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was only recently when the Thomas-Fermi approximation was rigorously justified. The
spectrum of linearization of the Gross-Pitaevskii equation at the ground state consists of

Iéerjsgo_rgist'aevskii equation an unbounded sequence of positive eigenvalues. We analyze convergence of eigenvalues in
Thomas-Fermi the hydrodynamics limit. Convergence in norm of the resolvent operator is proved and the
Bose-Einstein convergence rate is estimated. We also study asymptotic and numerical approximations of
Hydrodynamics limit eigenfunctions and eigenvalues using Airy functions.
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1. Introduction

Recent experiments in Bose-Einstein condensation has stimulated an intense research around the Gross-Pitaevskii equa-
tion with a parabolic potential [19]. Considered in a one-dimensional cigar-shaped geometry and in the limit of a compact
Thomas-Fermi cloud, the repulsive Bose gas is described by the Gross-Pitaevskii equation in the form

iur 4 2 + (1 —xz)u —luPu=o0, (1.1)

where u =u(x, t) is a complex-valued amplitude, the subscripts denote partial differentiations, & is a small parameter, and
all other parameters are normalized to unity.

Existence of the ground state u = n¢(x) for a fixed, sufficiently small & > 0, where 7. is a real-valued, positive-definite,
global minimizer of the Gross-Pitaevskii energy

1 1 1
E¢(u) :/(582|ux|2 + E(XZ —1)ul®+ Z|u|4) dx
R

in the energy space

Hi= {u eH'(R): xue LZ(R)},
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has been proved in the literature long ago (see, i.e., Brezis and Oswald [6]). Recent works of Ignat and Millot [13] and
Aftalion, Alama, and Bronsard [2] have focused, among other problems related to existence of vortices in a two-dimensional
rotating Bose-Einstein condensate, on the rigorous justification of the Thomas-Fermi asymptotic formula

1 —=xH12 for x| <1,

1.2
0 for x| > 1, (12)

No(x) = {
which was believed to be a weak limit of n:(x) as € — 0 since the work of Thomas [21] and Fermi [9]. To be precise,
Proposition 2.1 of [13] and Proposition 1 in [2] state that 1. (x) converges to 19(x) as € — 0 in the sense that

1/3 e (X) 2/3
( Cs/) mgl fOl'lX|<1—8/,

1/3 - 2/3 (13)
<ne(x) <Ce / exp<4 2/3> for x| > 1—&2/3,
for an ¢-independent constant C > 0. (The results of [2,13] are formulated in the space of two dimensions, but the extension
to the one-dimensional case is trivial.) It was proved in [13] that |5, — Nollcrky < Cxe? for any compact subset K C (—1, 1),
which justified the WKB approximation of the ground state considered earlier by formal expansions (see, i.e., [3]).
We are concerned here with the spectrum of linearization of the Gross-Pitaevskii equation (1.1) at the ground state 7.,
which is defined by the eigenvalue problem

-2 + (¥ =1+ 3n)u=—2w, —&2w’ + (¥ =1+ n2)w = Au, (14)

where (u+iw)e* + (i —iw)e* is a perturbation to 7. The eigenvalue problem (1.4) determines the spectral stability of the
ground state 7. with respect to the time evolution of the Gross-Pitaevskii equation (1.1) and gives preliminary information
for nonlinear analysis of orbital stability and long-time dynamics of ground states. More complex phenomena of pinned
vortices (dark solitons) on the top of the ground state can also be understood from the analysis of eigenvalues of the
spectral problem (1.4) (see, i.e., [18]).

In what follows, we shall simplify the spectral problem (1.4) and replace 1, by 1. We do not claim that eigenvalues of
these two problems are close to each other but, given a complexity of the problem, we would like to deal with a simpler
problem in this article. Therefore, we analyze here solutions of the model eigenvalue problem defined explicitly by

{ g2u u'+2(1—x )u =—aw, —&’w’ =\u for |x| <1, (15)

—2u" + (= Nu=—-aw, —e*w’'+(¥* —1)w=2ru for x| > 1,
with appropriate matching conditions at x = +1. It will be left for the forthcoming work to study solutions of the original
eigenvalue problem (1.4) with 1, =10 + O~ ®) (&1/3), according to the bound (1.3) above.

Formal weak solutions of (1.5) have been constructed in the pioneer work of Stringari [20] and have been used in
a more complex context of three-dimensional anisotropic repulsive Bose gas in [8,10]. To recover these solutions, let us

denote A =iey!/? and drop —s?u” term in the first equation of (1.5). Then, the model eigenvalue problem is closed at the
singular Sturm-Liouville problem

—2(1—x2)w”:yw, —-1<x<1, (1.6)
which has a C? solution on [—1,1] for y # 0 if and only if w(1) = w(—1) = 0. We will show in Lemma 3.4 below that

the only solutions of (1.6) with w(1) = w(—1) =0 are the Gegenbauer polynomials w(x) = ,:1/2()() which correspond to
-1 /2

eigenvalues at y =y, = 2n(n + 1), where n > 1 is an integer. Solutions w(x) = (x) of (1.6) on the interior domain
[—1, 1] are completed with the zero function w = 0 on the exterior domain |x| > 1 In this way, we glue together weak so-
lutions of system (1.5) in the hydrodynamics limit € = 0. It is the main goal of this article to develop a rigorous justification
of persistence of eigenvalues {y,}nen for small non-zero values of €. Our main result is the following theorem.

Main Theorem. Spectral problem (1.5) for & > 0 has a purely discrete spectrum that consists of eigenvalues at A = %ie (Y ¢)'/?,
where the set {yn. ¢ }nen is sorted in the increasing order
0<Vie<V2e V3,6 < Vae <
while
Yne—VYn as€—0
for every fixed n € N. Moreover, for any fixed § > 0, there exists C;, > 0 such that
|Vne = val < Cng'/™*

for sufficiently small ¢ > 0.
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Remark. The convergence rate of eigenvalues is not sharp and our numerical results indicate that the convergence rate is
O(g?) for a fixed n € N,

Before going into technical details of our analysis, we mention three relevant applications where eigenvalues of the
singular Sturm-Liouville problem (1.6) have appeared recently.

e Propagation of self-similar pulses in an amplifying optical medium is described by the Gross-Pitaevskii equation with a
parabolic potential [4]

iUz +72Uge + (1 -&%)U - |UPU =0.

The small parameter € = 7! changes with the time t due to evolution of the self-similar optical pulse in the presence

of the gain. The decomposition of perturbation to the optical pulse via Gegenbauer polynomials is used for understand-
ing the effects of higher-order dispersion and gain terms on the long-term optical pulse dynamics [5].

e Analysis of radiation from a dark soliton oscillating in a wide parabolic potential was studied in [17] using asymptotic
multi-scale expansion methods. The analysis leaded to the wave equation with a space-dependent speed

Ure = (1 8)e),.

Eigenvalues of the wave equation are given by eigenvalues of the Sturm-Liouville problem (1.6). The corresponding
eigenfunctions are needed to match the dark soliton with its far-field radiation tail and to predict radiative corrections
to the soliton dynamics [17].

e Numerical approximations of eigenvalues of the spectral problem associated with a dark soliton in the Gross-Pitaevskii
equation

iUr +Ugs + (L — &)U — [UPU =0

showed convergence of eigenvalues in the limit @ — oo [18]. It was observed that the whole spectrum consisted
of eigenvalues associated with the ground state and an additional pair of pure imaginary eigenvalues. The countable
infinite set of eigenvalues associated with the ground state corresponds to the set of eigenvalues of the Sturm-Liouville
problem (1.6) after an appropriate rescaling transformation of &, 7, and U.

This article is organized as follows. Section 2 discusses properties of the two Schro dinger operators that define the
spectral problem (1.5) as well as the properties of their product. Section 3 gives a proof of the Main Theorem. Section 4 is
devoted to asymptotic and numerical approximations of eigenvalues of the spectral problem (1.5). In Appendix A, we give
the proofs of several technical lemmas used in the article, as well as the description of the numerical method.

Notations. In what follows, if A and B are two quantities depending on a parameter p in a set P, the notation A(p) < B(p)
indicates that there exists a positive constant C such that
A(p) <CB(p) forevery peP.

The notation A(p) ~ B(p) means that A(p) < B(p) and A(p) = B(p). We say that a property is satisfied for 0 < & « 1
if there exists gy € (0, 1) such that the property is true for every ¢ € (0, &9). If E and F are two Banach spaces, L(E, F)
denotes the space of bounded linear operators from E into F, endowed with its natural norm

luCollr
lullzepy= sup .
xeE, x#£0 llx]| £

If E=F, we simply denote £L(E) = L(E, E). The dual space of E is denoted by E’ = L(E,R). If S is a subset of R, 15 denotes
the characteristic function of S:

_[1 ifxesS,
15(")_{0 ifx¢S.

If f is a function defined on some set D and S C D, fis denotes the restriction of f to the set S. Finally, B;> denotes the
unit ball of L2(R).
2. Preliminaries

2.1. The operator L® and its inverse

Let L? be the Friedrichs extension of —32 + p.(x) on L?>(R) for & > 0 and

1
pe(®) = ;z(x2 — )11y
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Since p.(x) > 0 for any x € R, L? is a positive self-adjoint operator. Since p.(x) — +00 as x — oo, L% has compact resolvent.
The domain of L,

D(Lf) = {p e L*(R): -3¢ + pep € L2 (R)} = {9 € H*(R): ¥’ € L*(R)} =: Ha,
is contained in its form domain
Q(L%) ={p e H'®): xp € L*(R)}.

If ¢ € D(L%) is in the kernel of L%, then f]R(|ax<p|2 + pel@l®) dx = 0, which implies ¢ = 0. Therefore 0 ¢ o (L%) and L is
invertible. In the following lemma, we state that the inverse of L¢ is uniformly bounded in £(L?) as € — 0.

Lemma 2.1. For 0 < ¢ K 1,
I (Li)q HC(LZ) ~1.
Proof. See Appendix Al. O
Using Lemma 2.1, we give estimates on various norms of (L¢)~! for sufficiently small & > 0.

Lemma2.2.For 0 < ¢ K 1,

10(L2) ™ £z S 1 1)
11000 (L) ™ g2y S €% (2.2)
=1 (12) 7 ey S & (2.3)
Hax(Li)’l ”L(LZ(R),LOO(R)) St (2.4)
01 2) ™ g2y poeyy S 827 (2.5)

Proof. Let us take ¢ > O sufficiently small, f € B2, and denote ¢ = (LE)~1f. By Lemma 2.1,

el S 1. (2.6)

Moreover, ¢ satisfies the second-order differential equation

—¢" +pep=f, xeR. (2.7)
Multiplying (2.7) by ¢, integrating over R, using the Cauchy-Schwarz inequality and (2.6), we get

/|<o’|2dx+ / pelpldx = / Fodx < fllz @l <1, (28)
R R

Ix|>1
which directly proves (2.1). Proceeding like for (2.8), but integrating on [1, +00) instead of R, we obtain

+00 +00

f|¢/|2dx+/pg|<p|2dx<|<p<1>||¢/<1)}+||¢||Lz<1,+oo)‘ (2.9)
1 1

Then, we observe

+o0 1
2 ) 2
||(/7||L2(1+£2/3’+00) =¢€ / 2 _1p£|90| dx
1+2/3
82 +00
<— lp|? dx
\(]+82/3)2—1 pE(p
1+¢2/3
+00

Set? / pelpl® dx. (2.10)
1
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Since ¢” = —f on (—1,1) and thanks to bound (2.1), Sobolev’s embedding of H!(—1, 1) into L*°(—1, 1) yields

e o1 S ”‘/J/”Hl( 1.1) ~ Sl 21,0 + I1f 21y S 1 (211)

The triangle inequality yields

lol2a1,+00) S N@N12(1462/3,400) T € 173 @l oo (1,146273)- (212)

By the Taylor formula and the Cauchy-Schwarz inequality,

1@l oot 14623y < |@(1+823) |+ 21011201 +00)- (2.13)

