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abstract
The discovery of the Lorenz system in 1963 showed that solutions to systems
of ordinary differential equations in three dimensions may have chaotic limit
sets. This project explores the properties of the Lorenz system using analyti-
cal and numerical tools. We then discuss the application of chaos to private
communications via synchronization of chaotic systems, and prepare a nu-
merical simulation of a communications scheme in MATLAB. In particular,
we investigate error in the imperfect recovery of the signal at the receiver
system.
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1 introduction to chaos and the lorenz system
Systems of ordinary differential equations (ODEs) are equations involving
functions and their derivatives, and are used to describe how systems evolve
over time. The Lorenz system is a system of first-order ODEs in 3D-space,
given by: 

ẋ = σ(y− x)

ẏ = ρx− y− xz

ż = xy−βz,

(1)

where σ,β, ρ > 0 are parameters. This system was discovered by Edward
Lorenz in 1963 to describe convection in the atmosphere [4]. Systems with
non-periodic behavior were of interest at the time to describe turbulent flow.
However, the Lorenz system had unusual mathematical properties which
we now describe as chaos, but were not well understood at the time. Since
then, the Lorenz system has been a driving example in the study of chaos
and its properties are now well-characterized.

We say a system is chaotic if it exhibits aperiodic behavior and sensitivity
to initial conditions, meaning that there are trajectories of the system that:

1. do not settle to well-behaved limit sets (e.g. fixed points, periodic or-
bits, homoclinic orbits, and heteroclinic orbits), nor escape to infinity,

2. diverge exponentially fast from each other.

This definition aligns well with popular, non-mathematical notions of
chaos. Lorenz himself presented the analogy of the ’butterfly effect’: the
idea that weather systems are so sensitive that turbulence caused by the
flap of a butterfly’s wings might cause a sequence of events resulting in a
hurricane on the other side of the world.

For certain choices of parameters σ,β, ρ > 0, the Lorenz system exhibits
chaotic behavior. In particular, Lorenz’s original 1963 paper studied the
system with σ = 10, β = 8

3 , and ρ = 28. Solutions of the system with these
parameters trace out a butterfly wing-shaped phase portrait in 3D-space,
seen in Figure 1 on the following page. A typical trajectory first enters one
of two spirals, spiraling outward, and will unpredictably ’jump’ to the other
spiral. The trajectory will aperiodically oscillate back and forth between the
two spirals for infinite time. If the trajectory starts at any arbitrarily close
different initial condition, we observe similar spiraling behavior, but will
jump at different times between the two spirals. This therefore satisfies both
parts of the definition above, since:

1. solutions are repelled between the two unstable spirals for infinite
time, and never settle onto the mentioned limit sets,

2. arbitrarily small perturbations in initial conditions result in the expo-
nential divergence of solutions.

The remainder of this report comes in two parts. In Section 2, we discuss
properties of the Lorenz system for the usual choice for parameters, and
briefly explore behavior for different choices of parameters. Then, in Section
3, we discuss the surprising result of chaotic synchronization from Pecora
and Caroll [5], and its application to private communications by Cuomo and
Oppenheim [3].
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Figure 1: The famous butterfly-shaped phase portrait for the Lorenz system.

2 properties of the lorenz system
In this section, we use analytical and numerical tools to formally character-
ize properties of the Lorenz system.

2.1 An Ellipsoidal Trapping Region

Using a Lyapunov function, we can show that all solutions of the system
eventually enter and stay inside a bounded ellipsoidal region centered at
the point (x,y, z) = (0, 0, 2ρ). This region is given by

T = {(x,y, z) | ρx2 + σy2 + σ(z− 2ρ)2 6 C}

for some C > 0.

