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A new spectral transform system is introduced to solve the initial-value problem for 
the intermediate nonlinear Schrodinger (INLS) equation describing envelope waves 
in a deep stratified fluid. The spectral system is a combination of the Zakharov- 
Shabat linear system and a local Riemann-Hilbert Problem in a strip of the com- 
plex plane. The inverse scattering transform technique is developed and the 
Backlund-Darboux transformation, soliton solutions and an infinite number of con- 
servation laws are constructed. It is shown that all these properties of the INLS 
equation are closely related to those of the intermediate long-wave 
equation. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Originally, the inverse scattering transform (IST) technique was elaborated for the solution of 
several significant nonlinear partial differential equations such as the Korteweg-de Vries (KdV) 
and the nonlinear Schrodinger (NLS) equations.le3 This technique is based on a solution of a 
linear scattering problem which is expressed by a system of linear partial differential equations 
and is associated with the nonlinear wave evolution equation by means of compatibility conditions 
(for a good review, see Ablowitz and Clarkson4). 

It was discovered a little later that some equations of another type, namely, nonlinear integro- 
differential equations, are also integrable; the associated linear systems were found and used for 
the IST scheme in Refs. 5-7. However, in the case of integro-differential equations the linear 
system defines a differential Riemann-Hilbert problem in the complex plane of the space coordi- 
nate X. The simplest example of such an integrable integro-differential equation is the intermediate 
long-wave (ILW) equation which describes long internal waves in a deep stratified fluid of finite 
depth.’ In dimensionless form this equation is 

where the singular integral operator T(U) is given by 

T(u)= $ p.++; COth[ ~]“(r)dz, (1.2) 

p.v. stands for principal-value integral, and the parameter S is proportional to the total fluid depth. 
The scattering problem for Eq. (1.1) is determined by the following linear system, 

iv:+ u-; cp+=XCp-, i i 
icpj+i(~+S-‘)(p,T+cPZ+[-(~i+T)(u,)+v]~”’=O. (1.3b) 
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Here the constants p, A, and v are related to a spectral parameter and the functions cp’(x) are 
defined by the unique function cp(x) according to the following “decomposition formula,” 5 

cp’(x)=cp(x?i@= Z&f.? (P(X)). 

In fact, the functions cp’(x) represent the boundary values of functions analytic in the horizontal 
strip of the complex extension of x between Im(x)=O and Im(x) = 426, and then periodically 
extended vertically. So, the system (1.3) can be regarded as a differential Riemann-Hilbert prob- 
lem in a strip of the complex x plane.5*7 In the limit &+O (1.3a) transforms to the second-order 
Schrijdinger equation which is well known as the linear scattering problem for the KdV equation.’ 

Generalizations of the Riemann-Hilbert problem (1.3a) can be achieved in different ways 
Degasperis et a1.9 considered the local matrix 2X2 Riemann-Hilbert problem which transforms in 
the limit &+O to the coupled first-order differential equations referred to as the Zakharov-Shabat 
spectral problem.273 This spectral problem allowed them to find a new class of integrable integro- 
differential equations which include the nonlocal analogs of the linear wave equation, the NLS 
equation and the modified KdV equation. On the other hand, Satsuma et al. lo investigated another 
kind of nonlocal modified KdV equation and found that its linear associated system consists of 
two differential first-order Riemann-Hilbert problems like (1.3a). 

Another generalization of the problem (1.3a) was proposed by Lebedev and Radul,” namely 
a scalar differential Riemann-Hilbert problem of k order. This approach led to a generalized ILWk 
hierarchy of integrable nonlocal equations. Then, Degasperis et al. “Jo elaborated a modification 
of a dressing method with a noncommutative spectral parameter in order to investigate the ILW2 
and modified ILW, hierarchies in detail. It was also found by Lebedev et al. l4 that the generalized 
ILW, equations are reductions of the KP hierarchy. Recently, Zhang” developed this idea and 
constructed new nonlocal equations which couple the ILW, equation with a time-dependent 
Schriidinger equation. 

It is important to note that, in spite of this variety of different generalizations of the spectral 
problem (1.3a), no new physically significant nonlocal integrable equation was obtained which 
could be regarded as a model for the evolution of nonlinear waves. 

However, a new physically significant integro-differential equation has been recently derived 
for the description of weakly nonlinear wave packets propagating on the interface of a two-layer 
fluid with a deep lower layer, and a shallow upper layecus This equation can be obtained from 
(1.1) for &+a by means of the following asymptotic multiscale expansion 

u=~“~(A(X,?~,?~)exp[i(x+t)]+c.c.)+O(~), (1.5) 

where X= ex, F, = et, F2= e2t, S= Tj/e, and Al. In the leading order of the asymptotic expansion, 
the amplitude A is given by A=g(x”-t2f, ,t”,) exp[i(?/l:!“6-t”2/4&], where A” satisfies the equa- 
tion 

iA,=A,,+A(i+T)(IA/2),. 0.6) 

For convenience, we here and henceforth omit the sign “tilde” for the new variables. 
Equation (1.6) plays the same role for the description of these interfacial wave packets as the 

NLS equation usually does.17 Moreover, it transforms for &+O and 1 A I2 - 0 (~5) to the NLS equa- 
tion in the following form: 

iA,=A,, - S-‘AIA12. (1.7) 

Here we refer to Eq. (1.6) as the intermediate nonlinear Schriidinger (INLS) equation. 
In Ref. 16, it was found by bilinear Hirota’s method that the INLS equation (1.6) possesses 

N-soliton solutions with nonvanishing boundary conditions: IA I +p as x+m, where p#O is a real 
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constant. This feature implies that the INLS equation belongs to the class of integrable equations. 
However, neither a linear associated spectral problem nor other related properties of the INLS 
equation have yet been found. 

