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Ground state of the Gross–Pitaevskii

equation with a harmonic potential in the

energy-critical case

Dmitry E. Pelinovsky ∗ and Szymon Sobieszek
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Abstract. Ground state of the energy-critical Gross–Pitaevskii equation with a harmonic potential can be constructed variation-
ally. It exists in a finite interval of the eigenvalue parameter. The supremum norm of the ground state vanishes at one end of
this interval and diverges to infinity at the other end. We explore the shooting method in the limit of large norm to prove that
the ground state is pointwise close to the Aubin–Talenti solution of the energy-critical wave equation in near field and to the
confluent hypergeometric function in far field. The shooting method gives the precise dependence of the eigenvalue parameter
versus the supremum norm.
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1. Introduction

We consider the stationary Gross–Pitaevskii equation with a harmonic potential,

(

−1+ |x|2
)

u− |u|2pu = λu, (1.1)

where x ∈ R
d , λ ∈ R, and u ∈ R. Existence of its ground state (a positive and radially decreasing

solution) has been addressed by using variational methods in the energy subcritical [12,19] and critical

[25,26] cases, where the critical exponent is p = 2
d−2

if d > 3. Uniqueness of the ground state was

proven in the energy subcritical [16,17] and critical [28] cases.

Variational methods are not applicable in the energy supercritical case p(d − 2) > 2 if d > 3 for

which a more efficient shooting method was developed in our previous work [3,22] (see also [9] for

study of the Schrödinger–Newton–Hooke model). The shooting method is based on the reformulation of

the existence problem after the Emden–Fowler transformation [10,18] and construction of two analytic

families of solutions, one family gives a bounded solution near r = 0 with parameter b := u(0) ≡ ‖u‖L∞

and the other family gives a decaying solution as r → ∞ with parameter

c := lim
r→∞

u(r)e
1
2 r

2

r
d−λ

2 . (1.2)
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The shooting method gives robust results in the large-norm limit as b → ∞. In an asymptotic region,

where both solution families coexist, the matching condition gives a condition on (c, λ) as a function

of b which determines the solution curve λ = λ(b). The c-family of solutions is defined in a local

neighborhood of the limiting singular solution constructed in [27] for λ = λ∞ ∈ (0, d) such that λ(b) →

λ∞ as b → ∞ along the solution curve. As follows from the shooting method [3] under some non-

degeneracy assumptions, the convergence is oscillatory for 2 + 2
p
< d < d∗(p) and monotone for

d > d∗(p), where

d∗(p) := 6 +
2

p
+ 2

√

4 +
2

p
.

The same shooting method was extended in [22] to compute the Morse index of the ground state in

the monotone case from the Morse index of the limiting singular solution. It was recently proven in

[23] by using comparison with the stationary Schrödinger equation solvable in terms of the confluent

hypergeometric functions (see [1] for review) that the Morse index of the limiting singular solution is

infinite in the oscillatory case and is equal to one in the monotone case for large values of d > d∗(p).

Properties of the energy-supercritical Gross–Pitaevskii equation with a harmonic potential are very

similar to those for the energy-supercritical nonlinear Schrödinger equation in a ball. See [5,6,8] for the

developments in the shooting method, [21] for convergence to the limiting singular solution, and [13,20]

for computation of the Morse index.

The purpose of this work is to extend the shooting method to the energy-critical case and to obtain the

asymptotic representation of λ(b) as b → ∞. As far as we are aware, the shooting method has not been

previously developed in the context of the energy-critical case, for which the variational approximations

are more common.

For the shooting method in the energy-critical case with d = 2 + 2
p

, we introduce the same two

analytic families of solutions, the b-family is defined by parameter b := u(0) and the c-family is defined

by parameter c in the asymptotic behavior (1.2). Contrary to the energy-supercritical case, the c-family

exists in a local neighborhood of a spatially decaying solution to the stationary Schrödinger equation

V ′′(r)+
d − 1

r
V ′(r)− r2V (r)+ λV (r) = 0,

which is satisfied by V (r) = ce−
1
2 r

2
U(r2;α, β), where c ∈ R is arbitrary and U(z;α, β) is the Tricomi

function (see [1]) with

α :=
p + 1

2p
−
λ

4
, β := 1 +

1

p
. (1.3)

Furthermore, contrary to the energy-supercritical case, the b-family exists in a local neighborhood of the

algebraic soliton

Ub(r) =
b

(1 + αpb2pr2)
1
p

, αp :=
p2

4(1 + p)
, (1.4)
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Fig. 1. Ground states of the stationary equation (1.1) with p = 1 and d = 4 compared with the algebraic soliton (1.4) for b = 2
(left) and b = 10 (right).

Fig. 2. The dependence λ = λ(b) for p = 1 and d = 4.

where the parameter b has been introduced from the condition b = Ub(0). The algebraic soliton (also

called the Aubin–Talenti solution [2,29]) satisfies the nonlinear wave equation −1Ub = U
2p+1
b for ev-

ery b > 0. It has been used in many studies of the energy-critical wave equations in bounded domains

as in the pioneering work [4] and in follow-up works [7,11,14,15,24]. In the context of the stationary

Gross–Pitaevskii equation (1.1), it was used in [25] in order to obtain the lower bound on the depen-

dence λ(b) from a variational method. Recently in [23], the variational methods and the elliptic esti-

mates were extended in order to get the upper bound on the dependence λ(b). We will use the shooting

method to justify the relevance of the algebraic soliton (1.4) for the asymptotic behavior of λ(b) as

b → ∞.

Figure 1 shows the numerically obtained profile ub versus r in comparison with the profile Ub for

b = 2 (left) and b = 10 (right). Visualization is given for p = 1 (that corresponds to d = 4). Results for

other values of p ∈ (0, 1) are similar. The two profiles are different for b = 2 but the discrepancy gets

smaller for b = 10 and becomes invisible for larger values of b. The values of λ are uniquely defined in

terms of b along the curve λ = λ(b) which is shown in Fig. 2 for p = 1.
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The following theorem presents outcomes of the shooting method, which is the main result of this
work. We use the following notations:

• λ(b) ∼ λ0(b) denotes the asymptotic equivalence in the sense limb→∞ λ0(b)
−1λ(b) = 1,

• λ(b) = O(bq) denotes the order of magnitude in the sense that |λ(b)| 6 Cbq for some C > 0 and
all sufficiently large b.

Theorem 1.1. Fix p = 2
d−2

∈ (0, 1) for d > 4 and let λ = λ(b) be the solution curve for the ground

state u = ub of the stationary Gross–Pitaevskii equation (1.1) satisfying ub(0) = b, u′
b(r) < 0 for r > 0,

and ub(r) → 0 as r → ∞. Then,

λ(b) ∼ Cp











b−2(1−p), 1
2
< p < 1,

b−1 log b, p = 1
2
,

b−2p, 0 < p < 1
2
,

as b → ∞, (1.5)

with

Cp =



















−
Ŵ(

p+1
2p )Ŵ(−

1
p
)Ŵ( 2

p
)

(1+p)Ŵ(
p−1
2p )Ŵ(

1
p
)Ŵ( 1

p
−1)Ŵ( 1

p
+1)

[ 4(1+p)

p2 ]
1
p , 1

2
< p < 1,

144, p = 1
2
,

8(1+p)2

p2(1−2p)
, 0 < p < 1

2
.

Moreover, for every a ∈ (0, p

1+p
), there exist Ba, Ca > 0 such that for every b > Ba , we have

sup
r∈[0,b−p(1−a)]

b−1
∣

∣ub(r)− Ub(r)
∣

∣ 6 Cab
−2p(1−a), (1.6)

sup
r∈[b−p(1−a),1]

r
2
p

∣

∣ub(r)− c(b)e−
1
2 r

2

U
(

r2;α, β
)∣

∣ 6 Ca
∣

∣c(b)
∣

∣

2p+1
b2p(1−a) (1.7)

and

sup
r∈[1,∞)

∣

∣e
1
2 r

2

r
d−λ(b)

2 ub(r)− c(b)r
d−λ(b)

2 U
(

r2;α, β
)∣

∣ 6 Ca
∣

∣c(b)
∣

∣

2p+1
, (1.8)

where c = c(b) ∼ Apb
−1 as b → ∞ for some Ap > 0.

Remark 1.1. The asymptotic result (1.5) coincides with Theorem 1.1 in [23] obtained by the variational
theory and elliptic estimates. It follows from Remark 1.2 in [23] that there exists Cd such that

λ(ε) ∼ Cd











ε d = 5,

ε2| log ε| d = 6,

ε2 d > 7,

(1.9)

where ε = b−p is defined from the algebraic soliton (1.4). The case d > 7 corresponds to 0 < p < 1
2

as

in (1.5). For d = 6, we have p = 1
2

so that ε2| log ε| ∼ b−1 log b as in (1.5). For d = 5, we have p = 2
3

so that ε ∼ b−2/3 = b−2(1−p) as in (1.5).
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Fig. 3. Log-log graphs of λ(b) versus b for the ground state of the stationary equation (1.1) for d = 7 (left) and d = 5 (right)
compared with the analytical dependence given in (1.5).

Remark 1.2. It also follows from Remark 1.2 in [23] that λ(ε) ∼ C| log ε|−1 for d = 4 and λ(ε)− 1 ∼

Cε for d = 3. In our notations with ε = b−p, this would correspond to λ(b) ∼ C(log b)−1 for p = 1 and

λ(b) − 1 ∼ Cb−2 for p = 2. However, we have found that the shooting method based on the b-family

and the c-family can be applied for p ∈ (0, 1) but needs some further modifications for p > 1.

