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Abstract

We discuss polynomial interpolation and derive sufficient conditions for the uniform convergence of Chebyshev interpolants for
different classes of functions. Rigorous results are illustrated with a number of examples which include solitons on an infinite line
with algebraic, exponential and Gaussian decay rates. Suitable mappings of the real line to the interval [−1, 1] are considered for
each class of solutions.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Numerical approximations of solitons on an infinite line can be obtained in a number of ways. One method is to use
the trigonometric interpolation and to run iterations of the fixed point problem in the Fourier space [12]. Another method
is to discretize the soliton in physical space with finite-difference or finite-element schemes and to look for solutions
of an algebraic system with the Newton–Raphson iterative algorithm [9]. Yet another method is to use Chebyshev
interpolation for approximations of solitons [5] and for computations of their derivatives [15].

We have recently applied the Chebyshev interpolation method to gap solitons in coupled-mode (Dirac) equations
[6]. This method enabled us to obtain useful numerical approximations of eigenvalues in the linearized system, which
indicate stability or instability of gap solitons. The error and convergence of the Chebyshev interpolation were not
controlled in [6]. Although the main results about the uniform convergence of Chebyshev interpolants are well known
and have been recently addressed by Battles and Trefethen [1] and Reddy and Weideman [13], the subject lacks rigorous
analysis and sharp conditions on the interpolated functions. This issue is even more subtle for solitons on an infinite
line since the solitons are typically given by real analytic functions with branch point, pole or essential singularities at
infinity. Using a suitable mapping, the infinity is mapped to the end points of a finite interpolation interval as it was
discussed by Boyd [3,4] and Cloot and Weideman [7]. These questions are subjects of the present communication.

The article is structured as follows. We shall first derive general results on uniform convergence of polynomial
interpolants for analytic (and particularly, rational) functions in Section 2. We shall then prove unconditional uniform
convergence of Chebyshev interpolants for analytic functions in Section 3. The uniform convergence still holds even if
the interpolated function is only piecewise continuously differentiable. Section 4 discusses obstacles on the convergence
of Chebyshev interpolants for solitons on an infinite line.
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2. General polynomial interpolants

We will establish here a sufficient condition for the uniform convergence of a general polynomial interpolant
when the interpolated function is real analytic on the interpolation interval. The condition is satisfied if poles of
the real analytic function in a complex plane are located far from the interpolation interval (Theorem 2.1). If the
condition of Theorem 2.1 is not satisfied, the polynomial interpolation may diverge for a general distribution of the
grid points. In particular, real analytic functions f (x) with singularities near the interpolation interval may lead to the
Runge phenomenon, when the polynomial interpolant Ln(x) displays oscillations near the ends of the interpolation
interval and the amplitude of oscillations grows as n → ∞. We shall consider the Runge phenomenon in the case of
rational functions f (x) including f (x) = 1/(x − α) and f (x) = 1/(β2 + x2), where α and β are real-valued parameters.
Applying the necessary and sufficient conditions for the uniform convergence of polynomial interpolants to rational
functions (Theorem 2.3), we will show that the convergence is still observed for any α outside the interpolation interval
but it fails for small values of β.

In what follows, we assume that the set {xk}nk=0 represents the distinct nodes (grid points) on the interpolation
interval [a, b] and the grid points are dense in the limit n → ∞. For a given complex-valued function f (x) on [a, b],
we introduce the interpolation polynomial in the Lagrange form Ln(x) according to the formula

Ln(x) =
n∑

k=0

f (xk)ln,k(x), ln,k(x) = (x − x0)· · ·(x − xk−1)(x − xk+1)· · ·(x − xn)

(xk − x0)· · ·(xk − xk−1)(xk − xk+1)· · ·(xk − xn)
. (2.1)

