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We study existence of helical solitons in the vector modified Korteweg–de Vries (mKdV) equations, one of 
which is integrable, whereas another one is non-integrable. The latter one describes nonlinear waves in 
various physical systems, including plasma and chains of particles connected by elastic springs. By using 
the dynamical system methods such as the blow-up near singular points and the construction of invariant 
manifolds, we construct helical solitons by the efficient shooting method. The helical solitons arise as the 
result of co-dimension one bifurcation and exist along a curve in the velocity-frequency parameter plane. 
Examples of helical solitons are constructed numerically for the non-integrable equation and compared 
with exact solutions in the integrable vector mKdV equation. The stability of helical solitons with respect 
to small perturbations is confirmed by direct numerical simulations.
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1. Introduction

There are several different types of solitons in physical systems, 
including classical Korteweg–de Vries solitary waves and their gen-
eralizations with the exponential, algebraic, and oscillatory asymp-
totics, as well as kinks, envelope solitons, two-dimensional lumps, 
topological solitons, breathers, etc. (see, e.g., [1,2]). Less known are 
helical solitons which appear in vector models of nonlinear equa-
tions.

One of the first examples of helical solitons was reported in 
Ref. [3] for circularly polarized waves in solid-state plasma de-
scribed by a rather specific nonlinear wave equation. Other exam-
ples of vector equations describing plasma waves were considered 
in late 1970s by several authors [4–6] who derived a vector mod-
ified Korteweg–de Vries (mKdV) equation for the description of 
small-amplitude long waves. This equation in the dimensionless 
form is:

ut + (|u|2u)x + uxxx = 0, (1)

where u = (u1, u2) is a two-component vector with the norm |u| =√
u2

1 + u2
2. In some cases a similar equation can be derived with 

the negative dispersion coefficient; we do not consider such cases 
here.
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Fig. 1. A schematic example of a transverse flexural perturbation on the chain of 
particles linked by elastic springs.

Equation (1) was also derived for the description of transverse 
perturbations in a chain of interacting particles [7,8], nonlinear 
waves in micropolar media [9], in generalized elastic solids [10], 
and deformed hyperelastic dispersive solids [11]. Fig. 1 illustrates 
transverse flexural perturbations traveling along a chain of parti-
cles connected by springs. The particle displacement in the plane 
perpendicular to the axis of propagation (the x-axis) has two com-
ponents, y and z, and can be presented by a two-component vec-
tor u = (u1, u2).

https://doi.org/10.1016/j.physleta.2018.08.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:Yury.Stepanyants@usq.edu.au
https://doi.org/10.1016/j.physleta.2018.08.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2018.08.015&domain=pdf


3166 D.E. Pelinovsky, Y.A. Stepanyants / Physics Letters A 382 (2018) 3165–3171
Fig. 2. Two planar solitons in the non-integrable vector mKdV equation (1) polarized 
in the perpendicular directions at the angles �1 = 0 and �2 = π/2.

The vector mKdV equation (1) is non-integrable in contrast to 
its integrable counterpart:

ut + |u|2ux + uxxx = 0. (2)

Both these equations, Eq. (1) and Eq. (2), can be presented in the 
scalar form for the complex variable u = u1 + iu2. In the case of 
integrable vector mKdV equation, the scalar complex variable u
satisfies the complex mKdV equation, solutions of which can be 
constructed by the inverse scattering method [12]. Although the 
integrable vector mKdV equation (2) did not find any physical ap-
plication, the model can be considered as an asymptotic analog of 
Eq. (1) for certain perturbations.

The traveling solitons of the vector mKdV equation (1) are so-
lutions of the form:

u(x, t) = U(x − V t) (3)

with U vanishing at the infinity and V being the soliton speed. 
When (3) is substituted to Eq. (1), the resulting ODE can be inte-
grated once with the zero constant of integration to the form:

Uxx + |U|2U − V U = 0. (4)

This equation is rotationally invariant in the (y, z) plane. Therefore, 
the solutions are polarized in a plane with the displacement vector 
U given by

U(x − V t) = r(x − V t)[cos �, sin�], (5)

where � is a fixed polarization angle. For the solutions in the form 
(5) the vector equation (4) reduces to the scalar equation for r. It 
is easy to show that the scalar equation for r has the exact soliton 
solution for any V > 0. Fig. 2 illustrates two planar solitons initially 
polarized in the perpendicular planes.

