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A criterion for the emergence of new eigenvalues is found for the linear scattering
problem associated with the Benjamin—QiB®) equation. This bifurcation occurs

due to perturbations of nongeneric potentials which include the soliton solutions of
the BO equation. The asymptotic approximation of an exponentially small new
eigenvalue is derived. The method is based on the expansion of a localized function
through a complete set of unperturbed eigenfunctions. Explicit expressions are
obtained for the soliton potentials. ®998 American Institute of Physics.
[S0022-248808)00112-1]

I. INTRODUCTION

This paper studies the problem of soliton generation in the integro-differential Benjamin—Ono
(BO) equation,

u;+2uu,+Huy,=0, (1.9

where

1 F u(y)dy
V.
—w Y—X

and p.v. stands for the principal value of the integral. The evolution equétidhdescribes the
propagation of long internal waves in a deep flgsete Ref. 1 for review and referenge$he
algebraic and spectral properties of the BO equation were intensely studied in development of the
bilinear and inverse scattering transform methotiJhe latter method allows one to relate the
number and parameters of solitons generated by a smooth localized initial perturb@tjon
=u(x,0) to the number and location of eigenvalues of the discrete spectrum for the linear spectral
problem associated with the potentiglx).

Generations of new solitongand associated eigenvalyiesvere studied for several
(1+1)-dimensional evolution equations in the limit of small and, alternatively, large number of
solitons? For instance, the Korteweg—de VriéédV) equation associated with the Schimger
operator possesses thresholdfor the generation of solitons by a small initial disturbahasile
the modified KdV(mKdV) equationdoespossess a certain threshold on the area of the potential,

Mlu]= f:udx. (1.2

This threshold is related to spectral properties of the Dirac opetaidnen the potential has a
large amplitude, the problem under consideration has a uniform quasiclassical s(dagdref. 4
for the KdV equation which was derived also within the rigorous analysis of the dispersionless
limit of the evolution equation8.

Surprisely enough, the problem of soliton generation for the BO equétidhhas not been
finally solved since some independent results have appeared to be contradictory. Suppose that the
initial perturbation can be renormalized in dimensionless unitslJ U (x/Ly), whereU, is a
characteristic amplitude arld, is a characteristic length. Then, the number of solitons essentially
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depends on the sole parametitte so-called Ursell paramejer=UgL,. In the limit o>1, the
potential generates a large numhbeof solitons, an approximation fan was found by Matsurfo
and confirmed by Milotet al.?

1

=— u(x)dx. (1.3

27 Jux=0
Some early numerical and analytical data on the generation of solitons by an initial disturbance of
an algebraic profilep=2a/(1+x?) were reported in Refs. 9 and 10. An important question,
whether a small initial perturbation, i.e., that in the lirai€ 1 (a<<1), can support propagation of
at least a single soliton, remained open however. This problem was first addressed by Pelinovsky
and StepanyantSwho considered linear approximation in the pulse propagation. The linear part
of the BO equatior(1.1) has a self-similar solution preserving the at&®),

’

1 X
UZtT?U tT-

i.e., the characteristic amplitude and length of an initial pulse evolvedast 2 and L,
~t12, so that the Ursell parameteris effectively constant in time. These arguments imply that
an initially small wave disturbance witti<<1 remains effectively linear for all timeasand hence
does not support propagation of a soliton since the latter realizes a balance of nonlinear and
dispersive effects for the finite value of
Another way to predict the existence of a threshold for the soliton generat@Ref. 8is to
use the fact that the arda.2) is invariant for soliton solutions of Eq1.1). A single soliton is

2v
1+v3(x—vt—xg)?’

u=ugx—ot)= (1.9

wherexg, v are arbitrary parameters with the constraint 0. Using Egs.(1.2) and (1.4), one
concludes thatM = M[ug]=27, and thus the area does not depend on the amplitude of the
soliton. For the mKdV equation, this property is related to the existence of threshold on the soliton
generation, where perturbations witht[ u]<3M; do not support a soliton Direct numerical
simulations of the BO equation did not display formation of a soliton for an initial perturbation
with M< Mg (see Fig. 2 in Ref. B However, contrary to these preliminary predictions, we show
that a soliton can still be generated in the BO equatioft) by a small initial perturbation without
a threshold.

The problem at the center of the analysis is the linear spectral problem associated with the
potentialu(x),

igy +hk(¢p" = )=—u(x)¢", (1.5

wherek is a spectral parameter awl(x) are the limit values, wher tends to the real axis, of
analytical functions in upper/lower half-planes xfThe pioneer analysis of direct and inverse
scattering problems for Eq1.5) was developed by Fokas and Ablowlzwho showed that the
continuous spectrum is located for real positive valuelswhile the discrete spectrum consists of
isolated nondegenerate eigenvalues for real negative valuesvafrious aspects of the spectral
theory including in particular the complicated asymptotic behavior of the Jost functibas
eigenfunctions associated with the continuous spedtwene addressed by many authbtst®

Based on the “improved” eigenfunctione., those free of secular divergencekat0"),
Coifman and Wickerhaus®rproved that the scattering probleth.5) has no bound states in a
neighborhood of the origin, ifi(x)—O(|x| "1"#), >0 (Theorem 7.1 of Ref. 15 Although this
result seems to agree with qualitative arguments mentioned above, direct analysis of the problem
(1.5 for the algebraic potential(x)=2a/(1+x?) did reveal the existence of a single negative
eigenvalue for & a<1.1° The eigenvalue approaches zero very fast-a€0 ™" and this fact makes
the detection of the eigenvalue difficult farsmall.



6554 J. Math. Phys., Vol. 39, No. 12, December 1998 D. E. Pelinovsky and C. Sulem

The reason for apparent discrepancy between the analytical and numerical results is caused by
a very special structure of the Jost functions in the likait0". Theorem 7.1 of Ref. 15 is valid
for genericpotentials satisfyingiy# 0, where

1 (+=
nozﬁ Jloo u(x)n(x)dx. (1.9

Heren(x) is the limiting Jost functiorisee Eq(2.13 below) which is logarithmically divergent
ask—07". However, if the potential imongeneri¢i.e., it satisfieqn,=0, then the limiting Jost
function is bounded in the limik— 0™ and properties of the scattering problem are modiffed.
The zero potentiali(x) =0 as well as soliton solutions are particular examples of nongeneric
potentials.

Recently, Kaupet al!® proved the completeness relation for the probldns) and calculated
variations of the scattering data under the action of a perturbation of the potefxjal These
variational formulas are derived for generic potentials when the number of bound states is invari-
ant under small perturbations of a potential.