Remark 1.3. Since U(r2;α, β) = O(r
− 2
p ) as r → b−p(1−a), bound (1.7) shows that ub(r) = O(b1−2a)

as r → b−p(1−a). This is smaller than ub(r) = O(b) as r → 0 in the bound (1.6). Since U(r2;α, β) =

O(r
− d−λ(b)

p ) as r → ∞, bound (1.8) shows that ub(r) satisfies the asymptotic behavior (1.2) with c =

c(b) = O(b−1) as b → ∞.

Figure 3 illustrates relevance of the asymptotic result (1.5) for the solution curve λ = λ(b). For a

given dimension d and the critical exponent p = 2
d−2

, we numerically find λ(b) and plot it versus b in

comparison with the asymptotic dependence (1.5). The left and right panels show the plots for d = 7

when p = 2
5

and λ(b) ∼ Cpb
−4/5 and for d = 5 when p = 2

3
and λ(b) ∼ Cpb

−2/3, where Cp
is obtained from the best least square fit. The proximity between the numerical and analytical curves

becomes obvious in the log-log plot for larger values of b.

Our strategy to prove Theorem 1.1 is as follows. Section 2 contains preliminary results where the

existence problem is reformulated after the Emden–Fowler transformation and the two solution fami-

lies and their truncated limits are clearly identified. Section 3 gives analysis of the b-family in a local

neighborhood of the algebraic soliton (1.4) which becomes the exponentially decaying soliton after the

Emden–Fowler transformation. Section 4 describes analysis of the c-family in a local neighborhood of

the confluent hypergeometric functions. Theorem 1.1 is proven in Section 5 where the two families are

considered in the common asymptotic region with parameters c and λ obtained uniquely in the asymp-

totic limit b → ∞. Besides the asymptotic dependence (1.5) which recovers independently the result

(1.9) obtained in [23] with different methods, the main outcome of this work is the precise asymptotic

construction of the ground state with pointwise estimates (1.6), (1.7), and (1.8) near the Aubin–Talenti

solution and the confluent hypergeometric function.
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2. Preliminary results

As in our previous works [3,22], we reformulate the existence problem for the ground state of the
stationary Gross–Pitaevskii equation (1.1) as the following initial-value problem:

{

f ′′(r)+ d−1
r
f ′(r)− r2f (r)+ λf (r)+ |f (r)|2pf (r) = 0, r > 0,

f (0) = b, f ′(0) = 0,
(2.1)

where b > 0 is the free parameter and d = 2+ 2
p

is defined in terms of p > 0 in the energy-critical case.

We say that the solution of the initial-value problem (2.1) is a ground state if f ′(r) < 0 for r > 0 and
f (r) → 0 as r → ∞. Similarly to Lemmas 3.2 and 3.4 in [3] obtained in the particular case p = 1, the
existence of a unique classical solution to the initial-value problem (2.1) can be concluded by using the
integral equation formulation and the Lyapunov function method. We skip the proof since it is standard
and state that for every p > 0, λ ∈ R, and b > 0, there exists a unique classical solution f ∈ C2(0,∞)

to the initial-value problem (2.1) satisfying the asymptotic behavior:

f (r) = b −
p(λ+ b2p)

4(p + 1)
br2 + O

(

r4
)

, as r → 0. (2.2)

The singularity of the stationary equation (2.1) at r = 0 is unfolded by introducing the Emden–Fowler
transformation:

r = et , 9(t) = e
t
p f
(

et
)

. (2.3)

After the transformation of variables, 9 satisfies the second-order nonautonomous equation

9 ′′(t)−
1

p2
9(t)+

∣

∣9(t)
∣

∣

2p
9(t) = −λe2t9(t)+ e4t9(t). (2.4)

We say that the b-family of solutions to Eq. (2.4) is defined by applying the transformation (2.3) to
the unique solution of the initial-value problem (2.1). The corresponding b-solution, denoted as 9b(t),
satisfies the asymptotic behaviour

9b(t) = be
t
p

[

1 −
p(λ+ b2p)

4(p + 1)
e2t + O

(

e4t
)

]

, as t → −∞, (2.5)

which follows from (2.2). Thus, the b-family of solutions decays to zero as t → −∞. We will show
in Section 3 that the b-family stays close to the positive homoclinic orbit of the truncated version of
Eq. (2.4) given by the second-order autonomous equation

2′′(t)−
1

p2
2(t)+

∣

∣2(t)
∣

∣

2p
2(t) = 0. (2.6)

The second-order equation (2.6) is integrable with the first-order invariant

1

2

(

2′
)2

−
1

2p2
22 +

1

2(p + 1)
22(p+1) = E, (2.7)
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where E is constant along the classical solutions of Eq. (2.6). The origin in the (2,2′)-plane is a saddle
point. The unique (up to translation) positive homoclinic orbit exists at the energy level E = 0 for every
p > 0. The homoclinic orbit can be found explicitly in the form

2h(t + t0) =
e
t+t0
p

(1 + αpe2(t+t0))
1
p

, αp :=
p2

4(1 + p)
, (2.8)

where t0 ∈ R is an arbitrary parameter of translation. Since

2h(t) =

{

e
t
p [1 + O(e2t)] as t → −∞,

α
− 1
p

p e
− t
p [1 + O(e−2t)] as t → +∞,

(2.9)

it follows by comparison with (2.5) that9b(t) ∼ b2h(t) as t → −∞ for which the translation parameter
t0 in (2.8) is uniquely selected as t0 = p log b. With this choice for t0, we observe that 2h(t + p log b)
after transformation (2.3) coincides with the algebraic soliton Ub(r) given by (1.4).

Next, we introduce another analytical family of solutions to Eq. (2.4) that decay to zero as t → +∞,
which we call the c-family and denote as9c(t). We show in Section 4 that the c-family stays close to the
decaying solutions of the linearized version of Eq. (2.4) given by the linear second-order nonautonomous
equation

ϒ ′′(t)−
1

p2
ϒ(t)+ λe2tϒ(t)− e4tϒ(t) = 0. (2.10)

By using the change of variables

z = e2t , ϒ(t) = z
1

2p e−
1
2 zu(z), (2.11)

the second-order equation (2.10) becomes the confluent hypergeometric equation (also known as the
Kummer equation):

zu′′(z)+ (β − z)u′(z)− αu(z) = 0, (2.12)

with parameters α and β given by (1.3). Two special solutions of the Kummer equation (2.12) are given
by the Kummer function M(z;α, β) and the Tricomi function U(z;α, β), which are defined as follows
[1]. The Kummer function is defined by the power series

M(z;α, β) =

∞
∑

k=0

(α)k

(β)k

zk

k!

= 1 +
α

β

z

1!
+
α(α + 1)

β(β + 1)

z2

2!
+
α(α + 1)(α + 2)

β(β + 1)(β + 2)

z3

3!
+ · · · , (2.13)

hence it is bounded as z → 0. The Tricomi function satisfies the asymptotic behavior

U(z;α, β) ∼ z−α
[

1 + O
(

z−1
)]

as z → +∞, (2.14)
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hence it is decaying as z → +∞ if α > 0. In fact, for every λ ∈ (−∞, d), we have

α =
p + 1

2p
−
λ

4
>
p + 1

2p
−
d

4
=
p + 1

2p
−

1

2
−

1

2p
= 0, (2.15)

so that α > 0 is satisfied in the energy-critical case. By [1, 13.1.3], the Tricomi function can be repre-
sented in the superposition form

U(z;α, β) =
π

sinπβ

[

M(z;α, β)

Ŵ(1 + α − β)Ŵ(β)
− z1−βM(z; 1 + α − β, 2 − β)

Ŵ(α)Ŵ(2 − β)

]

, (2.16)

which is true for β /∈ Z but can also be used in the limit β → Z. By using the identity

π

sinπz
= Ŵ(1 − z)Ŵ(z), z /∈ Z. (2.17)

we can rewrite (2.16) for β /∈ N as

U(z;α, β) =
Ŵ(1 − β)

Ŵ(1 + α − β)
M(z;α, β)+ z1−β Ŵ(β − 1)

Ŵ(α)
M(z; 1 + α − β, 2 − β). (2.18)

By [1, 13.1.6], if β = n+ 1 ∈ N, then

U(z;α, n+ 1) =
(−1)n+1

n!Ŵ(α − n)

(

M(z;α, n+ 1) log z

+

∞
∑

k=0

(α)k

(n+ 1)k

zk

k!

[

ψ(α + k)− ψ(1 + k)− ψ(1 + n+ k)
]

)

+
1

Ŵ(α)

n
∑

k=1

(k − 1)!(1 − α + k)n−k

(n− k)!
z−k, (2.19)

where ψ(z) = Ŵ′(z)/Ŵ(z).
By means of the transformation (2.11), Tricomi function determines a suitable solution of the linear

equation (2.10):

ϒh(t) = e
t
p e−

1
2 e

2t

U
(

e2t ;α, β
)

. (2.20)

This solution is considered to be the leading-order approximation of the c-family such that 9c(t) ∼
cϒh(t) as t → +∞ satisfies the asymptotic behavior

9c(t) ∼ ce−
(2−λ)t

2 e−
1
2 e

2t

as t → +∞. (2.21)

The ground state of Theorem 1.1 is the connection of the unique solution of the initial-value problem
(2.1) satisfying (2.2) with the unique solution satisfying the decay behavior

f (r) ∼ cr
−(1+ 1

p
− λ

2 )e−
1
2 r

2

as r → ∞, (2.22)
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which follows from (2.3) and (2.21). The connection between (2.2) and (2.22) only exists for some
specific values of c = c(b) and λ = λ(b). Thus, the main question is to find and to justify the analytical
expressions for c(b) and λ(b) in the asymptotic limit b → ∞.