Proof. Let E = ρx2 + σy2 + σ(z− 2ρ)2. Then taking the derivative with re-
spect to t gives

dE

dt
= 2ρxẋ+ 2σyẏ+ 2σzż− 4σρż

By substituting the Lorenz equations (1) for ẋ, ẏ, ż:

dE

dt
= 2ρσx(y− x) + 2σy(ρx− y− xz) + 2σz(xy−βz) − 4σρ(xy−βz)

dE

dt
= −2σ(ρx2 + y2 +βz2 − 2ρβz)

Since σ > 0, we have that dEdt < 0 when ρx2 + y2 +βz2 − 2ρβz > 0

ρx2 + y2 +βz2 − 2ρβz > 0⇔ ρx2 + y2 +β(z− ρ)2 > βρ2
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Therefore, when (x,y, z) is outside the ellipsoid F = {(x,y, z) | ρx2 + y2 +

β(z− ρ)2 > βρ2}, we have dEdt 6 0. If we choose a value of C large enough
such that the ellipsoid F is enclosed inside T , then T is a trapping region for
the system. This is because any initial conditions outside T are also outside
F. These trajectories are therefore attracted to smaller level surfaces of E,
since dE

dt < 0, until they are inside F, where dE
dt is sign-indefinite. These

trajectories cannot escape outside F, and therefore do not escape T .

The smallest ellipsoid T for which this occurs (i.e. the minimum el-
lipsoidal trapping region) is achieved by obtaining the minimum value
of C such that T encloses F. Here, we show that the minimum value of
C = ρ2max{4σ, σ(β+ 1), σ+β}.

Proof. T is centered at the point (x,y, z) = (0, 0, 2ρ), and F is centered at
(x,y, z) = (0, 0, ρ).

First, let us analyze the z semi-axes.
For ellipsoid T:

x, y = 0⇒ z = 2ρ±
√
C/σ

For ellipsoid F:

x,y = 0⇒ z = ρ± ρ
In order for the z semi-axis of F to be contained in that of T , we require

2ρ−
√
C/σ 6 ρ− ρ = 0

2ρ 6
√
C σ

C > 4σρ2 (2)

We then contain the y semi-axis in ellipsoid of F in the ellipsoid T . Since F is
centered at (0, 0, ρ), we find the the points at which its y semi-axis intersects
T .

For ellipsoid F, the extrema of the y semi-axis are given by:

x = 0, z = ρ⇒ y = ±
√
βρ

Substituting this value of y into the ellipsoid T :

x = 0, z = ρ, y = ±
√
βρ⇒ σβρ2 + σρ2 6 C

C > σρ2(β+ 1) (3)

Finally, we look at the x semi-axis of F.
The extrema are given by:

y = 0, z = ρ⇒ x = ±
√
βρ

If we substitute these values of x in T :

βρ2 + σρ2 6 C

C > ρ2(σ+β) (4)

Therefore, in order to satisfy all three conditions (2) (3) (4), we choose C =

ρ2max{4σ, σ(β+ 1), σ+ β}, and this is the minimum value of C for which
F is contained in T .
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2.2 Exponential Divergence of Trajectories

The Lyapunov exponent of a system, denoted λ, is a measure of how quickly
two nearby trajectories diverge. If p(t) and q(t) are two trajectories initially
separated by a distance ||δ0||, and the distance at time t, |p(t) −q(t)| is given
by ||δ(t)||, then the Lyapunov exponent is defined as λ in

||δ(t)|| ∼ ||δ0||e
λt (5)

For a system that exhibits exponential divergence of nearby trajectories,
as in our previous definition of chaos, we expect λ > 0. According to past
numerical experiments, λ for the Lorenz system has been found to be ap-
proximately 0.9 [7]. However, the exact value is dependent on the specific
initial conditions chosen. The Lyapunov exponent is therefore usually re-
ported as an average value of many samples of different initial conditions.
Furthermore, in the Lorenz system, trajectories cannot diverge exponentially
for infinite time. Since all trajectories remain in a bounded region, ||δ(t)||
must also be bounded. This result is seen in Figure 2 on the next page,
where ln ||δ(t)|| plateaus after a certain time. Therefore, for this system, we
are only interested in the initial divergent behavior before saturation.