Interaction between the traveling solitons with different polar-
izations was studied numerically for Eq. (1) in Ref. [8]. The inter-
action was shown to be inelastic, in general, except the trivial case 
when both solitons lie in the same plane; in such case Eq. (1) re-
duces to the scalar mKdV equation.

The helical solitons of the vector mKdV equation (1) are solu-
tions with the non-constant angles �:

u(x, t) = r(x − V t) [cos�(x, t), sin �(x, t)] (6)

where �(x, t) = θ(x − V t) − ωt , and V and ω �= 0 are constant 
parameters. Such solutions were obtained for the integrable vector 
mKdV equation (2) in Ref. [12]; one of the examples is shown in 
Fig. 3 for V = −104 and ω = 480. For the non-integrable mKdV 
equation (1) separation of variables and integration of equations 
for r and θ are less obvious if ω �= 0, and the existence theory for 
helical solitons was not developed thus far.
Fig. 3. The helical soliton (6) in the integrable vector mKdV equation (2) with V =
−104 and ω = 480.

The purpose of this paper is to apply the dynamical sys-
tem methods to construct the helical solitons in the vector non-
integrable mKdV equation (1). We use the blow-up technique to 
unfold the singularity of the system of differential equations for 
(r, θ) and construct smooth invariant manifolds from the critical 
point representing the zero equilibrium. Continuation of the un-
stable manifold numerically by means of an efficient algorithm 
enables us to detect existence of helical solitons in the param-
eter plane (V , ω). The helical solitons appear as a result of co-
dimension one bifurcation and exist along a curve on the param-
eter plane (V , ω). From these numerical results, we conclude that 
the helical solitons do exist for every V < 0 with a prescribed 
value of ω > 0. Moreover, a helical soliton with the opposite helic-
ity can be constructed for ω < 0 by a symmetry transformation. In 
contrast to that, the helical solitons in the vector integrable mKdV 
equation (2) can exist in a certain two-dimensional region in the 
parameter plane with both positive and negative values of V .

The paper is organized as follows. The main part of this paper 
is Section 2, where the dynamical system methods are adopted 
for construction of helical solitons in Eq. (1). Comparison with 
the helical solitons in the vector integrable mKdV equation (2) is 
presented in Section 3. Direct numerical simulations indicating sta-
bility of helical solitons are described in Section 4. The concluding 
Section 5 contains the summary of this work.

2. Construction of helical solitons by the dynamical system 
methods

Here we will investigate existence of helical solitons. It is con-
venient to combine both models of Eqs. (1) and (2) together into 
one equation with the parameter γ :

ut + γ |u|2ux + (1 − γ )(|u|2u)x + uxxx = 0. (7)

When γ = 0, this equation reduces to the non-integrable vector 
mKdV equation (1), whereas when γ = 1, this equation reduces to 
the integrable vector mKdV equation (2).

Using the polar form of vector u = (u1, u2) = r(cos�, sin �) in 
Eq. (7), we can obtain a set of two equations for r(x, t) and �(x, t):

rt + (3 − 2γ )r2rx + rxxx − 3rx(�x)
2 − 3r�x�xx = 0, (8)

r
(
�t + r2�x

)
+ 3rxx�x + 3rx�xx + r�xxx − r(�x)

3 = 0. (9)

The first equation (8) can be written in the divergent form for the 
variables ρ = r2 and w = �x:

ρt + (3 − 2γ )ρρx +
[
ρxx − 3

4ρ
(ρx)

2 − 3ρw2
]

x
= 0. (10)

For helical solitary solutions vanishing at the infinity and prop-
agating with a constant speed V , we can assume that ρ(x, t) =
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ρ(x − V t). Integrating then Eq. (10) with the zero boundary condi-
tions at the infinity, we obtain the following second-order ODE:

d2ρ

dx2
− 3

4ρ

(
dρ

dx

)2

− 3ρw2 +
(

3

2
− γ

)
ρ2 − V ρ = 0. (11)

This equation should be augmented by another equation derived 
from Eq. (9). Assuming that �(x, t) = θ(x − V t) −ωt , where ω is a 
constant frequency and noticing that w = �x = θx , we obtain the 
following second-order ODE:

d2 w

dx2
− w3 + 3

2ρ
w

d2ρ

dx2
− 3

4ρ2
w

(
dρ

dx

)2

+ 3

2ρ

dρ

dx

dw

dx

+ (ρ − V )w − ω = 0. (12)

