · Anticontinuum limit

Mathematics Subject Classification 35Q55 · 70S15

1 Introduction

Gauge theories are important in quantum electrodynamics, quantum chromodynam-
ics, and particle physics. In quantum chromodynamics, perturbative calculations break
down frequently in the high-energy regime resulting in the so-called ultraviolet diver-
gence, or the divergence at small lengths. Non-perturbative calculations formally
involve evaluating an infinite-dimensional path integral which is computationally
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intractable. To overcome the divergence problem, Wilson developed lattice gauge
theory by working on lattice with the smallest length determined by the lattice spacing
h [33]. The path integral becomes finite-dimensional on lattice and thus can be easily
evaluated. When h goes to zero, the lattice gauge theory converges to the continuum
gauge theory at the formal level. See [12,21,31] for review. The lattice gauge theory
attracted a lot of attention of physicists and mathematicians (see [1,4,14] for recent
studies).

Dynamics of matter and gauge fields can be described by several types of models
which include nonlinear wave, Schrödinger, Dirac, and Ginzburg–Landau equations
with either Maxwell or Chern–Simon gauge. Our work corresponds to the case of the
nonlinear Schrödinger equation with the Chern–Simon gauge, which we label as the
CSS system.

In the continuous setting, the initial-value problem of the CSS system was studied
in [2,23] and the stationary bound states of the CSS systemwere constructed in [3,29].
The main objective of this work is to propose a gauge-invariant discretization of the
CSS system on a one-dimensional grid with the lattice spacing h > 0 and to study both
the initial-value problem and the existence of stationary bound states in the discrete
CSS system.

The concepts of gauge invariance and preservation of the gauge constraints are
crucial elements in the study of gauged nonlinear evolution equations. For instance, the
initial-value problem of the nonlinear Schrödinger equation with the Maxwell gauge
was studied in [15] by considering equations with a dissipation term, which was added
to preserve the constraint equation. As the dissipation term vanishes, conservation of
energy and charge was used to obtain compactness.

The numerical studies of the gauged evolution equations are mostly confined to
the conventional finite difference and finite element methods [22,24,30,34]. In the last
few decades, structure-preserving discretization [6] has emerged as an important tool
of the numerical computations. The gauge invariant difference approximation of the
Maxwell gauged equations was studied in [5,7,9,10]. In particular, it was shown in
[7] that the discretized solution of the finite element method with a gauge constraint
converges to a weak solution of the Maxwell-Klein-Gordon equation in two space
dimensions for initial data of finite energy. The essential features of the discretization
were the energy conservation and the constraint preservation, which give control over
the curl and divergence of the vector potential.

The discrete CSS system, which we consider here, is also based on the finite-
difference method and the discretization is proposed in such a way that the CSS
system remains gauge invariant with the gauge constraint being preserved in the time
evolution. This allows us to simplify the system of equations to the discrete NLS
(nonlinear Schrödinger) equation for the scalar field coupled with the constraints on
components of the gauge vector. Local well-posedness of the initial-value problem of
the discrete CSS system follows from this constrained discrete NLS equation by the
standard fixed-point arguments.

We show that the time-evolution of the discrete CSS system preserves the mass
defined as the squared �2 norm of the scalar field. However, the total energy is not
preserved in the time evolution. Nevertheless, the mass conservation is sufficient in
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order to extend the local solutions for all times and to conclude on the global well-
posedness of the initial-value problem of the discrete CSS system.

The lack of energy conservation presents difficulties in constructing the stationary
bound states of the discrete CSS system with a variational approach. As a result, we
construct the stationary bound states by using the implicit function theorem in the
anti-continuum limit as h → ∞ at least for sub-quintic powers of the nonlinearity.
For quintic and super-quintic nonlinearities, the stationary solutions do not usually
extend to the anti-continuum limit and terminate at the fold points. We also show
that the stationary solutions do not extend to the continuum limit as h → 0 for
any nonlinearity powers and terminate at the fold points. These analytical results
are complemented with the numerical approximations of the stationary bound states
continued with respect to the lattice spacing parameter h.

The anti-continuum limit h → ∞ is a popular case of study, for which the existence
of stationary bound states can be proven with analytical tools [25]. This limit corre-
sponds to the weakly coupled lattice and is opposite to the continuum limit h → 0,
for which the lattice formally converges to the continuous system.

There are technical obstacles to explore the analogous questions on a two-
dimensional lattice. The gauge constraints do not allow us to simplify the discrete
CSS system to the form of the constrained discrete NLS equation.

The article is organized as follows. Section 2 presents the main results. Well-
posedness of the initial-value problem is considered in Sect. 3. Analytical results
on the existence of stationary bound states are proven in Sect. 4. Numerical approx-
imations of the stationary bound states are collected in Sect. 5. Section 6 concludes
the article with a summary.

2 Main results

The continuous CSS system in two space dimensions can be written in the following
form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i D0φ + D1D1φ + D2D2φ + λ|φ|2p φ = 0,

∂t A1 − ∂x A0 = Im(φ̄D2φ),

∂t A2 − ∂y A0 = −Im(φ̄D1φ),

∂x A2 − ∂y A1 = 1

2
|φ|2,

(2.1)

where t ∈ R
1, (x, y) ∈ R

2, φ ∈ C is the scalar field, (A0, A1, A2) ∈ R
3 is the gauge

vector, D0 = ∂t−i A0, D1 = ∂x−i A1, and D2 = ∂y−i A2 are the covariant derivatives,
λ > 0 is a coupling constant representing the strength of interaction potential, and p >

0 is the nonlinearity power. The CSS system (2.1) admits a Hamiltonian formulation
with conserved mass and total energy [8,26].

When the scalar field and the gauge vector are independent of y, the continuous
CSS system (2.1) can be rewritten in one space dimension as follows:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i D0φ + D1D1φ − A2
2φ + λ|φ|2p φ = 0,

∂t A1 − ∂x A0 = −A2|φ|2,
∂t A2 = −Im(φ̄D1φ),

∂x A2 = 1

2
|φ|2,

(2.2)

where φ(t, x) : R
1 × R

1 → C and (A0, A1, A2)(t, x) : R
1 × R

1 → R
3. The

continuous one-dimensional CSS system (2.2) admits conservation of mass

M =
∫

R

|φ(t, x)|2dx (2.3)

and conservation of the total energy

E =
∫

R

(
|D1φ|2 + A2

2|φ|2 − λ

p + 1
|φ|2p+2

)
(t, x) dx . (2.4)

We propose to consider the following discrete CSS system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i D0φ(t, n) + D−
1 D+

1 φ(t, n) − A2
2(t, n)φ(t, n) + λ|φ(t, n)|2p φ(t, n) = 0,

∂t A1

(

t, n + 1

2

)

− ∇+
1 A0(t, n) = −A2(t, n)|φ(t, n)|2,

∂t A2(t, n) = −Im(φ̄(t, n − 1)D+
1 φ(t, n − 1)),

∇+
1 A2(t, n) = 1

2
|φ(t, n)|2,

(2.5)

where n ∈ Z, φ(t, n), A0(t, n), A2(t, n) are defined on lattice sites n, and
A1(t, n + 1

2 ) is defined at middle distance between lattice sites n and n + 1.
Similarly to the continuous CSS system (2.2), φ(t, n) is the scalar field, whereas
A0(t, n), A1(t, n + 1

2 ), A2(t, n) are components of the gauge vector. The discrete
covariant derivatives are defined as

⎧
⎪⎨

⎪⎩

D+
1 φ(t, n) = 1

h

[
e−ih A1(t, n+ 1

2 )φ(t, n + 1) − φ(t, n)
]
,

D−
1 φ(t, n) = 1

h

[
φ(t, n) − eihA1(t, n− 1

2 )φ(t, n − 1)
]
,

(2.6)

whereas the finite difference operators are defined by

⎧
⎪⎨

⎪⎩

∇+
1 f (t, n) = 1

h

[
f (t, n + 1) − f (t, n)

]
,

∇−
1 f (t, n) = 1

h

[
f (t, n) − f (t, n − 1)

]
.