In this paper, we apply the IST technique to solve the initial-value problem for the INLS 
equation. In addition we find the Backlund-Darboux transformation of its solutions, and an 
infinite set of conservation laws. The starting point of our consideration is the following linear 
spectral system associated with (1.6), 

icp,,- 5 ql+Acp:=O, 

&-Xq;+A*q,=O, (1.8b) 

ipI,+ i,uqlx+ cp,,,-2iA,cp: + ~01~0~ (1.8~) 

i&+iwL+ &, +[(+i+T)(]A]2),+v]cpi=0, 

where the parameters ,u, h and Y and the functions C&(X) = C&X + i s> have the same meaning as 
those for system (1.3a) and (1.3b). However, it is important to point out that there are no analytical 
requirements here on the function cpl. 

It is easy to check that the commutatibility conditions for the linear system (1.8) give the 
nonlinear equation (1.6). In Appendix A we show that the spectral problem (1.8) can be derived 
from (1.3) by means of the same asymptotic multiscale procedure (1.5) as that used for the 
derivation of the INLS equation from the ILW equation. This is consistent with the hypothesis’8*‘9 
that the asymptotic multiscale expansions of integrable equations allow one to obtain not only a 
new integrable equation but also a scheme for its integrability. 

The system (1.8a) and (1.8b) can be regarded as a combination of the Zakbarov-Shabat 
spectral problem and a local Riemann-Hilbert problem. It represents an unusual, asymmetrical 
generalization of the differential matrix 2X2 spectral system. Note that a similar type of a linear 
associated system was independently introduced by Zhang in the recent paper15 for the coupled 
ILW, and Schrodinger equations. We can show that Eqs. (1.8) can be reduced to Zhang’s general 
system [Eqs. (2.8a) and (2.8b) in Ref. 151 for k=O, n=2. 

In the limit &O, Eqs. (1.8a) and (1.8b) transform to the first-order system 

ipI,- 5 CPI +AR=O, (1.9a) 

(1.9b) 

which is the Zakharov-Shabat spectral system for the NLS equation (1.7).3 For this limiting 
transition, we suppose that X= 1+/..&+0(8?) and neglect in (1.9a) and (1.9b) terms of the order of 
O(q. A similar limiting transition also exists for the time evolution of the linear system (1.8~) and 
(1.8d). However, throughout this paper we will consider only the x-dependent part of the linear 
system (1.8a) and (1.8b) because the time evolution of its solutions can then be found by means of 
a trivial substitution. 

Our paper is constructed as follows. In Sets. II-IV we consider the direct and inverse scat- 
tering problem for system (1.8a) and (1.8b) for finite S, and with nonvanishing boundary condi- 
tions imposed on A(x,t). Then, in Sec. V we generalize the IST formalism and present the 
dressing transformationzO for the INLS equation. A new way of constructing an infinite set of 
conservation laws is proposed in Sec. VI. The concluding Sec. VII is devoted to discussion. 
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It should be mentioned that our analysis follows mainly the pioneer work of Refs. 3 and 5. 
However, in the limit 6t0, our results transform to an alternative version of the IST technique for 
the NLS equation to that developed by Zakharov and Shabat.3 This is due to the asymmetry of the 
linear system (1.8a) and (1.8b) with respect to the functions cpl, cpz. On the other hand, the 
scattering problem for the INLS equation is qualitatively similar to the scattering problem for the 
ILW equation considered by Kodama et al.’ because of the aforementioned asymptotic correspon- 
dence of both equations. 

II. THE JOST FUNCTIONS 

Here we consider the direct scattering problem for the linear differential-difference system 
(1.8a) and (1.8b) with finite nonzero 6. We suppose that solutions to the INLS equation tend to 
constant values at infinity exponentially rapidly: IAl+p as 1x1 -+m where p is a real positive 
constant. Of course, a phase shift may appear as x+&a, but we will omit this effect here for 
simplicity. 

To consider the direct scattering problem we need to introduce appropriate Jost functions. 
These behave at infinity like harmonic waves, i.e., pj-exp(?ikx/2), where j=1,2 and k is a 
spectral parameter. For this purpose, it is necessary to relate the constants p, X in (1.8a) and (1.8b) 
to this new parameter k according to the following expressions, 

X(k)= k cosh(k@ - p sinh(k@ ’ 
k 

(2.la) 

,u2(k)+2p2p(k)=2p2k coth(k6)+k2. (2.lb) 

Note that, in the limit &O, h=l+@+O(&, as we supposed in deriving (1.9b). Further, the 
parameter Al. in (1.9a) and (1.9b) is now parametrized as ,u’(k) = 2p2/S+ k2, where p2 is supposed 
to have the order of O(s). This expression coincides with that for the NLS equation (1.7).3 

Then, it is convenient to define the modified linear functions 

Wt(x,k)= qf(x)exp 

The system (1.8a) and (1.8b) in these new variables takes the following one-parameter form 

iW,,+AWl=O, (2.3a) 

W;- yW;+A*W,=O, (2.3b) 

where 

y(k)=A(k)exp(~(k)G)=y(-k). (2.3~) 

Next, let us introduce the conformal mapping of the complex k plane to the qZ plane accord- 
ing to the following formulas 

q,(k) = 
*k--p(k) 

2 ’ 
(2.4a) 

q-(k)=q+(-k). 