In our numerical experiment in MATLAB, we first choose two random
initial conditions p(0) and q(0) separated by distance ||δ0||. We then in-
tegrate solutions to the Lorenz equations (1) from these initial conditions
with the usual choice of parameters σ = 10,β = 8

3 , ρ = 28. Since we are only
interested in the initial behavior, we stop the integration at t = 20 which is
usually before the point of saturation. To determine λ, we fit a line to the
graph of ln ||δ(t)|| and t. We take the slope of this line to be λ. Over 500 inte-
grations we find the average Lyapunov exponent for the system λ ≈ 0.8993.

Our estimate of the Lyapunov exponent therefore appears to be consistent
with existing estimates. There are inevitable differences in estimates due to
several reasons. For instance, as previously mentioned, there is variation
in the Lyapunov exponent depending on initial conditions, and so a differ-
ent estimate may be due to a different random sample of initial conditions.
There may also be some small differences due to the numerical integration
time steps at which ||δ(t)|| is calculated. In Figure 2 on the following page,
we also observe that there are small fluctuations in ln ||δ(t)||. Therefore, the
arbitrary point at which we truncate the integration will change the fitted
line and our consequent value of λ.

2.3 Unstable Periodic Orbits

In his original paper [4], Edward Lorenz presented evidence against the
existence of stable limit cycles using what we call a Lorenz map. To generate
a Lorenz map, we plot subsequent local maxima of the z-component of the
Lorenz system. Consider the time series of z(t) in the Lorenz system. Define
{zn} to be the sequence of local maxima of z(t). We then plot zn against
zn+1, such that each point of the plot represents a pair of subsequent local
maxima. The result of this plot from Lorenz [4] is shown in Figure 3a on
page 8.

A remarkable result of this plot is that the points fall on a curve with
almost no thickness. We can therefore crudely define a function f(zn) =

zn+1. The key observation is that the magnitude of the slope of this graph,
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Figure 2: A plot of ln ||δ(t)|| between two randomly selected initial conditions. The
distance between any two trajectories initially increases at an exponential
rate. After a finite time, ||δ(t)|| saturates as the remain in a bounded region.

|f(z)| > 1 for all z. This implies that any limit cycles that might exist are
unstable.

To see why, consider an arbitrary closed orbit solution of the system. The
sequence of maxima zn of this solution will eventually repeat with some
period p. In other words, there exists some p > 1 such that zn+p = zn.
Then consider some small perturbation, ε0 of some term of this sequence
zn. If we iterate using the Lorenz map and linearize about zn, then the
perturbation evolves to ε1 ≈ f ′(zn)ε0. At the second iteration, we have
ε2 ≈ f ′(zn+1)ε1 ≈ f ′(zn+1)f ′(zn)ε0.

At the pth iteration,

εp ≈
( p−1∏
k=1

f ′(zn+k)

)
ε0 (6)

Since each |f(zi)| > 1, it follows that that |εp| > |εo|, and so any closed
orbit is necessarily unstable.

As Lorenz [4] notes, however, this argument is not a rigorous proof of
the non-existence of stable limit cycles, since this argument only holds for
the finite length of the numerical integration. However, the existence of the
strange attractor was formally shown by Tucker in 1999 [8] through the use
of rigorous numerics and the normal forms technique, which exceeds the
scope of this project.

Here We verify Lorenz’s findings using numerical integration in MAT-
LAB. However, numerical integration methods return discrete set of coordi-
nates {x(ti),y(ti), z(ti)} corresponding to time steps {t1, ..., tn}. A local max-
imum in the set of coordinates (i.e. a point z(tk) such that z(tk−1) < z(tk)
and z(tk) > z(tk+1)) may not be a true maximum reached by the solution
if the maximum is attained at some time t ′ ε(tk−1, tk) ∪ (tk, tk+1). To im-
prove our estimate of the local maxima, we fit a degree-2 polynomial about
the points z(tk−1), z(tk), and z(tk+1), where z(tk) is a local maximum in
our set {z(ti)}. We then take the maximum of the fitted polynomial to be a
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local maximum of our solution to generate a term in our sequence {zn}. The
result of this method is shown in Figure 3b.