(2.7)
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In the continuum limit h → 0, if f (t, n), n ∈ Z converges to a smooth function
f(t, x), x ∈ R such that f (t, n) = f(t, hn) for every n ∈ Z, then the discrete covariant
derivatives (2.6) and the finite differences (2.7) converge formally at any fixed x ∈ R:

{
D±
1 f (t, n) → D1f(t, x),

∇±
1 f (t, n) → ∂x f(t, x),

where the lattice is centered at fixed x . The continuous CSS system (2.2) follows
formally from the discrete CSS system (2.5) as h → 0.

It is natural to look for solutions to the discrete CSS system (2.5) in the space of
squared summable sequences for the sequence {φ(n)}n∈Z denoted simply by φ:

�2(Z) :=
{
φ ∈ C

Z : ‖φ‖2
�2

:=
∑

n∈Z
|φ(n)|2 < ∞

}
,

equipped with the inner product

〈φ,ψ〉 =
∑

n∈Z
φ(n)ψ(n).

The �2 space is embedded into �p spaces for every p > 2 in the sense of
‖φ‖�p ≤ ‖φ‖�2 . The embedding includes the limiting case p = ∞ for which
‖φ‖�∞ = supn∈Z |φ(n)|.
Definition 2.1 We say that (φ, A0, A1, A2) is a local solution to the discrete CSS
system (2.5) if there exists T > 0 such that

φ ∈ C1([−T , T ], �2(Z)) and A0, A1, A2 ∈ C1([−T , T ], �∞(Z))

satisfy (2.5). If T > 0 can be extended to be arbitrary large, then we say that
(φ, A0, A1, A2) is a global solution to the discrete CSS system (2.5).

A local solution to the discrete CSS system (2.5) in the sense of Definition 2.1
enjoys conservation of the mass

M = h
∑

n∈Z
|φ(t, n)|2 (2.8)

which generalizes the mass (2.3) of the continuous CSS system (2.2). On the other
hand, no conservation of energy exists in the discrete CSS system (2.5), which would
generalize the energy (2.4) of the continuous CSS system (2.2). See Remarks 3.2 and
3.3.

Because the last equation of the discrete CSS system (2.5) is redundant in the initial-
value problem (Lemma 3.1), the local well-posedness of the initial-value problem
cannot be established without a gauge condition. However, the discrete CSS system
(2.5) enjoys the gauge invariance (Lemma 3.4) and this invariance can be used to
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reformulate the discrete CSS system (2.5) with the gauge condition A1(t, n+ 1
2 ) = 0.

The simpler form (3.7) of the discrete CSS system consists of the NLS equation for
the scalar field φ constrained by two equations on A0 and A2. The following theorem
represents the main result on global well-posedness of the initial-value problem for
the discrete CSS system (2.5) with the gauge condition A1(t, n + 1

2 ) = 0.

Theorem 2.2 For every � ∈ �2(Z) and every (α, β), there exists a unique global
solution (φ, A0, A1 = 0, A2) to the initial-value problem for the discrete CSS system
(2.5) satisfying

φ ∈ C1(R, �2(Z)) and A0, A2 ∈ C1(R, �∞(Z)), (2.9)

the initial conditions φ(0, n) = �n, A0(0, n) = An and A2(0, n) = Bn, the boundary
conditions

lim
n→∞ A0(t, n) = α and lim

n→∞ A2(t, n) = β, (2.10)

and the consistency conditions

(∇+
1 A)n = Bn|�n|2, (∇+

1 B)n = 1

2
|�n|2. (2.11)

Moreover, the solution (2.9) depends continuously on � ∈ �2(Z).

The continuous CSS system (2.2) with the gauge condition A1(t, x) = 0 can be
reduced to the continuous NLS equation (4.2) for ϕ(t, x) [16]. The continuous NLS
equation admits a family of stationary bound states ϕ(t, x) = Q(x)eiωt for every
λ > 0, p > 0, and ω > 0, where Q(x) can be written in the explicit form:

Q(x) =
√

ω(p + 1)λ−1sech
1
p (

√
ωpx). (2.12)

It is natural to ask if the discrete CSS system (2.5) also admits stationary bound states
for λ > 0 and p > 0. The existence problem for stationary bound states reduces
to the system of difference equations (4.4). It is rather surprising that the existence
of stationary bound states of the discrete CSS system (2.5) depends on the values of
parameters p and h.

The following theorem represents the main result on the existence of stationary
bound states of the discrete CSS system (2.5) in the anti-continuum limit h → ∞.
The stationary bound states decay fast as |n| → ∞, therefore, their existence can be
proven in the space of summable sequences denoted by �1(Z) with the norm ‖φ‖�1 =∑

n∈Z |φ(n)|.
Theorem 2.3 For every λ > 0, p ∈ (0, 2),� > 0, and sufficiently large h, there exists
a unique family of stationary bound states in the form

φ(t, n) = ei�tUn, g(t, n) = Gn, t ∈ R, n ∈ Z (2.13)
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with U ∈ �1(Z) and G ∈ �∞(Z) such that

U ∼ U(h)δ0, G ∼ h2

4
U(h)4χ0 as h → ∞,

where U(h) is a positive root of the nonlinear equation

λU2p + h2

4
U4 − � = 0. (2.14)

Here the sign∼means the asymptotic expansionwith the next-order termbeing smaller
as h → ∞ compared to the leading-order term in the �∞ norm. The discrete δ0 and
χ0 are defined by their components:

[δ0]n =
{
1, n = 0,
0, n �= 0,

[χ0]n =
{
1, n ≤ 0,
0, n > 0.