It is important that parameter y(k) can be expressed as a function only of q+ or q- , 

(2.4b) 
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(2.5) 

Moreover, the Jost functions also depend only on the spectral parameters q+ or q- , instead of k. 
The Jost functions are defined as solutions to the system (2.3a) and (2.3b) with the following 
boundary conditions at infinity, 

~~cw~)-t&(~~q~~= ( -P(:f)-1)exp(-iq2x) as x+-w, 

~~kqd+~~cw4= ( -P(~r)-‘)exp(-iqzx) as x-++m, 

where 

@k,*k= w: ( 1 w2 * 
In Appendix B we give a Green’s function representation of solutions to (2.3a) and (2.3b), 

with the boundary conditions (2.6a) and (2.6b). The Green’s functions are in fact a matrix 2X2 
generalization of the Green’s function for the linear problem (1.3a) with the same pole structure in 
the complex k plane. Hence, we refer to the results of Kodama et aL5 for a proof that the unique 
Jost functions defined by (2.6a) and (2.6b) do exist for finite 8. 

The analyticity properties of the Jost functions in the qz plane can be found from their 
triangular representation 

@z(x,q,)=&kq+)- jmJW,Z)4+(wr)~z. I 
Vl(x,q,)=$~(x,q,)+l+mK,(x,z)91(z,q~)dz, 

x 

where Kr,,. are matrices with a one-column structure 

&,r= (i ;;;;))a 

(2.7a) 

(2.7b) 

(2.8) 

In what follows we will omit the sign of “left” and “right” functions where it does not lead to 
ambiguity. 

The direct substitution of (2.7a) and (2.7b) into the system (2.3a) and (2.3b) reveals that the 
functions F(x,z), H+(x,z) and the associated functions G(x,z), H-(x,z) satisfy the differential- 
difference Goursat problem 

iF,+A(x)H+=O, (2.9a) 

-iG,+pH-=O, (2.9b) 

H+-H-+A*(x)F-pG=O, (2.9~) 

where H’ = H(x + i S,z ? i 8). The system (2.9) is determined for “left” functions at z<x under 
the condition of their vanishing as z + - 00, and for “right” functions at z>x under their vanishing 
as z++m. At the characteristic z=x, the system (2.9) has the following boundary conditions: 
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p$m 
//,//i//i/ / i,, 

FIG. 1. The complex k plane for the spectral problem (2.3). The bright sheet is characterized by Im(q+)>O and the shaded 
one by Im(q+)<O. Dashed line depicts contour C, . Black dots determine the intervals for the branch cuts along the 
imaginary k axis, while the white dots determine the interval for the discrete spectrum. 

F(x,x) = ib-A(x)), (2.10a) 

G(x,x) = i(A *(x) - p), (2. lob) 

+i+T 
H’(x,x) = - 2 (IA12-p2)=i[(A/2-p2]-c. (2.1Oc) 

Because the solutions to (2.9) and (2.10) do not depend on the spectral parameters q*, the 
triangular representation (2.7) implies that the Jost functions @ ‘t (q*) are analytic functions in the 
upper (lower) sheet of the complex qk plane. Furthermore, the Jost functions can be expanded in 
an asymptotic series as qc+w as follows 

@?=[ ( y) + & ( [[A l?p2]+) +O( $)]exd-iqLx), Im(qk)>O, (2.11a) 

These expressions give us the boundary conditions for the Jost functions at infinity in the complex 
q-+ plane. 

Finally, we present in Fig. 1 a complex k plane and its separation into two fundamental sheets 
of the q + plane. [The sheets of the q _ plane can be found by the symmetric transformation (2.4b).] 
The bright sheet is characterized by Im(q+)>O and the shaded one by Im(q+)<O. Both sheets are 
connected at real k [negative Re(q +)] but have branch cuts for some curves in the complex k plane 
[positive Re(q+)]. Note that each branch cut of the q+ plane occurs along the imaginary k axis for 
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the region s,<Irn(k)<rn/& where s,, n>l are roots of equation Sl, cot(s,S) = -p2/2 so that 
tin - 1 )/S-C s, < rrn/6. It is important to mention that a similar spectral k plane exists for the ILW 
equation5 But for the latter equation the branch cuts of the 4 + plane are localized in the imaginary 
k axis at the points Im(k) = m/6. 

III. SCATI-ERING DATA 

Now we are ready to introduce the scattering problem which relates the “left” and “right” 
Jost functions. The scattering problem for the INIS equation should be considered along the edge 
of the fundamental sheets where Im(q+)=O (Fig. 1). Two different situations appear here because 
the Jost functions a+, ‘I!+ are defined for different sheets of the complex k plane. As a result, the 
scattering problem for positive 4 + (complex k) where the sheets have branch cuts is different from 
that for negative q+ (real k) where the sheets are connected. 

