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Abstract. New transformations between the nonlinear Schrödinger, Kaup and non-local
Boussinesq equations as well as their modified counterparts are found and analysed. The bilinear
representations of these equations, including an alternative bilinear form of the Chen–Lee–Liu
equation, are obtained by a direct method based on the Bell’s exponential polynomials. Explicit
Wronskian solutions to these equations are also presented.

1. Introduction

Direct methods based on bilinearization and differential transformations of nonlinear partial
differential equations (NLPDEs) are commonly used in soliton theory [1, 2] to disclose
‘hidden’ algebraic structures of equations solvable by the inverse scattering transform
technique. The Hirota bilinear representation is known to produce exact (quasiperiodic,
soliton and rational) solutions, Bäcklund transformations (BTs) and associated linear systems
for integrable NLPDEs, and to reveal links with other integrable equations and their
commuting flows [3].

A unifying approach to direct bilinearization has recently been proposed on the basis
of a generalization of Bell’s exponential polynomials (the so-calledY andP polynomials)
and related combinatorial identities [3]. This technique has been applied to the study of a
non-local alternative to the Boussinesq (NLBq) equation [4] and the related hierarchy [5, 6],
which can be interpreted as a constrained KP hierarchy [7].

The NLBq equation

NLBq(u) = utt + uxxxx +
(

2u2
x −

u2
t + u2

xx

ux

)
x

= 0 (1.1)

arises as a compatibility condition for a linear system associated with the bilinear
representation (see [4]) of Kaup’s higher-order wave equation [8]:

Kaup(v) = vtt + vxxxx + 2vxvxt + 2(vxvt + v3
x)x = 0. (1.2)

From a different point of view, the NLBq equation (1.1) was obtained by Boiti, Laddomada
and Pempinelli [9] as a governing equation for the potential of the square modulus of a
nonlinear Schr̈odinger (NLS) field. Since it was noticed by Hirota [10] that the Kaup
equation (1.2) can be transformed into the NLS equation, it is not a surprise that the above
equations are closely connected with NLS. The NLBq equation turned out [4] to be related
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to the Kaup equation by means of a differential transformation of Miura type (in the same
way as the KdV equation is related to the modified KdV equation [1]). In view of this
result it seemed natural to interpret the Kaup equation as a modified version of the NLBq
equation.

More recently it was found that the transformation which mapsN -soliton solutions of
equation (1.1) ontoN + 1-soliton solutions does not produce the Kaup equation [6]. This
suggests that the Kaup equation should not be regarded as a proper modified version of the
NLBq equation and that one needs to go further in the analysis of the above equations.

Starting with a study of the coupled NLS system (in whichψ andψ ′ are generally not
complex conjugate)

NLS(ψ,ψ ′) =
{

iψt + ψxx + 2ψ2ψ ′ = 0
−iψ ′t + ψ ′xx + 2ψψ ′2 = 0

(1.3)

it is the purpose of this paper to produce a complete analysis of the relations between
equations (1.1)–(1.3) and their modified counterparts. Within this analysis we derive a new
equation

mNLBq(w) = wtt + wxxxx + 2wxwxt +
(
w3
x −

w2
t + w2

xx

wx

)
x

= 0 (1.4)

which may be regarded as a modified version of both the NLBq and the Kaup equation.
A crucial element in the analysis is the Chen–Lee–Liu (CLL) system [11] (also called

the derivative NLS system):

CLL(φ, φ′) =
{

iφt + φxx + 2iφφ′φx = 0
−iφ′t + φ′xx − 2iφφ′φ′x = 0

(1.5)

which is known as a modified version of the NLS system (1.3) [12]. The CLL system is
also related by means of a gauge transformation to a generalized derivative NLS equation
(see [13–15]) which has found applications in the description of Alfvén waves in an
electromagnetic plasma (see [16] and references therein). The various transformations of
the NLS and CLL systems as well as a complete classification of integrable systems of this
type were considered by Mikhailovet al [17].

A four-field bilinearization of the CLL system can be given in close correspondence
with that found by Nakamura and Chen [18] for the CLL equation(φ′ = φ∗), which leads
to the construction of multisoliton solutions for the latter. Recently, a six-field bilinear
system was also obtained by Kakeiet al for a generalized derivative NLS equation [19].
Here, we derive an alternative two-field bilinearization of the CLL system (1.5) through
bilinearization of an equivalent system, the compatibility condition of which produces the
mNLBq equation (1.4). This new bilinear representation enables one to obtain explicit
Wronskian-type solutions to the CLL system and to the mNLBq equation (see [20, 21]).