Let us introduce the new variable & = (x — 1)/&2/3 and the function ¢(&) = (1 + 2/3¢). Then,

1913 (1 o0y = &2 N0 121625 400y T € NP 2 14625 o0y (2.14)
Thus, by Sobolev's embedding of H'(1, +00) into L®(1, +-00), (2.14) provides the bound

lo(1+2)| = [eM| ' P10/ 12014625 100y + & PIQN201623 400)- (2.15)
Concatenating (2.10), (2.9), (2.11), (2.12), (2.13) and (2.15), we obtain

10" W21 400 + 5273 191 214525 100y S 821911201 100) + €7 012001625 100 (2.16)

There exists C > 0 such that (2.16) can be rewritten in the form

1/3)2 1 2 2/3
(9" ll21,400) — Ce / )"+ m(”‘p“Lz(l+£2/3,+oc) —-Ce)"<e 3,
Therefore, ¢/l 121 o) S €2 and @[l 214623 4o0) S €. Using also (2.13) and (2.15), we deduce

1/3
l@ll2 11623 S € / @l 14223) S €

and thus |21 4oo) < e. Similar computations on (—oo, —1] complete the proof of (2.2) and (2.3). Sobolev’s embedding
of HI(R,) into L®(R,) for ¢(&) = (1 + &2/3¢) yields

lollLoe,+00) = ||¢||L°°(]R+) A<J ||¢||H1(]R+) § ||¢/||L2(R+) + ||¢||L2(R+)
S V2190 12 t00) + & 210N 4oy S €22 (2.17)

Combined with a similar estimate for [|@||;%(—c0,—1), We get (2.5). Finally, Sobolev’s embedding of H'(R,) into L®(R,) for
@'(&) =23’ (14 2/3¢) similarly yields

1/3 —-1/3
19 o100 S €210 11201 400) + 72191121 400)-

Therefore, the bound (2.4) holds if [|¢” |21 o) < €7'/3 since [|¢/[|1(—o0,~1) is estimated similarly and [/¢/[|;(—1,1) is given
by the bound (2.11). Since ¢ € D(L? ) = Hy, limy_. o pe@¢’ =0, and the bound [|¢” |21~ < €~'/3 follows from integration
by parts:

+00

+00 +00
2 /
211220 100 = 12PN 21 400y = /(QD/)de—ZfPeﬁﬂ(/’de-i— f p2e? dx
1 1 1
+00

/(w”)zdx+2/pe(<p >2dx+/p dxf—f<p - 2, 1)
1

where the second and third terms in the right-hand side are positive and the last two terms are estimated from (2.3)
and (2.5). O
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2.2. The operator L% and its inverse
Let L% be defined similarly to L® as the Friedrichs extension of —83 +q¢(x) on L%(R) for £ > 0, where

1
9e(0 = 5 [2(1 =) 1g<ny + (¢ = 1)1

The domain of L% is Hy and L% is a positive self-adjoint invertible operator with a compact resolvent. Similarly as for
(L8)~1, we estimate the size of (L y~1in L(L%(R)).

Lemma23.For0<e <1,
I (Li)_l I LRy Y
Proof. See Appendix A.2. O
Using Lemma 2.3, we give estimates on various norms of (Li)_1 for sufficiently small € > 0.

Lemma24.For0 <e K1,

71
H (L H,C(Lz(]R)) St (2.19)
Hax(]- ) - ”[,(LZ(]R)) e, (2.20)
9x(L5) ”c(LZ(]R) Lo (R)) S e'?, (2.21)

[(L%) (2.22)

-1

HL(LZ(R) L*®(R)) Se.
Proof. Let f € Bj2 and ¢ = (L%)~ 1f. The bound (2.20) is obtained by taking an inner product of Lf ¥ = f with ¥ and
using Lemma 2.3:

A +/q£|w2dx< 1 2y 1V 12wy S €%

R

The bound (2.22) is a consequence of the bound (2.20) and Lemma 2.3, applying Sobolev’s embedding of H'(R) into L®(R)
to the function (&) = ¥ (¢2/3¢). To get the bound (2.19), we compute

||f||L2(R) = L% w”LZ(]R)

— / (") dx — 2 / Geyydx + / g2y d

R

/(W)Zdwzqu(w>2dx+quw2dx+ /wzdx—— f WP (AW + YA ),
R R

Ix|<1 x|>1

where we have used that limjy_, oo e %" = 0, which is true because ¥ € D(L%) = H>. The bound (2.19) holds with the use
of the bound (2.22) and Lemma 2.3. The bound (2.21) follows from Sobolev's embedding of HY(R) into L°(R) applied to
/(&) =23y’ (€%/3¢) and from bounds (2.19) and (2.20). O

2.3. The operator (L&)~ 1(L%)~!

From the results in the two previous sections, we can deduce easily some estimates on norms of (L%)~ T(L&)=1. For
instance,

le5) ™ ()" i

- 1
”L(LZ(R)) < (z5) ”[,(LZ(]R)) I(L2) HL(LZ(R)) Se

However, it turns out that these estimates are not sufficient for the proof of the Main Theorem. To improve the estimates,
we use the fact that if v € B> maximizes ((L%)~'v, v) ~ %3, then (L%)~'v has its L2-norm concentrated about the points
+1 (where g, vanishes), whereas if u € B> maximizes ((L%)~ 1u,u) ~ 1, then (L%)~'u has its L2-norm concentrated in the
interval (—1, 1), away from the points +1. Fig. 1 shows potentials p; and q. versus x. Fig. 2 shows schematic shapes of
(L®)71f and (L&)~'f for a f € L?(R). The precise estimates on norms of (L%)~!(L%)~! are summarized in the following
lemma.
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Fig. 1. Profiles of potentials p. (left) and g¢ (right) versus x.
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Fig. 2. Schematic shapes of (L)' f and (L§)~!f for f(x) =exp(—x?/4) € L*(R).

Lemma 2.5. Let ¢ € (0, +oo] and § > 0. Then for 0 < ¢ « 1,

Jx(5) 7 () | cgpy S (2.23)
Jes) " ee)™ “[j(LZ(]R)) e, (2.24)
a0 (15) 7 (15)” ”[,(LZ(]R))N g7, (2.25)
I 1-e0 80 (L5) I(L ”L(LZ(R) L (R)) S eMnAB 1313275, (2.26)

10 (15) 7 (1) ™ | gy aemy S EmmE T2, (227)

where if @ = +o00, we use the convention €% = 0.

Proof. Let f € B2, S= (LE)"1f and R = (L)~ 1S. We choose y < (0,2/3) (in the sequel, we will make different explicit
choices of such y), and we split R into three pieces: R =R1 + R, + R3, where

= (L5) e (18) 7' F,
(L5) ey cpn (L) 7S,
(ﬁﬂuumeLVﬁ

Notice that R and R3 depend on y. According to Lemmas 2.2, 2.3 and 2.4,

Bl S67% IRl S (Rl S6% IRl S €2 (228)



502 C. Gallo, D. Pelinovsky /J. Math. Anal. Appl. 355 (2009) 495-526

Thanks to Lemma 2.2, the Taylor formula provides

IS2—er 1y SEV2(ISD| + €V 118 1o (-1,1)) S €772 (2% + 67) < &37/2, (2.29)

because y < 2/3. Thus, using Lemmas 2.3 and 2.4, we obtain

2/3+37/2 4/3+37/2 17343y /2 143y/2

IR ”LZ(R SePrv/ IR2ll2my S & P33/ IR, HLoC(]R) Sel3t3/ R2 |l o ry < &3/ (2.30)
The last component R3 solves the differential equation

LiRg =114ev,1-67)S, XxeR. (2.31)
We multiply this equality by R3, integrate over R and use the Cauchy-Schwarz inequality. Since [|S||;2 (g, <1, we get

2
[R5 o + [ aeIRaP xS WRslha e, 1eny (232)
R

Thus, since ||R3]? <e¥7 [2qe|R3 dx,

L2(—1+4€7 1—gV) ~
/12 1 2-y\2 < 22—y
IRs 2y + 7= (IRs iz rger1-er) = C&77) " S (2.33)
for some C > 0. We deduce

1- 2 2—
IRS ]| oy S 877 IR3ll 2~ 14er 1-ev) S €77 (2.34)

Next, we will establish an estimate on ||R3l;2(q_gv < <1)- We first estimate the L>°(R) norm of Rs3. Let x be a C* function
on R with values in [0, 1] such that x(x) =0 for x < —1/2 and x (x) =1 for x > 0. We denote m the function defined by

xR0 == XR3(1—e” + (x—1+¢7)e!77/2).
Then, using Sobolev's embedding of H!(—o0,1 — &) into L>(—o00, 1 — &¥) (notice that the norm of this embedding is the
same that the norm of H'(R;) ¢ L®(R. ), and therefore does not depend on &), we obtain
SIXR3 I (—oo1—e7) = I X R3 1% (001 —e7) S ||XR3||H1( co1—e)
=172 4 2—y/4
Se TP XRs N2 oo 1—ery + 82TV (X R3Y ”LZ(—oo,]—aV)
<

£3/2-3v /4 (2.35)

IR3l|Lo00,1—¢7)

Similarly, || R3|Loc(—14e7.0) S €3/2737/4, Since R3 solves

—32R34+qeR3 =0, [x|>1—¢7,
where q; >0 and R3 € L?(R), we infer from the maximum principle that

IR3 [l my S &3/2737/4, (2.36)
On the interval (1 — &7, 1), there exist constants C4 and C§ such that R3 is given by the linear combination

R3 = C,q‘//A +C WB,

where ¥4 and 5 are defined in Lemma 2.6 below.

Lemma 2.6. There exists a constant C > 0 such that for € > 0 sufficiently small, the equation

e+ (] D =0 —% cx<1 (2.37)
has two linearly mdependent solutions § and 5 in the form
1-—
Y5 () =a(l _X)m(a e )( +Q5),

1—
wB(X)—a(le)Bl(é( 7 )( +Q5),

where £(x) == (3 [ V2t — D) dD)?/3, a(x) := (€'(x)) /2, Ai, Bi are the Airy functions, and Q§, Q§ satisfy the bound

lea ”LOO(—1/2,1) + Q3 ”LOO<—1/2,1) <ce?’
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Proof. See Appendix A.3. O

According to 10.4.59 and 10.4.63 in [1], the Airy functions satisfy the following asymptotic behaviour at infinity [1,
Section 10.4]:
. 1 _2,32
NO™ saiza®
At the point x =1, we deduce from (2.36) that

|C5a(@)AI(0) (1 + Q5 (1)) + C5a(0)Bi(0) (1 + Q5 (1))| S /2 73/4,

. 1 2,32
and Bi(z) ~ Wﬁ as z — +oo. (2.38)

Thus,

|c4| S &2/ | cg). (2.39)
At the point x =1 — €V, provided that y < 2/3, we similarly have

(E(EY) (E(EY) 3/2—-3y /4
c;a(ay)m( CO) 1+ @i —e) + Chaler )i S ) (14 g1 - ) g2
Since
Ex) ~2%3x asx—0 (2.40)
and thanks to (2.38) and (2.39), we obtain
3/2-3y/4
C5| S S and |C5| S &2/, (2.41)
s §(EY)
BI(SZT)
where Bi(iff/?) — o0 as € — 0. Since y < 2/3, one can choose 8 € (y,1 — y/2). Using again the maximum principle, we
get

[R3(0)| < |R3(1—&” +6P)|, x>1—¢e" +&P.