3. Persistence of the b-family of solutions

The b-family of solutions 9b of the differential equation (2.4) satisfying (2.5) is considered in a
neighborhood of the homoclinic orbit 2h of the differential equation (2.6) satisfying (2.9). Since the
comparison gives 9b(t) ∼ b2h(t) ∼ 2h(t + p log b) as t → −∞, we translate 9b(t) by −p log b and
introduce the perturbation term

γ (t) := 9b(t − p log b)−2h(t),

which satisfies

Lγ = fb(2h + γ )−N(2h, γ ), (3.1)

where fb(t) := −λb−2pe2t + b−4pe4t ,

(Lγ )(t) := γ ′′(t)−
1

p2
γ (t)+ (2p + 1)

∣

∣2h(t)
∣

∣

2p
γ (t),

and

N(2h, γ ) := |2h + γ |2p(2h + γ )− |2h|
2p2h − (2p + 1)|2h|

2pγ.

Remark 3.1. Since2h(t) is positive for all t ∈ R and2h(t)+γ (t) is shown to be positive in the region
of t where we analyze persistence of the b-family of solutions, we can neglect writing modulus signs in
Lγ and N(2h, γ ).

The nonlinear term N(2h, γ ) is superlinear in γ if p ∈ (0, 1
2
) and quadratic if p > 1

2
, according to

the following proposition.

Proposition 3.1. Fix p > 0 and a > 0. If F : [−a, a] → R is defined as

F(x) := (a + x)2p+1 − a2p+1 − (2p + 1)a2px,

then there exists a positive constant C > 0, such that for all x ∈ [−a, a]

∣

∣F(x)
∣

∣ 6

{

C|x|2p+1, if p ∈ (0, 1
2
),

C|x|2, if p ∈ [ 1
2
,∞).

(3.2)

Proof. Without the loss of generality, we assume that a = 1 due to the scaling transformation:

F(x) = a2p+1

[(

1 +
x

a

)2p+1

− 1 − (2p + 1)
x

a

]

.
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Note that F ′′(x) = 2p(2p + 1)(1 + x)2p−1, so that if 2p − 1 > 0, then F ′′ is bounded on [−1, 1], and
the second line of (3.2) follows from Taylor’s theorem. If 2p − 1 < 0, then F ′′ is bounded on [− 1

2
, 1

2
]

so that

∣

∣F(x)
∣

∣ 6 C|x|2 6 C|x|2p+1, x ∈

[

−
1

2
,

1

2

]

,

for some positive constant C. For |x| ∈ [ 1
2
, 1], we have ( 1

2
)2p+1 6 |x|2p+1 so that

∣

∣F(x)
∣

∣ =

(

1

2

)2p+1

22p+1
∣

∣F(x)
∣

∣ 6 C|x|2p+1, |x| ∈

[

1

2
, 1

]

,

for another positive constant C. The two estimates above give the second line of (3.2). �

The homogeneous equation Lγ = 0 admits two linearly independent solutions. The first one is given
by 2′

h(t) due to the translation symmetry of the autonomous equation (2.6). The other solution denoted
by 6(t) can be obtained from the Wronskian relation

2′
h(t)6

′(t)−2′′
h(t)6(t) = 60, t ∈ R, (3.3)

where 60 6= 0 is constant. We take 60 = 1 for normalizing 6(t). Using (2.9) in (3.3), we obtain that

6(t) = −
p2

2

{

e
− t
p [1 + O(e2t)] as t → −∞,

α
1
p
p e

t
p [1 + O(e−2t)] as t → +∞.

(3.4)

Using the two linearly independent solutions 2′
h and 6 of the homogeneous equation Lγ = 0, we

rewrite (3.1) as an integral equation for γ :

γ (t) =

∫ t

−∞

(

2′
h

(

t ′
)

6(t)−2′
h(t)6

(

t ′
))[

fb
(

t ′
)(

2h

(

t ′
)

+ γ
(

t ′
))

−N
(

2h

(

t ′
)

, γ
(

t ′
))]

dt ′, (3.5)

where the free solution c12
′
h(t)+ c26(t) has been set to zero from the requirement that γ (t) decays to

zero as t → −∞ faster than 2′
h(t).

The perturbation term γ can be estimated to be small in the L∞ norm on the semi-infinite interval
(−∞, T + ap log b] with fixed T > 0 and a > 0, where the right end point diverges asymptotically to
+∞ as b → ∞. The following lemma gives the persistence result for the solution 9b(t − p log b) to
stay close to the leading-order term 2h(t) for t ∈ (−∞, T + ap log b].

Lemma 3.1. Fix p ∈ (0, 1] and λ ∈ R. For any fixed T > 0 and a ∈ (0, p

1+p
) there exist bT ,a > 0

and CT ,a > 0 such that the unique solution 9b(t) to the second-order equation (2.4) with asymptotic

behaviour (2.5) satisfies for t ∈ (−∞, T + ap log b] and all b > bT ,a:

∣

∣9b(t − p log b)−2h(t)
∣

∣ 6 CT ,ab
−2p(1−a)e

t
p , (3.6)

where the bound can be differentiated in t .
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Remark 3.2. The remainder term in the bound (3.6) is small on [ap log b, T + ap log b] for every a ∈

(0, 2p
1+2p

) for which b−2p+a(2p+1) → 0 as b → ∞. However, 2h(t) = O(b−a) on the same interval so
that the remainder term γ (t) is smaller than the leading-order term2h(t) for t ∈ [ap log b, T +ap log b]
if a ∈ (0, p

1+p
) for which b−2p+a(2p+1) ≪ b−a for sufficiently large b.

Proof. In order to eliminate the divergence of the integral kernel in the integral equation (3.5) as t →

−∞, we introduce a change of variables: 2̃h(t) := e
− t
p2h(t) and γ̃ (t) := e

− t
p γ (t). The new integral

equation for γ̃ can be considered as the fixed-point equation γ̃ = Aγ̃ , where

(Aγ̃ )(t) :=

∫ t

−∞

K
(

t, t ′
)[

fb
(

t ′
)(

2̃h

(

t ′
)

+ γ̃
(

t ′
))

− e2t ′N
(

2̃h

(

t ′
)

, γ̃
(

t ′
))]

dt ′, (3.7)

where the integral kernel is defined as

K
(

t, t ′
)

:= e
t ′

p2′
h

(

t ′
)

e
− t
p6(t)− e

− t
p2′

h(t)e
t ′

p6
(

t ′
)

, t ′ 6 t.

It follows from the asymptotic behaviours (2.9) and (3.4) for2h and6 that the integral kernel is bounded
for every t ∈ R by

∣

∣K
(

t, t ′
)
∣

∣ 6 C
(

1 + e
− 2
p
(t−t ′)

)

, t ′ 6 t,

for some positive constant C. Thus, as the integration in (3.7) is done in t ′ from −∞ to t , the kernel
K(t, t ′) is bounded. In addition, the lower bound on 2̃h follows from (2.9):

2̃h(t) > CT ,ab
−2a, t ∈ (−∞, T + ap log b),

for some positive constant CT ,a that depends on T and a for all large b. We shall prove that the integral
operator A is a contraction in a small closed ball in the Banach space L∞(−∞, T + ap log b) equipped
with the norm ‖ · ‖∞.

Case p ∈ (0, 1
2
). Since 2̃h(t) is bounded from below for t ∈ (−∞, T + ap log b), it follows by

Proposition 3.1 if ‖γ̃ ‖∞ ≪ b−2a for all large b, then

∥

∥N(2̃h, γ̃ )
∥

∥

∞
6 C‖γ̃ ‖2p+1

∞ , (3.8)

for some positive constant C. We use fb(t) := b−2pe2t [−λ+ b−2pe2t ] and estimate

‖Aγ̃ ‖∞ 6 C

[

(

1 + ‖γ̃ ‖∞

)

∫ T+ap log b

−∞

∣

∣fb
(

t ′
)∣

∣ dt ′ + ‖γ̃ ‖2p+1
∞

∫ T+ap log b

−∞

e2t ′ dt ′
]

6 C
[(

1 + ‖γ̃ ‖∞

)

b−2p(1−a) + b2ap‖γ̃ ‖2p+1
∞

]

,

where the positive constant C can change from one line to the other line. If ‖γ̃ ‖∞ 6 2Cb−2p(1−a), then

‖Aγ̃ ‖∞ 6 C
[

b−2p(1−a) + 2Cb−4p(1−a) + (2C)2p+1b−2p(1−2a(p+1)+2p)
]

6 2Cb−2p(1−a),
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where we have used 2p(1 − a) < 2p(1 − 2a(p + 1) + 2p) if a ∈ (0, 2p
1+2p

). Since 2a < 2p(1 − a)

if a ∈ (0, p

1+p
) with p

1+p
<

2p
1+2p

, the bound ‖γ̃ ‖∞ 6 2Cb−2p(1−a) ensures validity of the bound

‖γ̃ ‖∞ ≪ b−2a for which the bound (3.8) can be used. Similar calculations show that for two functions

γ̃ and γ̃ ′ in the same small closed ball in L∞(−∞, T + ap log b), we have

∥

∥Aγ̃ − Aγ̃ ′
∥

∥

∞
6 Cb−2p(1−a)

∥

∥γ̃ − γ̃ ′
∥

∥

∞
,

so that A is a contraction for sufficiently large b. By the Banach fixed-point theorem, there exists a
unique fixed point γ̃ of A such that

sup
t∈(−∞,T+ap log b)

∣

∣γ̃ (t)
∣

∣ 6 2Cb−2p(1−a).