It is well-known [9] that the interpolating polynomial through distinct nodes is unique and independent of the repre-
sentation formula. It is also well-known that, if the function f (x) has a bounded (n + 1) th derivative on [a, b], then
the remainder term of the polynomial interpolation is given by

f (x) − Ln(x) = f (n+1)(ξ)

(n + 1)!
ωn+1(x), ωn+1(x) =

n∏
k=0

(x − xk), (2.2)

where x, ξ ∈ [a, b]. If the function f (x) is real analytic on [a, b], then the remainder term can be expressed by the
Hermite contour integral:

f (x) − Ln(x) = 1

2πi

∮
γ

ωn+1(x)

ωn+1(z)

f (z)

z − x
dz, ∀x ∈ [a, b], (2.3)

where γ is a simple, closed, positively oriented contour in the complex plane that contains the point z = x and lies in
the domain of analyticity of f (z). The L∞-norm of the distance

En = sup
a≤x≤b

|f (x) − Ln(x)|

is said to be the error of polynomial interpolation. The polynomial interpolant Ln(x) converges uniformly to f (x) if
limn→∞En = 0.

Theorem 2.1. Let f (x) be a real analytic function on [a, b]. Assume that there exists a meromorphic extension of this
function in

Da,b = {z ∈C : (2a − b) < x < (2b − a), −(b − a) < y < (b − a)}.
Then, limn→∞Ln(x) = f (x) uniformly on [a, b] if |b − a| < R0, where R0 is the shortest distance from [a, b] to the
singular point of f (z).

Proof. By using the pointwise estimate from the error formula (2.2), we find that

|f (x) − Ln(x)| ≤ Mn+1

(n + 1)!
(b − a)n+1, ∀x ∈ [a, b],
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where Mn = supa≤x≤b|f (n)(x)| exists for any n ∈N since f (x) is real analytic function on [a, b]. By the Taylor Theorem
for analytic functions, the Taylor series

f (z) =
∞∑

n=0

f (n)(x)

n!
(z − x)n

converges absolutely and uniformly in a small neighborhood of the point z = x ∈ [a, b]. By the Cauchy formula for
analytic functions, we have

f (n)(x) = n!

2πi

∮
γ

f (z)

(z − x)n+1 dz,

where γ is a closed contour in the domain of analyticity of f (z) that contains the point x ∈ [a, b]. Therefore, the nth
order derivative is uniformly bounded by

|f (n)(x)| ≤ n!

2π

∮
γ

|f (z)|
|z − x|n+1 |dz| ≤ M0n!

Rn
0

,

where M0 = supz ∈Da,b
|f (z)|. As a result, the pointwise estimate for the error of interpolation reduces to the form

|f (x) − Ln(x)| ≤ M0
(b − a)n+1

Rn+1
0

, ∀x ∈ [a, b]

and, if |b − a| < R0, then Ln(x) → f (x) as n → ∞, uniformly on [a, b]. �

Corollary 2.2. The uniform convergence holds on any [a, b] if f (z) is entire in C.

Theorem 2.3. Let f (z) be a rational function inCwith all poles outside [a, b] ⊂ R. The interpolation error converges
to zero uniformly if and only if

lim
n→∞ sup

x ∈ [a,b]

∣∣∣∣ ωn+1(x)

ωn+1(zj)

∣∣∣∣ = 0, (2.4)

for all poles zj of f (z) in C.

Proof. Let γ0 be a contour that encloses [a, b] but does not enclose any singularity of f (z). Let γ∞ be the contour
that encloses [a, b] and encloses all singularities of f (z) in C. By the Residue Theorem, the integral (2.3) for γ = γ0
is equivalent to the representation

f (x) − Ln(x) = 1

2πi

∮
γ∞

ωn+1(x)

ωn+1(z)

f (z)

z − x
dz −

∑
all j

Res

[
ωn+1(x)

ωn+1(z)(z − x)
f (z); z = zj

]
.