Helical solitons are defined to be solutions (ρ, w) to the sys-
tem (11) and (12) with parameters (V , ω) satisfying the boundary 
conditions (ρ, w) → (0, k) as |x| → ∞, where k is a real con-
stant parameter. Assuming that solitons have exponential asymp-
totics at the infinity, i.e. function ρ(x) ∼ e∓2λx as x → ±∞, we 
obtain another constant parameter λ > 0. Substitution of asymp-
totic expressions for ρ and w into the system (11) and (12)
yields the following relationships between the parameters (λ, k)

and (V , ω):

V = λ2 − 3k2, (13)

ω = 2k(λ2 + k2). (14)

The relationships (13) and (14) define a mapping of the half-plane 
R

+ ×R for (λ, k) to a certain region in the parameter plane (V , ω). 
The region is located to the right of the curves:

ω = ±2

( |V |
3

)3/2

, V < 0. (15)

For any point (V , ω) inside this region, we have λ > 0, whereas 
the boundary curves correspond to λ = 0.

If a solution of system (11) and (12) is found for some (λ, k)

and corresponding values of (V , ω), then another symmetric so-
lution can be obtained for (λ, −k) and (V , −ω) by the reflection 
symmetry ρ �→ ρ and w �→ −w in the system (11) and (12). Such 
pair of solutions would correspond to solitons of opposite helicity, 
when vector u rotates either clockwise or counterclockwise in the 
process of propagation along the x-axis.

When k → 0 and ω → 0, the helical solitons (6) reduce to the 
traveling solitons (3) with (5) and V = λ2 > 0. As has been men-
tioned in the introduction, such traveling solitons exist for every 
V > 0 (if γ < 3/2), because w = 0 is the invariant reduction of 
Eq. (12) with ω = 0, after which soliton solutions to Eq. (11) can 
be constructed in the exact form for V > 0. It is, however, beyond 
the scopes of this work to consider other possible solutions to sys-
tem (11) and (12) with ω = 0.

2.1. Reformulation of the problem and the blow-up scaling

To construct soliton solutions it is convenient to reformulate 
the set of two second-order equations, (11) and (12), in terms of a 
dynamical system in the spatial coordinate x. Note that according 
to the product rule, we have:

d2

dx2
(ρ3/4 w) = ρ3/4 d2 w

dx2
+ 3

2
ρ−1/4 dρ

dx

dw

dx
+ 3

4
ρ−1/4 w

d2ρ

dx2

− 3

16
ρ−5/4 w

(
dρ

dx

)2

.

Application of this formula in Eq. (12) multiplied by ρ3/4 gives:

d2

dx2
(ρ3/4 w) + 3

4
ρ−1/4 w

[
d2ρ

dx2
− 3

4ρ

(
dρ

dx

)2
]

+
(
ρw − V w − w3 − ω

)
ρ3/4 = 0.

Elimination the first derivative of ρ with the help of Eq. (11) re-
duces this equation to the final form:

d2

dx2
(ρ3/4 w) = 1

4

[(
1

2
− 3γ

)
ρw + V w − 5w3 + 4ω

]
ρ3/4.

(16)

On the other hand, Eq. (11) multiplied by ρ−3/4/4 takes the form:

d2

dx2
(ρ1/4) = 1

4

[
V + 3w2 −

(
3

2
− γ

)
ρ

]
ρ1/4. (17)

Introducing new variables ϕ = ρ1/4, ψ = ρ3/4 w , and τ = x/2, 
we can rewrite Eqs. (16) and (17) in the equivalent form:

d2ϕ

dτ 2
= 3ψ2ϕ−5 −

(
3

2
− γ

)
ϕ5 + V ϕ, (18)

d2ψ

dτ 2
= −5ψ3ϕ−6 +

(
1

2
− 3γ

)
ϕ4ψ + V ψ + 4ωϕ3. (19)

The asymptotic behavior of new variables at the infinity follows 
from the corresponding asymptotics of functions ρ and w:

ϕ(τ ) ∼ e±λτ , ψ(τ ) ∼ −ke±3λτ , as τ → ∓∞.

Substitution of these representations into the system (18)–(19)
provides the correct formulae (13) and (14) for V and ω.