In this paper we study the perturbation of nongeneric potentials where the number of bound
states may change depending on the type of the perturbation. More precisely, we consider a
potentialu(x) in the formu=u(x) + eAu(x), wheree<1 andu(x) satisfies the constraimt,
=0. In the particular case(x) =0, this problem reduces to the problem of soliton generation by
a small initial perturbation. We derive a criterion for a new eigenvalue to emerge from the edge of
the continuous spectrum &t 0. In particular, new eigenvalues may always appear due to per-
turbations of the zero background and the soliton solutions. We find that the asymptotic behavior
of the new eigenvalue iexponentially smalin terms of the parameter of the perturbati©eand
obtain the corresponding bound state and the perturbed Jost functions of the continuous spectrum.

This result is to be compared to the classical spectral problem for the ddehen operator
—Ay+eV(X) =Ny, with e<11%% As above, the problem is to find the condition on the
potential so that there exists an eigenvalughat bifurcates from the edge of the continuous
spectrum, and to compute, as-0, its asymptotic value and the corresponding eigenfunction. In
one space dimension, the bifurcation occurs whde- [~ V(x)dx<0 and one finds the eigen-
value A ~ — €2M?/41° The situation is more complex in two dimensions even with a radially
symmetric potential. The criterion for the bifurcation to occurNié= [ V(r)rdr<0 and the
eigenvalue is\~ —\ exp(2eM), where\y can be calculated explicitly in terms of integrals of
the potentiaf! Note that the behavior of the new eigenvalue for the BO spectral problem is very
similar to the latter case.

For the Schrdinger spectral problem, the analysis of the bifurcation can be performed by
various methods such as a direct two-scale asymptotic expansion techhifjaeanalysis based
on the positive definiteness of the self-adjoint operatdthe analysis involving the Green's
function representatioft, or the study of analytical behavior of transmission coefficients in the
scattering problem or, their generalizations given by the Evans’ funétion.

The BO spectral problem has the form of an integro-differential equation which make direct
applications of the above methods difficult. In this article, we develop a new approach based on
the completeness of Jost functions of the unperturbed problem.

The plan of this article is as follows. In Sec. Il we recall the main results on the spectral
properties of Eq(1.5). The regular perturbation theory is described in Sec. lll. The bifurcation of
a new negative eigenvalue from the origin cannot be obtained through a regular perturbation
method and we develop a revised method in Sec. IV to analyze this bifurcation. We derive the
leading order terms for the new eigenvalue and for the associated bound state at short and large
distances, as well as for the variation of the continuous spectrum data. Explicit expressions are
given in Sec. V for the soliton potentials. Section VI is devoted to discussions. Appendix A gives
useful relations for eigenfunctions of the BO scattering problem and Appendix B presents new
relations for the roots of the Laguerre polynomials which appear in the course of our analysis.
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II. SPECTRAL PROPERTIES OF THE BO ASSOCIATED PROBLEM

In this section, we recall some basic results on the direct scattering pr¢blBnthat will be
used in the analysis. We assume that the potentiali(x) is real and has a sufficient decay to
ensure the convergence of the area integra, i.e.,u~O(|x| "2 #) asx—», u>0. The details
and proofs of these results can be found in Refs. 12 and 17.

A. Spectrum and scattering data

For allk>0, there are two solutiony andﬁ(the Jost functionsto Eq.(1.5), defined by their
boundary conditions as— o,

N(x,K)—1, N(x,k)—ekx, (2.2)

Using the projection operators

ey L [t vydy 1
P (v)—_ﬁ . m—E(U+IH0), (2.2)

it is proved thatN andN satisfy the integro-differential equations
iN,+kN=—P*(uN)+Kk, (2.39
iNy+kN=—P*(uN). (2.3b

Equation(2.1) has also a discrete number of bound sté@gx)}}“:l, wherem is finite, associ-
ated to discrete eigenvaluks<0. They satisfy

iquX+qu)j:—P+(Uq)j), (23@

with the boundary condition
1
<I>J-(x)—>; as x— o,

We denotes™ the set of eigenfunction&ﬁz{ﬁ(&, K);N(X,K){@;(x)}L,}. Alternatively, one
can consider the set of eigenfunctiofiél (x,k);M(x,k);{®;(x)}{L} which satisfy the same
equationg2.3) but with the left-side boundary conditions

M(x,k)—=1, M(xk)—ek q>,-(x)%; (2.4)

asx— —o, These two sets are related by the scattering equations
M (x,k) —N(x,k) = B(K)N(x,k), M(x,k)=T(K)N(x,k), k>0, (2.5

In the case of a real potentia(x), the scattering coefficients are given'by

_ 1 (kgD
F(k)—exp{ﬁ fo K dk} (263

and

B(k)=iflu(x)N*(x,k)dx. (2.6b
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The scattering equatiof2.5) relates the function$(x,k) and ﬁ(x,k) which are analytic in
Im(k)>0 and Imk)<<0, respectively. It has the form of a Riemann—Hilbert probf‘elrrm.R_ef. 12,
Fokas and Ablowitz derived a solution of this Riemann—Hilbert problem for the funbtionk)
at Imk)=<<0, in terms ofN(x,k) for realk,

i ,(x) 1 (= B(K")N(x,k")dK’

N(k)=1 _'2 —k 2mi )0 K—(k=i0) @7

Here simple poles correspond to the discrete spectrum locatednagative eigenvaluels;<<0
while the integral represents the contribution from the continuous spectrum located @orThe
scattering data form a closed system when @4q?) is coupled with the relation,

aNf;li K _ix xN(x,k) + B ( )ﬁ( x,K) (2.89

and the limiting behavior oﬁ(x,k) ask—k; is to be used,

— i®j(x)
N(x,k)+ K

lim
k*)kj

=(X+75)®;(x), (2.8b

]

where y; are the phase constants. The spectral eﬂapayj}}ll can be expressed through the
eigenfunctionsP;(x) according to the expressions,

[

kj:ﬁ _wu(x)d)j(x)dx (2.99

and

1 @ i
= ) 2 y— —
Yi 2k, f,wXM)J(X)' dx o (2.9p

Equation(2.93 follows from Eq.(2.39 (see Refs. 12 and L7while Eq.(2.9b can be obtained
from Eq. (Ada) of Appendix A.

It was recently found for other spectral problems of inverse scattérthgt the coalescence
of two simple poles may occur and, in this case, the proper solution to the Riemann—Hilbert
problem must include also multiple poles corresponding to degenerate eigenvalues. However, this
coalescence is not possible for the BO spectral prokies associated with the real potentials.
Indeed, suppose thiai =k, + €, wheree<1 and expand a solution to Eq2.7) and(2.8) into an
asymptotic serie$>

<I>1=——<I>( Vx)+ P (x)+0(e),
(2.103
@, =—cb< V(x)+®P(x)+0(e),
y1:|;+7(°)+0(e),
(2.10h

i
'y2= — E-l-'y(o)-i-O(e).