Since γ (t) = e
t
p γ̃ (t), we obtain the bound (3.6) for the unique solution γ (t) to the integral equation

(3.5).
Case p ∈ [ 1

2
, 1]. The only difference in the proof is that, by Proposition 3.1, the bound (3.8) is replaced

by the bound

∥

∥N(2̃h, γ̃ )
∥

∥

∞
6 C‖γ̃ ‖2

∞, (3.9)

if ‖γ̃ ‖∞ ≪ b−2a for all large b. In this case, we get the estimate

‖Aγ̃ ‖∞ 6 C
[(

1 + ‖γ̃ ‖∞

)

b−2p(1−a) + b2ap‖γ̃ ‖2
∞

]

,

6 C
[

b−2p(1−a) + 2Cb−4p(1−a) + (2C)2b−2p(2−3a)
]

6 2Cb−2p(1−a),

where we have used 2p(1 − a) < 2p(2 − 3a) if a ∈ (0, 1
2
). Since 2a < 2p(1 − a) if a ∈ (0, p

1+p
) with

p

1+p
6 1

2
, the bound ‖γ̃ ‖∞ 6 2Cb−2p(1−a) ensures validity of the bound ‖γ̃ ‖∞ ≪ b−2a for which the

bound (3.9) can be used. The rest of the proof is verbatim to the case of p ∈ (0, 1
2
). �

Remark 3.3. The bound (3.6) can be extended for every p > 1 if the values of a are restricted to
a ∈ (0, 1

2
) as follows from the proof of Lemma 3.1 in the case of p ∈ [ 1

2
, 1].

The result of Lemma 3.1 allows us to justify the validity of

9b(t − p log b) ∼ 2h(t) ∼ α
− 1
p

p e
− t
p , t ∈ [ap log b, T + ap log b]

due to (2.9) and (3.6). In order to obtain the correction term which behaves like e
t
p in the same asymptotic

region, we need to analyze γ in more details and obtain the leading-order part of γ . To do so, we write
γ = γh + δ, where the leading-order term γh satisfies Lγh = fb2h and is given explicitly by

γh(t) = 6(t)

∫ t

−∞

fb
(

t ′
)

2′
h

(

t ′
)

2h

(

t ′
)

dt ′ −2′
h(t)

∫ t

−∞

fb
(

t ′
)

6
(

t ′
)

2h

(

t ′
)

dt ′, (3.10)
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whereas the correction term δ satisfies

Lδ = fb(γh + δ)−N(2h, γh + δ). (3.11)

The following lemma gives a sharper bound on γh compared to the bound (3.6). The sharper bound holds
on [ap log b, T + ap log b], where the asymptotic behavior of 2h(t) and 6(t) as t → +∞ is relevant.

Lemma 3.2. Fix p ∈ (0, 1) and λ ∈ R. For any fixed T > 0 and a ∈ (0, p

1+p
) there exist bT ,a > 0 and

CT ,a > 0 such that γh in (3.10) satisfies for t ∈ [ap log b, T + ap log b] and all b > bT ,a:

• if p ∈ (0, 1
2
), then

∣

∣γh(t)
∣

∣ 6 CT ,a
[(

|λ|b−2p(1−a) + b−4p(1−a)
)

e
− t
p +

(

|λ|b−2p + b−4p
)

e
t
p
]

, (3.12)

• if p ∈ [ 1
2
, 1), then

∣

∣γh(t)
∣

∣ 6 CT ,a
[(

|λ|b−2p(1−a) + b−4p(1−a)
)

e
− t
p +

(

|λ|b−2p + b−4p(1−a)
)

e
t
p
]

, (3.13)

where the bounds can be differentiated in t .

Proof. Since 6(t)2h(t) is bounded for every t ∈ R independently of b, the second integral term in
(3.10) is controlled by

∣

∣

∣

∣

∫ T+ap log b

−∞

fb(t)6(t)2h(t) dt

∣

∣

∣

∣

6 C

∫ T+ap log b

−∞

(

|λ|b−2pe2t + b−4pe4t
)

dt

6 CT ,a
(

|λ|b−2p(1−a) + b−4p(1−a)
)

.

This estimate yields the first term in the bounds (3.12) and (3.13) due to the asymptotic behavior (2.9).

On the other hand, since2h(t)
2 = O(e

− 2t
p ) as t → +∞, the first integral term in (3.10) is controlled by

∣

∣

∣

∣

∫ T+ap log b

−∞

fb(t)2
′
h(t)2h(t) dt

∣

∣

∣

∣

6 C

∫ T+ap log b

−∞

(

|λ|b−2pe
−

2(1−p)
p

t + b−4pe
−

2(1−2p)
p

t
)

dt

6 CT ,a
(

|λ|b−2p + b−4p+2aνp
)

,

where νp = 0 for p ∈ (0, 1
2
) and νp = 2p − 1 for p ∈ [ 1

2
, 1). This yields the second term in the bounds

(3.12) and (3.13) due to the asymptotic behavior (3.4), where we have also used that 4p(1 − a) <

4p − 2a(2p − 1). �

The sharper bounds (3.12) and (3.13) are compatible with the bound (3.6) on the semi-infinite interval
(−∞, T + ap log b], which can be rewritten in the form:

∣

∣γh(t)
∣

∣ 6 CT ,ab
−2p(1−a)e

t
p , t ∈ (−∞, T + ap log b]. (3.14)

The correction term δ is estimated to be smaller than γh according to the following lemma.



14 D.E. Pelinovsky and S. Sobieszek / Gross–Pitaevskii equation in the energy-critical case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Lemma 3.3. Fix p ∈ (0, 1] and λ ∈ R. For any fixed T > 0, a ∈ (0, p

1+p
), there exist bT ,a > 0 and

CT ,a > 0 such that for t ∈ (−∞, T + ap log b] and all b > bT ,a:

• if p ∈ (0, 1
2
), then

∣

∣9b(t − p log b)−2h(t)− γh(t)
∣

∣ 6 CT ,ab
−2p[(2p+1)(1−a)−a]e

t
p , (3.15)

• if p ∈ [ 1
2
, 1], then

∣

∣9b(t − p log b)−2h(t)− γh(t)
∣

∣ 6 CT ,ab
−2p(2−3a)e

t
p , (3.16)

where the bounds can be differentiated in t .

Remark 3.4. If a ∈ (0, 2p
1+2p

) for p ∈ (0, 1
2
), we have

2p(1 − a) < 2p
[

(2p + 1)(1 − a)− a
]

,

so that comparison (3.14) and (3.15) shows that δ is smaller than γh for sufficiently large b. Similarly, if

a ∈ (0, 1
2
) for p > 1

2
, we have

2p(1 − a) < 2p(2 − 3a),

so that the comparison of (3.14) and (3.16) shows that δ is smaller than γh for sufficiently large b. In both

cases, by Lemma 3.1, we also have γh being smaller than2h if a ∈ (0, p

1+p
), where p

1+p
6 min{ 2p

1+2p
, 1

2
}

if p ∈ (0, 1].

Proof. Equation (3.11) for δ can be written similarly to (3.5) as the integral equation

δ(t) =

∫ t

−∞

(

2′
h

(

t ′
)

6(t)

−2′
h(t)6

(

t ′
))[

fb
(

t ′
)(

γh
(

t ′
)

+ δ
(

t ′
))

−N
(

2h

(

t ′
)

, γh
(

t ′
)

+ δ
(

t ′
))]

dt ′. (3.17)

We proceed in a similar way to the proof of Lemma 3.1. Using the change of variables

2̃h(t) := e
− t
p2h(t), γ̃h(t) := e

− t
p γh(t), δ̃(t) := e

− t
p δ(t),

we rewrite the integral equation for δ as the fixed-point equation δ̃ = Bδ̃, where

(Bδ̃)(t) :=

∫ t

−∞

K
(

t, t ′
)[

fb
(

t ′
)(

γ̃h
(

t ′
)

+ δ̃
(

t ′
))

− e2t ′N
(

2̃h

(

t ′
)

, γ̃h
(

t ′
)

+ δ̃
(

t ′
))]

dt ′. (3.18)

The only essential difference between A in (3.7) and B in (3.18) is the source term which dictates the

size of the closed ball in L∞(−∞, T +ap log b], where the fixed-point iterations are closed. In (3.18), it
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consists of the linear term fbγ̃h and the contribution from nonlinearity term N(2̃h, γ̃h). The linear term
is estimated from (3.14) as

∣

∣

∣

∣

∫ T+ap log b

−∞

fb(t)γ̃h(t) dt

∣

∣

∣

∣

6 C‖γ̃h‖∞

∫ T+ap log b

−∞

∣

∣fb(t)
∣

∣ dt 6 Cb−4p(1−a). (3.19)

Estimates for the nonlinear term depend on the value of p. To proceed with the estimates, we decompose

N(2̃h, γ̃h + δ̃) = N(2̃h, γ̃h)+ Ñ(2̃h, γ̃h, δ̃),

where

Ñ(2̃h, γ̃h, δ̃) := N(2̃h, γ̃h + δ̃)−N(2̃h, γ̃h)

= (2̃h + γ̃h + δ̃)2p+1 − (2̃h + γ̃h)
2p+1 − (2p + 1)(2̃h)

2p δ̃.