The spatial dynamical system (18) and (19) can be rewritten as 
the set of four first-order ODEs:

d

dτ

⎡
⎢⎢⎣

ϕ
η
ψ

ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

η

3ψ2ϕ−5 −
(

3
2 − γ

)
ϕ5 + V ϕ

ζ

−5ψ3ϕ−6 + ( 1
2 − 3γ

)
ϕ4ψ + V ψ + 4ωϕ3

⎤
⎥⎥⎥⎦ .

(20)

This dynamical system is singular at ϕ = 0. Inspired by the lin-
earized behavior of variable (ϕ, ψ) in the vicinity of the point 
(0, 0), we can unfold the singularity by means of the following 
elementary transformation:⎡
⎢⎢⎣

ϕ
η
ψ

ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

�

�Y
�3�

�3 Z

⎤
⎥⎥⎦ ,

where the new variables (�, Y , �, Z) obey the equivalent dynam-
ical system:

d

dτ

⎡
⎢⎢⎣

�

Y
�

Z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�Y

−Y 2 + 3�2 −
(

3
2 − γ

)
�4 + V

Z − 3�Y

−3Z Y − 5�3 + ( 1
2 − 3γ

)
�4� + V � + 4ω

⎤
⎥⎥⎥⎦ .

(21)

The rescaled set of equations (21) is no longer singular at � = 0.
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2.2. Critical points and invariant manifolds

The dynamical system (21) has two-parametric family of critical 
points:

(�, Y ,�, Z) = (0, Y0,�0, Z0), (22)

where Z0 = 3�0Y0, and Y0 and �0 are related with the parame-
ters V and ω by the following algebraic equations:

V = Y 2
0 − 3�2

0, (23)

ω = 2�0(Y 2
0 + �2

0). (24)

This algebraic system coincides with the system (13)–(14) if we 
set Y0 = λ and �0 = k. The transformation (Y0, �0) �→ (V , ω) is 
invertible for every real Y0 > 0 and �0, because its Jacobian is 
nonzero:
∂(V ,ω)

∂(Y0,�0)
= 4Y0(Y 2

0 + 9�2
0) �= 0.

The matrix of the linearized system in the vicinity of the critical 
point is:⎡
⎢⎢⎣

Y0 0 0 0
0 −2Y0 6�0 0
0 −3�0 −3Y0 1
0 −3Z0 V − 15�2

0 −3Y0

⎤
⎥⎥⎦

One of the eigenvalues of this matrix is μ1 = Y0. The other three 
eigenvalues can be found from the following cubic equation:

μ3 + 8Y0μ
2 + 4(5Y 2

0 + 9�2
0)μ + 16Y0(Y 2

0 + 9�2
0) = 0, (25)

where we have used that Z0 = 3�0Y0 and V = Y 2
0 − 3�2

0. The 
roots of this equation can be easily found if we notice that one 
of them is real μ2 = −4Y0; then the other two roots are complex-
conjugate:

μ3,4 = −2Y0 ± 6i�0. (26)

The remarkable property of linearization for Y0 > 0 is that only 
one root μ1 is positive, whereas the other three roots have neg-
ative real parts. Therefore, there exists a one-dimensional unsta-
ble curve in the phase space that originates at the critical point 
(0, Y0, �0, Z0) with Z0 = 3Y0�0 belonging to the two-parametric 
family of critical points (22). Using parametrization (23) and (24)
of (V , ω) in terms of Y0 = λ and �0 = k, we can rewrite the dy-
namical system (21) in the following equivalent form:

d

dτ

⎡
⎢⎢⎣

�

Y
�

Z

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

�Y
λ2 − Y 2 + 3(�2 − k2) − ( 3

2 − γ )�4

−3�Y + Z
(λ2 −3k2 −5�2)�+ ( 1

2 −3γ )�4�+ 8k(λ2 +k2)−3Z Y

⎤
⎥⎥⎦ .

(27)

This representation allows us to construct a numerical shooting al-
gorithm based on the approximation of the trajectory along the 
unstable curve. When the unstable curve intersects with the plane 
Y = Z = 0 at a certain instant τ0 of the “time” τ , the calculation 
can be terminated, and the trajectory in phase space can be contin-
ued beyond τ0, as the even functions for �, � and odd functions 
for Y , Z in variable τ . In terms of original variables ρ , w as func-
tions of x such solution corresponds to the helical soliton vanishing 
at the infinities and symmetric with respect to its center.
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. 4. Numerical solution to the dynamical system (27) corresponding to the unsta-
 curve with ε = 0.01, λ = 2, and k = 3.