Generally speaking, the differential-difference system (2.3) may admit infinitely many eigen- 
functions which correspond to poles of the Green’s function [see (B2) of Appendix B and Ref. 51. 
Therefore, the two sets of solutions of (2.3) with the boundary conditions (2.6a) and (2.6b) may be 
independent of each other. However, the Green’s function representation for the Jost functions 
shows that for real k (negative q+) they are related as follows: 

(P+tx.k)=utk)W+(x,k)+b(k)W-(x,k), (3.la) 

&(x,k)=Z(k)‘P-(x,k)+b”(k)‘P+(x,k), (3.lb) 

where the coefficients u(k), b(k) can be expressed in terms of the Jost function a’+ [(B4) in 
Appendix B]. The relations (3.la) and (3.lb) can then be regarded as a scattering problem for the 
INLS equation, while the sets a(k), b(k) and G(k), g(k) are the scattering data. Using the 
symmetry condition (2.3~) we obtain the additional relations for the Jost functions with real k, 

@-(x,k)=Q>+(x,-k), ‘I’-(x,k)=q+(x,-k). (3.2a) 

This implies that the sets of scattering data are not independent, 

a”(k)=a(-k), b”(k)=b(-k). (3.2b) 

Therefore, it is sufficient to consider only the scattering problem (3.1) with the scattering data 
a(k), b(k). 

Furthermore, following Kodama et uZ.,~ we can establish an important relation between the 
scattering data, 

l~~2+C(k)l~~2=1, C(k)= ~::~~~~~~;~$~ exp(2k8). (3.3) 

For the proof of this relation we use the “balance equation,” 

i(~<a,~2),+y(k)(~~‘2~2(x-ii)-~~?2~2(x+i~))=0, (3.4) 

which can be found from (2.3) and the complex conjugate system. Then, integration of (3.4) with 
the boundary conditions (2.6a), (2.6b), and (3.la) leads to the formula (3.3). Note that C(k)+1 as 
6tO and EQ. (3.3) transforms to the well-known relation for the Zakharov-Shabat spectral 
problem.3 
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. . For positive values of q+ , q _ is complex. Therefore, the Jost function Y- contains an 
exponentially decaying (growing) term for Im(k) >O (Im(k) <O) according to (2.4a), (2.6b). How- 
ever, in this case b(k)=0 and the Jost functions @+(x,k), q+(x,k*) defined on the same sheet in 
the complex k plane are related by 

~+tx,k)=utk)y+(x,k*), (3.5) 

where 

u(k)u*(k*)= 1. (3.6) 

Inside the fundamental sheet of the k plane we need to know only the analytic properties of 
the coefficient u(k). It is obvious from (B4a) and (2.6a) that coefficient u(q+) inherits the 
properties of the Jost function @+(x, q +) and is an analytic function in the upper half-plane of 4 + . 
As q++m it has the following asymptotic expansion: 

a=l--- (IA12-~2)dx+0 Ja4,)>0. (3.7) 

Using the technique described by Kodama et al.,’ we can prove that coefficient u(q+) may 
have only simple zeros at the points k= k, such that y(k,) = r(k,*). This equation has the 
solution k,* = -k,, p(kt) = p(k,) which implies that k, has imaginary values k, = iK, and 
O<K,, < K, , where K= is a solution of equation K= tan(K,ti2) =p2. It is important to note that K,<S , 

and, therefore, the discrete spectrum of the linear system (2.3) lies in the complex k plane below 
the first curve of the branch cut (Fig. 1). We point out also that the range of K, is empty for p=O. 
It means that there are no soliton solutions to the INLS equation (1.6) for vanishing boundary 
conditions. 

The bound states are defined for the values k = k, = iK, , for which the Jost functions are 
localized at x*+-m. In this case, the scattering relation can be rewritten as 

@+tx,k,)=b,~-(x,k,). (3.8) 

It can be found from the system (2.3)5 that 

da 
C,‘=ib,’ - 

dq+ k=k = I I 
+mjWz-12(x,k,)dx. 
-a n 

(3.9) 

Because C, is finite for nontrivial functions of the discrete spectrum, the coefficient a(q+) has 
only simple zeros at the points k = k, . 

Thus, the scattering data S consist of a continuous spectrum which is determined at the edge 
of the fundamental sheet of the 4 + plane by coefficients u(k), b(k) and a finite number (N) of 
simple zeros of the coefficient u(k) at the points k = k,= iK,, . They are given by 

S=[atk),btk),{K, ,C,}:z’,,]. (3.10) 

If the Jost functions are found from the solutions of the linear differential-difference system 
(2.3), then the formulas (B4) and (3.9) allow us to construct the scattering data (3.10) for a given 
time. As it is well known,4 the time evolution of the scattering data is trivial. It can be easily found 
from the time-dependent part of the linear associated system (1.8~) and (1.8d) and is given by the 
following relations: 

u(k,t)=u(k,O), b(k,t)=b(k,O)exp(-ikp(k)t), (3.11a) 
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‘h(f) = K,(O), c,(t) = C,(O)eXp( K,,W(iKn)f). (3.11b) 

IV: INVERSE SCAlTERlNG FORMALISM 

The final step of the IST scheme is to reconstruct a solution to the INLS equation from the 
scattering data (3.10) which have now been obtained for any time. This can be done using an 
appropriate integration in the complex q+ plane of the scattering problem (3.la), which is conve- 
nient to rewrite in the following form: 

Q+W) b(k) 
a(k) 

=*+(x,k)+ a0 W-(x,k). 