Case p ∈ (0, 1
2
). By Proposition 3.1, we have

∥

∥N(2̃h, γ̃h)
∥

∥

∞
6 C ′‖γ̃h‖

2p+1
∞ . (3.20)

Since Ñ |δ=0 = 0 and

∂Ñ

∂δ̃

∣

∣

∣

∣

δ̃=0

= (2p + 1)(2̃h + γ̃h)
2p − (2p + 1)(2̃h)

2p,

we obtain by a minor modification of the proof of Proposition 3.1 that

∥

∥Ñ(2̃h, γ̃h, δ̃)
∥

∥

∞
6 C‖γ̃h‖

2p
∞‖δ̃‖∞. (3.21)

Putting together estimates (3.19), (3.20), and (3.21), we obtain that

‖Bδ̃‖∞ 6 C
(

b−4p(1−a) + b−2p(1−a)‖δ̃‖∞ + b−2p[(2p+1)(1−a)−a] + b−2p[2p(1−a)−a]‖δ̃‖∞

)

.

Since 4p(1−a) > 2p[(2p+1)(1−a)−a] for every p ∈ (0, 1
2
), we have b−4p(1−a) ≪ b−2p[(2p+1)(1−a)−a]

for sufficiently large b, hence the source term coming from the nonlinearity N(2̃h, γ̃h) is much larger
than the source term coming from fbγ̃h as b → ∞. As a result, if ‖δ̃‖∞ 6 2Cb−2p[2p(1−a)−a], then
‖Bδ̃‖∞ 6 2Cb−2p[2p(1−a)−a]. Moreover,B is a contraction in the same small closed ball inL∞(−∞, T+

ap log b) for sufficiently large b. Hence, there exists a unique fixed point δ̃ of B satisfying ‖δ̃‖∞ 6

2Cb−2p[(2p+1)(1−a)−a], which yields (3.15) for δ(t) = e
t
p δ̃(t).

Case p ∈ [ 1
2
, 1]. By Proposition 3.1, we have

∥

∥N(2̃h, γ̃h)
∥

∥

∞
6 C‖γ̃h‖

2
∞,

and similarly,

∥

∥Ñ(2̃h, γ̃h, δ̃)
∥

∥

∞
6 C‖γ̃h‖∞‖δ̃‖∞.
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Proceeding similarly to the previous computations, we obtain

‖Bδ̃‖∞ 6 C ′
(

b−4p(1−a) + b−2p(1−a)‖δ̃‖∞ + b−2p(2−3a) + b−2p(1−2a)‖δ̃‖∞

)

.

Since 4p(1 − a) > 2p(2 − 3a), we have b−4p(1−a) ≪ b−2p(2−3a) for sufficiently large b, hence again the

source term coming from the nonlinearity N(2̃h, γ̃h) is much larger than the source term coming from

fbγ̃h as b → ∞. Proceeding similarly, for sufficiently large b, there exists a unique fixed point δ̃ of B

satifying ‖δ̃‖∞ 6 2Cb−2p(2−3a), which yields (3.16) for δ(t) = e
t
p δ̃(t). �

Similarly to Lemma 3.2, we can find a sharper bound on δ compared to the bounds (3.15) and (3.16).

This is given by the following lemma, the proof of which follows from the estimates obtained in Lemma

3.3.

Lemma 3.4. Fix p ∈ (0, 1) and λ ∈ R. For any fixed T > 0 and a ∈ (0, p

1+p
) there exist bT ,a > 0 and

CT ,a > 0 such that δ in (3.17) satisfies for t ∈ [ap log b, T + ap log b] and all b > bT ,a:

• if p ∈ (0, 1
2
), then

∣

∣δ(t)
∣

∣ 6 CT ,a
(

|λ|b−2p + b−4p
)2p+1

b2ape
t
p , (3.22)

• if p ∈ [ 1
2
, 1), then

∣

∣γh(t)
∣

∣ 6 CT ,a
(

|λ|b−2p + b−4p(1−a)
)2
b2ape

t
p , (3.23)

where the bounds can be differentiated in t .

Proof. For p ∈ (0, 1
2
), the first term in the bound (3.12) with e−

t
p is much smaller than the second

term with e
t
p on [ap log b, T + ap log b]. As a result, it can be neglected. On the other hand, the second

term in the bound (3.12) can be extended for the semi-infinite interval (−∞, T + ap log b] such that the

sharper bound compared to (3.6) can be written in the form

∣

∣γh(t)
∣

∣ 6 CT ,a
(

|λ|b−2p + b−4p
)

e
t
p , t ∈ (−∞, T + ap log b].

The bound (3.22) follows from analysis of the integral equation (3.17) by using the transformation to

the tilde variables in the proof of Lemma 3.3 and the estimate (3.20) on the nonlinear term N which is

much larger than the source term from fb.

For p ∈ [ 1
2
, 1), the proof is analogous but we use

∣

∣γh(t)
∣

∣ 6 CT ,a
(

|λ|b−2p + b−4p(1−a)
)

e
t
p , t ∈ (−∞, T + ap log b].

and the estimate (3.21) on the nonlinear term N which is still much larger than the source term from

fb. �
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4. Persistence of the c-family of solutions

The c-family of solutions 9c of the differential equation (2.4) satisfying (2.21) is considered near the
solution ϒh of the linear equation (2.10) given by (2.20). The comparison gives 9c(t) ∼ cϒh(t) as
t → +∞. The correction term η(t) := 9c(t)− cϒh(t) satisfies

Mη = −|cϒh + η|2p(cϒh + η), (4.1)

where

(Mη)(t) := η′′(t)−
1

p2
η(t)+ λe2tη(t)− e4tη(t).

The homogeneous equation Mη = 0 has two linearly independent solutions. One solution is ϒh given
by (2.20). The other solution, denoted as ϒg, can be obtained from the normalized Wronskian relation

ϒh(t)ϒ
′
g(t)−ϒ ′

h(t)ϒg(t) = 1. (4.2)

Since it follows from (2.21) that

ϒh(t) ∼ e−(1− λ
2 )te−

1
2 e

2t

, as t → +∞, (4.3)

integrating the Wronskian relation (4.2) yields

ϒg(t) ∼
1

2
e−(1+ λ

2 )te
1
2 e

2t

, as t → +∞. (4.4)

With two linearly independent solutions ϒh and ϒg, we rewrite (4.1) as an integral equation for η:

η(t) =

∫ ∞

t

(

ϒh
(

t ′
)

ϒg(t)−ϒh(t)ϒg
(

t ′
))
∣

∣cϒh
(

t ′
)

+ η
(

t ′
)
∣

∣

2p(
cϒh

(

t ′
)

+ η
(

t ′
))

dt ′, (4.5)

where the free solution c1ϒh + c2ϒg has been set to zero in order to guarantee that η(t) decays to zero
as t → +∞ faster than ϒh(t).

The following lemma describes the size of η(t) for t ∈ [0,∞).

Lemma 4.1. Fix λ ∈ (−∞, 2] and p > 0. Then, there exist some constants C > 0 and c0 > 0, such

that for t ∈ [0,∞) and c ∈ (−c0, c0), we have

∣

∣9c(t)− cϒh(t)
∣

∣ 6 C|c|2p+1e−(1− λ
2 )te−

1
2 e

2t

, (4.6)

where the bound can be differentiated term by term.

Proof. In order to obtain a bounded kernel in the integral equation (4.5), we first introduce the change
of variables

ϒ̃h(t) := e(1− λ
2 )te

1
2 e

2t

ϒh(t), η̃(t) := e(1− λ
2 )te

1
2 e

2t

η(t),
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which applied to (4.5) results in the integral equation η̃ = Eη̃, where

(Eη̃)(t) :=

∫ ∞

t

K̂
(

t, t ′
)

e−p(2−λ)t ′−pe2t ′−2t ′N̂
(

cϒ̃h
(

t ′
)

, η̃
(

t ′
))

dt ′, (4.7)

and where the kernel K̂ and the nonlinearity N̂ are given by

K̂
(

t, t ′
)

:= e−(1− λ
2 )(t

′−t)+2t ′+ 1
2 (e

2t−e2t ′ )
(

ϒh
(

t ′
)

ϒg(t)−ϒh(t)ϒg
(

t ′
))

,

and

N̂(cϒ̃h, η̃) := |cϒ̃h + η̃|2p(cϒ̃h + η̃).