(2.15)

In order to study the anti-continuum limit h → ∞, we use the implicit function
theorem similar to the study ofweakly coupled lattices in the anti-continuum limit [25].
In particular, we reformulate the difference equations (4.4) as the root-finding problem
(Lemma 4.3), study the asymptotic behavior of roots U(h) in the nonlinear equation
(2.14) (Lemma 4.4), and find the unique continuation of the single-site solutions
with respect to the small parameter (Lemma 4.5). Compared with the standard anti-
continuum limit in [25], the root U(h) of the nonlinear equation (2.14) depends on
h and the Jacobian of the difference equations (4.4) becomes singular as h → ∞,
therefore, we need to use a renormalization technique in order to prove Theorem 2.3.
Besides the single-site solutions in Theorem 2.3, one can use the same technique and
justify the double-site and generally multi-site solutions in the anti-continuum limit
(Remark 4.7).

Another interesting and surprising result is that the stationary bound states of the
discrete CSS system (2.5) do not converge to the stationary bound states (2.12) of the
continuous CSS system (2.2) in the continuum limit h → 0. The following theorem
gives the corresponding result which is provenwith the use of the solvability constraint
on suitable solutions to the difference equations (4.4).

Theorem 2.4 Let Q be defined by (2.12). For every λ > 0, p > 0, � > 0, and
sufficiently small h, there exist no stationary bound states in the form (2.13) such that
U ∈ �1(Z) and G ∈ �∞(Z) satisfy U−n = Un, n ∈ Z and

‖U − Q(h·)‖�1 + ‖G‖�∞ ≤ Ch (2.16)

for an h-independent positive constant C.

Because the difference equations for the stationary bound states (2.13) do not allow
a variational formulation due to the lack of energy conservation, we are not able
to study the existence problem in the entire parameter region. However, we show
numerically in Sect. 5 by using the parameter continuation in h that the single-site
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bound states of Theorem 2.3 for p ∈ (0, 2) do not continue to the limit h → 0 in
accordance with Theorem 2.4 because of the fold bifurcation with another family of
stationary bound states. The other family converges to the double-site solution in the
anti-continuum limit h → ∞ for p ∈ (0, 2). Moreover, for p ≥ 2, we show that the
family of single-site bound states do not continue in both limits h → 0 and h → ∞
because of fold bifurcations in each direction of h.

3 Well-posedness of the discrete CSS system

Here we consider well-posedness of the Cauchy problem associated with the discrete
CSS system (2.5). In the end, we will prove Theorem 2.2.

The discrete CSS system (2.5) consists of four equations for four unknowns, how-
ever, the time evolution is only defined by the first three equations, whereas the last
equation is a constraint. The following lemma states that this constraint is invariant
with respect to the time evolution.

Lemma 3.1 Assume that the initial data satisfies

∇+
1 A2(0, n) − 1

2
|φ(0, n)|2 = 0, n ∈ Z. (3.1)

Assume that there exists a solution to the discrete CSS system (2.5) with the given
initial data in the sense of Definition 2.1. Then, for every t ∈ [−T , T ], the solution
satisfies

∇+
1 A2(t, n) − 1

2
|φ(t, n)|2 = 0, n ∈ Z. (3.2)

Proof We note the following identity:

∇+
1 (φ̄D+

1 φ)(n) = D+
1 φ(n)D+

1 φ(n) + φ̄(n + 1)D−
1 D+

1 φ(n + 1). (3.3)

Using the first three equations of the system (2.5) and the identity (3.3), we obtain

∂t (∇+
1 A2(t, n) − 1

2
|φ(t, n)|2) = −∇+

1 Im(φ̄(t, n − 1)D+
1 φ(t, n − 1)) − Im(i φ̄∂tφ)(t, n)

= −Im(φ̄(t, n)D−
1 D+

1 φ(t, n)) − Im(i φ̄D0φ)(t, n)

= −Im
(
φ̄(t, n)(i D0φ + D−

1 D+
1 φ)(t, n)

)

= 0.

Due to this conservation, the relation (3.2) remains true for every t ∈ [−T , T ] as long
as a solution to the discrete CSS system (2.5) with the given initial data satisfying the
constraint (3.1) exists in the sense of Definition 2.1. ��
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Remark 3.2 The third and fourth equations of the system (2.5) represent the balance
equation for the scalar field φ. Indeed, eliminating A2 by

∂t∇+
1 A2(t, n) = ∇+

1 ∂t A2(t, n),

we obtain
1

2
∂t |φ(t, n)|2 + ∇+

1 Im(φ̄(t, n − 1)D+
1 φ(t, n − 1)) = 0, (3.4)

which follows from the first equation of the system (2.5) thanks to the identity (3.3).

Remark 3.3 Summing up the balance equation (3.4) in n ∈ Z yields

d

dt

∑

n∈Z
|φ(t, n)|2 = 0, (3.5)

for the solution φ ∈ C1([−T , T ], �2(Z)). This implies conservation of mass M given
by (2.8). The conservation of mass M in the discrete CSS system (2.5) generalizes the
conservation of mass M given by (2.3) for the continuous CSS system (2.2). However,
the discrete CSS system (2.5) does not exhibit conservation of energy which would
be similar to the conservation of the total energy E given by (2.4) for the continuous
CSS system (2.2).

It follows fromLemma3.1 that the system (2.5) is under-determined since it consists
of three time evolution equations on four unknown fields, whereas the fourth equation
represents a constrained preserved in the time evolution. In order to close the system,
we add a gauge condition, thanks to the gauge invariance of the discrete CSS system
(2.5) expressed by the following lemma.

Lemma 3.4 Assume that there exists a solution to the discrete CSS system (2.5) in the
sense of Definition 2.1. Let χ be an arbitrary function in C2([−T , T ], �∞(Z)). Then,
the following gauge-transformed functions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ̃(t, n) = eiχ(t, n)φ(t, n),

Ã0(t, n) = A0(t, n) + ∂tχ(t, n),

Ã1

(

t, n + 1

2

)

= A1

(

t, n + 1

2

)

+ ∇+
1 χ(t, n),

Ã2(t, n) = A2(t, n)

(3.6)

also provide a solution to the discrete CSS system (2.5) in the sense of Definition 2.1.

Proof We proceed with the explicit computations:

D0φ̃ = ∂t φ̃(t, n) − i Ã0(t, n)φ̃(t, n)

= eiχ(t, n) (∂tφ(t, n) − i A0(t, n)φ(t, n)) = eiχ(t,n)D0φ,

D+
1 φ̃ = e−ih Ã1(t, n+ 1

2 )φ̃(t, n + 1) − φ̃(t, n)
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= eiχ(t, n)
(
e−ih A1(t, n+ 1

2 )φ(t, n + 1) − φ(t, n)
)

= eiχ(t,n)D+
1 φ,

D−
1 φ̃ = φ̃(t, n) − eih Ã1(t, n− 1

2 )φ̃(t, n − 1)

= eiχ(t, n)
(
φ(t, n) − eihA1(t, n− 1

2 )φ(t, n − 1)
)

= eiχ(t,n)D−
1 φ,

and

∂t Ã1

(

n + 1

2
, t

)

− ∇+
1 Ã0(n, t) = ∂t A1

(

n + 1

2
, t

)

− ∇+
1 A0(n, t),

where we have used

e−ih∇+
1 χ(t,n)eiχ(t,n+1) = eiχ(t,n) and eih∇+

1 χ(t,n−1)eiχ(t,n−1) = eiχ(t,n).