Since f (z) is a rational function, the integral (2.3) for γ = γ∞ is given by the residue at infinity, which is identically
zero for sufficiently large n. Therefore, there exists n0 ∈N such that

∀n ≥ n0 : f (x) − Ln(x) = −
∑
all j

Res

[
ωn+1(x)

ωn+1(z)(z − x)
f (z); z = zj

]
, (2.5)

where x ∈ [a, b] and zj is a pole of f (z) in C. By using the triangle inequality, we obtain

sup
a≤x≤b

|f (x) − Ln(x)| ≤
∑
all j

sup
a≤x≤b

∣∣∣∣ ωn+1(x)

ωn+1(zj)(zj − x)

∣∣∣∣ |Res[f (z); z = zj]| ≤ Cmaxall j sup
a≤x≤b

∣∣∣∣ ωn+1(x)

ωn+1(zj)

∣∣∣∣ ,
where C > 0. Under the condition (2.4), the error converges to zero uniformly on [a, b].

In the opposite direction, if the condition (2.4) is not satisfied, the right-hand-side of (2.5) contains some terms
1/(zj − x) which do not cancel each other and do not vanish as n → ∞. In this case, the error does not converge
uniformly on [a, b]. �
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Fig. 1. The level curve g0 = 2(log 2 − 1) of the function g∞(z) (left). The function g∞(x) − g∞(iβ) for β = 0.6 (middle) and β = 0.4 (right).

Let [a, b] be normalized by [−1, 1] and the set of grid points {xk}nk=0 be equally spaced such that xk = −1 + (2k/n)
for k = 0, . . . , n. Let gn(z) be defined by |ωn+1(z)| = e(n/2)gn(z) in the domain

DA,B = {z = x + iy : −A < x < A, 0 < y < B} ,

where A > 1 and B > 0. By the theorem on Riemann Sums, there exists C > 0 such that

gn(z) = 2

n

n∑
k=0

log |z − xk| = g∞(z) + g̃n(z),

where g∞(z) = ∫ 1
−1 log |z − t| dt and |g̃n(z)| ≤ (C/n) uniformly in DA,B. The function g∞(z) can be evaluated in the

explicit form

g∞(z) = 1

2
(1 − x) log((1 − x)2 + y2) + 1

2
(1 + x) log((1 + x)2 + y2) − 2 + y arctan

1 − x

y
+ y arctan

1 + x

y
.

In the limit y → 0, we obtain

g∞(x) = log(1 − x2) + x log
1 + x

1 − x
− 2,

where x ∈ [−1, 1]. According to the condition (2.4), if g∞(x) < g∞(zj) on [−1, 1] for any zj , then the polynomial
interpolant converges to the rational function f (x) uniformly on [−1, 1].

Let zj = α > 1 (that is the pole is located on the real axis outside the interpolation interval [−1, 1]), then the level
curve g∞(z) = limx→1g∞(x) = g0 = 2(log 2 − 1) on Fig. 1(a) shows that g∞(x) − g∞(α) < 0 on [−1, 1] for any
α > 1. Therefore, the condition (2.4) is satisfied and the polynomial interpolants converge uniformly for any α > 1.

If zj = iβ, β > 0 (that is the pole is located on the imaginary axis), then the graphs on Fig. 1(b and c) show
that g∞(x) − g∞(iβ) < 0 on [−1, 1] if β > 1/2 but g∞(x) − g∞(iβ) is sign-indefinite on [−1, 1] if 0 < β < 1/2.
Therefore, the polynomial interpolants converge uniformly for β > 1/2 and diverge for 0 < β < 1/2. We note that
Theorem 2.1 gives a sufficient condition for uniform convergence at β > 2, which is not sharp compared to the value
β = 1/2 obtained with the use of Theorem 2.3.

Fig. 2(a and b) show classical Runge’s examples of uniform convergence of the polynomial interpolants on the
equally spaced grid for the function f (x) = 1/(1 + 0.25x2) (left) since β = 5 > 1/2 and divergence of the polynomial
interpolants for the function f (x) = 1/(1 + 25x2) (right) since β = (1/5) < 1/2.