Moreover, thanks to (2.41), we have

. E(eY —eP)
E(SV—Sﬁ))+83/273y/4B'( 27 )
£2/3 Bi(f(sy))

2273

|R3(1—¢&” +eP)| 83/2*3V/4Ai(

Using (2.40) again, we deduce from (2.38) that there exists a constant cg > 0 such that

3/2—3y /4 p: g(gl/_gﬂ) 3y/2-1
g3/23v/ AI(T Sexp(—coe® /271,

. Y _gh
31(5(882/38 ))

Bi(%35")

g2/

£3/2-3y /4 < exp(—coeftr/271),

where we have used
£V — &)’ —£(e7)’?

e
which holds because 8 € (y, 1 — y/2). Therefore, we find

~—3gPtr/2=1 35 ¢ 0,

IR3ll e (1ev b o) S [R3(1— 67 + €P)| S exp(—coePTV/27T), (2.42)
which shows that R3(1) and C are actually exponentially decaying as & — 0. Then, we infer from (2.36) and (2.42)
IRl 2(1—ev.1) S IR3l2(1—7 . 1—gv 168y T 1IR3l 21— g7 168 1)
< eP2E32-37 14 4 g¥ 12 exp(—coeP Y /271)
< g3/2+B/2-3y /4 (2.43)

The L? norm of R3 on the interval (—1, —1 + &?) is estimated in the same way. Next, we estimate the L?> norm of R3 on
the interval (1, co). We multiply (2.31) by R3 and integrate over (1, +00). Since p, > 1 for x > 2 and ¢ < 1, we obtain
+0o0 +0o0
2 _
|\R3\|i2(27+00) < / (R5) dx+ / peR3dx = —R3(1)R5(1) < eXp(—cOgﬂ+7//2 1)91/3, (2.44)
1 1
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where R3(1) has been estimated with (2.42) and the bound for R;(1) comes from Lemmas 2.4 and 2.1. The L% norm of R3
on (1,2) is estimated thanks to (2.42). Together with (2.44), we deduce that

IRl 21 400y S €Xp(—cePTY/27T),

where ¢ = cg/2. The L? norm of R3 on (—o0, —1) is estimated similarly, thus

1IR3l 21> 1) S exp(—cef T2, (2.45)
Since R3 solves
—Rg +q<sR3=0

on (1 —&”,+00) and R3 € L2(R), we deduce from the maximum principle that if R does not identically vanish on
(1 —¢&”,+4+00), then R3 has a constant sign on that interval. For instance, R3 > 0 (the argument is similar in the other
case). Then, R}(x) > 0 for every x > 1 — &V Therefore R} is a negative increasing function on (1 — &7, +00). Let us assume
by contradiction that |R5(1 — &¥ + &#)| > exp(—coefT7/2=1) /&2, Then, for x > 0, it follows from the Taylor formula and
(2.42) that for ¢ sufficiently small,

g S
R3(1—&” +&f + &) =R3(1—¢” + &) +eR;(1 - +sﬁ)+//R§(l—87’ +&f +t)deds
00

2
Cenebrrizn[(c_ & o8 1
< exp(—coe )(C 2 +C 5 oy <0,

for some C > 0, which is a contradiction with the positiveness of R3. As a result,
— +y/2-1
[R5 e 1o se 1oy = [R5 (1 — &7 +&)| S exp(—ce7/27T). (2:46)
At this stage, we have established all the estimates required to prove the lemma. First, (2.28), (2.30) and (2.34) yield
5/3 , o2/3+3y/2 1-y/2
IR N2y < [RY 2y + IR 2y + RS |2y S €7 + €277 2 4 217712,
The choice y =1/6 provides (2.23). From (2.28), (2.30), (2.34), (2.43) and (2.45), we obtain
||R||,_2(R) < IRy ”LZ(]R) + ||R2||L2(]R) + ||R3||L2(_1+gy,1_57) + 1IR3 ||L2(1_gy<\x\<1) + ||R3||L2(\x\>1)
< g7/3 4 g433V/2 4 2=y 4 3/2-3v/4+8/2 exp(_cgﬂﬂ/ﬂ—l)_ (2.47)
The choice y =4/15, B =13/15 — 24, for sufficiently small positive number §, provides the bound (2.24). Similarly, we have
RN 205151 < IR 20> 1) + IR2 120151 + 1IR3 251y S €772 + Y33V /2 4 exp(—cef /27T, (2.48)

The choice y =2(1 —4§)/3, B =2/3, for any small positive number §, provides the bound (2.25). If ¢ > 0, ¥y < min(«, 2/3)
and if ¢ is sufficiently small, we also obtain from (2.28), (2.30) and (2.46),

IR 2o (1= 00) S IR lpoo(1—ev 128, +00) < IRTILo®) + IR N1 ®) + 1RSIl oo (167 1ef 100y
S e3P 43TV 4 exp(—ceftY/2TT). (2.49)

A similar argument on (—oo, —14 &%) gives (2.26), for the choice y = min(«, 2/3)—28/3, B =(1+y)/4. If y < min(x, 2/3),
thanks to (2.28), (2.30), (2.42) and its twin estimate on (—oo, —1 + &%), we get similarly, for & sufficiently small,

IRlloo x> 1) < IRl poo = 1—e7 +¢8) S IR1 Mo ®) + IR21ILooR) + R3[| oo (= 1—e7 +-28)
S e+ e/ 4 exp(—coeP T2, (2.50)

The bound (2.27) follows from (2.50), again with the choice y = min(«,2/3) —25§/3, B=(1+y)/4. O
3. Proof of the Main Theorem
3.1. The operator A¢ fore >0

We consider here the operator

Ae =6 2(=02+pe(0) (2 +qe0) T =& 2(L) T (L5) 3.1)
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As we have seen before, if & > 0, both operators L® and L% on L%(R) are invertible with compact resolvent. As a result,
Ag is a compact operator on L?(R) for any fixed & > 0. Thus, its spectrum consists of a sequence of eigenvalues which
converges to zero. Moreover, these eigenvalues are all strictly positive. Indeed, if @ is an eigenvalue of A, and ¢ is an
associated eigenvector, ¢ := (L)~ 1/2¢ satisfies

eN—1/2/ e\=1/,6\—1/2
(L)) 7 (15) e = e

Therefore, u is an eigenvalue of the self adjoint positive operator (L%)~1/2(L%)~1(L%)~1/2, which implies x > 0. We order
eigenvalues of Ag as

O0<- < lne < - K U2 < U1, < OO.
3.2. The operator Ao

As € — 0, we can formally expect that A; converges in some sense to the operator

a1
Ao = (—02 S —
0= (=2 +p0) 575
where
o ifjx <1,
pO(X)_{—i—oo if x| > 1.

Let us describe more precisely the action of the operator Ag on L2(R). The following lemma is helpful for that purpose.

Lemma 3.1. Ifu € L>(R), then (21 € (H2NH})Y'(—1,1), where (H> N H})(—1, 1) is endowed with the H? norm. Moreover,

the map u +— (52)|(~1,1) is continuous from L%(R) into (H> N H}) (-1, 1).
Proof. By Sobolev's embedding theorem, H2(—1,1) is continuously embedded into C!([—1,1]). Therefore, if g €
(HXNH})(—1,1), then
|g0| =|gx) — g(ED)| < lIgllz= (1 - 1x1),
with +1 for x > 0 and —1 for x < 0. It follows that for every x € (—1, 1),

gx)
1—x2

gl _
RN

&llg2-

As a result, using the Cauchy-Schwarz inequality, we obtain

1

/ U g(x)dx

1—x2
21

Sllull 2wy gl p2(-1.1)5

which completes the proof. O

Let us denote the Dirichlet realization of the Laplacian A = 33 on the interval (—1,1) by Ap. It is well known that
(—=Ap)~! maps continuously L?(—1, 1) into (H? N H})(—1, 1). By duality, it also continuously maps (H?> N H})'(—1,1) into
L2(—1,1). For u € L*(R), Agu € L*(R) is defined by

(Aow)|(x>1y =0,

=00 ((7555), )
(Aou)j(—1,1) = (—Ap) 2(0=x%) ) 11y

Thanks to Lemma 3.1 and the continuity of (—Ap)~': (H> N H})'(—1,1) > L?(—1,1), Ao is a bounded operator on L?(R).
Moreover, we have the following lemma.

Lemma 3.2. For any u € L*(R) and any s € [—-1, 1],

1,y 1
_ u(x) u(x) s—1
Aou(s) _/</ YT dx — / T dx) dy + Tl(u), (3.3)

-1 y
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where

1,y 1
. u(x) _ u(x)
I(u) _f</ YT dx / T dx) dy. (3.4)
y

-1 -1

In particular, Aou is continuous on R.

Proof. For any u € L*(R) and any y € (—1, 1], we have

1 @ 1 12 , 1 ) 1/2 ul
u(x L2(R)
dx| < ux)|? dx /—dx < —, 3.5
/(1+x) (/'()' ) ( 1 +x?2 ) Sy (3.5)
y y y
which implies that the map u — f; ;‘(—J:‘f(dx is continuous from L2(R) into L!(—1,1). Similarly, one can see that the map

u— f_yl %dx has the same property. As a result, u — I(u) is a continuous linear form on L%(R), and the map which

assigns to u the right-hand side in (3.3) is continuous from L2(R) into L°°(—1,1) c L%(—1,1). As we have seen before,
S0 is u — (Aou)|(—1,1)- Actually, both sides in (3.3) only depend on the restriction of u to (-1,1), so that they can be
considered as continuous from L2(—1, 1) into itself. Therefore, using the principle of extension for uniformly continuous
functions, it suffices to check (3.3) for u in a dense subset of L%(—1, 1). This can be done for u € C°(—1,1). Indeed, in this

case (745)-1.1) € L%(—1, 1), therefore (Agu)—1,1) € (H? N H})(—1, 1). In particular, lims_, +150(Aou)(s) = 0. On the other

side, we can easily check that the right-hand side in (3.3) also vanishes at s = 41 and its second derivative is —

u(x)
2(1-x2)"
which completes the proof of (3.3). It remains to prove that lims_, +10(Aou)(s) =0 is true for any u € L2(R). This follows

from the fact that the maps y — f; ;’(—J:‘))(dx and y —~ (7, %dx are in L'(-1,1). O

Lemma 3.3. Ay is a compact operator on L2(R).

Proof. By Lemma 3.2, Ay is continuous. Thus, according to a standard criterion of relative compactness for a subset of L%(R)
(see, for instance, Corollary IV.26 in [7]), it is sufficient to check the following two conditions:

(i) for every n > 0, there exists a compact subset @ C R such that for every u € B>,

lAoull 2 (m\w) < 13

(ii) for every n > 0 and for every compact subset w C R, there exists § > 0 such that for every u € B;> and for every h with
|h] <3,

| Aou(- +h) — Agu | Py <1

In our case, condition (i) is trivially satisfied: we choose w =[—1, 1] and then lAoull2m\wy =0 for every u € Bj>. To check
condition (ii), we note that if —1 <s,s+h <1, then

s+h, y 1
_ u(x) u(x) h
|A0u(s+h)—Aou(s)}_’—/(/4(1_x) dx—/4(1+x) dx)dy—o—il(u)

-1 y

lh|

< + TCHUHLZ(]R)

"l 1 1
u
(R
4 1+y 1—y
N
_ I Ci
+ .

X

4 2

for some constant C > 0. A similar estimate holds if either +1 or —1 lies between s and s + h (which can only happen if
Is| <1+ |h|), whereas if both s and s+ h are outside of (—1, 1), then Agu(s + h) — Agu(s) = 0. Therefore,

lh|  Clh|
[ Aot +h) — Aou| 2y < (2(1 + lm))m(g * T)’

and condition (ii) follows. O

Since Ag is compact, its spectrum is purely discrete. Clearly, 0 is an eigenvalue of Ay and the associated infinite-
dimensional eigenspace is made of the set of functions in L?(R) supported in the exterior domain {x € R: |x| > 1}. If w#0
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is an eigenvalue of Ap and w an associated eigenvector, it follows from the definition of Ag that w =0 on {x e R: |x| > 1},
whereas on {x € R: |x| < 1}, w solves
201 -2)wW'®=ywk, -1<x<l, (3.6)

where y =1/u. Moreover, thanks to Lemma 3.2, w = y Agw is continuous so that w(—1) =w(1) = 0 We shall now prove

that the only solutions of (3.6) vanishing at the endpoints 41 are the Gegenbauer polynomials Cn+] (x) for yp=2n(n+1),
where n > 1 is integer. Thus, the spectrum of operator Ag is given by

0(A0)={Mn 1}u{0}.