. 5. The dependencies of Z(τ1) at Y (τ1) = 0 (blue) and Y (τ2) at Z(τ2) = 0 (red) 
 the parameter k for λ = 2. (For interpretation of the colors in the figure(s), the 
der is referred to the web version of this article.)

. Numerical solutions on the basis of the shooting algorithm

Let us consider the non-integrable vector mKdV equation (1)
hich corresponds to γ = 0 in Eq. (27). If we solve the set of ODEs 
7) for (�, Y , �, Z) subject to the initial condition (ε, λ, k, 3λk), 
here ε 	 1, λ > 0, and any k, we can find the instances of τ
hen Y and Z turn to zero. Fig. 4 illustrates that the intersec-
ns of these functions with the τ -axis occur generally at different 

stances, say τ1 and τ2. However, varying the parameter k with 
ed λ, we can find a value of k, say k0, when intersections occur 
 the same instants of τ , i.e., when τ1 = τ2, see Fig. 5.

Blue line in Fig. 5 shows the dependence of Z(τ1) on the pa-
meter k at the first instance of time τ1 when Y (τ1) = 0, and red 
e shows the dependence of Y (τ2) on the parameter k at the first 

stance of time τ2 when Z(τ2) = 0. At the point k0 where these 
o curves intersect, we have τ1 = τ2, and the unstable curve orig-

ated at the critical point hits the plane Y = Z = 0. For such 
lues of k and λ the trajectory can be symmetrically continued 
 form a solution for the helical soliton as explained above.

Varying λ and detecting k0 for each λ gives the existence curve 
 the parameter plane (λ, k). Using the parameterizations (13)
d (14), we can determine the corresponding values of (V , ω)

m (λ, k). This allows us to plot the existence curve for the 
lical solitons in the parameter plane (V , ω); such curves are 
own by solid blue line in Fig. 6. Dash-dotted red line shows the 
undary (15) of the admissible domain for existence of helical 
litons.
As we can see, the existence curves originate at the point 
, ω) = (0, 0) and are located in the region where V < 0 in agree-

ent with Eq. (15). Therefore, we conclude that the helical solitons 
) in the non-integrable vector mKdV equation (1) do exist as a 
sult of the co-dimension one bifurcation, and their velocities are 
gative in contrast to the planar traveling solitons (3) with (5)
d V > 0.
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Fig. 6. The existence curve for helical solitons in the non-integrable vector mKdV 
equation (1) on the parameter plane (V , ω) is shown by solid blue line whereas 
the boundary of the admissible region (15) is shown by dash-dotted red line.

Fig. 7. A typical profile of the helical soliton in the non-integrable vector mKdV 
equation (1) with V ≈ −1.45 and ω ≈ 15.69. Panel (a) shows the solution in vari-
ables (r, w) as functions of x. Panel (b) displays the solution in variables (u1, u2) in 
the three-dimensional space.

The first intersections of the unstable curves with the plane 
Y = Z = 0 provide the strictly positive profile for � in τ . This 
yields the helical solitons with a single-humped profile for r in x. 
Fig. 7 shows a typical profile of the helical soliton for λ = 2 and 
k ≈ 1.348 which corresponds to V ≈ −1.45 and ω ≈ 15.69.

3. Helical solutions in the integrable vector mKdV equation

The integrable vector mKdV equation (2) corresponds to Eq. (7)
with γ = 1. This equation can be used as the limiting case for the 
non-integrable equation (1) and due to its integrability, can provide 
a certain insight about possible solutions.

As has been noticed in Ref. [12], Eq. (1) can be rewritten in one 
of the following equivalent forms:

ut + |u|2ux + uxxx = −u
(
|u|2

)
x
, (28)

ut + 3|u|2ux + uxxx = 2iu|u|2�x, (29)
where u = u1 + iu2 = r ei� is a function of x and t . It follows from 
these representations that the right-hand sides of equations are 
negligibly small in the following two cases:

1. If a spatial scale of variation of r = |u| is much greater than 
the spatial scale of variation of � = arg(u), i.e. |rx| 	 |r�x|. In 
this case, Eq. (28) reduces to the integrable Eq. (2).