3. Chebyshev interpolants

We will show here that the Chebyshev interpolants enjoy uniform convergence if the function f (x) satisfies much
weaker smoothness assumptions. We say that the polynomial Ln(x) is a Chebyshev interpolant if the grid points {xk}nk=0
on the normalized interval [−1, 1] are distributed at xk = cos(πk/n) for k = 0, . . . , n. These grid points are related to
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Fig. 2. Polynomial interpolation on the equally spaced grid for f (x) = 1/(1 + 0.25x2) (left) and f (x) = 1/(1 + 25x2) (right). Runge phenomenon
is observed on the right panel.

the extrema of the Chebyshev polynomials Tn(x) and are sometimes referred to as the Chebyshev points of the second
kind [13].

We first show that if f (x) is real analytic on [−1, 1], then the Chebyshev interpolants converge uniformly without
necessity to worry about singularities of f (z) in complex plane C (Theorem 3.2). The statement was formulated in
Theorem 5 of [15] and Theorem 2.1 of [1] but no proofs were given. We give a rigorous proof of this theorem using
the analytical methods of [13]. Furthermore, we find a sharper sufficient condition on the function f (x) for the uniform
convergence, which is satisfied if the function is piecewise continuous differentiable (Theorem 3.3). The proof of
this theorem is based on much earlier works of Natanson [11], Jackson [10], and Bernstein [2] (see also review in
[14]).

Lemma 3.1. If the grid points {xk}nk=0 are the Chebyshev nodes, the error function ωn+1(z) is computed explicitly by
the formula

ωn+1(z) = 1

2n

√
z2 − 1[(z +

√
z2 − 1)

n − (z −
√

z2 − 1)
n
]. (3.1)

Proof. Let n be odd without loss of generality. We use formulas 1.391 and 1.392 on pp. 39–40 in [8]:

(n−1)/2∏
k=1

(
1 − sin2 θ

sin2 (πk/n)

)
= sin nθ

n sin θ
,

n−1∏
k=1

sin
πk

n
=
⎛
⎝(n−1)/2∏

k=1

sin
πk

n

⎞
⎠

2

= n

2n−1 .

Let z2 = 1 − sin2 θ and transform ωn+1(z) to the form:

ωn+1(z) =
n∏

k=0

(
z − cos

πkπ

n

)
=

(n−1)/2∏
k=0

(
z2 − cos2 πkπ

n

)

= − sin2 θ

(n−1)/2∏
k=1

sin2 (πk/n)
(n−1)/2∏

k=1

(
1 − sin2 θ

sin2 πk
n

)
= − 1

2n−1 sin θ sin(nθ).

If sin θ and sin(nθ) are expressed by z =
√

1 − sin2 θ, the last formula results in (3.1). �
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Theorem 3.2. Let f (z) be an analytic function in Dρ, where Dρ is an open domain in C enclosed by the ellipse γρ

for some ρ > 1 parameterized by

γρ : z = 1

2

(
ρeiθ + ρ−1e−iθ

)
, 0 ≤ θ ≤ 2π. (3.2)

Let {xk}∞k=0 be the Chebyshev nodes. Then, limn→∞Ln(x) = f (x) uniformly on [−1, 1].

Proof. We use the error formula (2.3) and obtain the bound for the error term:

|f (x) − Ln(x)| ≤ ML

2πR

∑
z ∈ γρ

∣∣∣∣ωn+1(x)

ωn+1(z)

∣∣∣∣ ,
where x ∈ [−1, 1], R is the shortest distance between [−1, 1] and γρ, L is the arclength of γρ, and M = supz ∈Dρ

|f (z)|.
By using the explicit formula (3.1), we evaluate ωn+1(z) on z ∈ γρ as follows:

ωn+1(z) = 1

2n+1

(
ρeiθ − ρ−1e−iθ

)(
ρneinθ − ρ−ne−inθ

)
, ∀z ∈ γρ.