Under the conditions of the lemma, ∂tχ and∇+
1 χ are defined inC1([−T , T ], �∞(Z)).

Thanks to the transformation above, both (φ, A0, A1, A2) and (φ̃, Ã0, Ã1, Ã2) are
solutions of the same system (2.5). ��
Remark 3.5 If the standard difference method is used to express the continuous covari-
ant derivative D1φ by its discrete counterparts D±

1 φ in the form:

D±
1 φ = ∇±

1 φ − i A1φ,

then the resulting discrete CSS system is not gauge invariant. This remark illustrates
the importance of using the discrete covariant derivatives in the form (2.6).

It follows from the gauge transformation (3.6) of Lemma 3.4 that a solution
to the discrete CSS system (2.5) is formed by a class of gauge equivalent field
(φ, A0, A1, A2). Two types of gauge conditions are typically considered to break the
gauge symmetry: either A0(t, n) = 0 by appropriate choice of ∂tχ or A1(t, n+ 1

2 ) = 0
by appropriate choice of ∇+

1 χ .
In the continuous Maxwell (Yang–Mills) or Chern–Simons gauge equations, the

temporal gauge condition A0 ≡ 0 has been used by several authors [11,13,27]. In the
space of (1+ 1) dimensions, the spatial gauge condition A1 ≡ 0 was used in [16–18]
to simplify the related system of equations. Here in the discrete setting, we will use
the spatial gauge condition for the same purpose and set A1(t, n + 1

2 ) = 0.
The discrete CSS system (2.5) with A1 ≡ 0 simplifies to the form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i∂tφ(t, n) + A0(t, n)φ(t, n) + ∇−
1 ∇+

1 φ(t, n) − A2
2(t, n)φ(t, n)

+ λ|φ(t, n)|2p φ(t, n) = 0,

∇+
1 A0(t, n) = A2(t, n)|φ(t, n)|2,

∇+
1 A2(t, n) = 1

2
|φ(t, n)|2,

(3.7)
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where we removed the redundant time evolution equation for A2 thanks to the results
in Lemma 3.1 and Remark 3.2. We show well-posedness of the initial-value problem
for the coupled system (3.7), which yields the proof of Theorem 2.2.

Proof of Theorem 2.2 By Lemmas 3.1 and 3.4, the constraints described in the second
and third equations of the system (3.7) are preserved in the time evolution of the first
equation of the system (3.7). The initial data A0(0, n) = An and A2(0, n) = Bn satisfy
the consistency conditions (2.11) which agree with the second and third equations of
the system (3.7).

By inverting the difference operators under the boundary conditions (2.10), we
derive the closed-form solutions for A0 and A2:

A2(t, n) = β − h

2

∞∑

k=n

|φ(t, k)|2, A0(t, n) = α − h
∞∑

k=n

A2(t, k)|φ(t, k)|2,

which yield the bounds

|A2(t, n)| ≤ |β| + h

2
‖φ(t, ·)‖2

�2
, (3.8)

|A0(t, n)| ≤ |α| + h

(

|β| + h

2
‖φ(t, ·)‖2

�2

)

‖φ(t, ·)‖2
�2

. (3.9)

Thanks to these bounds, the initial-value problem for the system (3.7) can be written
as an integral equation on φ in the space of continuous functions of time with range
in �2(Z).

Local well-posedness on a small time interval (−τ, τ ) with τ > 0 follows from the
contraction mapping theorem (see, e.g., [20]) thanks to the Banach algebra property of
�2(Z), bounds on the linear operator ∇−

1 ∇+
1 in �2(Z) and bounds (3.8)–(3.9). Global

well-posedness in �2(Z) follows from the mass conservation ‖φ(t, ·)‖2
�2

= ‖�‖2
�2
,

where φ(0, n) = �n . ��

4 Existence of stationary bound states

Here we consider the existence of stationary bound states for the discrete CSS system
(2.5) with the gauge condition A1 ≡ 0. In the end, we will prove Theorems 2.3 and
2.4.

The last two equations of the system (3.7) allow us to reduce A0 and A2 to only
one variable g(t, n) := A0(t, n) − A2

2(t, n) since

∇+
1 (A0 − A2

2) = A2(t, n)|φ(t, n)|2 − 1

2
|φ(t, n)|2(A2(t, n + 1) + A2(t, n))

= −h

2
|φ(t, n)|2∇+

1 A2(t, n)

= −h

4
|φ(t, n)|4.
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Thus, the system (3.7) can be closed at the following system of two equations:

⎧
⎨

⎩

i∂tφ(t, n) + ∇−
1 ∇+

1 φ(t, n) + g(t, n)φ(t, n) + λ|φ(t, n)|2p φ(t, n) = 0,

∇+
1 g(t, n) = −h

4
|φ(t, n)|4. (4.1)

In the continuum limit h → 0, the second equation of the system (4.1) yields
∂x g = 0, which is solved by g = 0 up to an arbitrary constant (see Remark 4.2),
whereas the first equation of the system (4.1) yields formally the continuous NLS
equation

i∂tϕ + ∂2xϕ + λ|ϕ|2pϕ = 0, (4.2)

where ϕ(t, x) is assumed to be a smooth function such that φ(t, n) = ϕ(t, hn), n ∈ Z.
The continuous NLS equation (4.2) also follows from integration of the continuous
CSS system (2.2) with the gauge condition A1 ≡ 0 (see [16] for details).

The gauge field g does not appear in the continuous NLS equation (4.2). The same
continuous NLS equation (4.2) is also derived in the continuum limit h → 0 of the
standard discrete NLS equation:

i∂tφ(t, n) + ∇−
1 ∇+

1 φ(t, n) + λ|φ(t, n)|2p φ(t, n) = 0. (4.3)

The discrete NLS equation (4.3) was investigated in many recent studies (see, e.g.,
[19,28]). In particular, it admits a large set of stationary bound states, which includes
the ground state of energy at fixed mass [32]. In the cubic case p = 1, the ground
state exists for every h > 0 and converges in the continuum limit h → 0 to the single-
humped solitary wave of the continuous NLS equation (4.2) and in the anti-continuum
limit h → ∞ to a single-site solution [19,28]. We will show that these properties of
the ground state in the discrete NLS equation (4.3) are very different from properties
of the stationary bound states in the discrete CSS system (4.1).

Substituting

φ(t, n) = ei�tUn, g(t, n) = Gn, t ∈ R, n ∈ Z

into the discrete CSS system (4.1) yields the following system of difference equations
for sequences U := {Un}n∈Z and G := {Gn}n∈Z:

⎧
⎪⎪⎨

⎪⎪⎩

1

h2
(Un+1 − 2Un +Un−1) − �Un + GnUn + λ|Un|2pUn = 0,

Gn+1 − Gn = −h2

4
|Un|4.