Let us consider the contour C+ (C-) going along the edge of the fundamental sheet inside of the 
upper (lower) half-plane of q+ (contour C, is shown in Fig. 1). Because the fundamental sheet 
has branch cuts, we need to close the contours appropriately. Taking into account the boundary 
conditions of the Jost functions Cp, and W, (2.11) and of the coefficient u(k) (3.7) in the complex 
q+ plane as well as the fact that coefficient b(k) vanishes at the edge of the sheet for complex 
values of k, we can close the contour C, (C-) at infinity in the region where Im(q+)>O 
(Im(q+)<O). So, we have the integration formula 

1 

I dq+ 
@+(x,4+) 1 

2-;; c, 44+) ew(iq+z) = G I dq+*+.(x,q+)exptiq+z) c_ 

q-(x,k)exp(iq+z), z>x. 

(4.2) 

The left-hand side of (4.2) is easily to calculate from the residue theorem because the func- 
tions @+(x,q +) and a( q +) are analytic inside of contour C, . On the other hand, for the calc~- 
lation of right-hand side of (4.2) we have to use the triangular representation (2.7) of the Jost 
functions qz. As a result of this integration, we get a system of the Gelfand-Levitan-Marchenko 
(GLM) integral equations for the functions F(x,z) and H+(x,z). Then, using (2.9b) and (1.4) we 
can obtain the GLM integral equations for the associated functions G(x,z) and H-(x,z). Thus the 
following GLM equations form a complete system: 

I 

+m 
F(x,z) +fb,z) ‘- F(x,s)h+(s,z)ds=O, 

x 
(4.3a) 

I 

+W 
WLZ) +gtx,z) + H-(x,s)g(s,z)ds=O, (4.3b) 

x 

I 

+m 
H’(x,z)+h’(x,z)+ H’(x,s)h’(s,z)ds=O, 

x 
(4.3c) 

where z>x [i.e., we deal with the “right” triangular representation (2.7b)]. The functions f(x,z), 
g(x,z) and h’(x,z) are expressed in terms of the scattering data (3.10). We give the expressions 
only for functions f, h+ because the other functions can be easily reconstructed, 

N 

dkf(k)exp(-iq-x+iq+z)-pn~l (q-J-‘C, exp(-iq-,x+iq+.z), 

(4.4a) 
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h+(x,z)= & 
I 

+Oa N 

_ m dk&k)exp(-iq-x+iq+z)+n~, C, exp(-iq-,x+iq+,z), 

with the Fourier coefficients 

n 4, b(k) P ,. 
f(k)=- & u(k) q-(k)’ h(k)= 

&+ b(k) 
--- -- 

dk u(k)’ 

(4.4b) 

(4.5) 

and qzn =q,(k=iK,). For givenf(x,z), g(x,z) and h’(x,z), the solutions of the GLM integral 
equations (4.3a)-(4.3c) at z>x generate solutions to the INLS equation from the relations (2.10) 
on the characteristic z =x. 

Thus Sets. II-IV give a closed scheme for the solution of the initial-value problem of the 
INLS equation (1.6), which is a standard IST scheme for integrable one-dimensional evolution 
equations. It consists of the solution of the linear associated problem (2.3) [or (2.9)] for the given 
initial value A(x,O), the calculation of the scattering data by formulas (B4) and (3.9), of their time 
evolution by (3.1 l),‘and the final reconstruction of A(x, t) for any time by a solution of the integral 
equations (4.3). Nevertheless, we would like to point out that even in the limit &+O, the triangular 
representation (2.9) and the GLM equations (4.3) are different from those considered by Zakharov 
and Shabat3 for the NLS equation. This new IST scheme for the NLS equation seems simpler than 
the former version because the triangular matrix has a remarkable one-column form (2.8). We 
employ this scheme in the next section to obtain a Backlund-Darboux transformation for the 
INLS equation. 

V. THE DRESSING TRANSFORMATION FOR THE INLS EQUATION 

In Sec. II-N we presented the IST scheme for the Jost functions a+, ‘PE which are defined 
as solutions of the linear spectral problem (2.3) with the boundary conditions (2.6a) and (2.6b). In 
this definition the functions &, I+& can be regarded as Jost functions for the system (2.3) with A 
replaced by the constant coefficient p. Now we reformulate this scheme to construct a general 
transformation of solutions both for the INLS equation, and for the linear associated problem for 
an arbitrary initial solution A =Ao(x). 