2n(n+1)°
Lemma 3.4. Eq. (3.6) admits a family of solutions (y, w) = (yn, C n+1 ) forn > —1, where y, =2n(n + 1) and Cl is a Gegenbauer

nl{z) |n>—1, a € R} is asolution of (3.6), then it satisfies

Xg?q_o(|w(x)| +|w(=x)]) #£0, X_l)igllo(\w’(x)| +|w/(=%)]) = co. 3.7)

polynomial with degree m. If (v, w) & {(n, aC

The only solutions (y, w) of (3.6) such that w(1) = w(—1) =0 are (yy, o:CnJr1 ) forn>1anda e R.

Proof. Explicit computations show that Gegenbauer polynomials C, -1/ 2(x) from Section 8.93 in [11] are solutions of (3.6)

for yy, for any n > —1. In particular, for n > 1, by Eq. 8.935 in [11], we have

1200y — (1—-x?) d? 1200 — (1-x?) o312
n+1 ( ) n(n+]) dX2 n+1 ( ) ( +]) n 1( )
~172 172

which proves that C (=1) =0 for n > 1, whereas C, 12 (x) =1 and C, -2 (x) = —x. We next prove that if

1)=
n+1 ( n+1
(v, w) solves (3.6) and w is not proportional to Cn+1 with n > —1, then w satisfies (3.7). We introduce the new variable
z=2x2 for 0 <x <1, and the function u(z) := w(x). It is equivalent for w(x) to solve (3.6) on (0, 1) or for u(z) to solve the
hypergeometric equation:

z1—2u"(2) + %(1 —2u'(2) + %u(z) =0, 0<z<l. (3.8)
This equation admits a general solution given by 9.152 in [11]
u(z) =c1F(a,b,c; z)+czzl/2F<a+ - b+; ; ) (3.9)
where
1 1
a+b=—§, ab:—%, €=3

and F(a, b, c; z) is a hypergeometric function. Clearly, the function x — u(x?) = w(x) defined by (3.9) is analytic for 0 < x < 1
and can be extended into an function w which is analytic for —1 < x < 1, given by

- 1 13
w(x) :=c1F(a,b,c; xz) +csz(a+ §,b+ 7 §;x2>,

where the first term is even in x and the second term is odd in x. Since w solves (3.8), the uniqueness in the Cauchy-
Lipshitz Theorem ensures that w = w. In order to prove the lemma, it is sufficient to consider one component of the
solution at one boundary point, e.g. F(a,b,c;x%) at x=1 (z=1). Since Re(c —a — b) =1 > 0, the function F(a,b, c; 2),
which is analytic on {z: |z| < 1}, is also bounded as z— 1 (see 15.1.1 in [1]). Using 15.1.20 in [1], that is

r'c)rcc—a-»ab)

Fab D= r e are
we find that
al/? sin(ma)l"'(—a)  cos(wa)I(1/2 + a)
F(a,b,c;1) = =—-—5 — 5
rd+ard/2—a  72r1/2—a 7211 +a)

Parameters a and y are related by y =4a(1 + 2a). If y = yom—1 =4m(2m — 1) for m > 1, then either a = —m or a =
—1/2 + m, both give F(a,b,c;1) =0, corresponding to even polynomial solutions Cz_nl/z. For all other values of y and g,

F(a,b,c; 1) is bounded but non-zero. On the other hand, using 15.2.1 in [1], that is

d ab
—F(a,b,c;z)=—F@+1,b+1,c+1;2),
dz c
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since Re(c+1—a—1—-b—1) =0, we obtain that %F(a,b,c; 2) = ZX%F(G,IJ,C; z) diverges as z — 1 (see 15.1.1 in [1]),
unless the series for F(a, b, c, z) is truncated into a polynomial function, which happens precisely when a or b is a negative
integer, which implies that y equals one of the y,;_1’s for some m > 0. Therefore, limy_.1|w'(x)| = oo if w(x) is an
even solution of (3.6) and y # yom—1 for m > 0. Similarly, the statement is proved for an odd solution of (3.6), given by
xF(a+1/2,b+1/2,3/2; xz) for y # yom with m > 0, where y = yo;, =4m(2m+ 1) correspond to odd polynomial solutions

~1/2
Gy O

3.3. Convergence in norm of Ag to Agase — 0

Our goal in this section is to prove the following result.

Theorem 3.5. It is true that
Ag — Ao in L(L*(R)) ase — 0.

Once this result has been proved, we immediately have the corollary.

Corollary 3.6. For every integern > 1,
Une — Un ase— 0.

Moreover, if wy, is an eigenvector of Ao associated to the eigenvalue iy, there exists a set (Wp ¢)e=0 C L2(R) of eigenvectors of A
associated to the eigenvalues ¢ for € > 0, such that

Wpe — Wy in Lz(]R{) ase — 0.

Proof. Since convergence in norm in £(L?) implies generalized convergence, it follows from Theorem 3.16 on p. 212 in [14]
that for every integer N >1 and for 0 < ¢ « 1,

(MN + UN+1 -N.

2

Moreover, tn e — fn as € — 0, for any 1 <n < N, which proves the convergence of the eigenvalues. For the eigenvectors,
let us fix n > 1, and let £2;, C C be a neighborhood of u, such that £2, does not contain 0 nor any other eigenvalue of Ayp.
From the convergence of the eigenvalues, it follows that for ¢ sufficiently small, A; has a unique eigenvalue in §2,, which
is wn,e. For any integer m > 1, we denote by En (resp. Ef,) the eigenspace of Ag (resp. A¢) associated to the eigenvalue
(resp. tm,¢). We also define

Fp:= (@ Em> ®KerAg and Fpe:= @ EE,

m#n m#n

as well as P, € L(L?(R)) (resp. Py ) the projector on Ej, (resp. Ej ) along Fy (resp. Fp ). Then, Theorem 3.16 in [14] also
ensures that P, o — Py in L(L?) as € — 0. Thus, Wp.e := Pp Wy is an eigenvector of A, for the eigenvalue w, ¢, and we
have

,+00) No(Ae)

Wne — Wnll2@) = H(Pn,a = Pp)wy ”LZ(]R) < IPne — Pall g2y 1Wnll 2 (r) ;60,

which completes the proof. O

Remark 3.7. A straightforward consequence of Theorem 3.5 is that A7 — Af in L(L2(R)) as € — 0. Thus, an analogous result
to Corollary 3.6 holds for the eigenvalues and eigenvectors of Ay and Ag.

The convergence statement of the Main Theorem directly follows from Corollary 3.6, since the spectrum of system (1.5) is
made of the eigenvalues A = *ig/,/it, where u describes the spectrum o (Ag) of Ae. Indeed, if (A, u, w) € Cx L2(R) x L%(R)
solves (1.5), a straightforward computation shows that

g2

Acw = _A_ZW’

thus A = i% for some w € o (Ag). Conversely, if A;w = uw, with w € L2(R), then (ie//it, u, w) € C x L2(R) x L?(R)
solves system (1.5) with
i -1
u=— L8) w.
Eﬁ( +)
Let us now turn to the proof of Theorem 3.5. In order to compare Agu and Agu for & > 0 and u € L2(R), we would like
first to express Agu as Aou = Ag(As) " Agu. This can be done with the help of the following lemma.
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Lemma 3.8. Let H be a Hilbert space and L be a self-adjoint operator on H with domain D (L) endowed with the graph-norm || - | p(1y =
A - ||f_, + |IL - ||i,)‘/2. Assume that L is continuously invertible and X is a Banach space continuously embedded in H. L induces an
operator Lx on X, defined by

D(Lx)={xe€ X, Lxx € X}, Lxx=Lx foranyxe D(Lx).

D(Ly) is endowed with the graph-norm | - | pLy) = (Il - % + ILx - %)1/2. Assume further that D(L) is dense in H and that D(L) is
continuously embedded in X. Then L is extended to X’ as a bicontinuous map Ly : X' — D(Lx)’ defined by

Lx f, @) pyy.piy = (f, Lx@)x x forany f € X" and ¢ € D(Lx).
Proof. See Appendix A4. O

To prove that Aou = Ag(Ag) "1 Aou for any & > 0 and u € L?(R), we apply Lemma 3.8 twice. For the first application,
H=X=L2R) and L = L%, such that L¢ is extended as a bicontinuous map (also denoted L¢ for convenience) from L%(R)
into D(L® ). Thus, Aou = (L®)~ L% Aqu. For the second application, H = L(R), X = D(L®) and L = L% such that L is
extended as a bicontinuous map (that we will also denote L% ) from D(L%) into

Dpge)(L5):={veD(L%), L5veD(L)}.

Note here that D(L%) is continuously embedded in X = D(L?), since L —L° = 2(18—_2"2)1(,1,1) € L(L%(R)) (actually, D(L%) =
D(L?) and the norms || - ||p¢ey and || - Ips) are equivalent). As a result,

Aou = (1) (1) T LE LS Aou = Ap2 L5 L7 Agu = A (A) " Ao,

where (Ag)~! maps Dpge)(L%) into L*(R).
The identity (3.3) provides an explicit expression of Agu for any u € L%(R). Let us next use this identity to express
L& Agu e D(LE)'. If p € D(L%) and u € L>(R), then direct computations involving integration by parts give

1
(L£ Aot @) 12y pe ) = (Aotts LE@)2 o = —/(Aow(S)w”(s) ds
-1
1 1 1

y
— u(x) u(x) s—1 ,
_/(/<f4<1+x) ""‘/4(1_x) dX)dy+—2 I(u)>§0 (s)ds

-1 S y -1

1 1 s

_ u(x) u(x) , I(u)
_/( / prepe dx — / PTER dx)go (s)ds — T((p(l) —p(-D). (3.10)

-1 ‘s -1

Performing another integration by parts, the first term in the right-hand side of (3.10) can be expressed as

1 1 s

u(x) u(x) /
/(/4(1+x) dx_/4(1—x) dx)w(s)ds

-1 N -1

1-6 1 s

= lim / ( / U@ dx — / v dX>§0/(S)ds
§—0 4(1+x) 4(1 —x)
—1+8 s -1
\ (%) o 9)
. u(x u(x
:(}135( f T () — @(=1+8))dx + / 1 _X)(go(x)—gou—a))dx)
—146 -1
\ (%) : (*)
ux ulx

-1 -1

The first limit in the right-hand side of (3.11) is evaluated as follows. (The second limit is evaluated similarly.) We write
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1 1
ux) u(x)
/ 20+ (P — @(=1+8))dx — / A+ (p(0) — p(=1))dx
~1+8 e
J * —1+8 ®
u(x u(x
_ /5 Y (P(=1) —@(=1+48))dx — / A+ (P — @(—=1))dx|. (3.12)
1+ “

The two terms in the right-hand side of (3.12) converge to 0 as § goes to 0 thanks to Lebesgue’s dominated convergence
theorem. For the first term, the integrand is dominated by

u(x)
‘4(1 +X)

(fp(—l)—fp(—l+5))1<71+a,1)‘ < el'(-1,1).