(4.4)

Remark 4.1 There are two critical exponents p = 1 and p = 2 in the system (4.4).
For p = 1, the lattice spacing parameter h can be scaled out thanks to the scaling
transformation:

p = 1 : Ũ = hU , G̃ = h2G, �̃ = h2�, (4.5)
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where Ũ , G̃, and �̃ solve the same system (4.4) but with h = 1. For p = 2, the
nonlinear terms in the two equations of the system (4.4) have the same exponents.

In order to prove persistence of single-site solutions in the anti-continuum limit
h → ∞, we close the system (4.4) with the following relation:

Gn = γ + h2

4

∞∑

k=n

|Uk |4, (4.6)

where γ := limn→∞ Gn is another parameter and U ∈ �4(Z) is assumed.

Remark 4.2 Parameter γ in (4.6) can be set to 0 without loss of generality thanks to
the transformation

φ(t, n) �→ φ̃(t, n) = φ(t, n)eiγ t

between two solutions to the discrete CSS system (4.1).

By Remark 4.2, we set γ = 0 and substitute (4.6) into the first equation of the
system (4.4). This yields the root-finding problem F(U , h) = 0, where

[F(U , h)]n :=
(

λ|Un |2p − � + h2

4

∞∑

k=n

|Uk |4
)

Un + 1

h2
(Un+1 − 2Un +Un−1) , (4.7)

For the proof of Theorem2.3, parametersλ,�, and p are fixed,whereas h is considered
to be large. The following lemma shows that the vector field in (4.7) is closed if
U ∈ �1(Z).

Lemma 4.3 The mapping F(U , h) : �1(Z) × R
+ �→ �1(Z) is C1 if p > 0.

Proof The discrete Laplacian is a bounded operator as

‖∇−
1 ∇+

1 U‖�1 ≤ 4

h2
‖U‖�1,

whereas the nonlinear term is closed in �1(Z) thanks to the continuous embeddings
of �1(Z) to �4(Z) and the elementary inequality

∑

n∈Z

∞∑

k=n

|Uk |4|Un| =
∑

k∈Z
|Uk |4

k∑

n=−∞
|Un| ≤ ‖U‖�1‖U‖4

�4
≤ ‖U‖5

�1
.

The mapping F(U , h) : �1(Z) × R
+ �→ �1(Z) is closed and locally bounded. It

depends on powers ofU and linear terms of h2 and 1/h2. Therefore, it is C1 for every
U ∈ �1(Z) and h ∈ R

+. ��
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The local part of F(U , h) leads to the root-finding equation

λU2p − � + h2

4
U4 = 0, (4.8)

for which we are only interested in the positive roots for U . The following lemma
controls uniqueness and the asymptotic expansion of the positive roots of the nonlinear
equation (4.8) as h → ∞.

Lemma 4.4 Fix � > 0, λ > 0, and p > 0. For every h > 0, there is only one positive
root of the nonlinear equation (4.8) labeled as U(h). Moreover,

U(h) =
4
√
4�√
h

[
1 + O(h−p)

]
as h → ∞. (4.9)

Proof Since the functionR+ � x �→ λx2p + h2
4 x2 ∈ R

+ is monotonically increasing,
there is exactly one intersection of its graph with the level � > 0. Therefore, there
exists only one positive root of the nonlinear equation (4.8) labeled as U(h). By using
scaling U = Vh−1/2, we transform the nonlinear equation (4.8) to the equivalent form
f (V,h) = 0, where

f (V,h) := 1

4
V4 − � + λhV2p, h := h−p. (4.10)

LetV0 := 4
√
4� be the root of f (V0, 0) = 0. Since f isC1 with respect toV and linear

with respect to hwith ∂V f (V0, 0) = V3
0 > 0, the implicit function theorem implies the

existence and uniqueness of the root V(h) of the nonlinear equation f (V(h),h) = 0
for every small h such that V isC1 with respect to h and V(h) = V0+O(h) as h → 0.
By uniqueness of the positive root U(h), we obtain U(h) = V(h)h−1/2, which yields
the asymptotic expansion (4.9). ��

By Lemma 4.4, we set U = Vh−1/2 and rewrite the root-finding problem
F(U , h) = 0 with F(U , h) given by (4.7) in the equivalent form F(V ,h, ε) = 0,
where

[F(V , h, ε)]n :=
(

λh|Vn |2p − � + 1

4

∞∑

k=n

|Vk |4
)

Vn + ε (Vn+1 − 2Vn + Vn−1) , (4.11)

with h := h−p and ε := h−2. The following lemma shows that the limiting configu-
ration V = V(h)δ0 with δ0 being Kronecker’s delta function given by (2.15) persists
with respect to small parameter ε for any small h.

Lemma 4.5 Fix � > 0, λ > 0, and p > 0. For every h > 0, there exists ε0 > 0
such that for every ε ∈ (0, ε0) the root-finding problem F(V , h, ε) = 0 with F given
by (4.11) admits the unique solution V (h, ε) ∈ �1(Z) such that V (h, ε) is C1 with
respect to ε and

V (h, ε) = V(h)δ0 + O(ε) as ε → 0,
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where V(h) = h1/2U(h) is defined by Lemma 4.4.

Proof We check the three conditions of the implicit function theorem. The mapping
F(V ,h, ε) : �1(Z)×R

+×R
+ �→ �1(Z) isC1 by Lemma 4.3. By Lemma 4.4, we have

F(V(h)δ0,h, 0) = 0. Finally, we compute the Jacobian of F(V ,h, ε) at (V(h)δ0,h, 0),
which is a diagonal operator with the diagonal entries:

[DV F(V(h)δ0,h, 0)]nn =

⎧
⎪⎨

⎪⎩

1
4V(h)4 − �, n ∈ Z

−,

(2p + 1)λhV(h)2p + 5
4V(h)4 − �, n = 0,

−�, n ∈ Z
+,

whereZ± := {±1,±2, . . . }.With the account of the nonlinear equation f (V(h),h)= 0
with f given by (4.10), the Jacobian operator can be rewritten in the form:

[DV F(V(h)δ0,h, 0)]nn =

⎧
⎪⎨

⎪⎩

−λhV(h)2p, n ∈ Z
−,

2pλhV(h)2p + V(h)4, n = 0,

−�, n ∈ Z
+.

(4.12)

For every h > 0, the Jacobian operator DV F(V(h)δ0,h, 0) is invertible so that the
assertion of the lemma follows by the implicit function theorem. ��
Proof of Theorem 2.3 In order to apply the result of Lemma 4.5 to the root-finding
problem F(U , h) = 0 with F given by (4.7), we should realize that both parameters
h = h−p and ε = h−2 are small as h → ∞. As a result, the Jacobian operator
DV F(V(h)δ0,h, 0) given by (4.12) becomes singular in the limit h → ∞. To be pre-
cise, it follows from the explicit expression (4.12) that there exists a positive constant
C independent of h such that

‖DV F(V(h)δ0,h, 0)‖�1(Z)→�1(Z) ≥ Ch−p.