This expansion provides a double pole in the lirit-0 for the functionN(x,k) and satisfy the
limiting relations(2.8h). However, it contradicts the balance prescribed by (b, the latter
being valid for real potentiali(x). Therefore, multiple poles are not present in the representation
(2.7 and the eigenvaluds=Kk; for j=1,m are all simple.
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The spectral datgs(k)},{k; ,7j}]m:1 characterize the BO equation as a completely integrable
systemt® and they can be calculated from the Jost functidfs, k) and the bound stateB;(x) by
means of Eqs(2.6) and(2.9). The functionsN(x,k) and®;(x) satisfy a self-consistent system of
integral and algebraic equatidrsvhich is a crucial step in inverse scattering. The potenifalt)
can be recovered fa=0 by means of the formula,

1 w - m
uzz_ﬂi JO ﬁ(k')N(x,k')dk’ﬂJZl ®;(x)+c.c. (2.11)

if the time evolution of the spectral data is taken into accd@ihtinverse scattering results will

not be used for the problem under consideration. Instead, we mention the well-kno¥rtHatt

the continuous spectrum of the scattering prob{émb) corresponds to the dispersive wave pack-
ets(radiation induced by the initial potential(x) while the bound states of the discrete spectrum
correspond to solitongl.4) with the parameters = —2k; and xo= —Re(y). These parameters
induced by the initial potential are constant in the time, while the solitons become separated due
to different values of their velocities.

B. Asymptotic behavior of the Jost functions

The asymptotic behavior of the Jost functions and of the scattering dadta-&S can be
studied by means of their Green’s function representdfidhFor generic potentials, the Jost
functions vanish ak—0* according to the scaling approximation,

N(x,K)— ) +0(L) (2.12
K= Ty ik TOlink) :

where y=0.577 is the Euler’'s constant, is defined by Eq(1.6) andn(x) satisfies
in,=—P*(un). (2.133

Equivalently,n(x) is the unique solution to the integral equation

o0 1 o0
n00=1-i1 [ uynyay- = [ upnineey-iody. (@139

X

We notice that the representati@® 12 describes an improved approximation for the asymptotic
behavior of the Jost function compared to the conventional expafision,

n(x)
+
Ny In k

N(x,k)— . (2.143

(In k)2

Using Egs.(2.6) and (2.14a we find the uniform asymptotic representation for the scattering
coefficients ak—0",

2i ( 1
(In k)® In k (In k)

1 2i
B(k)ﬁerO —) F(k)=1+—+o<—2>. (2.14b

It follows from Eq.(2.13b that the limiting functionn(x) is logarithmically secular and violates
the boundary conditiofi2.1)

1-nginx asx—o»
1-ngLnx as x—-»’

n(x)—»[ (2.19
where Lnx is the principal value of the logarithmic function. Thus, the limiting pdirt0 does
not belong to the continuous spectrum for generic potentialsN(e,k) —0 ask—0~.

On the contrary, the condition,=0 defines a class of nongeneric potentials which include
the zero background(x) =0 and soliton solutions. In this case, the limiting functiofx) is not
secularfsee Eq(2.15] and the limiting pointkk=0 doesbelong the continuous spectrum, i.e.,
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N(x,k)—n(x) +kny(x)+O(k? In k), (2.163
and

B(k)—kB;+0O(k? In k)

I1*

F(k)—1+

k?+0O(k3 In k) (2.160
ask—O07. In order to prove validity of the expansiori8.16), we use the relation€2.6b and

(2.8a in the limitk—0™. At leading orderN(x,k)~n(x) ask—0".1" As a result, we find from
Eq. (2.83 the following representation far;(x):

*

nl(x)zi(x— f—;) n(x), (2.17a

and from Eq.(2.6b the explicit formula forg,,

ﬁ1=p.v.J2xu(x)n*(x)dx. (2.17bH

Any perturbation to the nongeneric potential changes the asymptotic behawes @5 and
may lead to the occurrence of a new bound stat&kfo. This bifurcation is studied in Sec. IV.

C. Number of bound states

For both generic and nongeneric potentials, the total &ted is related to the number of
bound statesn by

1 (=B
M[U]ZZ’iTm—%JO Td

k. (2.18
To obtain this formulgsee Ref. 1), one writes Eq(2.7) atk=0, multiplies it byu and integrates
overR. The integrall“ ., u(x)N(x,0)dx=0 for both generic and nongeneric potentials. The other
terms are evaluated using Eq2.6b and (2.93.

Another way to see that

1 1 =Bk
E(M[u]-f—zjo » dk)

is an integer is to take the limit— o, x— — in the second equatiaf2.5) and to use Eqg2.4),
(2.6a as well as the asymptotic representatiorNgk,k) for k— o,

N(x,k)~exp{ikx—ifcu(x)dx for real x. (2.19

In agreement with the distributiofl.3) for largem, the positive regions of the potentia{x)
give birth to bound statesolitong while the negative regions are sources of continuous spectrum
(radiation.

lll. REGULAR PERTURBATION THEORY

Suppose that the scattering probléin5) for u=u(x) hasm bound statesb;(x) for k=k;
<0, j=1m and letN(x,k) be the Jost functions fdt>0. In Ref. 18, Kaupet al. proved the
orthogonality conditions

F N* (x, k" )N(x,K)dx=278(k—k'), (3.1a
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Jm N* (x,k)®;(x)dx=0, (3.1b

fcc (I)r(X)(I)j(X)dX:_Z’ITkjén (31()

as well as the completeness relation,

* N* e PP i
JON (y,K)N(x,k)dk ;Zl < = o

(3.2

Any function® *(x) such thatb * ~O(|x| “1~#) asx—o, u=0, can be expanded over the basis
{N(X,K):{@;(x)}{L 1} as follows
m
L [* a(N(xk) a;®(X)
® (x)_f0 T dk+j§1 o (3.3

wherea(k), «; are coefficients of the expansion and the arbitrary parameteintroduced for
convenience in the following analysis and will be specified in the next subsection. The coefficients
a(k) ande; can be expressed through the functibii (x) using the orthogonality relatior(8.1).

A classical problem of perturbation theory is to study variations of the spectral data subject to
a small variation of the potential. We assume that the perturbed potential is expreaséd)as
=u(x)+eAu(x), where e<1, and the functionsu(x) and Au(x) decay at infinity as
u(x),Au(x)~0(|x| 2 *) with =0. Here and in subsequent sections, we study the variations of
the spectral data for perturbed generic and nongeneric potentials.

A. Variations of data of the discrete spectrum

Suppose that *(x) solves Eq.(2.39 with u¢=u(x)+ eAu(x) and « is the corresponding
eigenvalue. The linear eigenvalue probl€xBg can be reduced to a set of integral equations for
the coefficientsx(k) and ; in the form

e | (= KkkDak) & Kj(Ke
w05 | [, T W 343
e [=KKak) = & Ky
- _ J ’ J
4= 27k J'o k' —k dk +|21 kK—«k|’ (3.4b

where

K(k,k’)=fco Au(X)N* (x,k)N(x,k")dx,
Kj(k)zﬁ;Au(x)N*(x,k)ij(x)dx,

KJ-|=f:Au(x)CIDI-*(x)CI>|(x)dx.