On the other hand, ωn+1(x) at the interpolation interval [−1, 1] is computed in the limit ρ → 0 by

ωn+1(x) = − 1

2n−1 sin ϕ sin nϕ,

where x = cos ϕ and the interval [−1, 1] for x is mapped to [−π, 0] for ϕ. As a result, we obtain∣∣∣∣ωn+1(x)

ωn+1(z)

∣∣∣∣ = 4| sin ϕ|| sin nϕ|
|ρeiθ − ρ−1e−iθ||ρneinθ − ρ−ne−inθ| ≤ 4

(ρ − ρ−1)(ρn − ρ−n)
.

Therefore, the interpolation error is uniformly bounded by

sup
−1≤x≤1

|f (x) − Ln(x)| ≤ 2ML

πR(ρ − ρ−1)(1 − ρ−2n)
ρ−n,

which converges to zero as n → ∞, since ρ > 1. �

Theorem 3.3. Let f (x) satisfy Dini–Lipschitz condition on [−1, 1] in the sense that

∀x, y ∈ [−1, 1] : lim
δ→0

sup
|x−y|≤δ

|f (x) − f (y)| log δ = 0. (3.3)

Let {xk}nk=0 be the Chebyshev nodes. Then, limn→∞Ln(x) = f (x) uniformly on [−1, 1].

Proof. By Jackson’s Theorem [10], if f (x) is a continuous function on the interpolation interval [a, b], then

sup
a≤x≤b

|f (x) − Ln(x)| ≤ 12 sup
a≤x≤b

sup
|x−y|≤(1/n)

|f (x) − f (y)|,

where Ln(x) is a general polynomial interpolant. Let us define the auxiliary quantity:

λn+1 = sup
a≤x≤b

n∑
k=0

∣∣∣∣ ωn+1(x)

ω′
n+1(xk)(x − xk)

∣∣∣∣ ,
where ωn+1(x) is defined in (2.2). By Bernstein’s theorem [14] (formulated also as Theorem 2 in Chapter 3 on p. 539
of [11]), if {xk}nk=0 are the Chebyshev nodes, then the sequence {λn}n ∈N grows at most logarithmically and

λn ≤ 8 + 4

π
log n.

By Natanson’s Theorem [11], the uniform convergence of polynomial interpolants Ln(x) holds if

lim
n→∞λn+1 sup

a≤x≤b

|f (x) − Ln(x)| = 0.
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Fig. 3. Polynomial interpolation of f (x) = |x| on [−1, 1] when the grid is equally spaced (left) and Chebyshev (right).

Using the previous bounds, we obtain that there exists C > 0 such that

λn+1 sup
a≤x≤b

|f (x) − Ln(x)| ≤ C log n sup
a≤x≤b

sup
|x−y|≤(1/n)

|f (x) − f (y)|.

If f (x) satisfies the Dini–Lipschitz condition (3.3), then the upper bound converges to zero as n → ∞ and the uniform
convergence is proven. �

It is obvious that any Lipschitz function satisfies the Dini–Lipschitz condition (3.3). Fig. 3(a and b) show classical
Bernstein’s examples of interpolation of function f (x) = |x| on [−1, 1]. The polynomial interpolants through equally
spaced grid points diverge at any point x ∈ [−1, 1] \ {0} [5]. However, the Chebyshev interpolation converges uniformly
since f (x) satisfies the Dini–Lipschitz condition (3.3).

4. Chebyshev interpolation for solitons

Solitons are defined on the infinite line, which has to be mapped to [−1, 1] using a suitable mapping. Even if the
function is real analytic on an infinite line, it may have branch point, pole or essential singularities at infinity, which
are mapped to the end points of the interpolation interval. Since the resulting function is no longer analytic on the
interpolation interval, the general polynomial interpolation may lead to divergence, while the Chebyshev interpolation
is expected to enjoy uniform convergence under the Dini–Lipschitz condition (3.3).