(a) Lorenz’s original plot. (b) Recreation of Lorenz map in MATLAB.
The line zn = zn+1 is shown in red.

Figure 3: Lorenz maps.

2.4 Parameter Space

The Lorenz system takes three parameters, σ,β, ρ > 0, and exhibits different
behavior for different choices of parameters. Typically, investigations in
the parameter space of this system are done by fixing σ = 10 and β = 8

3

and varying ρ. Different regimes are explained in the list below, and are
illustrated in the numerical solutions that follow.

• For small values of ρ (0 < ρ < 1), the origin is stable and attracts all
initial conditions.

• At ρ = 1, we have a supercritical pitchfork bifurcation, and so for
1 < ρ < 24.74, we have an unstable origin, and two stable fixed points.

• Interestingly, for 13.926 < ρ < 24.06, we observe "transient chaos":
before settling down to a fixed point, the solution initially traces out
the strange attractor, jumping unpredictably between the two spirals,
but eventually settles down to one of the two stable fixed points.

• For 24.06 < ρ < 24.74, we have coexistence of the strange attractor and
the stable fixed points. Therefore, depending on the initial conditions,
the solution can either be chaotic or non-chaotic.

• At ρ = 24.74, we have a Hopf bifurcation. For ρ > 24.74, our fixed
points become unstable and all initial conditions result in the chaotic
behavior of Lorenz’s strange attractor.

• For larger values of ρ, there are intervals in which there are stable
periodic orbits. In particular, there are three large ’windows’ of ρ
in which this occurs: (99.524, 100.795), (145, 166), and (214.364, ∞).
In fact, the behavior in these windows is quite complicated, and a
comprehensive discussion can be found in [6].
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(a) Projection of solution onto the xz-plane. (b) Individual dynamics of x(t), y(t), and z(t).

Figure 4: The Lorenz system for 0 < ρ < 1. The origin is globally stable and attracts
all initial conditions.

(a) Projection of solution onto the xz-plane. (b) Individual dynamics of x(t), y(t), and z(t).

Figure 5: The Lorenz system for 1 < ρ < 13.926. Solutions are attracted to one of
two stable fixed points.

(a) Projection of solution onto the xz-plane. (b) Individual dynamics of x(t), y(t), and z(t).

Figure 6: The Lorenz system for 13.926 < ρ < 24.06. Solution may initially exhibit
chaotic behavior, but eventually settles into a stable spiral.
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(a) Projection of a stable solution onto the xz-
plane.

(b) Individual dynamics of x(t), y(t), and z(t).

(c) Projection of a chaotic solution onto the xz-
plane.

(d) Individual dynamics of x(t), y(t), and z(t).

Figure 7: Two solutions for the Lorenz system with 24.06 < ρ < 24.74. The first
solution settles onto a stable spiral, whereas the second solution exhibits
is chaotic.

(a) Projection of solution onto the xz-plane. (b) Individual dynamics of x(t), y(t), and z(t).

Figure 8: The Lorenz system for 24.74 < ρ < 99.524. In particular, this is the system
for ρ = 28, which was Lorenz’s original choice of parameters. All solutions
are chaotic.
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(a) Projection of solution with ρ = 100 onto the xz-
plane.

(b) Individual dynamics of x(t), y(t), and z(t).

(c) Projection of a solution with ρ = 150 onto the xz-
plane.

(d) Individual dynamics of x(t), y(t), and z(t).