Consider a particular eigenvalue=k;<0 and the corresponding bound stdtéz@f(x).
The analysis of Eq(3.4b shows that the asymptotic balance is satisfied by the following Taylor
expansion:
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and
aj=(Ki—k\)(1+eaV+0(€?)), (3.5b
eK;
== k|+O(e) 1#], (3.50
i(k
a(k)zEKZJ:T)—ir é2). (3.59

The correctionAk; is obtained from Eq(3.4b as

1
Akj :ij K (3.6)
We then proceed with the first-order correction termhf(x) which is given through Eqg3.3
and(3.4) as®;=®d;+ eAd;+O(€%), where

A= VD, +i = Kj(kN(x,k) Kij®i(x) 37
! 27T k_kJ I #] 27Tk|(k|_kj) )

The constant«fl) can be found from the boundary conditi¢th3) by removing theD(x 1) term
asx—o. Using the boundary conditiori®3) of Appendix A this leads to the expression,

Ky, Ki(0) 1 [=pB*(K;(K)
(1)_ lj Ny - i
“ ‘E,— orki(k—k) 2mik, 472 Jo Kkk=k) 9% (389

This formula is equivalent to that given in Ref. 18,

o= = = [ Auo (et vl 00 P (3.80
5T 2mik M ' '

In order to prove this, we rewrite E43.8b as

1 o o
H_ _
a} - 2mik; (f_wp+(AU¢j)dX+ f_m(x+7j)¢)rp+(ﬁuq3j)dx . (3.9

Using the completeness formula.2) we represenP+(Au<I>j) as

1 K@ (x)
+ V= J
P (Aud))=5— f K;(K)N(x,k)dk— ; ok (3.10

Substituting Eq(3.10 into Eq.(3.9) and using Eqs(A2) and(A4) of Appendix A we recover Eq.
(3.8a.

Applying the same method, we expand the relati@9) into the asymptotic series fdanf [see
Eq. (3.53] and for yj, yj=1v;+€A yJ-I—O(ez) The first-order perturbation terms are thus ex-
pressed as

1 o0
Akj=5— f (AuD;+UAD;)dx, (3.113
27T| —»

l 0
Ayy= g j (x+ ) (D;AD + D AD;)dlx. (3.11h
] — 0

Substitution of Eqs(3.7) and(3.10 into (3.113 reproduces the resulB.6), while substitution of
Egs.(3.7), (3.89, and(A4) into Eqg.(3.11b leads to the expression,
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A :‘LF AUCO(x+ 7)) |00 25— 3 KUK
N ome YT 27K (k— k)2

i 1#]

i = B* (K)K;(k) = B(K)KT (k)
+4w2kj fo dk. (3.12

(k—k;)?
The formulag3.6)—(3.8) and(3.12 coincide with the variational derivatives found in Ref. 18 with

a different approach. In addition, we find from E@.4b the second-order correction to the
eigenvalue,

dk— |- 3.1

1 = [K;(k)[? K2

These results are valid both for generic and nongeneric potentials, i.e., those with the asymptotic
behavior(2.14) and(2.16), respectively. The variations of data of the discrete spectrum for the BO
spectral problem are similar to standard form of perturbation theory in quantum mechanics.

B. Variations of data of the continuous spectrum

The perturbation theory for the Jost function can be constructed with the help of a modified
integral representation,

a(k, k)N(X,K) aj(k)D;(x)

NE(X,K)=N(X,K)+JO mdk+j§=:1 kj—K , (3.149

whereN¢(x, «) solves Eq.(2.3b for u¢=u(x)+ eAu(x) andk= k. According to the boundary
conditions(2.1), (2.4) and the scattering proble(2.5), Eqg. (3.14) reduces in the limik— — o to
the following relation:

1 1 27 a(k,k)

rék) TI(k T'(k)

(3.19

The coefficientsa(k, «) and aj(«) satisfy a system of integral equations modified compared to
Egs.(3.4),

€ = K(kkDak' k) o KiKaj(x)

a(k,K)_E K(k,K) f m dk +121 kJT , (3.163
* ! ! m

€ . JOO Ki (k") a(k’, x) ) Kjia(x)

a;j(x) ke KF 0+ | om0 9 +|§1 ke | (3.16h
As e—0, these integral equations can be solved by a Taylor expansion,
(K1) = — K(K, k) +O(€), (3.173
2

(k) = — 5—— K* (k) +0(€?). (3.17b

Using this explicit asymptotic behavior, the spectral coefficient can also be expanded in the Taylor
series,I'¢(k) =I'(k) + eAT' (k) + O(€?), where

AT (k)

T =iK (k,k). (3.18

Since lim_... K(k,k)=[7., Au(x)dx=AM, it follows from Eqgs.(2.63 and(3.18 that
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1 =Bk
AM——EAL —— dk (3.19

This relation is nothing but the variation of E@.18 which proves that the numbert of solitons

is invariant under a small change of the potential, i¥an=0. However, this result as well as
formulas (3.17—(3.19 of the regular perturbation theory are valid only for generic potentials.
When the potential is nongeneric, i.e., it possesses the asymptotic represd@taiprihe regular
perturbation theory fails in the limk—0". Indeed, using Eqg2.16 we find that

Al“(0)=ifoo Au(x)|n(x)|?dx#0. (3.20

This result contradicts the asymptotic behawn 4, which providesAT'(k)—0 ask—07. For
comparison, the relation3.18 for generic potentials exhibits the limit behavioAT (k)
~0((Ink)~? ask—0" which is in agreement with E¢2.14h. The reason for failure of the
regular perturbation theory is related to the fact that the integral ifEt¥) becomes singular as
k—07. Thus, the perturbation theory must be revised for perturbations of the nongeneric poten-
tials. This revision is closely related to analysis of bifurcation of a new eigenvalue in a neighbor-
hood ofk=0.

IV. REVISED PERTURBATION THEORY

Since multiple degenerate eigenvalues are not permitted in the BO spectral problem, as shown
in Sec. Il A, the only possible bifurcation may be a formation of a new bound state from the
delocalized limiting eigenfunction of the continuous spectrum. In this section we show that this
bifurcation can happen due to perturbations of the nongeneric potentials. Using the integral rep-
resentation(3.3) and(3.4) we find the asymptotic approximations for the new eigenvalue and the
corresponding eigenfunction.