5U(X)||¢/||L°°1 o [u@)|llg’ |l
—— 1y | S —————
4(1+x) 4

The integrand of the second term is dominated by the same integrable majorant. Then, from (3.10) and (3.11) we deduce
that

1 1
u) ¢(x) —@(=1) u) o) — @) I(u)
(LiAou,w)D(,_i),’D(Li)=/Tde+/Tﬁdx— T((p(l)—(p(—l)). (3.13)
-1 -1

Thus, if u € L>(R) and ¢ € Dpge(L%), then

2re 1€ 1€ 27¢
(2L LE Agu _u’(p)DD(Lﬁ)(Li)/’DD(Li)(Li) = (L8 Aou, €LE @) e pe —/u(x)go(x)dx
R
1

1
=—82f ueo (w//(x)—w”(—l))dx—ezf ue (¢"(0 —@"(1)) dx

4(1+x) 4(1—x)
-1 -1
821(u) " "
+T(<ﬂ M —¢"(-1) - / ux)ex)dx.
|x]>1
Finally, if we introduce the adjoint operator of Ag,
" 1 -1 -1
Al = 8—2(Li) (L) e L(L*(R), Dpge,H(L5)),
we get for any u, ¢ € L>(R)
(Aou — Agl, @) )2 2 = <Ag(52LiL8_AOU - u), ‘P)Lz‘Lz
o276 1€ _ *
= (e?L5 L% Aou —u, AS¢>DD<L5><Li>”DD(L5)<Li>
1 1
_ 2 / u®) (Az@)' @ — (Az@)' 1) / uR) (A29)"(0) — (AzQ)"(D)
4 1+x 4 1—x
-1 -1
SZI(U) % A\ % A\ %
+— ((Az) (1) — (Aig) (-1) — u(x)(Aj@)x) dx. (3.14)
|x|>1

In order to prove the convergence of A, to Ag in L(L%(R)), it is sufficient to prove that the right-hand side in (3.14)
converges to 0 as € — 0 uniformly for u, ¢ € B;>. Up to terms which may be estimated similarly, it hence suffices to prove
that the three quantities

Q¢ (u, ¢) = |2 1w)(AXp)" (1)),

)

Q) :=‘ / u()(AZe) (0 dx

|x|>1

Q5 (u,p) =

)

1

Szfu(x) A" ™) — (A:0)" @D
1—x

-1
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defined for u, ¢ € L?>(R), converge to 0 as &€ — 0, uniformly for u, ¢ € B;2. In other words, we should choose u and ¢ in B>
and prove that

Qi (u, @)+ Q5 u, )+ Q5 u, ) SC(e), (315)
where C(¢) does not depend on u or ¢ and C(¢) - 0 as ¢ — 0.
Estimate on Q §. We have already seen in the proof of Lemma 3.2 that [I(u)| < 1. On the other side,

-1 -1 -1

efogA =qe(L%) " (L9)" —(12) .

Since q:(1) =0, it follows from Lemma 2.2 that
-1

(207 Az0) (D] =[((L2) @) (D] < 7.
Therefore

Qf(u. @) S 23, (3.6)
Estimate on Q 5. It follows from Lemma 2.5 and from the Cauchy-Schwarz inequality that

Q5 (u, ) SelP, (3.17)

for any § > 0.

Estimate on Q §. Thanks to the Cauchy-Schwarz inequality, it suffices to prove that

(€202AH)p(x) — (€202AH)p(1)
1—x

—0 ase—0,
L2(—-1,1)

uniformly for ¢ € B)>. Using a commutator, we first decompose the operator £21(_1,1)32 A% as

-1 1 -1 -1 1
e AL = 1l (L) (L2) 7 = —Tean (L) +1eand[(L5) . (19) ] (3.18)
We introduce the functions r:= (L%) ', s:= (L£) 1, R:= (L5)~1s, S:= (L%)~'r and w:= 32 (R — S). Then,
(ERADPX) — (2R ADP(1) _|reo-ra H @) — (1)
T—-x 12(-1,1) T—x lecy 1-x [2(-1,1)

According to Lemma 2.4, ||r'|| &) < &!/3 and the first term is hence estimated by

rx) —r()

T se'l (3.19)

L2(—1,1)

Let us now estimate the second term in the inequality above. If we make the difference of the two fourth-order differential
equations satisfied by R and S on (—1, 1), we find that w solves the differential equation

2(1 — x2) 4 8x

—2w+ = w:8—2R+8—2R’, “1<x<l1. (3.20)

Let a € (0, 2) (different explicit choices of o will be made later), 8 =23/30 —§ and y =7/15+ §, where 0 < § < 1/45.
Thanks to the triangle inequality,

—w(1 —w(1
|2=e® S0l 10 +e Mol e+ o] + | 25 =20 | (321)
T—x  lpeciy T—=x la—ern
Next, for x € (—1, 1), we have
2 2(1—x%)
w(X) =0 (R=5)(x)=r(x) —sx) + TR(X) (3.22)

and

2(1 —x%
o' (x) =1 (%) —s'(x) + %R/

4
@) — g_)ch(")‘ (3.23)
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Thanks to Lemmas 2.2, 2.4, and 2.5, we obtain

lo(ED)| = |r(£1) —s(£1)| <23 (3.24)

and
R j:l

|0’ ED| = (1) —s'(£D) F —R(:I:l) <14 | ( )| < <g™d. (3.25)

If we multiply (3.20) by w, integrate over (—1, 1) and use the Cauchy-Schwarz inequality, we get
1 | 1
lleo'lI7 1])+82/(1—x2)a)2dx< 7 IR 21l + IR 192
-1
lwMIRM)] + [o(=1)[|R(=1)]|
+ o]’ (D] + |o(=D]|o' (-1)] + . (3.26)

&2
Decomposing (—1,1) into (—1+¢&%,1—¢&%), (—1,—1+¢%) and (1 — &%, 1) and using the Taylor formula and the Cauchy-
Schwarz inequality on the last two intervals, we get thanks to (3.24)
||CU||L2(_1,1) S ||CU||1_2(_1+301,1_30!) + Ea/z(‘w(])‘ + |CU(_])| + 8“/2llw’IIL2<_1,1))
SHoll2(1yee1-y + €72 460 21,1y (327)

From (3.26), (3.24), (3.25), (3.27) and Lemma 2.5 we deduce, for sufficiently small § > 0,

2 o— 2
”(,() ||L2(—1,1)+8 ”w”LZ(_]_'_got,l_ga)
< 826“57‘372(IIa)IILz(,ng,],ga) 4 g@/2+2/3 +8a”a)/”L2(71,1) n ||60/||L2(71,1)) 1 g2/3-8 4 g2/3-

SR g2 L gm0l 2 gy g _gay + 8PP0 21 1y (328)

Therefore there exists a positive constant C such that

—4/15—5)2 -2 26/15—a—8\2
(I ll2—1,1) = Ce™P7°)" + 6% 2 (@l 2 (1 pe0 1 —pay — CEX/5747)

< £2/3=8 4 g@/242/5-8 | o~8/15-28 | (22/15-a~25 (3.29)
We deduce that for any « € (0, 2),

< g26/15-0=8 4 4/3-0/2-8/2 4 (6/5-0/4=5/2 | (11/15-0/2=5 < 11/15-0/2= (3.30)

||CU||L2( 1462, 1—6%) +é& +é&

and
' li2oin S € —4/15-8 | 1/3=8 | o1/5+a/4=8/2 | o=4/15=5 4 o11/5-a/2-8 < o—4/15-5 (331)
Using (3.27), (3.30), and (3.31), we obtain

loll2-1.1) S < gl/15-0/2=6 | ca/242/3 4 o~4/15+0—5

For a« =2/3, we get
lollz-1,1) < g%, (3.32)
Coming back to (3.21), thanks to (3.24), (3.30) with « =y, and (3.32), we obtain
H w(x) —w(l)

1—x

w(x) —w(1)
1—x

< g2/578 4 gI/15-3y /28 4 23—y H

. (3.33)
L2(-1,1) L2(1—¢7,1)
If y=7/15446 and g =23/30 — §, we have

1= g7/15 4 g23/30-5 _ 1 _o¥
for sufficiently small € > 0 and therefore

H w(X) —w(l) Ha)(x) —w(1)
1 —X L2(1—8V,1) = 1 —X

L2(1—87/15+823/30’5,]).
From (3.22) we infer, for x € (—1, 1),
ox) —wl) @ -—-r1) s -—s1) 2(1+x)

= R(x). 3.34
1—x 1—x + 1—x + g2 *) ( )
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Like in (3.19), it follows from Lemmas 2.2 and 2.4 that

r®) —r < p17/30 (335)
1—x [2(1—£7/151£23/30-3 1) ’

s&) —s(1) < g7/30, (3.36)
1—x [2(1—£7/154£23/30-5 1)

Splitting R as Ry + Ry + R3 as in the proof of Lemma 2.5, and using (2.28), (2.30) and (2.42), we deduce that

IRl 21715 ez3/m0-5 1) < &7/3 4 ¢61/30435/2 | exp(—c523/30‘5+7/30‘1) < g61/30, (3.37)

for some ¢ > 0, since 7/15 < 2/3 and 7/15 < 23/30 —§ <1 —7/30. As a result, combining (3.33), (3.34), (3.35), (3.36), and
(3.37), we obtain

H w(X) —w(l)

< 2/5-8 | g1/30-58/2 | (1/5-8 | 7/30 | o1/30 < ;1/30-58/2
1—x ~ ~ '

L2(-1,1)

which provides the required result for § < 1/45. Combining all together, we proved that C(¢) — 0 as & — 0 in bound (3.15).
According to the previous construction, this finishes the proof of Theorem 3.5.

3.4. Convergence rate of eigenvalues of Ag
To prove the convergence rate of the Main Theorem, we write the eigenvalue problem A.w = uw as the generalized

eigenvalue problem

LEw=ye2(L5) ' w, (3.38)

where y = 1/u. Let us first introduce some notations. For any integer n > 1, let w, be an eigenvector of Ag for the

eigenvalue u, = m and let u, = ﬁ According to the results of Section 3.2, wy is identically equal to 0 outside

of the interval (—1,1) and its restriction to (—1,1) is a polynomial which vanishes at the endpoints +1. In particular,
u, € L2(R). Moreover, u, solves the equation

1 -1
m(—af + PO) Up = Unln,

which means that j, is an eigenvalue of A¥, with associated eigenvector u,,. Conversely, if u € L? is an eigenvector of Aj for
an eigenvalue 1, then w = 2(1 — x?)u defines an eigenvector of Aq for the same eigenvalue p. Therefore Ag and Ag have
the same eigenvalues {jit;}>1. Similarly, for € > 0, A; and A} have the same eigenvalues {in ¢}n>1, and wy . € [? is an
eigenvector of A, for an eigenvalue . if and only if u, . = L% wy ¢ is an eigenvector of A} for the same eigenvalue iy ¢.
For convenience, w, and u, are normalized by

lunllzm) = 1.

Then, according to Remark 3.7, for any n > 1 and any ¢ > 0, we can define an eigenvector u, . of A} for the eigenvalue
Mn.ge, in such a way that

Une — uy in L2(R) as & — 0.
We also define

Wpe = un_,é(LS_)*]un,g =215 .
Then, we have the following lemma, which gives directly the rate of convergence of ¥, ¢ =1/1ne to 5 =1/ in the Main
Theorem.