The paper is organized as follows. In section 2 we review the differential links between
equations (1.1)–(1.3) and show that the NLBq and Kaup equations are related by reversible
differential transformations of Miura type. A modified version of these equations is derived
and analysed in section 3 where the proper Miura transformations between solutions to (1.1),
(1.2) and (1.4) are found. Bilinear representations of the CLL system and of the mNLBq
equation are reported in section 4. Finally, the explicit Wronskian solutions to these bilinear
equations are presented in section 5.
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2. Links between NLS, Kaup and NLBq equations

In order to clarify the main ideas of our approach, we start our discussion by analysing
the differential relationships between three integrable equations of physical interest: the
NLS equation, the Kaup equation and the non-local Boussinesq equation. Introducing the
(complex-valued) variablesρ andθ into the NLS system (1.3) by the substitution

ψ = √ρ eiθ ψ ′ = √ρ e−iθ (2.1)

one finds thatρ andθ are subject to the following coupled equations:

ρt + 2(ρθx)x = 0 (2.2)

θt + θ2
x − 2ρ − ρxx

2ρ
+ ρ2

x

4ρ2
= 0. (2.3)

It is easy to establish the link between these equations and the above equations (1.1) and
(1.2). It suffices to introduce new variablesu andv through the formulae

ρ = ux θ = v ± i

2
ln ux (2.4)

which transform the system (2.2) and (2.3) into the fractionless system:

ÑLS±(u, v) =
{
ut + 2uxvx ± iuxx = 0 (2.5)
vt + v2

x ∓ ivxx − 2ux = 0. (2.6)

Note that equation (2.5) was obtained after integration with respect tox on account of the
fact that the variableu is only determined byρ up to an arbitrary function oft .

By differentiating the system (2.5) and (2.6) with respect tox and by settingvx = − 1
2V

andux = − 1
4(U ∓ iVx + 1), one recovers the classical Boussinesq system for the fieldsV

andU as reported in [10] (see equations (1.6a, b) in [10] for a2 = −1).
Eliminatingu from the equations (2.5) and (2.6) one finds the Kaup equation (1.2) as a

compatibility condition for the system

ux = 1
2(vt + v2

x ∓ ivxx) (2.7)

ut = − 1
2(vxxx ± ivxt + 2vxvt + 2v3

x). (2.8)

Similarly, the NLBq equation (1.1) can be obtained from thẽNLS±(u, v) system, by
elimination ofv, as a compatibility condition for the system

vx = − 1

2ux
(ut ± iuxx) (2.9)

vt = 1

2ux

(
∓iuxt + uxxx + 4u2

x −
u2
t + u2

xx

2ux

)
. (2.10)

It is clear from formulae (2.1) and (2.4) that the NLBq equation (1.1) governs the evolution
of the potential ofux = ψψ ′, whereas the Kaup equation (1.2) governs the evolution of
v = −i ln ψ or, equivalently, ofv = i ln ψ ′ (see also [9, 10]).

Using the above results, it is easy to verify the map

NLBq(u) = −1

2

(
±i

∂

∂x
+ 2vx

)
Kaup(v) (2.11)

subject to relations (2.7) and (2.8) betweenu andv, which may be interpreted as a differential
Miura transformation between the NLBq and the Kaup equation. Yet, one also obtains a
reversed ‘Miura’-type transformation

Kaup(v) = −1

2

(
± i

ux

∂

∂x
+ ut

u2
x

)
NLBq(u) (2.12)
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subject to relations (2.9) and (2.10) betweenv andu.
Hence, the NLBq equation (1.1) and the Kaup equation (1.2) are found to be linked

by a reversible transformation. However, their bilinear representations are quite different
[4, 5]. The bilinear representation of the NLS system (1.3) is similar to the customary one
for the NLS equation [22]:

(iDt +D2
x)f · g = 0 (2.13)

(−iDt +D2
x)f
′ · g = 0 (2.14)

D2
xg · g = 2ff ′ (2.15)

with the bilinearizing transformation

ψ = f

g
ψ ′ = f ′

g
. (2.16)

The first two bilinear equations are equivalent with the first equation of the modified KP
hierarchy, whereas the last one is referred to as a 1-constraint on the KP hierarchy [7, 23].