We start from the integral GLM equations (4.3) which relate two sets of functions f(x,z), 
g(x,z), h’(x,z) and F(x,z), G(x,z), H’(x,z). Let one set of functions satisfy the following 
linear system for a given solution to the INLS equation A =A,(x), 

if,+A,Jx)h+=O, (5la) 

-ig,+A,*(z)h-=O, (5.lb) 

h+-h-+A,*(x)f-Ao(z)g=O. (5. Ic) 

Then, we can readily show that the other set of functions being a solution of the GLM equations 
(4.3) generates a new solution to the INLS equation according to the relations 

A =A,+ iF(x,x), (5.2a) 

A*=A$--iG(x,x), (5.2b) 
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Note that for a trivial solution Ao=p the relations (5.2) reduce to (2.10) and the Fourier represen- 
tation of functions f(x,z), g(x,z), and h’(x,z) (4.4) gives a general solution for the linear 
equations (5.1). 

Next, we suppose that the linear problem (2.3) for A =Ao(x) has no discrete spectrum. Our 
aim is to construct a transformation which would give birth to N bound states of the linear system 
for a new solution A =A(x). We look for solutions to (5.1) and (4.3) by separating variables x and 
Z? 

fb*zk2* fn(xM,*‘(z). dx,zki* h,(x>f,*(z>, h’(x,z)=ni* hjf(x)hf+i). 
(5.3) 

The substitution of (5.3) into (5.1) reveals that the functions f, , hz satisfy the linear associated 
problem (2.3) for A =A,(x) and represent its partial solutions for some values of k, for instance, 
for k=k,=i~,, O<K,<K,, n=l , . . . ,N. It is necessary to note that the GLM system (4.3) is 
written for the “right” Jost functions with the boundary conditions (2.6b). Therefore, we impose 
the following boundary conditions for each set of the solutions to (2.3a) and (2.3b), 

@*=( $)+( -yJ) exp( - iq-,x) as x+ fm. (5.4) 

Under these conditions, the functions (dn are localized as x++m because Im(q-,) = - K~<O. Of 
course, they diverge as x--+--o0 since the system (2.3) at A =A,(x) has no bound states. Further, 
solving the integral equations (4.3) we get a new solution to the INLS equation in the form, 

where 

+mh~(s)h~‘(s)& , 
lrn,kcN 

Alk is a cofactor of an element (n,k) of the determinant A$, and 8,k is the Kronecker symbol. 
Thus, solutions to the linear associated problem (2.3) generate a transformation of solutions to the 
INLS equation Ao+A according to (5.5). Moreover, we can also find a transformation of the Jost 
functions &--+W, which are defined by solutions to the system (2.3a) and (2.3b) for A,(x) and 
A(x), respectively, with the boundary conditions (2.6b). This transformation follows immediately 
from the triangular representation (2.7b) 

8r=lliA, g &J+m&~(s)h:+(s)ds. 
N x 

Furthermore, calculating the asymptotics of the formula (5.6) as x-+--w and using the relations 
a -‘=lim,,-,[Tl+ exp(iq+x)], a~‘=limX,-m[&+ exp(iq+x)] we can also find a transforma- 
tion of the scattering coefficient ao--+a, 

N 

4q+)=adq+lnQl ~:I~~“- 
n 

(5.7) 
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Here we have supposed that the coefficient a0 has no zeros for Im(q+)>O. However, the formula 
(5.7) shows that the transformation (5.5), (5.6) gives birth to N zeros of the coefficient a for the 
linear problem (2.3) with A =A(x). These N zeros correspond to N bound states of the linear 
problem and the expressions (5.6) at @- = en, n = 1,2,. . . , N enable us to find the Jost functions 
q- corresponding to the bound states (3.8) in an explicit form 

N Ai,, 
q”=-kzl F J/k* 

N 
(5.8) 

Thus a set of solutions I,$ to the linear problem (2.3) without solitons generates solutions both to 
the INLS equation and to the linear associated system with N solitons. The transformation con- 
structed above is referred to as the Backlund-Darboux transformation.21 Note that a pure 
N-soliton solution appears for Ao=p, with the solutions & then specified in the exponential form 
(5.4). For this case the soliton solutions, the Jost functions, the scattering coefficients and the 
bound states can be found in an explicit form from the formulas (5.5)-(5.8). For instance, a 
single-soliton solution is given by 

A=p 
l+[(U-iK)/(U+iK)]eXp[-K([-i8)] 

jA12=p2- 
K sin(KS) 

l+exp[-K(t-is)] ’ cosh( Kc) + COS( KS) ’ 
(5.9) 

where 5=x-ut-x0, x0, K are arbitrary parameters, and the soliton speed u is determined by a 
quadratic equation 

U2+2p2U+K2=2p2K COt(K6). 

VI. CONSERVATION LAWS 

The characteristic feature of all integrable equations is the existence of an infinite number of 
conservation laws. Here we show that the INLS equation also possesses this feature and we 
present a new way of constructing a complete set of conservation laws by means of solving a 
linear recursion relation. 

First, the time evolution of the scattering coefficients (3.11) implies that the coefficient a( q +) 
is a constant in time. Furthermore, the asymptotic expansion of a(q +) for q+-+m (3.7) would give 
an explicit form of the conserved quantities if it is possible to calculate the higher-order terms of 
the asymptotic series. 