Lemma 3.9. Let m,n > 1 be two integers and fix § > 0 small. The following alternative is true:

o Ifm#n, then |f_11 Wil e dx| < g1/378,

e Ifm=n, then |f_11 Wnlm e dx| > 1 and |8, — pn| S 1379,

Proof. We prefer to work with ¥, ¢ =1/1ne and yn, = 1/p,. The eigenvector of Ag, Wi ¢ = ¥,5As W ¢ solves the problem
—Wp () =Yhlme, —1<x<1,
while the eigenvector w, = Y Agw, solves the second-order differential equation

21 =)W X) = yawn(®), —1<x<1.
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Multiplying the first equation by w, and integrating by parts on [—1 4 &2/3, 1 — £2/3], we obtain

—1_g2/3
(Ym =) / Wllm,e dX = [W) W e — W"W;n,sm:qiszﬂ —Vn / WnOm.e dX, (3.39)

|x]<1—g2/3 |x|]<1—g2/3
where

Wm,e (X)

Om,e (X) = Um,e(X) — 20— 2"

By Lemma 2.2, since ||L® W ¢ll;2 = V5 lumell ;2 = Ym as € — 0, we obtain

”WI/TI,SHL"C(1752/3<|><\<1) < Whne “Loo(R) SRR (3.40)
g2/3. (3.41)

[Wm.e 10123 <1y < [Wime (D] + [Wme (D] + €272

[whel 1 (1—e2/3 <|x|<1) 5

The last term in the right-hand side of (3.39) is estimated by

‘ / anm,s dx 5 ”9m~3||l_2(\x\<1—82/3)' (3.42)

[X|<1—g2/3

The function 6y ¢ (x) solves the second-order differential equation for |x| < 1 — &2/3:

—£20], () +2(1 = )0 e (x) = €285 . (), Where g o (0) = 2"2’]’”—_"”(;% (3.43)
We infer that

e (=1 =) ST [ (£(1— 7)) S 672 (344
We take a scalar product of (3.43) with 6y, and obtain the bound

&2 Her/n,a ||i2(|x\<1782/3) + 82/3||9m’8||i2(|)<|<1782/3)

< &2Ome(1—82)| |65, (1= &27) |+ %|Ome (=1 +67) |6, o (-1 + %)
o+ 6210m.¢ 12 (<123 | 8 | 20 <1 —e2)- (3.45)

By Lemma 2.5 for o =2/3, we have for any small § >0

Jume (£(1 = £2%)| =6 72|((15) " wme) (£(1 = 7%))| S, (3.46)

e (=1 £72))] = 72| (15) ™ wime) (21— 2%) [ £ 67, (3.47)
The bounds (3.44), (3.46), and (3.47), induce, if § <1,

[Om.e (£(1 = 7)) < Jume (E(1 = &) + [gm.e (£(1 - £27)) | S &7, (3.48)

(O, (£(1 = 2°))[ < Jupn e (E(1 = &) + g o (£(1 = £27)) [ S 727 (3.49)
On the other hand, it follows from the definition of gy ¢ in (3.43) that for x € (—1 + £2/3,1 — g2/3),

Wi () =2(1 = %) g o (%) — 8xgp o (X) — 4€m,e ().
We multiply this identity by g, . and integrate over (—1+¢&%3,1—£%/3). We get

1-g2/3 1-2/3 1-2/3
_ 23

2 / (1-x%)|gn.. |2 dx+8 / 8. |2 dx = / Win,e & o 0X + 4[xg} . ()2 + gm,g(x)gag(x)]liligm,

—1+4£2/3 —1+4£2/3 —1+4£2/3
which implies thanks to Lemma 2.1, (3.44) and the Cauchy-Schwarz inequality

2 2 _
e\ gmel 2 1o a_em + l8mel iz asern i en S 18mel 1o a_em +e47. (3.50)

It follows that there exists C > 0 such that

52/3(” g;T,l,é‘ ” [2(—1+4e2/3,1-82/3) — C€_2/3)2 + ”g;n,s H i2(71+82/3,1—52/3) A<J g 43 (3.51)
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As a result,

—2/3

”g;n,e HL2(|X|<1782/3) Se I 8m.e I [2(Jx]<1—£2/3) Se . (3.52)

Then, thanks to (3.45), (3.48), (3.49) and (3.52), we obtain

2 2 2/3 2 4/3-26
& Hel;’l,é‘ || L2(|X|<1—82/3) + & / Hem,s ||L2(\X\<17£2/3) S 8”9;11,5 ||L2(\X\<l—£2/3) + & / .
Therefore, there exists ¢-independent constant C > 0 such that
2 2 2/3 3\2 4/3-28
3 ||01;1,8||L2(|XI<1—82/3) + 83 (10m,e ll 12y <1-e23) — Ce'/?)" S e¥3720.
Thus,
16m.ell 12 (x <1 _e23) S €272 (3.53)
We deduce from (3.39), (3.40), (3.41), (3.42) and (3.53) that
1-£23
(Ym— ) Wil e dx| < 17379, (3.54)
—1+¢2/3

_e2f3 . ) i
If m#n, then |y — | > 1 and therefore |fj1+852/3 Wnlim e dx| < 17378, Since ume — um in L*(R), using the Cauchy-
Schwarz inequality, we obtain

1
‘ / Wylm e dX
-1

which is the estimate of the first alternative. If m =n, since up ¢ — u, in L%(R), we also have 114623 1-g23)Un.e — Up IN
L%(R), and thus

1—g2/3

< Wl ¢ dx Sell3 +81/3”um.s”L2(R) SelPe,

+ ‘ / Whplm e dX

—1+2/3 1—e23<|x|<1

1-g2/3 1 1
& W2
/ Whpllp e dx —> /wnun dx:/ 7"2 dx > 0.
£—0 2(1 —x4)
14623 -1 -1

1/3-5

Combined with (3.54), it gives |Vne — Ynl S € , which is the second alternative. O

4. Eigenvalues of the spectral problem (1.5)

As we have seen before, if (u, w) € L(R) x LZ(R) solves system (1.5), then w is an eigenvector of A, associated to the
eigenvalue 1/y, where y = —%/¢2. In other words, w solves the two fourth-order differential equations

2
&2 (—Bf + ;—2(x2 — 1)) wx) =yw() for |x|>1, 41)

21 -)w' ) +*w” (x) = yw(x) for || <1,
which also means that w solves the generalized eigenvalue problem (3.38). Since w € L%(R), we have (Li)‘lw € HIZOC(IR{) C
CY(R) for any fixed & > 0. From the generalized eigenvalue problem (3.38), we infer that w is twice continuously differen-
tiable on R and w”’(x) has jump discontinuities at x = +1:

x=—(1-0) _ 2

///}X:H-O
x=—(140) — 82

0= j—zw(l), w”| w(=1). (4.2)
Solutions of the first equation of system (4.1) on the outer intervals {|x| > 1} can be constructed analytically. Solutions of
the second equation of system (4.1) on the inner interval (—1, 1) can be approximated numerically. Following to a classical
shooting method, we shall find numerically an estimate on the convergence rate of y, ¢ to ¥, as € — 0, for a fixed n > 1.
The convergence rate we observe numerically is faster that the one in the Main Theorem.

For convenience, we will only consider even eigenfunctions w(x) near y,;—1 =4m(2m—1) for an integer m > 1. A similar

analysis can be developed for odd eigenfunctions near y,; =4m(2m + 1) for an integer m > 1.
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4.1. Asymptotic solutions on the outer interval

For a fixed value of y > 0, w solves the first equation of system (4.1) on [1, 4+00) if and only if

2_1 2_]_
0:<_63+x (;§8¢7))<—$—kx (828¢?)>W

2 2
x—(1-¢ x—(+e¢
- <_33+(—2\/7))<_33+(7_§‘/7)>W. (4.3)
£ £
Thus, linear combinations of solutions of the second-order differential equations
2
x—(1+ev
0= (—a,% - %)w (4.4)
£

for v =+,/y provide solutions of the fourth-order differential equation (4.3). We shall see that they are the only solutions
of (4.3). First, the following lemma gives a set of two linearly independent solutions of (4.4).

Lemma 4.1. Fix v € R. There exists a constant C > 0 such that for ¢ > 0 sufficiently small, the equation

" (Xz_l) v
-+ 2 w(x)zgw(x), x=1 (4.5)

has two linearly independent solutions ,*® and yry°® such that for x >0,

1/3
Vit (V1+ev(1+x) = a(x)Ai(w> (14+ Q47 (EW)),

22/3

e2/3

1/3
'ﬁ;%@(l + X)) = a(x)B1(w> (] + Q;,s(x))’

where £(x) == (3 [ VIR T D dD)?3, a(x) := (£'(x))"/2 and Q;°, Q° satisfy the bound

[ QA ey + 1Q5° [ ey < CE*2.

Moreover,
(W) (1)  213A(e1/3272R) a3y 6Pr2/3) 13
1//X'S(1) T g2/3Ai(e1/32-23y) (1 + O(S )) - _m(] + O(‘9 )) (4.6)

where O('/3) and O(e2/3) in (4.6) are uniform in v € K, for any compact set K C R.
Proof. See Appendix A3. O

Remark 4.2. Note that solutions of (4.4) can be expressed in terms of the Whittaker’s functions of the parabolic cylinder
equation. The connection of these functions with Airy functions, similarly as in Lemma 4.1, was studied by Olver [16] using
asymptotic formal methods.

Corollary 4.3. Let n > 1 and w, € L?>(R) be an eigenvector of the generalized eigenvalue problem (3.38) for the eigenvalue y; .. Then,
there exist constants c4. and c_ such that

we) =Y 0 + ey, YV ), x> 1 (4.7)
Moreover,

e _F(1/3)82/3Wg(1) ; o 1/3 //1 . —F(1/3)82/3wg’(1—0) 1 O 1/3 48

we) = ——irras— (1+0(E'7).  wil)=——Gmroa——(1+0('")). (438)

Proof. First, we remark that if y > 0, then w;\ﬁ’a, Yy e w;ﬁ’s and wB_W’S are four linearly independent solutions of
the fourth-order equation (4.3). Indeed, if Cf, CBi are constants such that

"+ G G Gy =0, (49)

x-1
2

applying the operator —33 +

to (4.9), we obtain

"+ T = G = G T =0
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Combined with (4.9), it gives
" iy =0 and Gy Yty Y =0

From Lemma 4.1 and from the asymptotic behaviour (2.38) of Ai and Bi, we deduce that for any v € R, ¥,** and ¥*°
are linearly independent. As a result, CX = Cf; =C, =Cy =0. It follows that the only solutions of (4.3) which vanish at

infinity, are the linear combinations of wf’g and w;ﬁ’g. It results in the decomposition (4.7). Since yYne — ¥n as € — 0,
the asymptotic expansions (4.8) come from (4.6) and the identities

we(D) = oy {7 F ey, ),

WD) =i (v ) (D e (V) (),

Wi =7 o) [ —esyl ) + ey T ),

Wl (140 =67 0ne) 2= () W+ e (v, ) O]+ 26 ey W ey V()]
=w/(1-0)+ 2 2[ceyy " D+ ey, V()] o

Remark 4.4. Asymptotic limit (4.6) implies that for 0 < &€ < 1, the eigenvalue 1% of the self-adjoint problem L& w, = 25w,
satisfies a sharp bound
Cre?? <A —anl < Cre?? (4.10)

for a fixed integer n > 1, where A, = £ and 0 < C; < Cf < oo are some constants.
Indeed, differential equation L& w = Aw has analytic solutions for even eigenfunctions

cos(~Ax)  for |x| <1,
g C (X)) for |x| > 1,
where ¢ is a constant. Notice that for A > 0 fixed, v = &) stays in a compact subset of R when & goes to 0. Continuity of

w(x) and w’(x) across 1 leads to an algebraic system, where ¢ can be eliminated and A is found from the transcendental
equation

cosr) it s TA/3)
Vasin(v/x) WEREy (1) e=0 615T(2/3)

where we have used (4.6). We deduce that for some integer m > 1, VA = [A5m_1 = ~/22m—1 — 8m(€), where /Aom_1 =

M for m > 1 are the roots of cos+/2, and (Sm(s) ~ 82/3%. It proves (4.10) for n odd. For odd eigenfunctions

(n even), the analysis is similar.
4.2. Numerical solutions on the inner interval

Unfortunately, Remark 4.4 is not useful in the context of the non-self-adjoint system (4.1) because we do not know
explicit analytic solutions of the second equation of system (4.1). Therefore, we use a numerical method to approximate
these solutions on the inner interval [—1, 1].

Considering even eigenfunctions of (3.38) we let wq(x) and wy(x) be two particular solutions of the second equation
in (4.1) on [0, 1] subject to the boundary conditions

{W](l)zl, W’{(l):O, W/l(o):()a WW(O)—
wa(1)=0, wj()=1, wy(0)=0, wy(©0) =

Then, a general even solution of the second equation of system (4.1) writes
wX) =aywi(x) +aywyr(x), O0<x<1, (4.11)

for some constants ay, az. The continuity of w(x) and w”(x) across x =1 leads to the scattering map from (a;,az) to
(c4+,c-) in the solutions (4.7) and (4.11), which is solved uniquely by

_a :Fsy*]/zaz
RYENE

where for conciseness, ;. is simply denoted y. The continuity of w’(x) and the jump condition (4.2) on w"(x) across
x=1 lead to a linear system on (aj, ay) in the form
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Fig. 4. The numerical approximation of even eigenfunctions (dots) for € = 10~* near y; =4 (left) and y3 = 24 (right) and the even polynomial solutions for
¢ =0 (dashed line).

