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Abstract

Nonlinear photonic crystals may enable all-optical signal processing. Developed herein

is an analytical method by which the propagation of light in low-contrast nonlinear

photonic crystals can be understood.

In solving Maxwell’s equations in nonlinear photonic crystals, their constituent pe-

riodicity and nonlinearity are treated as perturbations to an underlying homogeneous

medium. The method of multiple scales is then used to obtain coupled mode equations

governing the evolution of resonantly coupled normal modes in the perturbed medium,

thus providing an approximation to the electric field therein.

The method developed here applies to photonic crystals of any dimensionality and

reproduces as a special case the one-dimensional theory of which it is a generalization.

Being explicitly intended for low-contrast photonic crystals, this method provides a

more direct means for their analysis than studying methods intended for high-contrast

media in the limit of low-contrast. It is also more general than previous instances of

multi-dimensional nonlinear coupled mode theory.

By facilitating the analysis and understanding of the behaviour of light in nonlin-

ear photonic crystals, the formalism developed in this work may help expedite their

application in all-optical signal processing.

i



Acknowledgements

I would foremost like to thank Professor Edward Sargent for his guidance, encourage-

ment and for trusting me with a challenging and engaging problem.

I thank Professor Dmitry Pelinovsky of McMaster University, as well as Lukasz

Brzozowski, Mathieu Allard and Emanuel Istrate for many insights.

Finally, I thank my family for their support. To them I can wholly attribute whatever

success I may find.

ii



Contents

1 Introduction 1

1.1 Periodic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Nonlinear Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Perturbative Approach 10

2.1 Generalized Coupled Mode Equations . . . . . . . . . . . . . . . . . . . . 11

2.2 Nonlinear Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Applying The Formalism 37

3.1 Two Modes In a Two Dimensional Lattice . . . . . . . . . . . . . . . . . 37

3.2 Three Modes In a Three Dimensional Lattice . . . . . . . . . . . . . . . . 41

3.3 A Note On Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Discussion and Conclusion 47

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



List of Symbols and Abbreviations

E Electric field vector

D Electric flux density vector

n Index of refraction

∆ Total index perturbation

∆l, ∆nl Linear and nonlinear components of the index perturbation

∆l
G, ∆nl

G Fourier components of ∆l and ∆nl

ξ Perturbation parameter

k Wavevector

ω Angular frequency

ϕk,ω Plane wave with wavevector k and frequency ω

Ak Mode envelope

XF , TF ,XS, TS Fast and slow time and space variables

∇S,∇F Gradients with respect to the slow and fast space variables〈
,
〉

or
〈
|
〉

Inner product

|S| Cardinality of set S

CME Coupled mode equations

MSM Method of multiple scales

RLV Reciprocal lattice vector

v



Chapter 1

Introduction

Telecommunications networks are the foundation of the Internet. Information in these

networks is transmitted as light in optical fibres but processed electronically when it must

be actively operated on. Routing, for example, is performed by high speed electronics

appearing intermittently between lengths of optical fibre.

As demand for bandwidth grows and as electronic technology inexorably approaches

fundamental limits in its size and so its speed, the need to eliminate it from telecom

networks becomes increasingly urgent. An ideal network must be universally optical if

it is to have any optical component at all.

This in turn requires a new paradigm of devices capable of performing optically and

with equal efficacy the operations currently carried out electronically. Briefly, these

devices must be capable of all-optical signal processing.

As will be discussed below, the properties of nonlinear photonic crystals make them

suitable candidates on which these devices could be based and for this reason are the

focus of this work. We first discuss the constitutive features of nonlinear photonic

crystals, periodicity and nonlinearity, before proceeding to acknowledge how fruitful

their combination can be and what bearing it may have on the creation of all-optical

networks.
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1.1 Periodic Media

In the context of photonics, a periodic medium is one whose dielectric permittivity varies

periodically with position. This is expressed explicitly as ε(r) = ε(r + Ri) for i = 1, 2, 3.

The vectors Ri are the basis for a lattice in which the periodic medium consists. Periodic

dielectric materials are for this reason known as photonic crystals.

The effect of a dielectric lattice on the behaviour of light closely parallels the influence

of periodic potentials on electrons in regular crystals. This similarity is manifest in the

form assumed by the governing equations in each case, Maxwell’s and Schrodinger’s

respectively. In a periodic dielectric structure, the stationary Maxwell’s equations can be

cast into the form of a eigenvalue problem that closely resembles Schrodinger’s equation

in a periodic potential and in which the similarities between periodic potentials and

permittivities is made patent.