A. Asymptotic series for a new eigenvalue

Suppose thak=Kk.,, = —p(€), wherek,,,1 is a new eigenvalue detaching from the con-
tinuum ase—0 andp(e)>0. The integral in Eq(3.43 is singular ask—0~ unlessK(k,0)
=0. The latter condition is always true for the generic potentials shkicek) vanishes in the
limit k—0". However, for nongeneric potentials, sifgéx,0)~ n(x) [see Eq(2.163], K(k,0) is
generally nonzero. Thus, the singularity in E§.49 is of resonance pole type and accounts for a
nontrivial solution of integral equations which corresponds to a new bound sbdte
=D a(X).

In order to construct an asymptotic solution to E¢3.4) at k= —p(e) we evaluate the
singular contribution explicitly,

€ p e | [LK(kK)ak)—K(k0a(0)
a(k)=—zln 1Tp K(k,O)a’(O)‘f'z fo K+p dk
= Kk kDak) o Kike
+Jl —ip gk +j§=)1 Wrp | (4.2)

[The other equatiofB.4b) can be transformed in a similar manjéie notice that the integrals in
Eg. (4.1) are now free of singular terms in the limit(e)—0*. [Still a Taylor expansion with
respect tp(e) would lead to newweak singular terms in Eqi4.1). This modification is required
only for calculation of exponentially small corrections of the asymptotic sédies and will be
neglected henceforthThe asymptotic balance of the singular term occurseftm p~O(1) ase
—0. Thus, the new eigenvalue is exponentially small in terma &fnder the balance above, the
asymptotic series solving E¢4.1) can be presented in the form,

L w
In p=— p_1+|20 €p+0(e 'p(e)), (4.2
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a(k)=ao(k)+ 2, €ai(k)+O(p(e)), (4.2b)

-—a(o)+2 ea (l p(e)). (4.20

We requirep_1<<0 to ensure the eigenvalye=p(e) to be small in the limite— 0. All terms of

the Taylor series for(k) and «; can be found recursively in an explicit form from Ed.1) by
neglecting the exponentially small residue terms, i.e., the terms containing the eigepvélee
confine our analysis only to the leading-order and first-order approximations in these asymptotic
series. The leading order term is

ap(k)=— % K(k,0) ap(0). 4.3

The coefficientp_, follows from this equation in the limik—0,

_ 21T 4d
p*l__K(O,O)' ( . )

Since the restrictiop_;<<0 was assumed in E@4.29, the following criterion,
K(0,0)=j Au(x)|n(x)|2dx>0, (4.5

should be satisfied for the bifurcation of the new eigenvide,,, ;= — p(€) to occur.
In order to find the pre-exponential factpg in the asymptotic expansion fgr=p(e), we
derive from Eqs(3.4b and(4.1) the following expressions foaj(o) and a4(k):

K} (0)
al®=— ij' (0.0 *© (4.6a
and
K(k,0) p
(=50 0~ 5, KKOag(0)
ap(0) 1 K(k,k")K(k",00-K(k,0K(0,00
27K (0,0) f K’ dk
= K(k,k')K(K’ T Kj(K)K¥(0
+f K(k, l1K( 0) d- S i )kz,( )] @b
1 j=1 j
Then, the coefficienp, follows from Eq.(4.6b in the limit k— 0,
1 N*(y,K)N(x,k) —n*(y)n(x)
Po= [K(O O)]2 Jf Au(x)Au(y)n* (x)n(y)dxdy{f K dk
= N* (y,K)N(X,K) LOF(y)Dy(x)
[ NN g 900100 @
1 =1

This formula can be simplified if the nongeneric potential reduces to arpis@iton solution(see
examples in Sec. ¥ We formulate the main result of our analysis in the following statement.

Proposition 1: Suppose that the potentiglx) satisfies the constraintygs 0 and the pertur-
bation Au(x) satisfies the criterion K0,0)>0. Then, the potential U= u(x) + eAu(x) supports
an eigenvalue k —p(e€) in a neighborhood of k0 for €>0, where
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p(e)=c exple *p-1)[1+0(e)] (4.8

and c=ePo. The coefficients p;, po are given by Egs. (4.4) and (4.7). No eigenvalue exists in a
neighbourhood of k0 for €<O.

We notice that ifK (0,0)=0, the asymptotic approximation of jmhas generally th© (e ?)
term and the asymptotic expressio#2)—(4.8) must be reconsidered. This special situation
occurs if the perturbatioAu(x) still conserves the constraing=0 for the limiting Jost function
n(x) extended to the first-order of the perturbation theory. Alternativeli(9,0)<0, the bifur-
cation analyzed above occurs fe+0.

B. The bound state corresponding to the new eigenvalue

Proposition 2: The eigenfunctionb,,,,(Xx) corresponding to the eigenvalue=K. 1
= —p(e) has the asymptotic form

ap(0) f“ K(K,OIN(x,k) dk+O(e). (4.9

(I)m+1(x): K(0,0) 0 k+ p(f)
The spectral datay,,,, 1 defined in Eq. (2.9b) is given by

 axsuln(olPdx  By+ By
Yl T T E AU N0 [2dx | 4w

(1+In p)+ 2I_p’ (4.10

where 8, is defined in Eq. (2.17b)

The eigenfunctiond . ;(x) follows from Egs.(3.3) and (4.2b. At the leading order, this
produces the expressid@a.9), where the integral has a singular contributioneasO.

The behavior of this eigenfunction is different along different scales ok treiations. In the
outer region, i.e., in the limik—oo, the function®,,,((x) is localized. Using the boundary
conditions(A3) and the asymptotic representatigh16), we find the limiting behavior,

1 Binp

ip 27

ag(0)
X

(I)m+1(x)|outer_>_ +0(e), (4.113

where B4 is given by Eq.(2.17h. The second term in the brackets is exponentially small com-
pared to the first one, and, therefore, we defig€0) asay(0)= —ip according to the boundary
condition® ., ;(X)—x "1 asx—os.

In the inner region, wherg~0(1), theamplitude of the eigenfunctio®,, 1(x) is expo-
nentially small in terms ot. Using the integral representati¢f.9) we find the inner asymptotic
expansion for® . 1(x) as follows:

q)m+1(x)|inner—>ip(|n p)n(x)+0O(p). (4.11b
In order to compute the spectral datg, ; we use Eqs(2.9b), (4.9), and(A5) from Appendix
A. In addition, we find from Eqs(2.163 and(2.173 that

. (ﬂK(k,O)) B1
lim
k—0

— :—if:xAu(x)|n(x)|2dx—ﬁ K(0,0,

where 8, is given by Eq.(2.17h. The result of these computations is expressed in(£40.