2. If a spatial scale of variation of � = arg(u) is much greater 
than the spatial scale of variation of r = |u|, i.e. |r�x| 	 |rx|. In 
this case, Eq. (29) also reduces to the integrable Eq. (2) with 
the following change: the nonlinear coefficient is three times 
bigger.

Let us now inspect how the dynamical system methods apply 
to the integrable vector mKdV equation (2). If γ = 1, the system 
(11) and (12) with w = k = const can be reduced to the scalar 
equation for ρ . Indeed, eliminating ρxx from the system (11) and 
(12) with w = k, we obtain:

3

2

(
dρ

dx

)2

+ ρ2
(
ρ + 14k2 + 2V − 4

ω

k

)
= 0. (30)

Substitution of this into Eq. (11) yields:

d2ρ

dx2
+ ρ2 +

(
4k2 − 2

ω

k

)
ρ = 0. (31)

After integration of this equation with the zero boundary condi-
tions at the infinity, we obtain:

3

2

(
dρ

dx

)2

+ ρ2
(
ρ + 6k2 − 3

ω

k

)
= 0. (32)

Equations (30) and (32) are compatible if and only if ω =
2k(V + 4k2), which agrees with Eqs. (13) and (14). From Eq. (31)
it also follows that if a solution has the exponential asymptotics: 
ρ(x) ∼ e∓2λx as x → ±∞, then ω = 2k(λ2 + k2) in agreement with 
Eq. (14).

When a trajectory of the system (27) with γ = 1 is considered 
along the unstable curve from the initial point (ε, Y0, �0, Z0) with 
Z0 = 3Y0�0, Y0 = λ, �0 = k, and small ε, then � = k and Z = 3kY
are preserved in τ and the system (27) with γ = 1 reduces to the 
second-order differential equation:

d2�

dτ 2
= λ2� − 1

2
�5. (33)

Solution to this equation can be readily obtained in the explicit 
form:

�(τ) = (6λ2)1/4sech1/2(2λτ), (34)

which yields the exact solution

r(x) = λ
√

6sech(λx), w(x) = k. (35)

Therefore, the helical soliton in the integrable case with γ = 1 ex-
ists for every (V , ω) given by the image of transformation (λ, k) �→
(V , ω) in (13) and (14) with λ > 0 and any real k. In other words, 
it exists in the entire region in the parameter plane (V , ω) to 
the right of the boundary (15) including the region with positive 
speed V .

In terms of original variables the helical soliton is:

u = (u1, u2)

= λ
√

6 sechλξ [cos(kξ − ωt + θ0), sin(kξ − ωt + θ0)] , (36)

where ξ = x − V t and θ0 is an arbitrary constant. Such solu-
tion was derived by means of the inverse scattering method in 
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Fig. 8. Two examples of helical solitons in the integrable vector mKdV equation (2)
with λ = 2 and (a) k1 ≈ 1.348 as in Fig. 7 (V ≈ −1.451, ω ≈ 15.683) and (b) k2 =
λ/

√
3 ≈ 1.155 (V = 0, ω ≈ 12.317).

Ref. [12] and presented in the complex form u = u1 + iu2 =
λ
√

6 sechλξei(ωt−kξ+θ0) .
Examples of helical solitons are shown in Fig. 8 for λ = 2 and 

two values of k: k1 ≈ 1.348 (frame a) and k2 = λ/
√

3 ≈ 1.155
(frame b). The former case corresponds to the same choice of pa-
rameters λ and k as in Fig. 7, whereas the latter case corresponds 
to the standing soliton with V = 0 according to Eq. (13). One more 
examples of helical soliton was presented in Fig. 3 for λ = 2, k = 6
which gives V = −104, ω = 480.

In the particular case of k = 0 (and hence ω = 0 as per 
Eq. (14)) the helical soliton (36) degenerates into a planar soliton 
(3) with (5), where the parameter � = θ0 represents the polariza-
tion angle in the (y, z) plane.

4. Stability of helical solitons

Stability of helical solitons was confirmed by direct numeri-
cal calculations of the vector mKdV equations (1) and (2). The 
accuracy of calculations was controlled through the conservation 
of the total energy I2 = ∫

R
|u|2dx. This integral quantity was pre-

served in the numerical computations with the relative error less 
than 0.01%.