The wave equation in each case is amenable to the Bloch-Floquet theory and, as is

well known from solid state physics [1], thereby admit stationary solutions with the form

u(r)ei(k·r−ωt) where the function u(r), scalar in Schrodinger’s equation and vectorial

in Maxwell’s, has the periodicity of the dielectric or potential lattice so that u(r) =

u(r + Ri). Solutions possessing this form of a plane wave modulated by a periodic

function are called Bloch modes. We immediately see that exacting the analogy between

Schrodinger’s and Maxwell’s equations in periodic media has availed to the study of light

the well established results of solid state physics and quantum mechanics.

Central to the study of Bloch modes and so to that of light in photonic crystals

are dispersion relations. Dispersion relations in photonic crystals are constructed by

determining the conditions on ω and k under which the Bloch mode u(r)ei(k·r−ωt) does

in fact solve Maxwell’s equations. The dispersion relations are typically represented by

ω as a function of k and are written as ω(k). It is the dispersion relations in which the

salient property of periodic media is found, namely, bandgaps.
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For particular lattice geometries there exist frequencies at which no light can prop-

agate in the photonic crystal, a phenomenon that is manifest as gaps in the dispersion

relations at these frequencies. For no value of k is the dispersion relation ω(k) equal

to these frequencies. These frequencies collectively constitute the photonic bandgaps of

the crystal.

The physical mechanism responsible for bandgaps lies in the periodicity of the dielec-

tric permittivity in the medium. The resulting dielectric lattice can diffract electromag-

netic waves in a manner similar to that in which x-rays are diffracted by semiconductor

crystals. For particular wavelengths and directions, waves can interfere constructively

with the diffracted waves that they create, in turn creating standing waves that cannot

propagate.

Periodicity, however, is not sufficient for the formation of gaps in the dispersion

relations. The existence of photonic bandgaps in fact depends strongly on the combina-

tion of the scattering induced by the dielectric lattice, called Bragg scattering, and that

caused by the individual elements constituting the lattice [2]. Strictly, photonic crystals

are dielectric lattices that do exhibit photonic bandgaps.

The photonic bandgap gives rise to novel and unique physical phenomenon and

consequently have been singularly responsible for generating a wealth of research. One of

the contexts in which it was first conceived was the inhibition of spontaneous emission [3],

one result of which would be more efficient semiconductor lasers. Photonic crystals were

simultaneously proposed as a means of localizing electromagnetic waves by introducing

defects into them [4]. Modes whose frequencies lie in the bandgap of the crystal but that

are allowed to exist in the defects, will be localized therein by their inability to propagate

through the rest of the crystal. The evanescence of modes whose frequencies lie the

bandgap similarly leads to applications such as antennae substrates [5] and waveguides

[6, 7] that, through the bandgap, can very precisely control the propagation of light and
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so be substantially more efficient than their ordinary dielectric counterparts.

The applications mentioned here, however, have only a passive dependence on the

photonic bandgap inasmuch as they rely only on its existence. It suffices in these contexts

for the bandgap to be static and spatially uniform. Optical signal processing, however,

requires some means of actively controlling the propagation of light in a medium, which

in turn requires the band structure of the medium to be dynamic [8]. Linear photonic

crystals cannot, for this reason, be suitable for all of the operations associated with

optical signal processing.

We discuss next one means of obtaining the mutability of band structures that is

essential to all-optical signal processing, namely, nonlinearities.

1.2 Nonlinear Media

Linear materials are appropriately characterized as having responses to applied electric

fields, or more precisely, polarizations that depend linearly on those fields. However,

when subject to fields with sufficiently high intensities, this dependence can, even in

nominally linear materials, become nonlinear.

The details of the response of a material to an applied electric field can be determined

from its susceptibility, which relates the polarization in the material to that field. This

relationship can be written as a power series in the components of the field E [9],

Pi = ε0(χ
(1)
ij Ej(r) + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + · · · )

in which it is clear that the nonlinear terms corresponding to χ(n) for n ≥ 2 cannot

be ignored for high field intensities. The tensor χ(n), with components χijk··· is the nth

order susceptibility tensor which, in isotropic media, becomes a scalar. In what follows,

we will be concerned only with isotropic media.
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In a material possessing inversion symmetry, such that χ(n)(r) = χ(n)(−r), all even-

ordered susceptibilities must vanish [10], making the third order susceptibility χ(3) the

lowest order nonlinearity. We focus here on materials possessing inversion symmetry

and for which χ(3) is the dominant nonlinearity, so that P ≈ ε0(χ
(1)E + χ(3)|E|2E).

Materials in which this is the case are said to possess Kerr nonlinearities.