The bilinearization of the Kaup equation can be found by using the simple partitional
structure of the generalized Bell polynomials. Thus, thẽNLS±(u, v) systems (2.5) and (2.6)
can be written in the form of homogeneous linear combinations of these polynomials (see
appendix). It follows from this analysis that the transformation

ÑLS+(u, v): v = −i ln
F

G
u = ∂

∂x
lnG (2.17)

ÑLS−(u, v): v = −i ln
F

G
u = ∂

∂x
lnF (2.18)

reduces (2.5) and (2.6) into the system

(iDt +D2
x)F ·G = 0 (2.19)

(iDxDt +D3
x)F ·G = 0 (2.20)

which is known [10, 24] to provide a bilinear representation of the Kaup equation (1.2).
Moreover, this system can also be regarded as an alternative bilinear representation of the
NLS system indicating that the NLS equation is a reduction of bilinear equations of the
modified KP hierarchy written in terms of only two fieldsF andG [10]. More specifically,
each solution(F,G) of the bilinear system (2.19) and (2.20) generates a pair of solutions
(ψ±, ψ ′±) to the NLS system according to the relations (2.1) and (2.4):

ψ+ = F

G
ψ ′+ =

GxxG−G2
x

FG
(2.21)

ψ− = FxxF − F 2
x

FG
ψ ′− =

G

F
. (2.22)

These two different solutions of the NLS system (1.3) are actually connected by the canonical
symmetry transformation presented by Leznov and Razumov [12]:

ψ− = ψ+,xx − (ψ+,x)
2

ψ+
+ ψ2

+ψ
′
+ ψ ′− =

1

ψ+
. (2.23)

The role of the alternative bilinear representation (2.19) and (2.20), with its particular
structure, is crucial in establishing the connection of the NLS equation, as a reduction of
the modified KP hierarchy, with both the Kaup equation (or, equivalently, the classical
Boussinesq system) and the NLBq equation. We note from (2.17) and (2.18) that this
representation provides a bilinear transformation between two different solutions of the
NLBq equation (1.1). Indeed, the system (2.19) and (2.20) is symmetric with respect to
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the interchange ofF andG and the replacement of i by−i. Thus, this system can be
transformed, by the standard substitutionF = ψG, Gx = uG, into a linear system,

iψt + ψxx + 2uxψ = 0 (2.24)

2uxψx + (iut − uxx)ψ = 0 (2.25)

the compatibility of which (elimination ofψ) is subject to the condition NLBq(u) = 0. On
the other hand, the substitutionG = ψ ′F, Fx = u′F leads to another system,

−iψ ′t + ψ ′xx + 2u′xψ
′ = 0 (2.26)

2u′xψ
′
x − (iu′t + u′xx)ψ ′ = 0 (2.27)

the compatibility of which produces the condition NLBq(u′) = 0. We conclude that bothu
andu′ satisfy the NLBq equation (1.1).

As one compares the two bilinear representations (2.13)–(2.15) and (2.19) and (2.20)
of the NLS system it is worth noticing the functional similarity between the bilinearizing
transformation (2.21) and the transformation which is obtained from the formula (2.16) by
eliminatingf ′ through equation (2.15):

ψ = f

g
ψ ′ = f ′

g
≡ f ′f
fg
= 1

2

D2
xg · g
fg

≡ gxxg − g2
x

fg
. (2.28)

It suggests a direct connection between the two bilinear representations. Indeed, one may
verify, by direct calculation, that the system obtained by elimination off ′ from the system
(2.13)–(2.15):

(iDt +D2
x)f · g = 0 (2.29)

(−iDt +D2
x)

(
D2
xg · g
f

)
· g = 0 (2.30)

is identically satisfied iff andg satisfy the system (2.19) and (2.20).
The connection between the two bilinear representations becomes more striking if one

specializes to the ‘physical’ NLS equation (NLS system withψ ′ = ψ∗). Consider a solution
{ψ = F/G,ψ ′ = (FG)−1(GxxG − G2

x)} of the NLS system, generated by the alternative
representation (2.19) and (2.20), withG real (non-vanishing). It produces a solution to the
NLS equation ifψ ′ = ψ∗, i.e. if F andG are linked by the customary bilinear condition
(cf equation (2.15)):

D2
xG ·G = 2|F |2. (2.31)