Next, we note that parameter p determines only a normalization of conserved quantities with 
respect to a homogeneous (vacuum) state A =p. Therefore, for simplification of all intermediate 
formulas we put ~“0. However, we shall include this parameter in the final expressions for the 
conserved quantities [formulas (6.8)]. For the case p=O, the local Riemann-Hilbert problem 
(2.3b) has a simple solution 

~:kq+)= l- y @*MA- & /;IA*MI dx, 

where Mt=@t+ exp(iq+x), Mi=@+ exp(iq+x). The last constant in (6.1) is introduced in 
order to satisfy the boundary condition lim,,-, M:(x,q+) = 1 because the operator T has the 
following asymptotic property” 

lim T(u)=F~~ 
x-ttm I 

+m 
u dx. _ 

m 

The other limiting transition for the function Ml determines the coefficient a(q+), 
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* +m 
a(q+)= lim Ml(x,q+)=l- +a 

.%-++-I s 
A*M, dx. _ 

cc 

Substitution of (6.1) into (2.3a) gives an equation for M,, 

1-iT 
(A*h4,)+ -$AJ+m~*~, dx . 

--m 1 
Expanding the solutions to this equation in an asymptotic series as q+-+m, we get 

m m,(x) 
M1(x,q+)= c -7 

n=l q: 

where m,(x) satisfy the following recursion relation, 

1-iT 
m,+l =-im,,+A 2 (A*m,)+ -$A 

. I 

+m 
-mA*m. dx, ml= -A. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

The functions m,(x) generate the higher-order terms of asymptotic series for a(q+) according to 
the relations, 

a(q+)= 1 +“jil 2, an=& /:I(A*m.)dx. (6.6) 

All the quantities a,, are conservation laws for the INLS equation. The first three quantities are 
given by the following explicit expressions: 

i i 1 
a2=yS I2- g-g If, 

i 1 i 
al=2S11, a3=213- gI1Z2- ~1:~ (6.7) 

where 

I,= I _+~(lA12-p2fdx. (6.8a) 

4-m 
12= 

I i -0) 
-iAd*+; (IA14-p4) dx, 

1 
(6.8b) 

13= ,+m( -A,J*-iAJ*IA12+ t (lA16-p6)- $ ]A12T(lA/2)X)dx. (6.8c) 
--m 

For the simplification of these expressions we have used the following properties of the operator 
T:” 

I 

+m 

I 

+CO 
uT(u)dx= - uT( u)dx, 

--m -co 

--m 
uT\uT(u)]dx= - ; 

+m 
_ 

m 
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These first conservation laws I,, I,, I, correspond to the conservation of the number of 
particles, the momentum and the energy, respectively. For &+O and IA 12- O(s) they transform to 
the corresponding quantities for the NLS equation.3 However, we would like to point out that the 
recursion relation (6.5) is different from that for the NLS equation. In the latter case, the recur- 
rence relation is quadratic, while in the former case it is linear. However, here the conserved 
quantities a, are a superposition of the homogeneous quantities I,. On the other hand, (6.7) 
suggests that there exists the following remarkable expansion in terms of the homogeneous quan- 
tities I, , 

ln(a(q+))= &nil 2. (6.9) 

A proof of the validity of this expansion in the general case, and a construction of the recursion 
relation for I,, needs further investigation. 

Finally, we present a Hamiltonian form of the INLS equation generated from I,, 

If*);J3( :*?A7 J3=[ -,:‘.;:b y$:::j 7 (6.10) 

where 41, denotes a functional derivative of I, on A and the matrix operator J3 satisfies the 
condition J3= - Ji. Note that the operator J3 is nonlocal, and in this respect (6.10) differs from the 
Hamiltonian form of the NLS equation.4 Moreover, the conserved quantities I, starting with n =2 
cannot be rewritten in the form of local conservation laws. 

VII. DISCUSSION 

In this paper we have considered the IST scheme for the INLS equation with finite S, where 
the linear spectral problem (1.8) is a new differential-difference generalization of the Zakharov- 
Shabat spectral problem. In this case the scattering data consist of a standard set with a continuous 
spectrum and a finite number of bound states. It is known for the ILW equationsV7 that the IST 
technique becomes more interesting as the parameter S tends to infinity. In this case, a new type of 
bound states appears and a new method for a nonlocal Riemann-Hilbert problem in a spectral 
space should be applied. 

The other interesting problem which is beyond the scope of this paper is the IST scheme for 
vanishing boundary conditions (when p=O). In this case, the linear problem (2.3a) and (2.3b) can 
be rewritten as a nonlocal Riemann-Hilbert problem in a coordinate space. This type of a spectral 
problem has not yet appeared in IST theory. Note, however, that the wave dynamics with vanish- 
ing boundary conditions is rather trivial because the bound states and solitons are absent for p=O. 