Figure 9: The Lorenz system for large values of ρ. These are examples of solutions
with stable periodic orbits.
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3 application to communications
In this section, we use the Lorenz system as a driving example to discuss
chaotic synchronization and explore its application to masking and demask-
ing of signals.

3.1 Chaotic Synchronization

An unexpected result from Pecora and Caroll [5] was that chaotic systems
that begin from two different initial conditions can be synchronized by using
a continuous drive signal from one system to another. This is a counterintu-
itive result because as discussed in Section 1, chaotic systems are sensitive to
initial conditions and one would expect that differences in initial conditions
between the two systems would amplify over time.

In Pecora-Caroll synchronization, there is a sender system that generates
a drive signal, and a receiver system that is dependent on the drive signal.
The drive signal consists of partial dynamics of the sender system. In the
case of the Lorenz system, the drive signal consists of the x-component
dynamics of the sender system. A diagram of this is given in Figure 10.
The full dynamics of the sender system, denoted (xs(t),ys(t), zs(t) behave
according to the usual Lorenz equations:

ẋs = σ(ys − xs)

ẏs = ρxs − ys − xszs

żs = xsys −βzs,

(7)

The receiver system dynamics, denoted (xr(t),yr(t), zr(t)) are given by:
ẋr = σ(yr − xr)

ẏr = ρxs − yr − xszr

żr = xsyr −βzr,

(8)

In this setup, the y and z dynamics of the receiver system (yr and zr
respectively), are partially driven by the x component of the sender system.
The synchronization error between the two chaotic systems has been shown
in [5] exponentially decay to 0 as t→∞ for any choice of initial conditions.

Figure 10: A schematic diagram of Pecora-Caroll synchronization for the Lorenz
system. In order to synchronize the two systems, the y and z components
of the receiver system (right) are dependent on the x component of the
sender system (left).
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3.2 Application to Private Communications

Using this principle of chaotic synchronization, Cuomo and Oppenheim
[1] presented a private communications scheme that involved masking and
demasking signals using chaotic noise.

Similarly to Pecora and Caroll’s setup, there is a sender system and re-
ceiver system connected by a continuous drive signal. However, the drive
signal from the sender system is slightly modified by adding a message
component. Then, using this drive signal, the receiver synchronizes to the
dynamics of the sender system. The receiver then subtracts the chaotic dy-
namics to recover the message component. A diagram of this is given in
Figure 11. In this setup, the sender system is unchanged, and behaves ac-
cording to Eq. (4). However, the receiver system behaves according to:

ẋr = σ(yr − xr)

ẏr = ρd(t) − yr − d(t)zr

żr = d(t)yr −βzr,

(9)

where d(t) = xs(t) +m(t), and m(t) is a message component. The signal is
recovered at the receiver system as m̂(t) = d(t) − xr(t).

Figure 11: A schematic diagram of Cuomo and Oppenheim’s communication
scheme. A message component, m(t), is added to xs(t) to generate d(t),
which partially drives the receiver dynamics. The message is then recov-
ered by subtracting xr(t) from d(t). Adapted from Cuomo and Oppen-
heim [1]

Cuomo and Oppenheim’s original experiment implemented this scheme
using two electronic circuits with scaled variables more appropriate for the
electronic hardware. For our purposes, we are more interested in the math-
ematical scheme, rather than the electronic details.

There are a couple remarks to make about this signal masking approach.
First, the masking-demasking process is imperfect. As an example, Fig-
ure 12 on the next page shows that the recovered signal m̂(t) is not an
exact recovery of the original message m(t). However, anecdotally, when
m(t) is some speech waveform, the message is discernible in m̂(t) with
some additional noise. Second, the magnitude of the signal, m(t), must be
much lower than that of the dynamics of the Lorenz system x(t) for an ef-
fective recovery. While this is analytically difficult to show, this is intuitively
obvious since the m(t) is effectively a perturbation to the chaotic synchro-
nizing signal. A greater perturbation therefore results in larger error in
synchronization between the sender and receiver system (in particular be-
tween xs(t) and xr(t)), and a subsequent larger error in the recovered signal



application to communications 14

m̂(t) = d(t) − xr(t) = xr(t) +m(t) − xs(t). A question that follows is the ef-
fect of amplitude of the signal (relative to the Lorenz system amplitude) on
the error of the signal masking-demasking process. We discuss this problem
in Section 3.3.