This condition happens to be satisfied, up to a real constant, as a consequence of the
equations (2.19) and (2.20). This can be seen by considering their linear equivalent (2.24)
and (2.25) in terms ofψ = F/G and u = ∂x lnG. It follows from equation (2.25) and
from the reality ofu thatψ andu are linked by the relation(

ux

|ψ |2
)
x

≡ |ψ |−2uxx − |ψ |−4ux(|ψ |2)x = 0 (2.32)

indicating that

ux = |ψ |2 (2.33)

where an integration constant is specified to be equal to unity according to equations (2.1)
and (2.4). Hence, it is clear from equation (2.24) and from the formula (2.33) thatψ = F/G
must solve the ‘physical’ NLS equation:

iψt + ψxx + 2|ψ |2ψ = 0. (2.34)
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In contrast to the direct bilinearizability of the system (2.7) and (2.8)—and of the Kaup
equation [4]—the bilinearization of the NLBq equation (1.1) is not straightforward as it
involves only one Hirota field. A(1+ 2)-dimensional single-field bilinear representation
was obtained by means of higher-order flows of the NLBq hierarchy [5]:

(−4DxDτ +D4
x − 3D2

t )G ·G = 0 (2.35)

(−4D3
xDτ +D6

x − 3D2
xD

2
t )G ·G = 0 (2.36)

where the time variableτ corresponds to a weight 3 flow of the KP hierarchy.
This bilinear system was used to compute multisoliton solutions to the NLBq equation,

from which it became clear that the transformation mapping aN -soliton solution onto a
N + 1-soliton solution does not correspond to the bilinear representation (2.19) and (2.20)
of the Kaup equation [6]. Thus, the Kaup equation cannot be considered as a genuine
modified version of the NLBq equation. In order to find the modified NLBq equation we
take advantage of the link between the NLS system (1.3) and the CLL system (1.5) and
apply the above analysis to the latter.

3. Modified versions of NLS and NLBq equations

The CLL system (1.5) has been shown to generate solutions to the NLS system (1.3) through
gauge transformations of the following two types [13–15]:

ψ+ = iφx exp

[
i
∫
φφ′ dx

]
ψ ′+ = φ′ exp

[
− i

∫
φφ′ dx

]
(3.1)

ψ− = φ exp

[
i
∫
φφ′ dx

]
ψ ′− = −iφ′x exp

[
− i

∫
φφ′ dx

]
. (3.2)

A substitution similar to formulae (2.1) and (2.4)

φ = √nx ei2 φ′ = √nx e−i2 2 = w ± i

2
lognx (3.3)

transforms the CLL system into either of the systems

C̃LL±(w, n) =
{
nt + n2

x + 2nxwx ± inxx = 0 (3.4)
wt + w2

x + 2wxnx ∓ iwxx = 0 (3.5)

where equation (3.4) was obtained after integration with respect tox. On account of the
above transformation (2.1) and (2.4) and the formulae (3.1)–(3.3) one can find several
different relationships between the variablesu, v satisfying (1.1) and (1.2) and the variables
w, n. It is sufficient here to reproduce only the two simplest relationships,

ux = −wxnx v = n+ w. (3.6)

Using these relations, one can eliminaten from the systems (3.4) and (3.5) so as to close
the system foru,w or v,w. In the first case, one obtains the system:

ux = 1

2
(wt + w2

x ∓ iwxx) (3.7)

ut = −1

2

(
±iwxt + wxxx + w3

x −
w2
t + w2

xx

wx

)
(3.8)

the compatibility of which is the modified NLBq equation (1.4). It is easy to verify the
following map:

NLBq(u) = 1

2

(
∓i

∂

∂x
+ 2wt
wx

)
mNLBq(w) (3.9)
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subject to relations (3.7) and (3.8) betweenu and w. This map is not reversible and
produces a proper Miura transformation converting solutions of the mNLBq equation (1.4)
into solutions of the NLBq equation (1.1).

Furthermore, the other relation (3.6) leads to a connection of (1.4) with the Kaup
equation (1.2). Indeed, one can close the systems (3.4) and (3.5) forv,w as follows:

vx = − 1

2wx
(wt − w2

x ∓ iwxx) (3.10)

vt = 1

2wx

(
±iwxt + wxxx + 3wtwx + 3

2
w3
x −

w2
t + w2

xx

2wx

)
(3.11)

the compatibility of which is again the modified NLBq equation (1.4). Finally, one finds
that equation (1.4) is mapped onto (1.2) as follows:

Kaup(v) = 1

2

(
± i

wx

∂

∂x
− wt

w2
x

+ 3

)
mNLBq(w) (3.12)

subject to relations (3.10) and (3.11).