C. Revised variations of data of the continuous spectrum

Here we revise the regular perturbation theory for Jost functions. The regular asymptotic
expansion is described in Sec. lll C, where it was shown that the contradi&ti®® appears in
the limit k—0* for perturbations of nongeneric potentials. In order to calculate this limit cor-
rectly, we notice that the integral in E¢8.164 is singular in the limitk—0* if K(k,0)#0 and
a(0,x) #0. Therefore, we cannot use the Taylor expang®h?) to solve Egs(3.16). Instead, we
evaluate the second term of the r.h.s. of 2j163 in the form,
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fw K(k,k)a(k', k)

1_
TR —teio 9K = —wiK(k,K)a(K,K)JrK(k,K)a(K,K)m( KK)

+p.v.f1 K(k,k")a(k ,:[)::(k,K)a/(K,K) dK’

+F K(kk)alk'x)

1 k’_K

Now we impose a scaling transformation,

a(ki)= In k—In p+ i

Bk, k), (4.129

where Inp is defined by solving Eq4.1) and 8(k, k) satisfies the integral equation,

Bk, k)= % K(k, k)[ = In p+(In x+ i) (1— Bk, k)]

€ 1 K(k,k")B(k", k)—K(k,k)B(k, k) ) » K(k,k")B(k', k) ,
+E p.V.fO K —x dk +f1 de

& Ki(K)Bj(x)
+]'21 kj_K ' (413)

Here B;(«) are defined throughy(x) by the same transformation as E@t.123. In the
asymptotic limit k~p(e)<1 we use the approximatiol (k,«)=K(k,0)+O(«) and B(«,«)
= B(0,x) + O(«) and compare the integral equatighl) with Eq. (4.13. Neglecting the terms of
O(p(€)) andO(k) in the integral equations, we derive the following simple result:

k
ﬁ(k,K):%‘FO(K,p(E)), (4.12h

where a(k) is represented by the asymptotic serié2b). The remainder term oD («) follows
from the analysis of Eq4.13 in the limit e—~0. Using Eqs(3.14) and(4.12 we verify that the
Jost functionN¢(x,k) has the correct asymptotic behaviorkas 0+,

NGk = Pt 0
= S pra "OF

Nk (4.19

This formula agrees with the representati@l?. Furthermore, comparing the denominators of
Egs.(2.12 and(4.14), we find the relation between the asymptotic expansion of the paraméters
[see Eq(1.6)] andp(e€) for the new eigenvalue,

1 i
FZ—In p(e)+ > v+0(p(e€)). (4.15
0

At the leading order, this formula implies that
€
n3=z K(0,00+O(€?). (4.16

Thus, the criterion for bifurcation of a new eigenvalu€(0,0)>0) can also be formulated as
ng>0. Furthermore, we use Eq.15 and (4.12 to find the spectral dath (k) ask~p(e)
<1. Sincel'(k) =1+ O(k?) for nongeneric potentialgsee Eq(2.160], we have

Proposition 3: When k p(€) <1, the spectral datd" (k) are given by
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Ték)=1+

k
Ink—inprai O w%' (4.17

It is important to notice that the perturbation to the nongeneric potential produc@g1gn
effect which occurs however only fde~ p(e)<1. In the limitk<p(e€) the asymptotic solutions
(4.14), (4.17 reproduce the behavior of scattering data for the generic potefgedsEqs(2.14)].

In the opposite limitk>p(e) the asymptotic solutio4.12 matches with the Taylor expansion
(3.173, while the Jost functiori4.14) approaches to the limiting functiam(x). Thus, the revised
perturbation theory provides a uniform asymptotic solution describing a structural transformation
of asymptotic behavior of the Jost function and the scattering coefficierks-&s" induced due

to a perturbation of the nongeneric potential.

Finally, we notice that the uniform asymptotic soluti@hl? prescribes a “hidden” pole at
k=p(€). This resonant pole occurs due to strong excitation of radiation in the BO equatipn
which compensates the unbalance of the area inté§rd) induced due to formation of a new
soliton. Indeed, if the small perturbation to the potential leads to a new sélitwa eigenvalug
then the following relation must be satisfied for E8.18 at the leading order,

o € 2_ 2
L (Bl

27 |,

lim

e—0"

2. (4.18

We check this limit by using the asymptotic representationdtk) following from Eqgs.(2.6b),
(2.12, and(4.15),

2mi k
ﬁ(k):m+0(m,e). (4.19

The dominant pole-type term is the leading-order term in the difference begfékhand B(k),
so that we find

1= [gwP=lpkl? (= dk -
w27 Jo K dk_ZWJ; k((In k—In p)°+?)

lim

e—0

2.

V. EXPLICIT EXAMPLES

In this section we apply our general results to the important class of the musaiton
potentialu(x). In particular, these explicit formulas solve the problem of soliton generation by a
small initial disturbance, i.e., wheam(x) =0. Explicit expressions are also computed for an alge-
braic potentialu(x) =2a/(1+x?).

A. Asymptotic approximations for m-soliton potentials

For m-soliton potentials, the scattering data @g) =0 andI'(k)=1 for all k, and the Jost
function N(x,k) has the simple explicit form,

. (5.9

X

N(x,k)=n(x)e'*, n(x)=ex;{—ifmuo(x)dx

Thus, the asymptotic expressidd.19 for large k is valid for anyk in the case ofm-soliton
potentials and provides a function which is analytic inXjg0. To prove the latter statement, we
rewrite them-soliton solution through its pole expansions,

mm=2& , (5.2)

X=Xj x=xF
wherex; are complex poles of the solutions with x)&0. Then, we find the explicit formula for

n(x),
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x—xj*

n(x)=j]:[l (5.3

X=X
which is analytical for ImX)=0. It follows from Eqgs.(1.6) and(5.1) that the constrainty=0 is
satisfied identically for anysoliton solution. As a result, we find from E@L.5) that the variation
of m-soliton solutions may generate an additional eigenvalue, if

AM= ﬁo Au(x)dx>0, (5.9

whereAM is the variation of the area integrél.2). [Note that the area integral for time-soliton
solution isM=27m.] The asymptotic approximation of the eigenvakse — p(¢) follows from
Eqgs.(4.4), (4.7), and(4.8). Using the fact than(x)|2=1 [see Eq(5.1)] and the table integradbee
p. 432 in Ref. 24,

1 @kx-y)_1 o @lk(x=y) i
J' dk+f dk=—y—In|x—y|+ = signx—y) (5.5
0 k 1 K 2

we find the parametens_, andp, explicitly

_ 2 5.6
P-1=~ 3w (5.69

and

B II7 Au(x)Au(y)in|x—yldxdy |J7 Au(x)n* (x)®;(x)dx]?
Po=m 7™ (AM)? = KE(AM)?

(5.6b

The first integral term in Eq5.6b) represents the second-order correction to the new eigenvalue
from the continuous spectrum while the second integral term is the correction induced due to the
presence of other bound states. We notice that the latter contribution is additive which is a
consequence of the Darboux transformation of linear eigenvalue problems with bound®srates.

the particular casen=0, when all other bound states are absent, the expregsiéngive an
approximation for a single eigenvalue supported by a small perturbation to the zero background
u(x) =0 with a positive area integral.2).