[Up —e?Pwi(D)]ay + [ey V2Um — e2PWhy(D]az =0,

[y]/ZUm — 85/3w/1”(1)]a1 + [eUp — 85/3w/2”(1)]a2 =0,
where
R AU (0 (A Nl R LD _ @Bl 2P,
p= — m= - —

297 () 29,V (1) 297" (1) 29,V (1)

By the ODE theory, unique classical solutions wq(x) and wy(x) exist for any & > 0 and the dependence of wq3(x) on ¢ is
analytic for ¢ > 0. If there exists a simple root of the determinant of the linear system for a particular value ¢y > 0, the
root persists for other values of &€ > 0 near ¢ = gg. This method is used for tracing eigenvalues y (¢) of the spectral problem
(3.38) as € > 0.

To do it numerically, we approximate solutions wq(x) and wy(x) with the second-order central-difference method on
a uniform grid with the grid size h = 0.005. The numerical method is explained in Appendix A.5. On the other hand,
the values of U, and Uy, can be evaluated from the asymptotic formula (4.6) for € € [10~6,10~#] with 20 data points.
Using these approximations, the determinant of the linear system for (a;,ay) is plotted versus y near y = y; =4 and
Y = y3 =24 and its zero is detected numerically. Then, the zero is plotted versus ¢ and its best power fit is used to detect
the convergence rate of | — y| ~ CeP. The numerical zeros and the best power fits are shown in Fig. 3 for y; =4 (left) and
y3 = 24 (right), while the numerical approximations of the eigenfunctions for £ = 10~ are shown in Fig. 4 (dots) together
with the limiting profiles obtained from the polynomial Cz_l/2 (x) and CZUZ(X) at ¢ = 0 (dashed lines). The numerical values
of the power of the best power fit are found to be 1.9959 for y; =4 and 1.9662 for y3 = 24, which suggests that the sharp
asymptotic bound is

2
[Vne — ¥al S &7,
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Fig. 5. The ratio a;/ap for the two equations in the linear system versus y for £ =107 near y = j; =4 (left) and for the solution of the linear system
versus ¢ (right). The best power fit is shown by dashed line.

for n > 1. Finally, Fig. 5 shows the ratio a;/a, obtained from the linear system for € =107% in y near y; =4 (left) and the
values of the ratio at the non-zero solution of the linear system in ¢ (right). The power fit was found to be 1.99998 and it
illustrates that limg_,0ay/a; =0, such that limg_,o w(x) = w2 (x) (up to renormalization).

Appendix A
A.1. Proof of Lemma 2.1
Let us denote by A1(L%) the smallest eigenvalue of L®. We first show that A1(L%) 2 1. Let x € C°(R) be such that

0< x <1,supp(x) C (—3,3),and x =1 on (-2, 2). Let § > 0 to be fixed later (independently of &). The Max-Min principle
ensures that

LEv,v
rM(LE) = inf % = inf (llv 1% + / pelv?dx | = min{A™, 4@}, (A1)
veD®) VI, veQU), vl 2=1
|x|>1
where
AWM = inf lle+ ps|v|2dx ,
veQ o), Ivl2=1
Joa IV dx=s x>1
A = inf <| 1% + pglvlzdx).
veQ L), vl 2=1
S IVI2dX< ES!
If |vij2=1 andf |>2|v| dx > 8, then
(X —1)v[*dx >3 f [v|®dx > 3s.
[X]>2 |x|>2
Therefore for € <1,
38
AD > =238 (A.2)

On the other side, let us now take v € Q (L%) such that ||v|;2 =1 and f\x\>2 |v|2dx < 8. Then

(=1)xvi*dx < / (x* = 1)|v|* dx, (A3)

[x]>1 |x|>1

and since x'(x) is supported in {2 < |x| < 3}, we also have in this case
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2 2
/!(Xv)/| dx:/[)(zlv/\2 +2xx vV + x“ v dx
R

IV 122 gy + 20V 2@y 1 X i@ IV 22y + 10 10y VI )
<20V 2y + 281X Iy -

Next, since x =1 on {|x| <2},

2
/lxvlzdx>/|v|2dx>l—8.
R -2

Thanks to (A.3), (A.4) and (A.5), it turns out that

Jr |(Xv)/|2dx+flx\>1 pelxvI?dx 2”"/”%2(]1@ + 28”)(/”%*(11%) + i1 pelv|>dx
S Ixv|2dx 1-6 '

As a result, using (A.6), since (xVv)—3,3) € H}(—3,3) for ve H'(R),

<

3
2 A(z) . _28“)(/”%00(]&) n inf f,g |W/|2dX+f|X|>1 P5|W|2 dx

=
1-96 1-6 weH}(=3,3) fj3 |w|2 dx
280 x 1o gy , Iw'l17,
z - =
1-3 weH(-3.3) |wll2,

(A4)

(A7)

Thanks to the Poincaré inequality, we can now choose § € (0, 1) sufficiently small such that Rs > 0. Then, according to (A.1),

(A.2) and (A.7),

r(L8) > min(aa, m),

2

(A.8)

which provides the estimate A1(L%) > 1 for 0 < & < 1. The other estimate A1(L%) <1 is a direct consequence of (A.1) and
of the Poincaré inequality. Indeed, the right-hand side in (A.1) is bounded from above by the infimum of the same quantity,

taken over v € L*(R) such that vi_1,1) € H)(—1,1) and v|(y-1y =0. O
A.2. Proof of Lemma 2.3
To prove Lemma 2.3, we use the following lemma.

Lemma A.1. For € > 0,

defines a self-adjoint operator on L?(R). The spectrum of L? is made of a sequence of strictly positive eigenvalues increasing to infinity,

and the smallest eigenvalue satisfies
r(LF) ~ 3.

Proof. The first assertion is straightforward. Thanks to the Max-Min principle, A1(L?) is given by

veQ(Lf)
Ivli2=1

. 1
Al(LE): inf <||v’||%2+8—2/|x|v2dx),
R

where

QL) ={veH'®): |x|'?vel*[R)}

is the form domain of L. If v € L>(R) and ||v|;2 =1, v can be rewritten as v(x) = hw(h2x), with h > 0 and w € Q (L9),

with ||w|;2=1 and |w'||;2 = 1. Moreover, h and w are uniquely defined this way, and we have

2 4
V1% =h

/|x|v2dx=h’2f|x|wzdx.

R R

and
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Thus,
1
ey _ 4 —2p-25) _ 1/3 ) p2/3 .—4/3
M(L )_}Bg(h +&7%h ,3)_(—22/3+2 ),3 e,
where
B= inf /lxlwzdx.
weQ (L%)

Iwll2=1. Wl 2=1 R

The lemma follows if we prove that 8 > 0. Let us assume by contradiction that 8 = 0. Let (ws)s~0 be a minimizing sequence,
that is ||wsll;2 = [[wj| 2 =1 and fR |x|w§ dx— 0 as § — 0. Let x € C°(R) be such that 0 < x <1, supp(x) C [-1,1], and
x =1on[-1/2,1/2]. For a > 0, we also define y,(x) = x (x/a), as well as ws 4 := xqWs. Thanks to the Poincaré inequality,

s Iv'll 2 s vl 2
o= 1nfv€H(1)(_1,]) W > 0, and then 1nfveH(1)(_a’a) W =2 > 0. Thus,
2
2 o 2
”W:S’a”LZ(]R) 2 a_2 I|W5,G|IL2(R)
o? 5
> a_2||W8||,_2 —g9)
2
o 2 2
= a_2(|IW5 ”LZ(R) - ”W(S ||L2(\X|>%))
2
o 2
> a—2<1 -3 / |x|w§ dx). (A.9)
R
On the other side, since x’(x) is supported in {% < |x] < 1}, we have
;o2 N2 42y y! ’ 2w )% d A10
”Ws,a”LZ = ((Xa) W5 +2XaXaWsWs + Xqg (Wa) ) X (A10)
R
“X/H%OO(]R) 2 2
2 ’ / ’
STz Wsllzg < T g IX i@ IWsli2¢5 < jxi<a) w5l 2 + W5 ”LZ(]R)'

According to the assumption, given a > 0, we can find §(a) sufficiently small such that
/ |x|w§(a) dx < a?.
R

Then,

2
/ widx < / wgdx<5/|x|w§dx<2a. (A11)
R

S <lxl<a x|>5

It follows from (A.9), (A.10) and (A.11) with § = §(a) that

2
2||X/”L°0(IR) 23/2||X/||L°C(]R)
p al/2

Letting a go to O yields to a contradiction, which completes the proof of the lemma. O

o?
—(1-2a) < + 1.
a2

Thanks to the Max-Min principle, we know that the lowest eigenvalue of L% is given by

V12, + g qelvI?dx

veQ(L%) vz,

ML) = (A12)

where
Q(L8)={veH'®): xve *(R)}

is the form domain of L%. The statement of Lemma 2.3 is equivalent to A1 (L%) ~ £~4/3, We first prove the upper bound on
11(L%). Let us define v on R as

x—1+¢g23 for1—e23 <x<1,
Ve®) =1 —(x—1—¢23) for1<x<1+¢&%/3,
0 elsewhere,
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and denote q(x) := &2q¢ (x) = 2(1 — x*)1{jxj<1) + ** — 1)1{jx>1). Then
262

=267, vellfagy =5

/112

Ive ”LZ(R)

and since q(x) <4|x—1| for |x—1] <1,
14623

4
/qglvslde<£—2 / 11 —x|vidx=
R 1—g2/3

282/3

As a result,

2 2/3 2 2/3 3
)»1(L ) < w — 4743,
+ 282/3

It remains to find a bound on (L% ) from below. Let us first introduce the two intervals

Dy:={x>0 <1—ﬁ\/§ D_:={x<0 <1—D
+‘—{X/ 7Q(X)\§}—[T, 5]; ,.—{X\ 5 Q(X)\E}—— +»

and denote D:=D, UD_.If ve Q(Y), |vl2=1 and [} [vI2dx <1 —&1/2, then
2 2 1 2 81/2 23
qivifdx> [ qivPdx> o [ vPdx> —— > 4e
R R\D R\D

for sufficiently small & > 0. As a result, thanks to (A.12) and the upper bound on A;(L}), we deduce that

r(L%) = inf v |? —l—/ v|>dx |. Al3
1(L%) velie) |:|| I qe vl (A13)
Ivl,=1 R

[plvi2dx=1-¢/2

From now on, we assume that v € Q(L), |[v[;2=1 and fD [viZdx>1—¢el/2 Let x € C(R) be such that 0 < x <1,
supp(x) C [—1/2,1/2] Cc R\D, and x (x) =1 for x € [—1/4, 1/4]. We also define p :=1 — . In particular, p =1 on D, thus

lovIZ, >/|v|2dx>1—s”2, fq|pv|2dx</q|v|2dx, (A14)
D R R

and since o’ is supported in R\D, for some C > 0, we have

2
/ [(ov) |7 dx <10 e ) 1V 12 g ) + 1V 12y + 2012 lee @y 10" e @y IV 2y 1V D2 )
R
<SCeV2 IV T + CEIV 2wy
< 2(||v/||§2(R) +cel’?). (A15)
Therefore, combining (A.14) and (A.15), we obtain, for ¢ sufficiently small,
2 1/2 2
1oVY I + Jp GeloviPdx 201Vl +Ce™) + fp aelvI®dx
loviz, 1-¢gl/2

< 2(||V’|Ifz +/qs|w2dx> +2ce'2, (A.16)
R

Taking the infimum in v in (A.16), we infer thanks to (A.13) that

V12, + v|2dx
P(LS) + 2061 > ot Iev) 112, fquam [2dx
veQ (L) loviiZ,
Vil 2=1
Jp lvI?dx>1-¢1/2

(A17)

Therefore, since q(x) > 2|x — 1| for x > 0 and q(x) > 2|x+ 1| for x <0, and decomposing pv = v1 4+ v, with v supported in
(=00, —1/4] and v, supported in [1/4, +00), we have
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V)12 + [ Gelvi?dx + IV 1% + [ elval® dx
23 (LE) +2Ce'? > inf il + J 4 2l ¥ e

v1.v2€QL5) IValI2, + 1v2 7
supp(vq)C(—o0,—1/4]
supp(v2)C[1/4,+00)