4. Bilinearization of the modified equations

The CLL system (1.5) can be bilinearized through the use of the following transformation

φ = f

g
φ′ = f ′

g′
(4.1)

resulting in the bilinear system

(iDt +D2
x)f · g = 0 (4.2)

(−iDt +D2
x)f
′ · g′ = 0 (4.3)

D2
xg · g′ = iDxf · f ′ (4.4)

Dxg · g′ = iff ′ (4.5)

which is closely related to that found by Nakamura and Chen [18] (for the CLL equation
φ′ = φ∗). A recent generalization in terms of six fields was given by Kakeiet al [19]. It
is clear again that the bilinear equations (4.2) and (4.3) are the same as the first equation of
the modified KP hierarchy, while the other two equations (4.4) and (4.5) represent a certain
constraint imposed on the modified KP hierarchy [25].

It is easy to bilinearize the systems (3.7) and (3.8) by applying the direct bilinearization
procedure (see the appendix). One finds that both systems can be transformed into

(iDt +D2
x)F ·G = 0 (4.6)

(iD2
xDt +D4

x)F ·G = 0 (4.7)

by means of the following transformations:

C̃LL+: w = −i ln
F

G
u = ∂

∂x
lnG (4.8)

C̃LL−: w = −i ln
F

G
u = ∂

∂x
lnF. (4.9)

This shows that the system (4.6) and (4.7) can be regarded as an alternative bilinear
representation of the CLL system which produces solutions by pairs. To each solution
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(F,G) of the system (4.6) and (4.7) there corresponds a pair of solutions(φ±, φ′±) to
system (1.5):

φ+ = F

G
φ′+ = i

(
GGxx −G2

x

FGx −GFx

)
(4.10)

φ− = i

(
FFxx − F 2

x

FGx −GFx

)
φ′− =

G

F
. (4.11)

These solutions are related by a canonical symmetry transformation according to [12]

φ− = −i

(
φ+φ+,xx
φ+,x

− φ+,x
)
+ φ2

+φ
′
+ φ′− =

1

φ+
. (4.12)

As a further analogy with the NLS case, we note that the system (4.6) and (4.7) displays
the same symmetry property as the system (2.19) and (2.20) with respect to the interchange
of F andG, and that it linearizes under the same transformationF = φG, Gx = uG,
being equivalent with the system

iφt + φxx + 2uxφ = 0 (4.13)

2uxφxx + (iut − uxx)φx + 2u2
xφ = 0 (4.14)

the compatibility of which (elimination ofφ) is subject to the condition NLBq(u) = 0. On
the other hand, the transformationG = φ′F , Fx = u′F produces the system

−iφ′t + φ′xx + 2u′xφ
′ = 0 (4.15)

2u′xφ
′
xx + (−iu′t − u′xx)φ′x + 2u′2x φ

′ = 0 (4.16)

the compatibility of which leads to the condition NLBq(u′) = 0. Thus, bothu andu′ are
again two different solutions of the NLBq equation (1.1).

Similarly to the NLS case, there is a connection between the above two bilinear
representations of the CLL system. Indeed, inspection of formula (4.10) shows that the
alternative bilinear representation (4.6) and (4.7) produces solutions of the ‘physical’ CLL
equation (CLL system withφ′ = φ∗) if F andG are linked by the additional relation

F ∗DxG · F = 1
2iG∗D2

xG ·G (4.17)

which is easily seen to be satisfied whenF andG satisfy the customary bilinear conditions

D2
xG ·G∗ = iDxF · F ∗ (4.18)

DxG ·G∗ = i|F |2. (4.19)

Hence, the customary bilinear representation (4.2)–(4.5) seems to be the adequate tool
to generate solutions to the ‘physical’ CLL equation. On the other hand, the alternative
representation (4.6) and (4.7) is suited to produce solutions to the physical NLS equation.
Indeed, let

φ = F

G
φ′ = i

(
GGxx −G2

x

FGx −GFx

)
(4.20)

be a solution of the CLL system generated by the bilinear representation (4.6) and (4.7),
with G real (non-vanishing). The corresponding solution of the NLS system is produced
according to the gauge transformation (3.1). It then follows from the relation

ux ≡ ∂2
x lnG = iφxφ

′ = ψψ ′ (4.21)
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and from the reality ofux that the constraintψ ′ = ψ∗ for the corresponding solution of the
NLS system is subject to the condition

∂x ln

(
ux

|φx |2
)
= ux

|φx |2 (|φ|
2)x. (4.22)

One can show that condition (4.22) is satisfied as a consequence of equation (4.14) (and its
complex conjugate). Thus, real solutions of the NLBq equation given byu = ∂x lnG, with
G real, produce solutions of the ‘physical’ NLS equation (2.34).