Figure 12: Speech waveform masking and recovery results from Cuomo and Oppen-
heim [1]. The waveform in (a) shows the original speech waveform, while
(b) shows the recovered waveform.

numerical simulation of masking process An inherent advantage to
using electronic circuits is that the signals are continuous, whereas numer-
ically, we consider the signal and the systems in discrete time steps. For a
general signal, we therefore have two main problems to consider:

1. Digital signals (in particular, audio files) are usually given as an array,
with each value corresponding to the amplitude of the signal at some
time step. Time steps are usually uniformly spaced according to some
sample rate. Audio files may also have multiple tracks (e.g. stereo
audio files have two tracks), and so to fit with the scheme, we take
only mono track audio.

2. Adaptive numerical integrators in MATLAB in general do not use uni-
formly sized time steps.

Here we outline two approaches to numerically simulate this communica-
tions scheme in MATLAB.

Suppose the audio message m(t) comes to us as an array {m(ti) | i =

1, ...,n}. In our first approach, we first generate the full dynamics of the
sender system at uniformly spaced time steps {t1, ..., tn} determined by the
audio file sample rate. This returns an array {xs(ti), ys(ti), zs(ti) | i =

1, ...,n}. An array for the drive signal, d(t), is easily obtained by {d(ti) =

xs(ti) +m(ti) | i = 1, ...n}. Then, we generate the corresponding receiver
system array {xr(ti), yr(ti), zr(ti)}. Since the adaptive integration in MAT-
LAB might require some d(t ′), where ti < t ′ < ti+1 for some i, we use
a spline interpolation about t ′ to estimate d(t ′). After obtaining the re-
ceiver array, the message array is then recovered as m̂(ti) = d(ti) − xr(ti).
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Since this method approximates d(t), it is also making an approximation of
xs(t). This method is sufficient to distinguish speech and music waveforms,
but too imprecise to be useful for our investigation. For instance, when
m(t) = 0 constant, and the two systems begin with identical initial condi-
tions, we expect perfect synchronization, but this method returns non-zero
error between the sender and receiver system.

In our second, more streamlined approach, we numerically integrate the
sender and receiver systems simultaneously as a six-dimensional system,
and return values {xs(ti), ys(ti), zs(ti), xr(ti), yr(ti), zr(ti) | i = 1, ..,n}.
Since this may also ask for some m(t ′) with ti < t ′ < ti+1 in order to
generate d(t ′) , we only interpolate to approximate m(t ′). The message
array is then recovered as m̂(ti) = xs(ti) +m(ti) − xr(ti). Results from this
method is shown in Figure 13. This method does return a zero error when
m(t) = 0 and (xs(0),ys(0), zs(0)) = (xr(0),yr(0), zr(0)).

Figure 13: Results from the numerical masking/demasking process, showing the
original music waveform (top) and recovered waveform (bottom).

3.3 Discussion of Error

The imperfect recovery of the original message naturally leads us to ques-
tions on how this error changes with different signals. Cuomo, Oppenheim,
and Strogatz [2] discuss the robustness of this scheme using random Gaus-
sian white noise as their message/perturbation component, which allows
them to make some heuristic arguments leading to an approximate analytic
model of the error.

We take a different approach in our investigation of the error. We use
a regular sinusoidal function as our signal, and change the frequency and
amplitude parameters of the function to observe effects on the error.