72 2 2 112 2 2
- i Ivills, + 5 Jg X+ 1Ivil2dx + vy ll5, + 5 fp Ix = 1][va]* dx
v1,v2€Q(LY) P v ||i2 + ||V2||i2
supp(vq)C(—o0,—1/4]
supp(v)C[1/4,+00)

2 2 2 2 2 2
Vi1 + 2 fo lx+ TIviPdx+ V512 + 2 [ lx— 1]1val? dx

> inf
V1.v2€Q(L5) Vil + Iv2liF
2 2
- IViIE + & fg XKV dx+ [VHI15 + 5 [g Ixlv2]? dx
= n
vi.v2€Q (1Y) vy ||fz + ||V2||iz
2 2 2 2
ot V312, + 5 Jg IXIIVi P dx + vy, + 5 fg [xIIval? dx
= mn
v1v2€QL5) Vil + lvallf,
vl 2 <llvall 2
ViIL + 2 [xllviiZdx (VA2 4+ S [ X[ V2 % dx
S . IVillZ, + & Jg IXIIval +|| 2T + 2 Jg Ixllval
v1,v2€Q (L) 2 2
vl 2 <llvall2=1
1 /2 &) > p=4/3,
> 13&6 [val 2 + Ix||v2|* dx M(L%) ze (A18)
vae

Ivallp=1

where we have used Lemma A.1 in the last estimation. O

A.3. Proofs of Lemmas 2.6 and 4.1

Proof of Lemma 2.6. The proof of Lemma 2.6 relies on WKB approximation techniques, explained for instance in [15]. If we
define w(x) := ¥ (1 — x), it is equivalent for ¥ to solve (2.37) or for w to solve

3
2w’ —2xQ2 —x)w=0, xe (0, 5). (A.19)
In the new variable & = £(x) := (3 [3 v/2E(Z — D) dt)*/3, it is equivalent for w to solve (A.19) or for v(§) := ‘2’((;‘)) to solve
2 d%v 2
3 d?—%'v=8 3(€)v, &€(0,%), (A.20)

where & :=£(3/2), a(x) := (§'(x)""/2, and 8(&) := —a"(x)a> (x). Next, we look for v in the form v(£) = Ai(55)(1 + Q(€)).
Using that Ai(¢/£%/3) solves the homogeneous equation
d2
=i

it is equivalent for v to solve (A.20) or for Q to solve

d £ £\
E[A( 2,3> Q <s>]—a<s>m( 2,3> (1+Q®), &€ &). (A21)

By integration, (A.21) is equivalent to the integral equation

)2
Q) = F(Q)(®) = / / NG e (1-+ ) d, (A22)
Al L)

where F maps C%([0, £&]) into itself. A change of variable provides

2/3

& , n/e 2
F(Q)(€)=82/3/< / An(u)‘zdum( ;7/3> )6<n>(1+Q<n>)dn

£ §/6‘2/3
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Thanks to the asymptotic behavior (2.38), f(x) := fo Ai(y) 2 dyAi(x)? ~ zf as x — +oo. In particular, f is bounded on R;.
We deduce that for any & € (0, &),

0
[(F(Q))®)] <82/3||f||Loo<R+)/lsm)ldn(l +11Q I 0,60))-
&

Since § is clearly continuous on (0, &] and

9.22/3
s(EX) — e X~ 0,

we deduce § € L1(0, &). Thus, if Q € C°([0, &]), then

IF Q@) 1o 0.69) < €221 ey 181111 0,69 (1 + 1QUllL(0.60))- (A23)

Moreover, if Q1, Q2 € C9([0, &), we get similarly

|F(Q1) = F(Q2)| 0.0 < 82N f e 18111 0,60) 1 Q1 — Q2N (0.50)- (A.24)

From (A.23) and (A.24) we infer that, if we take C := 2| f|li®,)l8ll110., for & sufficiently small (namely £%/3 < 1/2C),

F maps the ball of radius Ce2/3 in C°([0, &) into itself, and is a contraction on that ball. Then, F has a unique fixed
point Q such that [|Q || =(0,5) < C&?/. Such a fixed point of F gives a C? solution of (A.21) on (0, &). Defining Q¥ as
Q5% = Q(£(1 —x)) and applying the sequence of substitutions backwards, we found a solution 3 of the system (2.37)
with the required bounds.

For the existence of the solution /5, we proceed similarly. Namely, we look for a solution to (A.20) in the form v(§) =

Bi(sz%)(l + Q (&)). It is equivalent for v to solve (A.20) or for Q to solve

d £ £\’
£[3< 2/3) Q <s>}—s<s>m( 2/3) (14+Q®), £€(0,&). (A25)

Since g(x) := Bi(x)? fx‘“’o Bi(u)~2du ~ 217 as x — +oo thanks to the asymptotic behavior (2.38) again, g is bounded on R.
It enables us to prove the existence of a fixed point to the functional G : C°([0, &]) — C°([0, &) defined by

GQ)®) —f/B(fz”)z dts(n) (1 -+ Q) d,
223

similarly to what has been done for F.
The linear independence of v§ and v follows from the linear independence of functions Ai and Bi. O

Proof of Lemma 4.1. The proof is very similar to that of Lemma 2.6, so that we will only point out the differences. It is
equivalent for v to solve (4.5) on (/14 €v, +00) or for w(x) := (/14 €v(1 + X)) to solve

2w’ (x) — x(x +2)w(x) =0 (A.26)
on R*, where & :=¢/v/T+ev. We look for w in the form w(x) = a(x)v(£(x)), where £(x) = (3 [y VI + D dt)?/> and
a(x) = (¢ (x))~"1/2. Then, it is equivalent for w to solve (A.26) on R* or for v to solve

EV(€) —Ev(E) =22V () (A27)
on R*, where the function & — §(&) is defined by §(£(x)) = —a” (x)a(x)3. Since a € C*°([0, +0o0)) and 6(5)5 ~ 767271024,

we deduce that § € L'(R*). Then, the existence of Q € CP(RT) with ||Q [ ~g+) < %3, such that v(§) =

AlE/82/3)(1 + Q(&)) solves (A.27), is established like in the proof of Lemma 2.6, applying the fixed point theorem to
the functional F defined in (A.22), with & = +oo. Therefore, we obtain ,"®. The expression for *® is obtained similarly
as in Lemma 2.6. Next, the expression of v,"*(x) at x= /1 + €v yields

Yt (V1 +ev) =a(0)Ai(0)(1+ Q4 °(0)) =a(0)Ai(0)(1 + O(e*?)), (A.28)

and similarly

(Wrf) W1+ ev) =d (0)Ai0) (1 + O(e¥3)) + a0 (0)AT' (02 (1 + O(e¥3)) + a(0)Ai0)E 0)(Q 1 *) (0)
=a(0)&'(0)AI' (0)e 2?2 (1 4+ O(e??)), (A.29)
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where we have used that

+o0

Ai(0) 2 / Ai(n/52/3)28(n)(1+QX’8(n))dn <8l @+ (1+0(e*3)) S 1.
0

[(Qr*) @)=

At this point, the function WX"E has been defined on the interval [+/1+ €V, +00). In the case v > 0, we extend into a

solution of (4.5) on the interval [1, +00), thanks to the Cauchy-Lipshitz Theorem. We denote I,, = [+/1+¢v,1] if v <O,
I, =[1,4/1+¢€v] if v > 0. Then, for any sign of v, we have

WXVS(U - '/’Xﬁ( v1+ ‘9”)| < 8“ (w)\;,g)/””o“v)
Sel(wr) Wirem|+e [ (p*) |ieq,
SelPtelyy’ HL"C(IU) (.30
and, thanks to (A.30)
lva® ||L°°(I,,) SRt W1+ev)|+ef (M’S)/Hmm S +8H‘”X’8HLOC(IU)’
thus
U'I’X'gﬂLoo<lv> St (A.31)
From (A.30), (A.31) and (A.28) it follows that
Y (1) = a(0)Ai(0) (1 + O('3)). (A.32)
Similarly,
W) O = (") ST el Wr®) Timq,) S1VR ima, <1
and therefore thanks to (A.29), we get
(W4®) 1) =a@¢ AT 021 +O(e27). (A33)

The limit (4.6) follows from (A.32) and (A.33), since &/(0) = 21/3, and because
1
32/3r2/3)° 3183r@1/3)°

Notice that all the estimates we made in this proof are uniform in v € K, for any fixed compact subset K CR. O

Ai(0) = Ai'(0) =

A.4. Proof of Lemma 3.8

If fe X and ¢ € D(Lx), we have

<Nl llLxellx <N flxllelpwy.

which provides the continuity of Lx. If f € X" and Ly f =0, then for every ¢ € D(Lx), {(f | Lx@)x’.x =0. We can apply this
to g = L}lx, for any x € X and we get that (f,x)x x =0 for every x € X. Therefore f =0 and Ly is injective. Let us next

prove the surjectivity of Ly:.. Let T € D(Lx)'. f :x— (T, L;lx)D(LX)/,D(LX) clearly defines a continuous linear form on X, and
for every ¢ € D(Ly),

[(Lx £, @) D(tyy,DiLy)

-1
(Lx' f.@)pxy.piy = (F Lx@)x.x =(T. Ly Lx<ﬂ>D(LX)/,D(LX) =(T, ©)pxy,DiLx)s

which means that T = Ly f. Moreover, the application L;<,1 :D(Lx) — X’ we have just defined is continuous. Indeed, if

TeD(Lx) and x € X,

‘<L)_(’1T’X>X’,X| = (T, L)_(1X>D(LX)’.D(LX)’

Ly'xl
ST oy (Ixlx + L7 5 p))

ST lpeyy Xl

<|Tlpyy

where we have used the continuous embeddings D(L) C X C H, as well as the continuity of L=! € £(H). Finally, we show
that Ly is an extension of L. Here, we classically identify elements of H to elements of X’ (resp. D(Lx)’) as follows:
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if feH, xeX (resp. T e H, ¢ € D(Ly)), (f,X)x,x = (fIX) (resp. (T, @)pyy,p(Lx) = (T|®)), where (-|-) denotes the scalar
product in H. Thus, if fe D(L) c X C X/,

(Lx f,@)payy.pix = (F Lo)x x = (f 1 Lo) = (Lf | §) = (Lf, @) pwyy.D(Ly):
which means that Ly f =Lf. O

A.5. Numerical methods for inner solutions

We rewrite the fourth-order equation (4.1) on [0, 1] in the form

w X =v), V'@ -20-P)v@=ywk, 0<x<l.
Using the finite-difference approximation with the second-order central differences [12], the system of differential equations
is converted into the system of algebraic equations

Ajw=v, Av=yw,
where v, w are n-vectors of v(x),w(x) represented on a discrete grid {xk}z;é c[0,1] withxg=0and xg <Xx1 <--- <Xp-1 <
xp = 1. Using an equally spaced grid with step size h = 1/n and incorporating boundary conditions w’(0) =0, v/(0) =0, we
obtain n x n matrices A; and A; in the explicit form, where

-2 2 0 ...0 0
1 -2 1 ...0 0
110 1 =2 0 0
M =ha .
0 0 O 1 -2

and A; = €2A; — 2diag(1 — x). For the first solution w1 (x), with w, =1 and v, =0, we obtain solutions of the finite-
difference equations in the form

1 1\ —1 _
w:—h—z(A1—yA21) e, v:yAzlw,

where e, is the nth unit vector in R". For the second solution w»(x), with w, =0 and v, = 1, the finite-difference equations
are solved in the form

2 2
€ —1\~1 41 —1 €
h_z(A1_VA2 ) Aj'en, v=yA; wW- s
The values of w’(1) and w”’(1) are obtained from the three-point finite-difference approximations

wW=— Az’len.

3wp —4wp_1 + Wp_2 P 3vp —4vp_1+ Va2
, wh(1) =~
2h 2h
which preserves the second-order accuracy of the numerical method [12].

w (1) ~

’
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