It is also worth mentioning that the system (4.6) and (4.7) can be obtained by direct
bilinearization of the mNLBq equation (1.4) by using the method of the appendix. We
therefore conclude that the bilinearization (4.6) and (4.7) of the mNLBq equation provides
an alternative bilinearization of the CLL system as well as a bilinear transformation between
two different solutions of the NLBq equation (1.1). In fact, it turns out that the bilinear
equations (4.6) and (4.7) are identical with those derived by Loris and Willox from the
knowledge of theN -soliton solutions to the NLBq equation [6].

5. Wronskian solutions

Here we use an alternative form of the bilinear equations to find the explicit Wronskian
solutions of the NLS and CLL systems as reductions of the corresponding solutions of
the modified KP equation. These Wronskian solutions are particularly convenient for
representation of rational solutions to these integrable equations (see, e.g., [20]).

It is well known [21] that the first bilinear equation of the modified KP hierarchy (i.e.
(2.19) or (4.6)) admits two sets of Wronskian solutions given by

F = W [ϕ1, ϕ2, . . . , ϕN, ϕN+1]
G = W [ϕ1, ϕ2, . . . , ϕN ] (5.1)

and

F = W [ϕ1,x, ϕ2,x, . . . , ϕN,x ]
G = W [ϕ1, ϕ2, . . . , ϕN ] (5.2)

where the Wronskians are

W [ϕ1, ϕ2, . . . , ϕN ] = det

∣∣∣∣∂i−1ϕj

∂xi−1

∣∣∣∣
16i,j6N

and the set of functionsϕn are arbitrary solutions of linear equations

iϕn,t + ϕn,xx = 0. (5.3)

Thus, general Wronskian solutions to the first bilinear equations (2.19) and (4.6) of the
alternative representation of the NLS and CLL systems are known. The remaining problem
is to find a particular choice of the functionsϕn which ensures that the Wronskian solution
satisfies the other bilinear equation, i.e. the constraint of the modified KP hierarchy. For
the NLS system, this bilinear constraint is given by equation (2.20). According to Loris
and Willox [6] we rewrite this bilinear equation in an equivalent form (on account of
equation (2.19))

(iDxDt +D3
x)F ·G = 2(iDt +D2

x)Fx ·G = 0. (5.4)

Then it follows from (5.4) that the only form of the Wronskian solutions (5.1) and (5.2)
which satisfies both (2.19) and (5.4) is

F = W [ϕ, ϕx, . . . , ϕ(N−1)x, ϕNx ]
G = W [ϕ, ϕx, . . . , ϕ(N−1)x ] (5.5)
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whereϕ satisfies equation (5.3) and where the notationϕpx stands for thepth x-derivative
of ϕ. This pair of Wronskians generates explicit solutions to the NLBq and Kaup equations
by means of (2.17) and (2.18) as well as to the NLS system by means of (2.21) and (2.22).
The Wronskian solutions of the form (5.5) were first found by Hirota [20] with the help of a
different and lengthy analysis, and recently recovered and generalized by Loris and Willox
[6]. In particular, the rational solutions follow from the Wronskian representation (5.5) for
a simple choice of an explicit solution to equation (5.3),

ϕ =
(
∂n

∂pn
epx+ip2t

) ∣∣∣∣
p=0

(5.6)

where thenth derivative with respect to the parameterp produces a polynomial for the
functionϕ with respect tox of degreen. Along with the order of the Wronskian determinant
N , the indexn defines the degree of the polynomial solutions for the bilinear fieldsF and
G. It is clear that the Wronskian representation provides a wide set of rational solutions to
the NLBq, Kaup equations as well as to the NLS system (see also [21]).