In order to show that the root of F(V , h−p, h−2) exists for large h for every p ∈
(0, 2), we rewrite the system F(V , h−p, h−2) = 0 componentwise:

n ∈ Z
− :

(

λh−p|Vn|2p − � + 1

4

∞∑

k=n

|Vk |4
)

Vn + h−2 (Vn+1 − 2Vn + Vn−1) = 0,

(4.13)

n = 0 :
(

λh−p|V0|2p − � + 1

4

∞∑

k=0

|Vk |4
)

V0 + h−2 (V1 − 2V0 + V−1) = 0,

(4.14)

n ∈ Z
+ :

(

λh−p|Vn|2p − � + 1

4

∞∑

k=n

|Vk |4
)

Vn + h−2 (Vn+1 − 2Vn + Vn−1) = 0.

(4.15)
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By the last line in (4.12), the Jacobian operator for system (4.15) is invertible in �1(Z+)

and the inverse operator is uniformly bounded as h → ∞ if � > 0 is fixed. By the
implicit function theorem, for every V0 ∈ R and every large h, there exists the unique
solution {Vn}n∈Z+ ∈ �1(Z+) to system (4.15) such that ‖V ‖�1(Z+) ≤ Ch−2|V0| for
some positive h-independent constant C .

Similarly, because V(h) = V0 + O(h) as h → ∞, the middle line in (4.12) shows
that if the solution {Vn}n∈Z+ ∈ �1(Z+) to system (4.15) is substituted into (4.14), then
for every V−1 ∈ R and every large h, there exists the unique solution V0 ∈ R to system
(4.14) such that |V0 − V(h)| ≤ Ch−2|V−1| for some positive h-independent constant
C .

Finally, we treat the remaining system (4.13), for which V0 and {Vn}n∈Z+ are
expressed from the unique solution to systems (4.14) and (4.15). Thanks to the posi-
tivity of |Vk |4 and the first line in (4.12), we obtain for n ∈ Z

−:

λh−p|Vn|2p − � + 1

4

∞∑

k=n

|Vk |4 ≥ −� + 1

4
V 4
0 ≥ Ch−p,

for some positive h-independent constant C . By the implicit function theorem, for
every large h, there exists the unique solution {Vn}n∈Z− ∈ �1(Z−) to system (4.13)
such that

‖V ‖�1(Z−) ≤ Chp−2|V(h)| ≤ Chp−2

for some positive h-independent constant C . Since p < 2, we have h p−2 → 0 as
h → ∞.

Combining all bounds together yields the unique rootU = Vh−1/2 to F(U , h) = 0.
Recalling that U(h) = V(h)h−1/2, we obtain the assertion of Theorem 2.3. ��
Remark 4.6 The arguments based on Lemma 4.5 are not sufficient for the proof of
persistence of single-site solutions for p ≥ 2 as h → ∞. This agrees with Remark 4.1
since p = 2 is a critical power for the system (4.4). On the other hand, the critical
power p = 1 in Remark 4.1 does not play any role if � is fixed because the scaling
transformation (4.5) which scales h to unity requires us to scale the parameter � in h.

Remark 4.7 Besides the single-site solutions, other multi-site solutions can be con-
sidered in the anti-continuum limit h → ∞. In particular, the double-site solution is
given by

U = W(h)δ0 + U(h)δ1, (4.16)

whereU(h) is the same root of the nonlinear equation (4.8), whereasW(h) is a positive
root of the following nonlinear equation:

λW2p − � + h2

4
W4 + h2

4
U4 = 0, (4.17)

or equivalently,

λW2p + h2

4
W4 − λU2p = 0. (4.18)
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By the same arguments as in Lemma 4.4, existence of the unique root W(h) can be
proven and the persistence analysis of Lemma 4.5 holds verbatim for the double-site
solution.

Finally, we give a proof of Theorem 2.4, which relies on analysis of the root-finding
problem F(U , h) = 0 with F given by (4.7) in the continuum limit h → 0.

Proof of Theorem 2.4 Let us rewrite the root-finding problem F(U , h) = 0 with F
given by (4.7) in the following form:

1

h2
(Un+1 − 2Un +Un−1) − �Un + h2

4

( ∞∑

k=n

|Uk |4
)

Un + λ|Un|2pUn = 0,

(4.19)

As previously, we assume that U is real. Multiplying (4.19) by (Un+1 − Un−1) and
summing in n ∈ Z under the same assumption U ∈ �1(Z) yields the constraint

h2

4

∑

n∈Z
U 5
nUn+1 + λ

∑

n∈Z
Un+1Un(U

2p
n −U 2p

n+1) = 0. (4.20)

If U−n = Un , n ∈ Z, then it follows directly that
∑

n∈ZUn+1Un(U
2p
n − U 2p

n+1) = 0,
therefore, the constraint (4.20) on existence of U ∈ �1(Z) reduces to

∑

n∈Z
U 5
nUn+1 = 0. (4.21)

We show that this constraint cannot be satisfied if U satisfies the first bound in (2.16)
with Q being the continuous NLS soliton in the exact form given by (2.12). Indeed,
we have

∑

n∈Z
U 5
nUn+1 =

∑

n∈Z
Q(hn)5Q(hn + h) + R(h), (4.22)

where the residual termR(h) satisfies the bound

|R(h)| ≤ C
(
‖Q(h·)‖5�∞ + ‖U‖5�∞

)
‖U − Q(h·)‖�1 ≤ Ch,

since the embedding of �1 into �∞ and the triangle inequality implies

‖U‖�∞ ≤ ‖Q(h·)‖�∞ + ‖U − Q(h·)‖�∞ ≤ C,

where the positive constantC is h-independent and can change fromone line to another
line. Because Q is C∞, we use Riemann sums for smooth functions and rewrite the
first term in (4.22) in the form
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∑

n∈Z
Q(hn)5Q(hn + h) =

∑

n∈Z
Q(hn)5

[
Q(hn) + hQ′(hn + ξn)

]

≥ 1

h

[∫ ∞

−∞
Q(x)6dx + Ch

]

, (4.23)

where ξn ∈ [hn, hn + h] and C > 0 is h-independent. Since
∫

R
Q6dx > 0 is h-

independent, it follows from (4.22) and (4.23) that
∑

n∈ZU 5
nUn+1 > 0 for small h

and, hence, the constraint (4.21) cannot be satisfied. This contradiction proves the
assertion of the theorem. Finally, we note from (4.6) with γ = 0 by using the same
estimates like in (4.22) and (4.23) that

|Gn| ≤ h2

4

∑

k∈Z
U 4
k ≤ h2

4

[
∑

k∈Z
Q(hk)4 + Ch

]

≤ h

4

[∫ ∞

−∞
Q(x)4dx + Ch

]

,

hence, the second bound in (2.16) is implied by the first bound in (2.16). ��
Remark 4.8 The argument in the proof of Theorem 2.4 does not eliminate solutions
of the system (4.4) for small h which are not close to the continuous NLS solitons in
the sense of the bound (2.16).