We consider three types of solitons on an infinite line with algebraic, exponential and Gaussian decay rates at infinity,
i.e.

(a) f (x) = 1

1 + x2 , (b) f (x) = sech(x), (c) f (x) = e−x2
. (4.1)

We will study the error of the Chebyshev interpolation depending on the algebraic, exponential and Gaussian mappings
of the infinite line to the normalized interval [−1, 1]. These mappings were discussed in detail by Boyd [3,4].

(a) Algebraic soliton. Let z = x/
√

L + x2 and rewrite the algebraic soliton in the form

1

1 + x2 = 1 − z2

1 − z2 + Lz2 .

Simple poles of the rational function occur at z = ±1/
√

1 − L, which are on the real axis for L < 1 and on the
imaginary axis for L > 1. The best convergence is obtained in the case L = 1. Nevertheless, Fig. 4 shows that the
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Fig. 4. Interpolation error for the algebraic soliton f (x) = 1/(1 + x2) for n = 40 (blue) and n = 60 (red).

interpolation error quickly drops to a numerical zero (which is 10−15 in MATLAB under Windows platform) as L
grows, so that the larger is the value of n, the quicker the error drops.
(b) Exponential soliton. Let z = tanh(Lx/2) and rewrite the exponential soliton in the form

sech(x) = 2(1 − z2)
1/L

(1 + z)1/L + (1 − z)1/L
.

The resulting function has no branch points for L−1 ∈N, for which the best convergence is achieved. The closest
simple pole to the interpolation interval is located on the imaginary axis at the point z = i tan(πL). When L → 0, the
pole approaches to the origin and the interpolation error gets larger. In addition, if L−1 /∈ N, the end points z = ±1
are branch points of the function f (z). Fig. 5(left) shows that the interpolation error increases both as L → 0 and as
L → ∞. When L = 1, the interpolation error is zero numerically, since the resulting function becomes a quadratic
polynomial. Fig. 5(right) shows that the interpolation error converges to zero as n → ∞ and the convergence is faster
for L = 0.5 than for L = 0.6.

Fig. 5. Left: Interpolation error for the exponential soliton f (x) = sech(x) for n = 40 (blue) and n = 60 (red). Right: Convergence of the interpolation
error for the exponential soliton f (x) = sech(x) for L = 0.5 (blue) and L = 0.6 (red).



802 M. Chugunova, D. Pelinovsky / Mathematics and Computers in Simulation 80 (2009) 794–803

Fig. 6. Interpolation error for the Gaussian pulse f (x) = e−x2
for n = 20 (blue) and n = 40 (red).

(c) Gaussian pulse. Let z = 1 − 2e−(x2/L) and rewrite the Gaussian pulse in the form

e−x2 =
(

1 − z

2

)L

.

The resulting function is a polynomial if L ∈N and has a branch point at z = 1 if L /∈ N. Fig. 6 shows that the inter-
polation error becomes larger in the limit L → 0. Since f (z) is a polynomial for L ∈N, the error is zero numerically
if n ≥ L ∈N.

To conclude, Chebyshev interpolants can be applied to solitons after the infinite line is mapped to the interval [−1, 1].
This mapping brings singularities from infinity to the end points ±1. For some values of the mapping parameter
L, singularities are cancelled and the interpolation error converges to zero faster than that for other values of L.
Unfortunately, this property limits applications of Chebyshev interpolants for numerical simulations of solitons in
nonlinear evolution equations, since parameters of solitons change in the time evolution. Therefore, even if L is picked
optimally for the initial data to reduce the interpolation error, it may not be optimal for final solitons in the long-time
evolution of the nonlinear equation.
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