Using asymptotic behaviours (4.3) and (4.4), we get that there exists C > 0 such that

∣

∣K̂
(

t, t ′
)
∣

∣ 6 C
(

1 + eφ(t,t
′)
)

, 0 6 t 6 t ′. (4.8)

where φ(t, t ′) := λ(t ′ − t) − e2t ′(1 − e−2(t ′−t)). Since φ(t, t ′) → −∞ as t ′ → +∞ and φ(t, t ′) has
an extremum in t ′ at λ − 2e2t ′ = 0, which does not belong to R if λ ∈ (−∞, 0] and is located on R−

if λ ∈ (0, 2), we conclude that maxt ′∈[t,∞) e
φ(t,t ′) = eφ(t,t) = 1 for t > 0. Hence, the kernel K̂(t, t ′)

is bounded for every 0 6 t 6 t ′ < ∞. On the other hand, since N̂(cϒh, η̃) is a C1 function for every
p > 0, the nonlinear term satisfies the following bound:

∣

∣N̂(cϒ̃h, η̃)
∣

∣ 6 C|c|2p
(

|c| + |η̃|
)

, as long as |η̃| 6 C, (4.9)

where the constant C > 0 is independent of c.
In order to use the Banach fixed-point theorem, we first estimate the size of Eη̃ for η̃ in a small closed

ball in L∞(0,∞). Since e−p(2−λ)t−pe2t−2t in (4.7) is absolutely integrable on [0,∞), we obtain by using
(4.8) and (4.9) that

‖Eη̃‖∞ 6 C|c|2p
(

|c| + ‖η̃‖∞

)

,

where the constant C > 0 is independent of c. Thus, the operator E maps a closed ball of radius
2C|c|2p+1 into itself as long as |c| is chosen sufficiently small.

Similarly, by Proposition 3.1, we get for every η̃1 and η̃2 in the same small closed ball in L∞(0,∞)

that N̂ is a Lipschitz function satisfying

∥

∥N̂(cϒ̃h, η̃1)− N̂(cϒ̃h, η̃2)
∥

∥

∞
6 C|c|2p‖η̃1 − η̃2‖∞, (4.10)

which yields

‖Eη̃1 − Eη̃2‖∞ 6 C|c|2p‖η̃1 − η̃2‖∞,

so that the operator E is a contraction for sufficiently small values of |c|. By the Banach fixed-point
theorem, there exists a unique solution η̃(t) ∈ L∞(0,∞) of the integral equation η̃ = Eη̃ satisfying
‖η̃‖∞ 6 2C|c|2p+1. This estimate yields (4.6) after unfolding the transformation for η(t). �
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Using the result of Lemma 4.1, we can now extend the estimates for η(t) for large negative values of
t .

Lemma 4.2. Fix λ ∈ (−∞, 2], p > 0, and a ∈ (0, 1). Then, there exist b0 > 0 and C > 0, such that for

every b > b0 there exists c0 > 0, such that for t ∈ [−(1 − a)p log b, 0] and c ∈ (−c0b
−(1−a), c0b

−(1−a)),

we have

∣

∣9c(t)− cϒh(t)
∣

∣ 6 C|c|2p+1b2p(1−a)e
− t
p , (4.11)

where the bound can be differentiated term by term.

Proof. We rewrite equation (4.1) as an integral equation for t ∈ [−(1 − a)p log b, 0]:

η(t) =
(

ϒ ′
g(0)ϒh(t)−ϒ ′

h(0)ϒg(t)
)

η(0)+
(

ϒh(0)ϒg(t)−ϒg(0)ϒh(t)
)

η′(0)

+

∫ 0

t

(

ϒh
(

t ′
)

ϒg(t)−ϒh(t)ϒg
(

t ′
))(

cϒh
(

t ′
)

+ η
(

t ′
))∣

∣cϒh
(

t ′
)

+ η
(

t ′
)∣

∣

2p
dt ′, (4.12)

where |η(0)| + |η′(0)| 6 C|c|2p+1 by Lemma 4.1. By using the scattering relation (2.18) and the trans-
formation (2.20), we obtain the following asymptotic behavior for ϒh(t):

ϒh(t) ∼
Ŵ( 1

p
)

Ŵ(α)
e

− t
p , as t → −∞, (4.13)

where α > 0 by (2.15). Wronskian relation (4.2) implies the following asymptotic behavior for ϒg(t):

ϒg(t) ∼
pŴ(α)

2Ŵ( 1
p
)
e
t
p , as t → −∞. (4.14)

The divergent behaviour of ϒh(t) as t → −∞ dictates the correct form of the transformation to use,
which in this case is given by:

ϒ̃h(t) := e
t
pϒh(t), ϒ̃g(t) := e

t
pϒg(t), η̃(t) := e

t
p η(t).

Applying it to the integral equation (4.12) results in the fixed point equation η̃ = F η̃, where

(F η̃)(t) :=
(

ϒ ′
g(0)ϒ̃h(t)−ϒ ′

h(0)ϒ̃g(t)
)

η(0)+
(

ϒ̃h(0)ϒg(t)−ϒg(0)ϒ̃h(t)
)

η′(0)

+

∫ 0

t

e−2t ′K̃
(

t, t ′
)

N̂
(

cϒ̃h
(

t ′
)

, η̃
(

t ′
))

dt ′, (4.15)

where

K̃
(

t, t ′
)

:= e
t−t ′

p
(

ϒh
(

t ′
)

ϒg(t)−ϒh(t)ϒg
(

t ′
))

and N̂ is the same as in the proof of Lemma 4.1.
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We proceed by estimating each term of F η̃ in the space L∞(−(1 −a)p log b, 0). Since ϒ̃h and ϒ̃g are

bounded for t ∈ (−∞, 0] and |η(0)| + |η′(0)| 6 C|c|2p+1, we obtain

∣

∣

(

ϒ ′
g(0)ϒ̃h(t)−ϒ ′

h(0)ϒ̃g(t)
)

η(0)+
(

ϒ̃h(0)ϒg(t)−ϒg(0)ϒ̃h(t)
)

η′(0)
∣

∣ 6 C|c|2p+1.

Furthermore, if t ≪ −1, asymptotics (4.13) and (4.14) allow us to estimate size of the last term in (4.15)

as

∣

∣

∣

∣

∫ 0

t

e−2t ′K̃
(

t, t ′
)

N̂
(

cϒ̃h
(

t ′
)

, η̃
(

t ′
))

dt ′
∣

∣

∣

∣

6 C|c|2p
∫ 0

t

e−2t ′
(

1 + e
− 2
p
(t ′−t)

)(

|c| +
∣

∣η̃
(

t ′
)
∣

∣

)

dt ′

6 C|c|2pb2p(1−a)
(

|c| + ‖η̃‖∞

)

,

where we have used the C1 property of N̂(cϒ̃h, η̃) satisfying (4.9). These two estimates yield

‖F η̃‖∞ 6 C|c|2pb2p(1−a)
(

|c| + ‖η̃‖∞

)

,

for sufficiently large values of b. The divergent behaviour of b2p(1−a) for large b is controlled by appro-

priately reducing the value of |c| satisfying |c| < c0b
−(1−a) for sufficiently small c0 > 0. Thus, we see

that the operator F maps the closed ball of the radius 2C|c|2p+1b2p(1−a) in L∞(−(1 − a)p log b, 0) into

itself. Moreover, since N̂ is a Lipschitz function satisfying (4.10), we get that if η̃1, η̃2 belong to the

same ball, then

‖Fη1 − Fη2‖∞ 6 C|c|2pb2p(1−a)‖η̃1 − η̃2‖∞,

so that the operator F is a contraction as long as |c| < c0b
−(1−a) for sufficiently small c0 > 0. By the

Banach fixed-point theorem, there exists a unique η̃ ∈ L∞(−(1 − a)p log b, 0) satisfying

sup
t∈[−(1−a)p log b,0]

∣

∣η̃(t)
∣

∣ 6 C|c|2p+1b2p(1−a),

which yields the bound (4.11) due to the transformation η(t) = e
− t
p η̃(t). �

5. Matching solutions: The proof of Theorem 1.1

We are now equipped with all the necessary estimates to prove Theorem 1.1. The ground state u = ub
of the stationary Gross–Pitaevskii equation (1.1) in the Emden–Fowler variables (2.3) exhibits decaying

behaviour both as t → −∞ and as t → +∞ for every b > 0 if λ = λ(b). In other words, it appears at

the intersection of the two solution families with

9b(t) = 9c(b)(t), t ∈ R (5.1)

for some λ = λ(b) and c = c(b). This allows us to use the asymptotic behaviours (3.15) and (3.16) for

9b(t), and the asymptotic behavior (4.11) for 9c(t) at the times t = T − (1 − a)p log b with varying
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T > 0 and sufficiently large values of b. Equaling the asymptotic behaviors due to (5.1) yields two
implicit equations for parameters λ and c.

Bound (1.6) follows from the bound (3.6) with T = 0 after the transformation (2.3). Bounds (1.7) and
(1.8) follow from the bounds (4.6) and (4.11) in the reversed order after the transformation (2.3). The
proof of Theorem 1.1 is completed after obtaining the asymptotic representation for λ(b) and c(b) for
large b.

We fix p ∈ (0, 1), T > 0, and a ∈ (0, p

1+p
). For sufficiently large b > bT ,a , we consider (λ, c) in the

rectangle [0, 2] × [0, c0b
−(1−a)] for which both Lemmas 3.4 and 4.2 can be applied.

By Lemma 3.4, we have for t ∈ [ap log b, T + ap log b],

9b(t − p log b) = 2h(t)+ γh(t)+ O
(

F(λ, b)b2ape
t
p
)

, (5.2)

where

F(λ, b) :=

{

(|λ|b−2p + b−4p)2p+1, p ∈ (0, 1
2
),

(|λ|b−2p + b−4p(1−a))2, p ∈ [ 1
2
, 1),

and the asymptotic expansion can be differentiated in t . Using (3.10), we can write (5.2) as

9b(t − p log b) = 2h(t)+6(t)

∫ t

−∞

fb
(

t ′
)

2′
h

(

t ′
)

2
(

t ′
)

dt ′

−2′
h(t)

∫ t

−∞

fb
(

t ′
)

6
(

t ′
)

2h

(

t ′
)

dt ′ + O
(

F(λ, b)b2ape
t
p
)

.