Here we investigate the sender system and receiver system as usual, given
by Eq. (4) and (6), taking m(t) to be A sin(ωt), where A is our amplitude
parameter and ω is our frequency parameter. We report the error, denoted
in the recovery, denoted E, as the L∞ norm of the vector:

e(t) = (m̂(t1), ..., m̂(tn)) − (m(t1), ...,m(tn))

where m̂(ti) is the value of the recovered signal at the ith time step, and
m(ti) = A sin(ωti). We use the usual choice of parameters for the Lorenz
system, and integrate to t = 100. In our investigation of frequency, we fix
the amplitude of our signal at A = 1, and in our investigation of amplitude,
we fix the frequency of the signal at ω = 10.

In general, we find that the error decreases with a higher frequency signal,
and increases with larger amplitude signal, which seems to be consistent
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with findings from Cuomo et al. [2]. To further formalize our results, we
perform a least-squares power fit on the data.

For frequency, we discard values where the data is noisy (0 < ω < 7),
and where the frequency of the signal is too high for our level of precision
(ω > 20). The result is shown in Figure 14.

For amplitude, we fit only to values where 0 < A < 2, since this is approx-
imately one-tenth of the magnitude of the Lorenz system dynamics, which
is approximately on the order of 2 x 101. The result is shown in Figure 15

on the following page.

(a) Recovery error as a function of signal frequency.

(b) Log-log plot of frequency and recovery error, with sample points shown in blue.
A fitted line given by logEx = −1.7332ω+ 4.8470 is shown in red.

Figure 14: Error in signal recovery (i.e. synchronization error in the x-component)
with A = 1 and varying ω. The corresponding least squares power fit is
shown in (b).
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(a) Recovery error as a function of signal amplitude.

(b) Log-log plot of amplitude and recovery error, with sample points shown in blue.
A fitted line given by logEx = 0.9964A+ 0.8450 is shown in red.

Figure 15: Error in signal recovery (i.e. synchronization error in the x-component)
with ω = 1 and varying A. The corresponding least squares power fit is
shown in (b).

From these results, we obtain the following relationships:

Êx = 129.1ω−1.7332 (10)

Êx = 2.328A0.9964 (11)

where Êx is our prediction of the recovery error, ω is the frequency of the
signal, and A is the amplitude of the signal. The finding in (10) suggests
Êx ∼ ω−2, which agrees with computations obtained from Laplace trans-
forms in [2]. The law (11) suggests Êx ∼ A.

We also investigate the synchronization error in the y-component (Fig-
ure 16 on the next page and 17 on page 19) and z-component (Figure 18 on
page 20 and 19 on page 21) below.
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(a) Synchronization error in y as a function of signal frequency.

(b) Log-log plot of frequency and recovery error, with sample points shown in blue.
A fitted line given by logEy = −1.2292ω+ 4.0536 is shown in red.

Figure 16: Synchronization error in the y-component with A = 1 and varying ω.
The corresponding least squares power fit is shown in (b).
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(a) Synchronization error in y as a function of signal amplitude.

(b) Log-log plot of amplitude and synchronization error, with sample points shown
in blue. A fitted line given by logEy = 0.9934A+ 1.2494 is shown in red.

Figure 17: Synchronization error in the y-component with ω = 10 and varying A.
The corresponding least squares power fit is shown in (b).
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(a) Synchronization error in z as a function of signal frequency.

(b) Log-log plot of frequency and recovery error, with sample points shown in blue.
A fitted line given by logEz = −0.4538ω+ 2.1186 is shown in red.

Figure 18: Synchronization error in the z-component with A = 1 and varying ω.
The corresponding least squares power fit is shown in (b).
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(a) Synchronization error in z as a function of signal amplitude.

(b) Log-log plot of amplitude and synchronization error, with sample points shown
in blue. A fitted line given by logEz = 1.0044A+ 0.9495 is shown in red.

Figure 19: Synchronization error in the z-component with ω = 10 and varying A.
The corresponding least squares power fit is shown in (b).