B. Algebraic potential

The single-humped algebraic potentiglk) =2a/(1+x?) was considered as an initial condi-
tion for numerical simulations of the BO equatidiin the casea=1, this potential is exactly the
soliton solution(1.4) for t=0, x,=0, andv =1 [Due to the scaling invariance of the BO equation
the parameter can be always scaled by unitjkodamaet al 1 proved that this potential gener-
ates anmesoliton solution fora=a,=m with eigenvaluesk; given by zeros of the Laguerre
polynomialsL,(—2k) (see Appendix B They also proved that, ,<a<ay,,, there arem
+1 bound states. Since the exact solutions of #cp) for the algebraic potential are not known,
the eigenvalues were calculated numerically. Here we find the explicit analytical approximations
of the new small eigenvalue which emerges et a,,+ €, where G<e<<1.

Since the functiom(x) is analytical for ImK)=0 we calculateP*[un] for the algebraic
potentialu=2a/(1+x?) as follows:

P*[un]=un+ Iirl(;) )

In addition, we find from Eq(1.6) that
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n0=% J’:u(x)n(x)dx=an(i).

Then, the limiting functionn(x) satisfies a simple differential equation following from Eq.
(2.133,

ing
ing+un=———-.
X—i

This equation has an explicit solution

n(x)=—ng

) (lar1(X)— @), (5.7)

X+i

where

a+1(x) f (X I)a+l dx

and the constant is introduced to cancel the nonanalyticity fx) at the branching poink
=i. Using the recurrent relation,

x+i)a
— (5.9

las1(0 =120~ 2
the functionn(x) can be represented fon<a<<(m+1) as

Xx—i\2
X+i

x—i\K
X+ i

3, =

n(x)=ng (5.9

(la—m(x)_la—m(i)) .

The integrall ,(x) for 0<a<1 can be evaluated in two exceptional cases:aferl/2 (see Ref.
16), when | 1,=In(x+\1+x?), and fora=0, whenl,=In(x+i). Using the last formula and
comparing the asymptotical behaviormfx) asx—c given by Eqs(2.15 and(5.9), we find the
asymptotic representation fop asa=m+e,

o1, 2+iﬂ+§ Lo 5.1
o e n 2 T2 K (€). (5.10

This exact computation af, enables us to find from E@4.15 the asymptotic approximation for
a new eigenvalué,,, ;= —p(e) supported by a perturbed algebraic potential,

o1
p(e)=3 exp(—€ = y=Qnt0(e)) an=2 |- (5.1

In Appendix B we derive the formulés.11) with the help of Eqs(5.6). This (equivalent tech-
nique leads to a new relation for zeros of Laguerre polynomials.

VI. CONCLUSION

We have shown that small variations of the nongeneric potentials support a new bound state
in the BO scattering problem if the generic perturbation leads to a positive value of the governing
parameten,. For the soliton potentials, the latter condition is equivalent to a positive contribution
to the area integrall.2) induced by the perturbation. The self-consistent asymptotic expansions
are constructed and studied not only for the new eigenvalue and an associated bound state but also
for the perturbed Jost functions of the BO scattering problem.

Our results on bifurcation of new eigenvalues in the spectral prokilesh solve the classical
problem of soliton generation by a small initial perturbation within the BO equation. The expo-
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nential behavior of the new eigenvalue explains why our results do not fit into the classification of
Ref. 11. Although the BO equatiofi.1) realizes a marginal case in the criterion on the soliton
generation given in Ref. 11, the generation still takes place but is accompanied by a strong
radiation. The energy of an initial pulse measured by the inte@ral ” . u?dx all goes to the

linear dispersive waves except for an exponentially small addition to the algebraic $bl#pris

an indication of this smallness, the new soliton was not identified in the numerical simulations of
Ref. 8.

It is interesting to compare the no-threshold soliton generation in the BO equiatiprwith
that in the KdV equationy,+ 6uu,+ U,,=0. In the KdV equatioff,a small initial pulse with the
mass invarianM = eAM, whereAM = [~ _u(x,0)dx, also leads to generation of a single soliton
with the massM;=2eAM and emission of linear radiative waves with the madg=M
—Mg,=—€AM, i.e., all integral quantities remain small in this evolution process. In the BO
equation, an initial pulse with the masd=eAM generates a soliton with finite madd.,
=2 and strong radiation with finite madg,,;=M —Mg,=—27+ €AM [see formulag2.18
and (4.19].

Similar bifurcations of new eigenvaluésolitong may also occur when the perturbation of the
potential is given not by an initial condition but by a perturbation to the underlying equation itself.
The perturbed BO equation was considered recently by Matsuno and®¥wpho studied
variations of the soliton solutions induced by the perturbation. The formation of new solitons has
not been discussed yet.

Finally, since the BO equation is believed to be a pivot to multidimensional evolution equa-
tions such as the KP1 and DS2 equati¢see Ref. 3 another interesting problem is to construct
the bifurcation theory for new eigenvaluésolitons in the multidimensional evolution equation
integrable by the inverse scattering method.
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APPENDIX A: USEFUL RELATIONS FOR PERTURBATION THEORY

_Taking the limits(2.8b) into Eq. (2.7) we derive a system of algebraic equations dg(x),
j=1m,

~ @) BION(X,K) k N(x K
(X+ ) ®j(x —|§,J k k| o f K, k. (A1)
Furthermore, using Eq$2.3b), (2.30, (2.6b), (2.93 as well as the formula
+ikx
lim p.v. =xim7d(k),
X— + oo
we find the following relations:
J’ ®;dx=—i, (A2a)
» iB* (k)
f N(x,k)dx=278(k)— TR (A2b)

Equivalently, these formulas also follow from the boundary conditions\for,k) and ®;(x) as
x—o [cf. Eq. (2.1)],
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N(x,k)—>e‘kX+'§W—(kki+0(x*2), (A3a)
1
c1>j(x)_>;+0(x*2). (A3b)

We derive from Eqgs(Al), (A2), and orthogonality condition&.1) the following important
relations:

f_x (X+ )| @;(x)|2dx= i, (A4a)
* . mi(k;+Kk) )
f (X+ 7)) P (X)q)j(x)dXZW’ j#l, (A4b)
% i
* N i B(K)(k;i+k)
f_w(X+ ’yJ)N (X,k)‘bj(X)dX=2w5(k)+Wjik) (A4C)

In addition, we use Eq92.7), (2.83, (3.1a, and (A2b) in order to compute an equivalent
formula for the Jost functionll(x,k). As a result of straightforward calculations, we derive the
relation,

F XN* (X, K" )N(x,K)dx= — 2] d—5(k—k’)+ Bzf(k) 5(k’)+w 8(K)

dk 2k’

iB(k")B* (k) (k+k")
4mkK (k—K')

(A5)