Evaluating these expressions at t = T + ap log b and using the asymptotic relations (2.9) and (3.4) for
2h(t) and 6(t) as t → +∞, we obtain

9b
(

T − (1 − a)p log b
)

= α−1/p
p e

− T
p b−a

[

1 + O
(

b−2ap
)]

−
1

2
p2α1/p

p e
T
p ba

[

1 + O
(

b−2ap
)]

∫ T+ap log b

−∞

fb(t)2
′
h(t)2h(t) dt

+
1

p
α−1/p
p e

− T
p b−a

[

1 + O
(

b−2ap
)]

∫ T+ap log b

−∞

fb(t)6(t)2h(t) dt

+ O
(

F(λ, b)b2ap+ae
T
p
)

,

where fb(t) = −λb−2pe2t + b−4pe4t . Since

∣

∣

∣

∣

∫ T+ap log b

−∞

fb(t)6(t)2h(t) dt

∣

∣

∣

∣

6 CT ,ab
−2p(1−a)

is obtained in the proof of Lemma 3.2, we finally obtain the asymptotic formula:

9b
(

T − (1 − a)p log b
)
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= α−1/p
p e

− T
p b−a

[

1 + O
(

b−2ap, b−2p(1−a)
)]

−
1

2
p2α1/p

p e
T
p ba

[∫ T+ap log b

−∞

fb(t)2
′
h(t)2h(t) dt

[

1 + O
(

b−2ap
)]

+ O
(

F(λ, b)b2ap
)

]

. (5.3)

By Lemma 4.2, we have for t ∈ (−(1 − a)p log b, 0],

9c(t) = cϒh(t)+ O
(

|c|2p+1b2p(1−a)e
− t
p
)

, (5.4)

where ϒh is given by (2.20) and the asymptotic expansion can be differentiated in t . Since the expansion
(5.4) is used for t → −∞, we can use either (2.18) or (2.19) for asymptotic expansions of the Tricomi
function U(e2t ;α, β) in (2.20), where α = p+1

2p
− λ

4
> 0 due to (2.15) and β = 1 + 1

p
. If p 6= 1

n
with

n ∈ N, then the asymptotic formula for the solution 9c evaluated at t = T − (1 − a)p log b is obtained
with the help of (2.18), (2.20), and (5.4) in the form:

9c
(

T − (1 − a)p log b
)

= ce
T
p

Ŵ(− 1
p
)

Ŵ(
p−1
2p

− λ
4
)
b−(1−a)

[

1 + O
(

b−2p(1−a)
)]

+ ce
− T
p

Ŵ( 1
p
)

Ŵ(
p+1
2p

− λ
4
)
b1−a

[

1 + O
(

b−2p(1−a), |c|2pb2p(1−a)
)]

. (5.5)

If p = 1
n

with n ∈ N, then the asymptotic formula for the solution9c evaluated at t = T −(1−a)p log b
is obtained with the help of (2.19), (2.20), and (5.4) in the form:

9c
(

T − (1 − a)p log b
)

= cenT
2(−1)n+1

n!Ŵ( 1−n
2

− λ
4
)
b−(1−a)

[(

T − (1 − a)p log b
)[

1 + O
(

b−2p(1−a)
)]

+ O(1)
]

+ ce−nT
(n− 1)!

Ŵ(α)
b1−a

[

1 + O
(

b−2p(1−a), |c|2pb2p(1−a)
)]

, (5.6)

where α = 1+n
2

− λ
4
> 0.

When we use the connection equation (5.1), it sets up the system of two equations for two unknowns λ
and c. These two equations can be obtained by equaling 9b(t) and 9c(t) as well as their first derivatives
at the time t = T − (1 − a)p log b. Alternatively, since the asymptotic expansions are differentiable in
t term by term, we can set up the system by equaling coefficients in front of the exponential functions

e
T
p and e−

T
p . Equaling the coefficients for the e−

T
p terms in (5.3) with either (5.5) or (5.6) yields the

following equation:

α−1/p
p b−a

[

1 + O
(

b−2ap, b−2p(1−a)
)]

= c
Ŵ( 1

p
)

Ŵ(α)
b1−a

[

1 + O
(

b−2p(1−a), |c|2pb2p(1−a)
)]

. (5.7)

The nonlinear equation (5.7) is defined for (λ, c) ∈ [0, 2] × [0, c0b
−(1−a)] and the remainder terms are

C1 functions with respect to (λ, c). Since the leading-order part of the nonlinear equation (5.7) is linear
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in c and suggests the solution c = O(b−1), which clearly exists inside |c| 6 c0b
−(1−a), we have by an

application of the implicit function theorem the existence of a C1 function c = c(λ, b) for λ ∈ [0, 2] and
sufficiently large b > bT ,a , which is given asymptotically as

c(λ, b) = α−1/p
p

Ŵ(α)

Ŵ( 1
p
)
b−1

[

1 + O
(

b−2ap, b−2p(1−a)
)]

. (5.8)

Equaling the coefficients for the e
T
p terms in (5.3) with either (5.5) or (5.6) and substituting the ex-

pression (5.8) for c yields a nonlinear equation for λ, which we can also solve with an application of
the implicit function theorem. However, details of computations depend on the value of p ∈ (0, 1) and
hence are reported separately for different values of p.

Case p ∈ (0, 1
2
). If p 6= 1

n
for every n ∈ N, we use (5.3) and (5.5) in (5.1), equal the coefficients for

the e
T
p terms, and substitute the expression (5.8) for c = c(λ, b). This yields the nonlinear equation for

λ:

1

2
p2α1/p

p ba
[

λb−2p

∫ T+ap log b

−∞

e2t2′
h(t)2h(t) dt

[

1 + O
(

b−2ap
)]

− b−4p

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt

[

1 + O
(

b−2ap
)]

+ O
((

|λ|b−2p + b−4p
)2p+1

b2ap
)

]

= α−1/p
p

Ŵ(
p+1
2p

− λ
4
)Ŵ(− 1

p
)

Ŵ(
p−1
2p

− λ
4
)Ŵ( 1

p
)
b−2+a

[

1 + O
(

b−2p(1−a)
)]

. (5.9)

If p ∈ (0, 1
2
), both integrals in the left-hand-side of (5.9) converge due to the asymptotic expansion (2.9)

so that they can be expanded as

∫ T+ap log b

−∞

e2t2′
h(t)2h(t) dt = −

∫ +∞

−∞

e2t2h(t)
2 dt + O

(

b−2a(1−p)
)

,

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt = −2

∫ +∞

−∞

e4t2h(t)
2 dt + O

(

b−2a(1−2p)
)

,

which implies that the nonlinear equation (5.9) for λ can be rewritten in the equivalent form:

λ

∫ +∞

−∞

e2t2h(t)
2 dt

[

1 + O
(

b−2ap, b−2a(1−p)
)]

− 2b−2p

∫ +∞

−∞

e4t2h(t)
2 dt

[

1 + O
(

b−2ap, b−2a(1−2p)
)]

+ O
((

|λ|b−2p + b−4p
)2p+1

b2p(1+a)
)

= −2p−2α−2/p
p

Ŵ(
p+1
2p

− λ
4
)Ŵ(− 1

p
)

Ŵ(
p−1
2p

− λ
4
)Ŵ( 1

p
)
b−2(1−p)

[

1 + O
(

b−2p(1−a)
)]

. (5.10)

If p 6= 1
n

for every n ∈ N, then p−1
2p
,− 1

p
6= −m for every m ∈ N so that the arguments of the Gamma

functions at λ = 0 are away from their pole singularities. Hence, all terms of the nonlinear equation
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(5.10) are C1 functions of λ at λ = 0. For p ∈ (0, 1
2
), b−2(1−p) ≪ b−2p for sufficiently large b. Since the

leading-order part of the nonlinear equation (5.10) is linear in λ and suggests the solution λ = O(b−2p),
we have by an application of the implicit function theorem the existence of a C1 function λ = λ(b) for
sufficiently large b which is given asymptotically by

λ(b) = 2

∫ +∞

−∞
e4t2h(t)

2 dt
∫ +∞

−∞
e2t2h(t)2 dt

b−2p + O
(

b−2(1−p), b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)
)

. (5.11)

The integrals in (5.11) can be computed by using the explicit expression for 2h given by (2.8) with
t0 = 0. Using the substitution s = (1 + αpe

2t)−1 we express the integrals in terms of the Beta function

B(z1, z2) :=

∫ 1

0

sz1−1(1 − s)z2−1 ds =
Ŵ(z1)Ŵ(z2)

Ŵ(z1 + z2)
, z1, z2 > 0

and obtain

∫ +∞

−∞

e2t2h(t)
2 dt =

1

2α
1+1/p
p

∫ 1

0

s
1
p

−2
(1 − s)

1
p ds =

Ŵ( 1
p

− 1)Ŵ( 1
p

+ 1)

2α
1+1/p
p Ŵ( 2

p
)

,

∫ +∞

−∞

e4t2h(t)
2 dt =

1

2α
2+1/p
p

∫ 1

0

s
1
p

−3
(1 − s)

1
p

+1
ds =

Ŵ( 1
p

− 2)Ŵ( 1
p

+ 2)

2α
2+1/p
p Ŵ( 2

p
)

.