Similarly, we analyse the bilinear constraint (4.7) for the CLL system and rewrite it
subject to equation (4.6) in the equivalent form

(iD2
xDt +D4

x)F ·G = −4(iDt +D2
x)Fx ·Gx = 0. (5.7)

There are two possible sets of the Wronskian solutions (5.1) and (5.2) satisfying both (4.6)
and (5.7). They are given by

F = W [∂−1
x ϕ, ϕ, . . . , ϕ(N−2)x, ϕ(N−1)x ]

G = W [ϕ, ϕx, . . . , ϕ(N−1)x ] (5.8)

and

F = W [ϕx, ϕ2x, . . . , ϕNx ]
G = W [ϕ, ϕx, . . . , ϕ(N−1)x ]. (5.9)

These two sets of Wronskian solutions for the bilinear fields(F,G) generate two different
solutions of the mNLBq equation (1.4) according to the representation (4.8) and (4.9) as
well as of the CLL system according to equations (4.10) and (4.11).

6. Conclusions

In conclusion, we have presented new transformations between the NLS, Kaup and NLBq
equations as well as their modified versions and found some additional bilinearizations.
The bilinearization of the modified NLBq equation can be regarded as an alternative to the
usual bilinear representation of the CLL equation, which simplifies the reduction procedure
used for finding exact solutions of these equations, for example Wronskian solutions. The
results and methods presented in our paper can be further extended to mixed NLS and
CLL equations as well as to higher-order members of the hierarchy of integrable equations
related to the NLS, Kaup and NLBq equations.
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Appendix

The exponential polynomials introduced by Bell [26] are defined in terms of the derivatives
of a C∞ function f (x):

Ynx(f ) ≡ Yn(fx, . . . , fnx) = e−f (x)
(
∂

∂x

)n
ef (x). (A.1)

They are homogeneous of weightn (f being of weight 0 andx of weight−1) and obey a
simple partitional recipe:

Yx(f ) = fx Y2x(f ) = f2x + f 2
x Y3x(f ) = f3x + 3fxf2x + f 3

x , . . . . (A.2)

We consider the following generalizations.
(i) ‘Binary’ Bell polynomials(defined in terms of the odd-order derivatives of a function

V and the even-order derivatives of another functionU ):

Ynx(V ,U) = Yn(fx, . . . , fnx)
∣∣∣∣
fpx=

{
Vpx if p = odd
Upx if p = even

(A.3)

which are linked to the HirotaD-operator through the identity [3]

(FG)−1Dn
xF ·G = Ynx

(
V = ln

F

G
,U = lnFG

)
. (A.4)

They are homogeneous of weightn (V andU being of weight 0) and obey the partitional
recipe inherited from the definition (A.1).

(ii) Two-dimensional (binary) Bell polynomials:

Ypx,qt
(
V = ln

F

G
,U = lnFG

)
= (FG)−1Dp

xD
q
t F ·G (A.5)

which are homogeneous of weightp + qr (t being of weight−r) and obey a similar
partitional recipe extended to the two variablesx and t :

Yxt (V , U) = Uxt + VxVt
Y2x,t (V , U) = V2x,t + U2xVt + 2UxtVx + V 2

x Vt
· · · . (A.6)

On account of the formulae (A.4) and (A.5) we may obtain a direct bilinearization of the
system (2.5) and (2.6) by looking for a transformation which expressesv andu in terms of
new (weightless) variablesV andU which are such that the equations (2.5) and (2.6) are
expressible as homogeneous linear combinations of polynomialsYpx,qt (V , U) set equal to
zero. It is clear from the form of the polynomials of weight 2 (one sees in equations (2.5)
and (2.6) thatt has twice the weight ofx),

Yt (V ) = Vt Y2x(V ,U) = U2x + V 2
x (A.7)

that equation (2.6) can be transformed into

iYt (V )+ Y2x(V ,U) = 0 ⇐⇒ (iDt +D2
x)F ·G = 0 (A.8)

by noting thatv has weight 0 whereasu has weight−1 and by setting

v = −iV u = 1
2(Ux ∓ Vx). (A.9)

It is easy to verify that the same map transforms equation (2.5) into an equation which
can be expressed as a linear combination of the weight 3 polynomialsYxt (V , U) and
Y3x(V ,U) = V3x + 3U2xVx + V 3

x , set equal to zero:

iYxt (V , U)+ Y3x(V ,U) = 0 ⇐⇒ (iDxDt +D3
x)F ·G = 0. (A.10)
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Thus we obtain the bilinear system (2.21) and (2.22), the bilinearizing transformations (2.19)
and (2.20) being given by formula (A.9) and the above relations:

V = ln
F

G
U = lnFG. (A.11)

A direct bilinearization of the systems (3.7) and (3.8) can be obtained in the same manner,
as equations (2.7) and (3.7) are of the same form. By introducing a similar transformation,

w = −iV u = 1
2(Ux ∓ Vx) (A.12)

one maps equation (3.7) onto (A.8). By using equation (A.8) to eliminateVt one finds on
account of the explicit form of the polynomialsY2x,t (V , U) and

Y4x(V ,U) = U4x + 4VxV3x + 3U2
2x + 6V 2

x U2x + V 4
x (A.13)

that the transformation (A.12) transforms (3.8) into

−i

2Vx
[iY2x,t (V , U)+ Y4x(V ,U)] = 0. (A.14)

Hence, it is clear through formula (A.5) that the system (4.6) and (4.7) is a bilinear
representation of the system (3.7) and (3.8), the bilinearizing transformations (4.8) and
(4.9) being given by the formulae (A.11) and (A.12).

References

[1] Hirota R 1988 Direct methods in soliton theorySoliton ed R K Bullough and P J Caudrey (New York:
Springer) p 157

[2] Matsuno Y 1984Bilinear Transformation Methods(Orlando: Academic)
[3] Gilson C, Lambert F, Nimmo J and Willox R 1996 On the combinatorics of the HirotaD-operatorsProc. R.

Soc. LondA 452 223
[4] Lambert F, Loris I, Springael J and Willox R 1994 On a direct bilinearization method: Kaup’s higher-order

water wave equations as a modified nonlocal Boussinesq equationJ. Phys. A: Math. Gen.27 5325
[5] Willox R, Loris I and Springael J 1995 Bilinearization of the nonlocal Boussinesq equationJ. Phys. A: Math.

Gen.28 5963
[6] Loris I and Willox R 1996 Soliton solutions of Wronskian form to the nonlocal Boussinesq equationJ. Phys.

Soc. Japan65 383
[7] Loris I and Willox R 1997 Bilinear form and solutions of thek-constrained KP hierarchyInverse Problems

13 411
[8] Kaup D 1975 A higher-order water-wave equation and the method for solving itProg. Theor. Phys.54 396
[9] Boiti M, Laddomada C and Pempinelli F 1981 An equivalent real form of the nonlinear Schrödinger equation

and the permutability for B̈acklund transformationsNuovo CimentoB 62 315
[10] Hirota R 1985 Classical Boussinesq equation is a reduction of the modified KP equationJ. Phys. Soc. Japan

54 2409
[11] Chen H H, Lee Y C and Liu C S 1979 Integrability of nonlinear hamiltonian systems by inverse scattering

methodPhys. Scr.20 490
[12] Leznov A N and Razumov A V 1994 The canonical symmetry for integrable systemsJ. Math. Phys.35 1739
[13] Wadati M and Sogo K 1983 Gauge transformations in soliton theoryJ. Phys. Soc. Japan52 394
[14] Kundu A 1987 Exact solutions to higher-order nonlinear equations through gauge transformationPhysica

25D 399
[15] Clarkson P A and Cosgrove C M 1987 Painlev́e analysis of the nonlinear Schrödinger family of equations

J. Phys. A: Math. Gen.20 2003
[16] Hamilton R L, Kennel C S and Mjolhus E 1992 Formation of quasiparallel Alfven solitonsPhys. Scr.46 237
[17] Mikhailov A V, Shabat A B and Yamilov R I 1988 Extension of the module of invertible trasnformations.

Classification of integrable systemsCommun. Math. Phys.115 1
[18] Nakamura A and Chen H H 1980 Multi-soliton solutions of a derivative nonlinear Schrödinger equationJ.

Phys. Soc. Japan49 813
[19] Kakei S, Sasa N, and Satsuma J 1995 Bilinearization of a generalized derivative nonlinear Schrödinger

equationJ. Phys. Soc. Japan64 1519



Modified NLS, Kaup and NLBq equations 8717

[20] Hirota R 1986 Solutions of the classical Boussinesq equation and the spherical Boussinesq equation: the
Wronskian techniqueJ. Phys. Soc. Japan55 2137

[21] Hirota R, Ohta Y and Satsuma J 1988 Wronskian structures of solutions for soliton equationsProg. Theor.
Phys. Suppl.94 59

[22] Hirota R 1974 Direct methods of finding exact solutions of nonlinear evolution equationsBäcklund
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