5 Numerical results

We approximate solutions of the difference equations (4.4) numerically by using
the Newton–Raphson iteration algorithm for the root-finding problem F(U , h) = 0,
where F(U , h) is given by (4.7). The starting guess of the iterative algorithm is either
the single-site solution U(h)δ0 or the double-site solution W(h)δ0 + U(h)δ1, where
U(h) andW(h) are found numerically from the roots of the nonlinear equations (4.8)
and (4.18). If iterations of the Newton–Raphson algorithm converge at one value of
h, we use the final approximation at this value of h as a starting approximation for
another value of h nearby. This parameter continuation is carried toward both the
anti-continuum limit h → ∞ and the continuum limit h → 0. We fix λ = 1 and use
different values of parameter � > 0 and p > 0 for such continuations in h.

Figure 1 gives examples of two stationary bound states of the system (4.4) for fixed
� = 1, p = 1, and h = 3. One state is obtained by iterations from the single-site
solution U(h)δ0 (left panel), whereas the other state is obtained by iterations from the
double-site solutionW(h)δ0 + U(h)δ1 (right panel).

Figure 2 shows the mass M given by (2.8) for the same two stationary states of
the system (4.4) versus h for fixed � = 1 with p = 1 (left) and p = 3/2 (right).
The lower branch corresponds to the single-site solution U(h)δ0, whereas the upper
branch corresponds to the double-site solutionW(h)δ0+U(h)δ1. By Theorem 2.3 and
Remark 4.7, both branches of stationary states extend to the anti-continuum limit of
h → ∞, as is confirmed in Fig. 2. On the other hand, in accordance with Theorem 2.4,
both branches do not extend to the continuum limit h → 0 but coalesce in a fold
bifurcation at a critical value of h.
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Fig. 1 Examples of single-site (left) and double-site (right) solutions U for p = 1, � = 1, and h = 3
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Fig. 2 Mass M in (2.8) for two stationary states of system (4.4) versus h for λ = 1, � = 1 and either
p = 1 (left) or p = 3/2 (right). Blue curve shows the stationary states obtained from the single-site
solution U(h)δ0, whereas red curve shows the stationary states obtained from the double-site solution
W(h)δ0 + U(h)δ1. The big dot marks the fold bifurcations of the two branches

Figure 3 shows the same as Fig. 2 but for two values of � with � = 1 and � = 10.
Let h∗(�) denote the critical value of h for the fold bifurcation. It follows from Fig. 3
that the value of h∗(�) decreases with large values of�. For p = 1, this result follows
from the scaling transformation (4.5). Since Ũ , G̃, and �̃ solve the same system (4.4)
but with h = 1, the fold bifurcation happens for some fixed value of �̃ denoted by
�̃∗. Then, for fixed �, the value h∗(�) is found from the scaling transformation as

h∗(�) =
√

�̃∗√
�

,

so that if � increases, then h∗(�) decreases.
For p ∈ (1, 2), a similar explanation can be provided based on the generalized

scaling transformation with parameter a ∈ R:

Ũ = haU , G̃ = h4a−2G, �̃ = h2ap� (5.1)
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Fig. 3 Branches of the single-site and double-site stationary states for p = 1 (left) and p = 3/2 (right)
with two values of � = 1 and � = 10

which reduces the system of difference equations (4.4) to the equivalent form:

⎧
⎪⎨

⎪⎩

h−2(1−ap)
(
Ũn+1 − 2Ũn + Ũn−1

)
− �̃Ũn + h2+2a(p−2)G̃nŨn + λ|Ũn|2pŨn = 0,

G̃n+1 − G̃n = −1

4
|Ũn|4.

(5.2)

If p �= 2, the critical scaling between the two nonlinear terms occurs at a = 1
2−p , for

which the first equation of the system (5.2) can be rewritten in the form:

h
4(p−1)
(2−p)

(
Ũn+1 − 2Ũn + Ũn−1

)
− �̃Ũn + G̃nŨn + λ|Ũn|2pŨn = 0. (5.3)

If p ∈ (1, 2), then h
4(p−1)
(2−p) → 0 as h → 0. Let �̃∗(h) be the value of �̃ at the fold

bifurcation in (5.3) that depends on h. If we assume that �̃∗(h) converges as h → 0
to a nonzero value �̃∗(0), then we have

h∗(�)
2p
2−p ≈ �̃∗(0)

�

so that if � increases, then h∗(�) decreases.
Figure 4 shows the same as Fig. 2 for fixed � = 1 with p = 2 (left) and p = 3

(right). Compared to the case p < 2, the stationary states have two fold bifurcations
both in the continuum limit h → 0 and in the anti-continuum limit h → ∞. This shows
that the constraint p < 2 for persistence of stationary states in the anti-continuum limit
h → ∞ in Theorem 2.3 is sharp.

Figure 5 shows two branches of the stationary states for p = 2 and two fixed values
of � with � = 1 and � = 2. The critical value of h for the fold bifurcation at smaller
values of h decreases in �, whereas that for the fold bifurcation at larger values of
h increases in �. This behavior can again be explained from the generalized scaling
transformation (5.1).
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Fig. 4 The same as in Fig. 2 but for p = 2 (left) or p = 3 (right) with � = 1
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Fig. 5 Branches of the single-site and double-site stationary states for p = 2 with two values of � = 1 and
� = 2

In the exceptional case p = 2, we can fix a = 1 and rewrite the first equation of
the system (5.2) in the form:

h2
(
Ũn+1 − 2Ũn + Ũn−1

)
− �̃Ũn + h2G̃nŨn + λ|Ũn|2pŨn = 0, (5.4)

with h2 → 0 as h → 0. If �̃∗(h) at the fold bifurcation in (5.4) approaches asymp-
totically to �̃∗(0) �= 0 as h → 0, then � ∼ h−4 so that � → ∞ as h → 0 and vice
versa. Similarly, we can fix a = −1 and rewrite the first equation of the system (5.2)
in the form:

h−6
(
Ũn+1 − 2Ũn + Ũn−1

)
− �̃Ũn + h2G̃nŨn + λ|Ũn|2pŨn = 0, (5.5)
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with h−6 → 0 as h → ∞. If �̃∗(h) at the fold bifurcation in (5.5) approaches
asymptotically to �̃∗(∞) < ∞ as h → ∞, then � ∼ h4 so that � → ∞ as
h → ∞ and vice versa. Thus, both dependencies of the critical value h∗(�) for the
two fold bifurcations seen in Fig. 5 can be explained from the generalized scaling
transformation (5.1) under the assumptions made above.

Note that we do not give the numerical computations for two branches of stationary
bound states for p = 3 and � = 2. Although we have found that the single-site
stationary states have similar fold bifurcations in the direction of h → 0 and h → ∞,
we were able to connect the single-site states with the double-site states at the left
bifurcation point only. At the right bifurcation point, both the single-site and double-
site stationary states do not connect to each other but connect to other stationary states
of the system (5.2), which we were not able to detect numerically.