APPENDIX B: DERIVATION OF THE ASYMPTOTIC FORMULA (5.11)

Here we check the asymptotic res(it11) by virtue of formulas(5.6). First, the potential
u(x)=2a/(1+x?) can be decomposed far=m+ ¢ as

u(x)= and Au(x)= (B1)

1+x? 1+x%°

Then, we find from Eqs(5.4) and (5.6a that AM=2# andp_,;=—1 in agreement with Eqg.
(5.11). Then, the first integral term in E@5.6b can be evaluated explicitl{f as

ffw Au(x)Au(y)In|x—y|dxdy=—8fﬂt In(sin t)dt=42 In 2 (B2)
o 0

which gives the factog in Eq. (5.11).
Next, in order to evaluate the contribution from the other bound states, we find fro(6.Bqg.
the limiting eigenfunctiom(x) for the algebraic potential(x) given by Eq.(B1),

C(x=0)"
C(x+i)™

n(x) (B3)
Using Eq.(2.93, we have
1 (= . .
k':2_7ri jiwu(x)(bj(x)dx:ﬂmd)j(l).

Similarly to Eq.(5.7), the bound state®;(x) can also be expressed through an integral represen-
tation (see Eq(7.23 in Ref. 10,
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m X +1
e'ijjiw ‘()(/y )r31+1 ﬂkady

This integral can be computed through the finite sum,

X—i

CDJ(X)Z_”(J X+ i

Coa-nme @2 kpk (x| rx ek
®j(x)= |k2 2 KIZm=KT O D) —— ik X+i) elki ﬁdey Lin( — 2k;),
(B4
whereL ,(x) is the Laguerre polynomi&l
n m!
Lm(X)ZIZO m(—x)k- (BS)

The eigenvalues; satisfy L ,(—2k;)=0. Therefore, the integralf” ,Au(x)n* (x)®;(x)dx in
Eq. (5.6b can be evaluated frorB1), (B3), and(B4). As a result, we find from Eq45.6) and
(5.11) the following representation fax,,:

a3 [ 33 G e o6

According to Eq.(5.11), the sumqy, is equal toq,,==g_,(1/k) which gives a new relation for
zeros of the Laguerre polynomials. Indeed, we have checked the first terms following from Egs.
(B5) and(B6): q;=1, q,=3/2,q3;=11/6. These results agree with £§.11).

1R. Grimshaw, “Internal solitary waves,” iddvances in Coastal and Ocean Engineeyiedited by P. L.-F. LiuWorld
Scientific, Singapore, 1996Vol. 3, pp. 1-30.

2Y. Matsuno,Bilinear Transformation Metho@Academic, New York, 1984

3M. J. Ablowitz and P. A. ClarksorSolitons, Nonlinear Evolution Equations and Inverse Scattef®gmbridge Uni-
versity Press, Cambridge, 1991

4V. I. Karpman,Nonlinear Waves in Dispersive Med{Rergamon, New York, 1975

5M. Desaix, D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro, “Variationally obtained approximate eigenvalues of the
Zakharov—Shabat scattering problem for real potentials,” Phys. LeR12\ 332—-338(1996.

5P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg—de Vries equation 1, Il, 1ll,” Commun.
Pure Appl. Math.37, 253-290(1983; 37, 571-593(1983; 37, 809—830(1983.

Y. Matsuno, “Asymptotic properties of the Benjamin—Ono equation,” J. Phys. Soc.5lpi667—674(1982.

8. Miloh, M. Prestin, L. Shtilman, and M. P. Tulin, “A note on the numerical ahdoliton solutions of the Benjamin—
Ono evolution equation,” Wave Motioi7, 1-10(1993.

9J. D. Meiss and N. R. Pereira, “Internal solitons,” Phys. Fluils 700-702(1978.

10y, Kodama, M. J. Ablowitz, and J. Satsuma, “Direct and inverse scattering problems of the nonlinear intermediate long
wave equation,” J. Math. Phy23, 564—-576(1982.

I1E. N. Pelinovsky and Yu. A. Stepanyants, “Linear approximation in pulse propagation problems in nonlinear media,”
Radiophysics and Quantum Electronk 1186-11881979.

2A. S, Fokas and M. J. Ablowitz, “The inverse scattering transform for the Benjamin—Ono equation: A pivot to multi-
dimensional problems,” Stud. Appl. Mat68, 1-10(1983.

Bp. M. Santini, M. J. Ablowitz, and A. S. Fokas, “On the limit from the intermediate long wave equation to the
Benjamin—Ono equation,” J. Math. Phy25, 892—-899(1984).

1R. L. Anderson and E. Taflin, “The Benjamin—Ono equation: Recursivity of linearization maps: Lax pairs,” Lett. Math.
Phys.9, 299-311(1985.

SR, R. Coifman and M. V. Wickerhauser, “The scattering transform for the Benjamin—Ono equation,” Inverse&robl.
825-861(1990.

18G. Scoufis and C. M. Cosgrove, “On the initial value problem for the modified Benjamin—Ono equation,” J. Math. Phys.
36, 5753-57591995.

17D. J. Kaup and Y. Matsuno, “On the inverse scattering transform for the Benjamin—Ono equation,” Stud. Appl. Math.,
to appear.

8D, J. Kaup, T. |. Lakoba, and Y. Matsuno, “Complete integrability of the Benjamin—Ono equation by means of
action-angle variables,” Phys. Lett. 238, 123-133(1998.

L. D. Landau and E. M. LifshitzQuantum Mechanic&ergamon, New York, 1985

20M, Klaus and B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. |. Short-range two-body
case,” Ann. Phys(N.Y.) 130, 251-281(1980.

213, M. Apenko, “Weakly bound states in+2e dimensions,” J. Phys. A1, 1553—15621998.

22R. L. Pego and M. I. Weinstein, “Eigenvalues and instabilities of solitary waves,” Philos. Trans. R. Soc. London, Ser.
A 340, 47-94(1992.



6572 J. Math. Phys., Vol. 39, No. 12, December 1998 D. E. Pelinovsky and C. Sulem

2M. J. Ablowitz and J. Villarroel, “Solutions to the time-dependent Scdimger and the Kadomtsev—Petviashvili equa-
tions,” Phys. Rev. Lett78, 570-573(1997.

24|, S. Gradshtein and I. M. Ryzhikables of Integrals, Sums, Series and Prodiéisademic, New York, 1980

25V, B. Matveev and M. A. SalleDarboux Transformation and Solitor{Springer, Berlin, 1992

26y, Matsuno, “Multisoliton perturbation theory for the Benjamin—-Ono equation and its application to real physical
systems,” Phys. Rev. B1, 1471-14831995.

27y, Matsuno and D. J. Kaup, “Initial value problem of the linearized Benjamin—Ono equation and its applications,” J.
Math. Phys.38, 5198-52241997).