The linear relationship with signal amplitude and synchronization in
the y- and z-components are consistent with the relationship in the x-
component, and in agreement with results in [2]. However, the results
regarding signal frequency and synchronization error are somewhat unex-
pected. Figure 16 on page 18 and Figure 18 on the preceding page show
that Ey and Ez respectively do not decrease smoothly with ω. In particular,
at approximately ω = 7.5, there is a point where the curve of Ey(ω) is not
smooth, and at approximately ω = 10, the curve of Ez(ω) is not smooth.
Furthermore, it is evident in both the log plots that there is an interval
where synchronization error increases with ω. This is not consistent with
the model in [2].
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4 conclusion and future directions
There have been several developments in the literature since the introduc-
tion of Pecora-Caroll synchronization and Cuomo and Oppenheim’s com-
munication scheme. One particularly interesting area of study is observer-
based synchronization, where the receiver system need not know the param-
eters of the transmitting system in order to synchronize dynamics. There
have also been explorations into increasing the security of this communica-
tion scheme by using ’hyperchaotic’ systems, which are systems that have
more than one positive Lyapunov exponent. These systems exist in spaces
of four dimensions or higher, and have more complex dynamics leading to
greater security.

summary In this report, we discussed properties of the Lorenz system. In
particular, we presented arguments for boundedness of solutions, exponen-
tial divergence of trajectories, instability of any periodic orbits, and outline
different behavior regimes in the ρ parameter space of the system. We then
used the Lorenz system to illustrate Pecora-Caroll synchronization between
two chaotic system, and explore Cuomo and Oppenheim’s approach to sig-
nal masking using chaotic synchronization. Using numerical experiments,
we investigate the relationship between the error in the signal recovery and
the signal frequency, and the signal amplitude. We find Êx ∼ ω−2 and
Êx ∼ A respectively, which is consistent with previous results from Cuomo
et al. [2]. However, the apparent relationship between signal frequency and
synchronization error in the y- and z-components does not agree with [2].
Since our method of investigation was different than that of [2], who used
Gaussian white noise as a perturbing signal (as opposed to a sinusoidal
function), exploring other signals may be a point of future investigation on
this topic.

references
[1] Kevin M. Cuomo and Alan V. Oppenheim, Circuit implementation of syn-

chronized chaos with applications to communications, Physical Review Let-
ters 71 (1993), no. 1, 65–68.

[2] Kevin M Cuomo, Alan V Oppenheim, and Steven H. Strogatz, Robust-
ness and signal recovery in a synchronized chaotic system, International Jour-
nal of Bifurcation and Chaos 3 (1993), no. 6, 1629–1638.

[3] Kevin M. Cuomo, Alan V. Oppenheim, and Steven H. Strogatz, Synchro-
nization of Lorenz-based chaotic circuits with applications to communications,
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 40 (1993), no. 10, 626–633.

[4] Edward N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmo-
spheric Sciences 20 (1963), no. 2, 130–141.

[5] Louis M. Pecora and Thomas L. Carroll, Synchronization in chaotic systems,
Physical Review Letters 64 (1990), no. 8, 821–824.

[6] Colin Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange At-
tractors, Applied Mathematical Sciences, vol. 41, Springer New York,
New York, NY, 1982.



references 23

[7] Steven Strogatz, Nonlinear Dynamics and Chaos, 2 ed., Westview Press,
1994.

[8] Warwick Tucker, The Lorenz attractor exists, Comptes Rendus de
l’Académie des Sciences - Series I - Mathematics 328 (1999), no. 12, 1197–
1202.


	1 Introduction to Chaos and the Lorenz System
	2 Properties of the Lorenz System
	2.1 An Ellipsoidal Trapping Region
	2.2 Exponential Divergence of Trajectories
	2.3 Unstable Periodic Orbits
	2.4 Parameter Space

	3 Application to Communications
	3.1 Chaotic Synchronization
	3.2 Application to Private Communications
	3.3 Discussion of Error

	4 Conclusion and Future Directions