6 Conclusion

We have proposed a gauge-invariant discrete CSS system (2.5) on a one-dimensional
lattice. This system conserves the mass (2.8) but does not conserve the energy. By
using the spatial gauge condition A1 ≡ 0, we have proven local and global well-
posedness of the initial-value problem in �2 for the scalar field φ and in �∞ for the
gauge vector. We have also studied existence of the stationary bound states from
solutions of the coupled difference equations (4.4) in �1 for the scalar field and in �∞
for the gauge vector. For p ∈ (0, 2), we proved that the stationary bound states persist
in the anti-continuum limit h → ∞ but do not persist in the continuum limit h → 0.
We have shown numerically that the branch of single-site solutions terminates at a fold
bifurcation with the branch of double-site solutions as h gets smaller. For p ≥ 2, two
fold bifurcations occur both as h gets smaller and larger, so that the stationary bound
states do not persist both in the continuum limit h → 0 and in the anti-continuum
limit h → ∞.

Among further problems, stability of stationary bound states is important for appli-
cations and interesting mathematically. Due to the lack of the energy conservation, the
methods of the Hamiltonian dynamical systems for stability may not be applicable for
the discrete CSS system (2.5) and new analytical methods need to be developed for
the stationary bound states of Theorem 2.3.

Acknowledgements The research of H. Huh was supported by LG Yonam Foundation of Korea and Basic
Science Research Program through the National Research Foundation of Korea funded by the Ministry
of Education (2017R1D1A1B03028308). The research of S. Hussain is supported by the NSERC USRA
project. The research of D. Pelinovsky is supported by the NSERC Discovery grant.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest concerning publication of this
manuscript.

123



Chern–Simons–Schrödinger theory on a one-dimensional… 2243

References

1. Basu, R., Ganguly, S.: SO(N) lattice gauge theory, planar and beyond. Commun. Pure Appl. Math.
71(10), 2016–2064 (2018)

2. Bergé, L., de Bouard, A., Saut, J.C.: Blowing up time-dependent solutions of the planar Chern–Simons
gauged nonlinear Schrödinger equation. Nonlinearity 8(2), 235–253 (1995)

3. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrodinger equations with the gauge field.
J. Funct. Anal. 263, 1575–1608 (2012)

4. Chatterjee, S.: Rigorous solution of strongly coupled SO(N) lattice gauge theory in the large N limit.
Commun. Math. Phys. 366, 203–268 (2019)

5. Christiansen, S.H., Halvorsen, T.G.: Discretizing the Maxwell–Klein–Gordon equation by the lattice
gauge theory formalism. IMA J. Numer. Anal. 31(1), 1–24 (2011)

6. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta
Numer. 20, 1–119 (2011)

7. Christiansen, S.H., Scheid, C.: Convergence of a constrained finite element discretization of the
Maxwell Klein Gordon equation. ESAIM Math. Model. Numer. Anal. 45(4), 739–760 (2011)

8. Dayi, O.F.: Hamiltonian formulation of Jackiw–Pi three-dimensional gauge theories. Mod. Phys. Lett.
A 13, 1969–1977 (1998)

9. Du, Q.: Discrete gauge invariant approximations of a time dependent Ginzburg–Landau model of
superconductivity. Math. Comput. 67, 965–986 (1998)

10. Du, Q.: Numerical approximations of the Ginzburg–Landau models for superconductivity. J. Math.
Phys. 46(9), 095109 (2005)

11. Eardley, D.M., Moncrief, V.: The global existence of Yang–Mills–Higgs fields in 4-dimensional
Minkowski space. I. Local existence and smoothness properties. Commun.Math. Phys. 83(2), 171–191
(1982)

12. Gattringer, C., Lang, C.B.: Quantum Chromodynamics on the Lattice. Springer, New York (2010)
13. Ginibre, J., Velo, G.: The Cauchy problem for coupled Yang–Mills and scalar fields in the temporal

gauge. Commun. Math. Phys. 82(1), 1–28 (1982)
14. Grundling, H., Rudolph, G.: QCD on an infinite lattice. Commun. Math. Phys. 318, 717–766 (2013)
15. Guo, Y., Nakamitsu, K., Strauss, W.: Global finite-energy solutions of the Maxwell–Schrödinger sys-

tem. Commun. Math. Phys. 170(1), 181–196 (1995)
16. Huh, H.: Reduction of Chern–Simons–Schrödinger systems in one space dimension. J. Appl. Math.

2013, Article ID 631089 (2013)
17. Huh,H.:Remarks onChern–Simons–Dirac equations in one space dimension. Lett.Math. Phys.104(8),

991–1001 (2014)
18. Huh, H., Yim, J.: The Cauchy problem for space–time monopole equations in temporal and spatial

gauge. Adv. Math. Phys. Art. ID 4109645 (2017)
19. Kevrekidis, P.G.: Discrete Nonlinear Schrodinger Equation: Mathematical Analysis, Numerical Com-

putations and Physical Perspectives. Springer, Berlin (2009)
20. Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLSwith long-range

lattice interactions. Commun. Math. Phys. 317(3), 563–591 (2013)
21. Kogut, J.B.: An introduction to lattice gauge theory and spin system. Rev. Mod. Phys. 51, 659–713

(1979)
22. Li, B., Zhang, Z.: A new approach for numerical simulation of the time-dependent Ginzburg–Landau

equations. J. Comput. Phys. 303, 238–250 (2015)
23. Liu, B., Smith, P., Tataru, D.: Local wellposedness of Chern–Simons–Schrödinger. Int. Math. Res.

Not. 23, 6341–6398 (2014)
24. Ma, C., Cao, L.: A Crank–Nicolson finite element method and the optimal error estimates for the

modified time-dependent Maxwell–Schrödinger equations. SIAM J. Numer. Anal. 56(1), 369–396
(2018)

25. MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks
of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)

26. Nishino, H., Rajpoot, S.: Extended Jackiw–Pi model and its super-symmetrization. Phys. Lett. B 747,
93–97 (2015)

27. Pecher, H.: Global well-posedness in energy space for the Chern–Simons–Higgs system in temporal
gauge. J. Hyperbolic Differ. Equ. 13(2), 331–351 (2016)

123



2244 H. Huh et al.

28. Pelinovsky, D.E.: Localization in Periodic Potentials: From Schrödinger Operators to the Gross–
Pitaevskii Equation. LMS Lecture Note Series 390. Cambridge University Press, Cambridge (2011)

29. Pomponio, A., Ruiz, D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur.
Math. Soc. 17(6), 1463–1486 (2015)

30. Ringhofer, C., Soler, J.: Discrete Schrödinger–Poisson systems preserving energy and mass. Appl.
Math. Lett. 13(7), 27–32 (2000)

31. Smit, J.: Introduction to Quantum Fields on a Lattice. Cambridge University Press, Cambridge (2002)
32. Weinstein, M.I.: Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12, 673–

691 (1999)
33. Wilson, K.G.: Confinement of quark. Phys. Rev. D 10, 2445–2459 (1974)
34. Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg–

Landau equations under temporal gauge. SIAM J. Numer. Anal. 56(3), 1291–1312 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Chern–Simons–Schrödinger theory on a one-dimensional lattice
	Abstract
	1 Introduction
	2 Main results
	3 Well-posedness of the discrete CSS system
	4 Existence of stationary bound states
	5 Numerical results
	6 Conclusion
	Acknowledgements
	References