Finally, we would like to emphasize that the IST scheme for the INLS equation represents a 
new generalization of that for the ILW equation for the matrix 2X2 case. The consideration of this 
new spectral problem might be interesting for a construction of a hierarchy of nonlocal equations 
related to this spectral problem and investigation of their Hamiltonian structure. The recent paper15 
reveals that work in this direction is currently under way. 
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APPENDIX A: DERIVATION OF LINEAR SYSTEM (1.8) 

Here we show how to derive the linear spectral problem (1.8) associated with the INLS 
equation (1.6) from linear system (1.3) by means of a regular asymptotic expansion. Let us start 
from the differential-difference equation (1.3a) which contains the potential u(x,t) and substitute 
the asymptotic expansion 

co 

u= c En’2Un(X,t;X,?l,t2 ,... ). 
?I=1 (Al) 

The first few terms were found in Ref. 16, and they are given by 

ul=A exp[i(x+t)]+A* exp[-i(x+t)], 

u2= -IAj2+A2 exp[2i(x+t)]+A*2 exp[-2i(x+t)], 

(A24 

Wb) 

u3=A3 exp[3i(x+f)]+A*3 exp[-3i(x+t)]. 6424 

Here A=A(,f,t”, ,i2 ,... ), X”=EX, Fa=E”t, n=1,2 ,..., and S= a/j/~ as in (1.5) and in the following 
discussion. 

First, we note that integral operator T (1.2) acts on x-dependent and x-independent terms in a 
different manner. For the former terms, this operator becomes the Hilbert operator 

H(u)=; p.v. 
I 

+m u(z) 
--m E dz, 

which does not act to leading order on the slow variable x”. However, for the latter terms the 
operator T keeps the form (1.2) but now rewritten for the new variable x” and new parameter ?i. 

Keeping this property into mind, we obtain a solution to (1.3a) in the form of another asymp- 
totic series 

v=Pl+ngl E”‘2(Pn+lb.f;x”,?l,~2 9... >, (A34 

p=-2+@. Wb) 

The first few terms of the expansion (A3a) are given by 

(P~=(P~+Ac& exp[2i(x+t)], Wb) 

cp3=A2el exp[3i(x+t)]+A*G, exp[-i(x+t)]. (A4c) 

Then, on removing secular terms [i.e., those growing like x, x exp(ix)] we obtain (1.8a) and 
(1.8b) for the coefficients 50 1,2 of the asymptotic series which are supposed to be functions of the 
slow variables. It is important to note that the expression (1.4) determines now the function pO+ 
(cp-) as an analytic function in the upper (lower) x-plane. It implies that the function pO+ (cp-) 
contains only positive (negative) powers of exp(ix) with coefficients having arbitrary analytical 
properties with respect to a new variable x”. However, the first term of (A4b) does not depend on 
x. Therefore, the operator (1.4) in the new variable x” decomposes Cp2 into the functions @f. This 
accounts for the asymmetry of the linear system (1.8a) and (1.8b) with respect to @r, G2. 
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Finally, substitution of the series (A3) into (1.3b) gives us (1.8~) and (1.8d) for the functions 
c&(x”+2i, ,t;> and &;(x”+21t ,I,). 

APPENDIX B: GREEN’S FUNCTIONS REPRESENTATION 

Here we discuss the Green’s function representation of the Jost functions and scattering 
coefficients. The solution to (2.3a) and (2.3b) with the boundary conditions (2.6a) and (2.6b) can 
be rewritten as solutions of the integral equations, 

I 

+m 
@z(x,k) = &kk) + G+(x-z,k)Q(z)Q,.(z,k)dZ, 

-02 

I 

+m 
*‘,(x&l= cC/&A)f G-(x-z,k)Q(z)~.(z,k)dz, --m @ W 

where 

and the matrix Green’s functions G+ can be found from the Fourier transforms, 

G,(x,k) = & 
I 

dp exp( - ipx - 2p 8) 
y(kbGp 4 - 1 P 1 

c+ P -P P(Y(P) - Y(k)) . 
W) 

Here the contour C+ (C-) goes along the edge of the fundamental sheet in the upper (lower) 
half-plane of 4 + . The denominator of the Green’s function has an infinite number of zeros because 
the function y(p) is multivalued. Nevertheless, only two zeros are important: p = q + and p = q - 
because they correspond to the chosen eigenfunctions (2.6a) and (2.6b). Other zeros lie on the 
branch cuts of the fundamental sheet (see Ref. 5). For the integration of (B2) along contours C% 
they give an identical contribution to the Green’s function G, . Therefore, we can rewrite (B2a) 
and (B2b) in a composite Volterra-Fredholm form, 

a((x,k)= &(x,k)- 1” g(x-z,k)Q(z)~,(z,k)dz+ 
I 

+m~(x-z,k)Q(z),a,(z,k)dz, 
-52 -03 

@W 

s 
+m 

w+Lx,k)=cC/dx,k)+ g(x-z,k)Q(z)W,(z,k)dz+ 
x 

@3b) 
where go(x,k>=G,(x,k>?g(x,k)O( +x), 0 is the unit Heaviside function, 
g(x,k)=g’(x,q+)+g’tx,q-), and 

iq Z exp( - iq *x) 

i 

-P2/4t P 
g’(x,q,)=p2[1+26q,(l-qrlp2)] p 1 -9e . 

The representation (B3a) and (B3b) implies that the scattering relations (3.1) exist for real k. 
Using the standard technique,4 we can express the scattering data a(k),b(k) by the Jost function 
*+. 
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i9+ 

I 

+m 
a&)=1+ 

P2[1+2@+u-4+lPZH --m dx exp(iq+x)Ykk,q+), W4 

iq- 

I 

+CO 
b(k)= p2[1+2Sq-(l-q-lp2)] --m dx exp(iq-x-k@Y(x,k,q-), @4b) 
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