Substituting these expressions into (5.11) yields the final formula for p ∈ (0, 1
2
) and p 6= 1

n
for every

n ∈ N:

λ(b) =
2(1 + p)

αp(1 − 2p)
b−2p + O

(

b−2(1−p), b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)
)

, (5.12)

where we have used the property Ŵ(z+ 1) = zŴ(z).

If p = 1
n

for some n ∈ N\{1, 2}, we use (5.3) and (5.6) in (5.1), equal the coefficients for the e
T
p

terms, and substitute the expression (5.8) for c = c(λ, b). This yields the nonlinear equation for λ:

1

2
p2α1/p

p ba
[

λb−2p

∫ T+ap log b

−∞

e2t2′
h(t)2h(t) dt

[

1 + O
(

b−2ap
)]

− b−4p

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt

[

1 + O
(

b−2ap
)]

+ O
((

|λ|b−2p + b−4p
)2p+1

b2ap
)

]

=
2(−1)n+1Ŵ( 1+n

2
− λ

4
)

αnpn!(n− 1)!Ŵ( 1−n
2

− λ
4
)
b−2+a

[(

T − (1 − a)p log b
)[

1 + O
(

b−2p(1−a)
)]

+ O(1)
]

. (5.13)

After dividing it by ba−2p, this equation can be rewritten in the form (5.10), where the right-hand side
has the order of

log bb−2(1−p)

Ŵ( 1−n
2

− λ
4
)
,
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which is much smaller than the leading-order term of the order of O(b−2p) for p ∈ (0, 1
2
). For even n,

the final formula (5.11) for λ(b) is modified as follows:

λ(b) =
2(1 + p)

αp(1 − 2p)
b−2p + O

(

log bb−2(1−p), b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)
)

.

For odd n, we also have Ŵ( 1−n
2
) = ∞. Since

Ŵ(z) =
(−1)n

n!(z+ n)
+ O(1) as z → −n

and λ(b) = O(b−2p), we have

1

Ŵ( 1−n
2

− λ
4
)

= O(λ) = O
(

b−2p
)

,

which modifies the final formula (5.11) for λ(b) according to

λ(b) =
2(1 + p)

αp(1 − 2p)
b−2p + O

(

log bb−2, b−2p(1+a), b−2(p+a(1−2p)), b−2p(4p+1−a)
)

.

In both formulas for λ = λ(b), we have p = 1
n

with either even or odd n ∈ N\{1, 2}. In all cases,
λ(b) > 0 for suffiently large values of b.

Case p ∈ ( 1
2
, 1). Since p 6= 1

n
for every n ∈ N if p ∈ ( 1

2
, 1), the nonlinear equation (5.9) can

be used. However, the integral
∫ T+ap log b

−∞
e4t2h(t)

2 dt diverges exponentially in the upper limit since

2h(t)
2 = O(e

− 2t
p ) as t → +∞. Consequently, there is a positive constantCT ,a such that for all b > bT ,a ,

we have

∣

∣

∣

∣

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt

∣

∣

∣

∣

6 CT ,ab
2a(2p−1).

The nonlinear equation (5.9) can be rewritten in the equivalent form:

λ

∫ +∞

−∞

e2t2h(t)
2 dt

[

1 + O
(

b−2ap, b−2a(1−p)
)]

+ b−2p

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt

[

1 + O
(

b−2ap
)]

+ O
((

|λ|b−2p + b−4p(1−a)
)2
b2p(1+a)

)

= −2p−2α−2/p
p

Ŵ(
p+1
2p

− λ
4
)Ŵ(− 1

p
)

Ŵ(
p−1
2p

− λ
4
)Ŵ( 1

p
)
b−2(1−p)

[

1 + O
(

b−2p(1−a)
)]

, (5.14)

where the second term on the left-hand side is of the order of b−2p+2a(2p−1) → 0 as b → ∞ since
−2p + 2a(2p − 1) < 0 for a < p

2p−1
, which is satisfied automatically, since p

2p−1
> 1 for p ∈ ( 1

2
, 1).

Moreover, since b−2p+2a(2p−1) ≪ b−2(1−p) for p ∈ ( 1
2
, 1) and a ∈ (0, 1), the right-hand side dominates
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in the nonlinear equation (5.14). Solving the nonlinear equation (5.14) by an application of the implicit

function theorem, we have the existence of a C1 function λ = λ(b) for sufficiently large b which is given

asymptotically by

λ(b) = −
4α

1−1/p
p Ŵ(

p+1
2p
)Ŵ(− 1

p
)Ŵ( 2

p
)

p2Ŵ(
p−1
2p
)Ŵ( 1

p
)Ŵ( 1

p
− 1)Ŵ( 1

p
+ 1)

b−2(1−p)

+ O
(

b−2p+2a(2p−1), b−2(1−p)−2ap, b−2(1+a)(1−p), b−2(1−pa), b−2p(3−5a)
)

. (5.15)

Since − 1
p

∈ (−2,−1) and p−1
2p

∈ (− 1
2
, 0) if p ∈ ( 1

2
, 1), we have Ŵ(− 1

p
) > 0 and Ŵ(p−1

2p
) < 0. Hence,

λ(b) > 0 for sufficiently large values of b.

Case p = 1
2
. This case corresponds to n = 2 in the nonlinear equation (5.13), which we can rewrite

in the equivalent form:

λ

∫ +∞

−∞

e2t2h(t)
2 dt

[

1 + O
(

b−a
)]

+ b−1

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt

[

1 + O
(

b−a
)]

+ O
((

|λ|b−1 + b−2 log b
)2
ba
)

=
8Ŵ( 3

2
− λ

4
)

α4
pŴ(−

1
2

− λ
4
)
b−1

[(

T − (1 − a)p log b
)[

1 + O
(

b−(1−a)
)]

+ O(1)
]

, (5.16)

where αp= 1
2

= 1
4!

. The second integral
∫ T+ap log b

−∞
e4t2′

h(t)2h(t) dt diverges linearly in the upper limit

since2h(t)
2 = O(e−4t) as t → +∞. The exact computations with the help of the explicit formula (2.8)

yield the following asymptotic expression:

∫ T+ap log b

−∞

e4t2′
h(t)2h(t) dt =

1

2
e4t2h(t)

2

∣

∣

∣

∣

t=T+ap log b

t→−∞

− 2

∫ T+ap log b

−∞

e4t2h(t)
2 dt

=
1

2α4
p

−
1

α4
p

[

2(T + ap log b)+ log(αp)−
11

6
+ O

(

b−2ap
)

]

= −
2

α4
p

(T + ap log b)+
7

3α4
p

−
log(αp)

α4
p

+ O
(

b−2ap
)

.

On the other hand, we use (2.17) and obtain

8Ŵ( 3
2
)

Ŵ(− 1
2
)

= −
8

π
Ŵ2

(

3

2

)

= −2,

so that the leading-order terms of the nonlinear equation (5.16) can be collected together as

λ

∫ +∞

−∞

e2t2h(t)
2 dt

[

1 + O
(

b−a
)]

+ O
(

b−1, log bb−1−a
)

+ O
((

|λ|b−1 + b−2 log b
)2
ba
)
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=
1

α4
p

log bb−1
[

1 + O(λ)
][

1 + O
(

b−(1−a)
)]

+ O
(

b−1
)

.

By using the implicit function theorem, we have the existence of a C1 function λ = λ(b) for sufficiently

large b which is given asymptotically by

λ(b) = 144 log bb−1 + O
(

b−1, log bb−1−a, (log b)2b−2
)

, (5.17)

where we have used p = 1
2
, αp= 1

2
= 1

4!
, and

∫ +∞

−∞

e2t2h(t)
2 dt =

1

6α3
p

.

Hence, λ(b) > 0 for sufficiently large values of b.

Theorem 1.1 is proven. For details in Remark 1.2, we give the following computations.

Case p = 1. This case corresponds to n = 1 in the nonlinear equation (5.13), which we can rewrite

in the equivalent form:

λ

∫ T+a log b

−∞

e2t2′
h(t)2h(t) dt

[

1 + O
(

b−2a
)]

− b−2

∫ T+a log b

−∞

e4t2′
h(t)2h(t) dt

[

1 + O
(

b−2a
)]

+ O
((

|λ|b−2 log b + b−4(1−a)
)2
b2a
)

=
4Ŵ(1 − λ

4
)

α2
pŴ(−

λ
4
)

[(

T − (1 − a) log b
)[

1 + O
(

b−2(1−a)
)]

+ O(1)
]

,

where αp=1 = 1
8
. Since

Ŵ(z) =
1

z
+ O(1) as z → 0

and

∫ T+a log b

−∞

e2t2′
h(t)2h(t) dt = −

1

α2
p

(T + a log b − 1)−
1

2α2
p

log(αp)+ O
(

b−2a
)

,

the leading-order terms contain only λ log b, which are not balanced by the terms of the order of O(1)

to get the asymptotic balance λ = O((log b)−1) according to Remark 1.2. This failure of the shooting

method is due to only one exponential term that appears in (5.6) for n = 1 and λ = 0. The way to handle

the asymptotic balance is to obtain the second exponential terms from the higher-order (nonlinear) terms

of the expansion for 9c(t) beyond the leading order. However, this adds complexity to the shooting

method beyond the scopes of this work.
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