In the integrable case of Eq. (2) it was confirmed that the ini-
tially given helical soliton simply propagates with a constant speed 
in accordance with the theoretical prediction. This, in particular, 
occurs with the helical soliton shown in Fig. 3. When the same 
initial condition is used for the nonintegrable case of Eq. (1), then 
the helical solitary wave becomes stationary after a short transient 
period, but gets a smaller amplitude. The formation of a stationary 
helical soliton is accompanied by radiation of a small-amplitude 
non-stationary dispersive wavetrain of a helical structure.

A similar phenomenon was observed within the non-integrable 
Eq. (1) when the initial amplitude of a helical pulse was 10% 
greater than the amplitude of a helical soliton shown in Fig. 3. 
The helical soliton moved with the negative velocity behind the 
emitted small-amplitude helical wavetrain. Its amplitude slightly 
Fig. 9. Evolution of the helical pulse within the non-integrable Eq. (1) moving to the 
left and emitting a small-amplitude helical wavetrain. Numbers show the initial and 
ending time instants. Curves were plotted with the time step 0.05.

Fig. 10. Snapshot at t = 0.4 representing the result of evolution of the helical soli-
ton shown in Fig. 8b within the framework of non-integrable Eq. (1). The initial 
helical soliton has disintegrated into several planar solitons propagating at different 
polarizations.

increased and stabilized then at a certain level; this evolution is 
illustrated by Fig. 9 where we show the modulus of vector u at 
several instants of time, from t = 0 to t = 0.75 with the time step 
�t = 0.05.

When the initial condition was chosen in the form of helical 
soliton (36) with λ = 2 and k = λ/

√
3 (see Fig. 8b), then in the in-

tegrable case of Eq. (2), the soliton remains standing in accordance 
with the theoretical prediction. However, when the same condition 
was used for the nonintegrable case of Eq. (1), it was observed 
that the helical soliton was disintegrated after a transient period 
into several planar solitons propagating with the different angles 
to each other as shown in Fig. 10.

The similar phenomenon was observed when the helical soli-
ton (36) with λ = 2 and k ≈ 1.348 (see Fig. 8a) was substituted 
to the non-integrable Eq. (1). Therefore, if the parameters of the 
initial condition even of a helical shape are far from the param-
eters of a stationary helical soliton of the non-integrable Eq. (1), 
then instead of formation of a helical soliton the evolution results 
in the formation of a number of plane solitons propagating in dif-
ferent planes, so that the total helicity, including the helicity of a 
small-amplitude trailing wave, preserves.

5. Discussion and conclusion

We showed in this paper that helical solitons do exist within 
the framework of physically meaningful non-integrable vector 
mKdV equation (1). The numerical approximations of such solitons 
have been developed with the help of the dynamical system meth-
ods. As has been shown, the helical solitons exist as a result of 
co-dimension one bifurcation along a curve in the parameter plane 
(V , ω). In particular, such solitons can exist with only negative 
velocities in contrast to the traveling planar solitons existing for 
positive velocities. Thus, the helical solitons appear to be similar to 
breathers in the scalar mKdV equation [1]. Similar to the breathers 
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in the mKdV equation, we have shown that the helical solitons are 
stable in the time evolution of the vector mKdV equation (1). This 
makes them interesting from the physical point of view.

The relevant solutions were compared to the helical solitons 
in the integrable vector mKdV equation (2) which did not find 
applications in physical sciences. In the latter case the helical soli-
tons exists in a two-dimensional region in the parameter plane 
(V , ω) and in particular, they can travel both with positive, zero 
or negative velocities (i.e., being either “subsonic”, “sonic” or “su-
personic”). When the helicity is zero, the helical solitons reduce to 
the planar traveling solitons described by the scalar mKdV equa-
tion [1].

Interaction between the traveling planar solitons has been in-
vestigated numerically in Ref. [8] within the framework of non-
integrable vector mKdV equation (1) (see also [13,14] and ref-
erences therein). It was shown that the interaction of traveling
solitons is very nontrivial and inelastic, in general. There is still 
an interesting open problem to investigate the interaction between 
the helical solitons with the same and opposite helicity and be-
tween the helical and planar solitons. This problem will be consid-
ered elsewhere.

In the conclusion, we mention that there several other vector-
type equations (see, for example, [15–21]); some of them may 
possess helical soliton solutions. Among them there are equations 
of physical meaning [15,17,18,21], others are mainly of mathemat-
ical interest [16,19,20].
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