While, in general, the effect of a Kerr nonlinearity is to produce nonlinear anisotropy

[9], it, in isotropic media, introduces a polarization that depends on the local light inten-

sity but that remains collinear with the applied field. The effects of the intensity depen-

dence of the polarization are more conveniently embodied in the form of an intensity de-

pendent index of refraction in the following way. Susceptibility is related to the index of

refraction by n =
√

1 + χ. In a Kerr nonlinear material, P = ε0(χ
(1)+χ(3)|E|2)E = ε0χE,

so that

n =
√

1 + χ(1) + χ(3)|E|2

≈ nl + nnl|E|2 (1.1)

where nl =
√

1 + χ(1) and nnl = 1
2

χ(3)

1+χ(1) . A Kerr nonlinearity thus has the effect of

introducing a nonlinear component, nnl|E|2 into the index of refraction. Although third-

order susceptibility nonlinearities are responsible for a variety of phenomenon such as

third harmonic generation and intensity dependent absorption, the intensity dependence

of the index of refraction is the consequence most relevant to this work.

Light in a Kerr nonlinear medium can, via that nonlinearity, induce local changes to

the medium that in turn affect the propagation of light therein. Optical nonlinearities

thus allow light to affect its own propagation by causing local changes in the dispersion

relation of the medium it is in. That light can affect its own behaviour is manifest in the

intensity dependent index of refraction obtained above. Specifically, light propagating

through a nonlinear medium has a phase component that is intensity dependent. The
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light can thereby alter its own phase, an effect known as self-phase modulation (SPM).

The phenomenon of cross-phase modulation (XPM) is the extension of this notion to

situations involving multiple sources of light wherein each source can affect the phase

of another.

SPM has the effect of introducing new frequency components into pulses propagating

in nonlinear media, and thereby broadening their spectrum [11]. This in turn has the

effect of compressing the pulse itself, inasmuch as the width of a pulse and that of its

Fourier transform are inversely related. Dispersion, however, has the effect of introducing

a time and wavevector dependent phase into the spatial Fourier transform of a pulse.

In a nondispersive medium, this phase has the effect of translating the pulse without

disturbing its shape. In general however, this phase has the effect of broadening the

pulse as the ensemble of normal modes constituting the pulse travel at different speeds.

In a dispersive medium, the effects of SPM can counteract those of the dispersion and

can, under certain conditions, balance precisely with them. The products of this balance

are solitons, pulses capable of propagating through a medium without experiencing any

changes to their shape.

There exists an important class of solitons consisting of those formed in media that

are dispersive for no reason other than their periodicity. Solitons formed in a periodic

nonlinear material are termed Bragg solitons and can propagate undisturbed through

periodic structures as a result of the balance between SPM and the dispersion caused

by periodicity [12].

Inasmuch as light can locally affect the dispersion relation of the medium it is in, it

should be expected that light in a periodic nonlinear one be able to locally affect its band

structure and in particular its bandgaps. Indeed, this is the process by which gap solitons

[13, 14] are able to propagate in a nonlinear periodic structure. Gap solitons are Bragg

solitons whose frequency content lies entirely in the bandgap of the periodic medium
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in which they are formed. Such a pulse would be unable to propagate inside a linear

periodic structure because of this defining property. However, in a nonlinear periodic

medium, a sufficiently intense pulse can change the bandstructure local to it enough to

remove its frequency content from the bandgap, thereby allowing it to propagate as a

gap soliton.

From the example of gap solitons it is clear that the combination of periodicity and

nonlinearity leads to phenomena unique to their union and exclusive of each property

separately. This fact has been exploited in proposals for fundamental optical devices

such as limiters [15, 16] and switches [17, 18, 19, 20, 21, 22] from which more complicated

operations, such as logic functions can be obtained, [23].

Nonlinearity may thus provide the control over, or tunability, of bandstructures of

periodic materials that is essential to all-optical signal processing. This property of

nonlinear periodic media has been the impetus for their study and that of the behaviour

light within them. It is similarly what compelled this work.

1.3 Motivation

The behaviour of light in any medium is determined by the solution to Maxwell’s equa-

tions therein. The combination of nonlinearity and periodicity, however, can leave

Maxwell’s equations analytically intractable. This difficulty is typically circumvented

with the use of perturbative methods, for example, [24]. We describe below how and why

we develop such a method that is explicitly intended for multi-dimensional low-contrast

photonic crystals.

Weak nonlinearities are typically treated as perturbations to an underlying linear

medium. Whatever the strength of the nonlinearity, it precludes the independent evolu-

tion of the normal modes of the unperturbed linear medium. However, for a sufficiently

weak nonlinearity, the lengths over which these normal modes do interact will be greater
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than the length characterizing the linear medium, its periodicity [25]. Similarly, the time

after which the normal modes would have interacted substantially will be greater than

the characteristic rates at which these modes oscillate. Consequently, two distinct scales

can be associated with the propagation of waves in weakly nonlinear media, one corre-

sponding to the periodicity of the unperturbed medium, and the other to the interaction

of its normal modes. For this reason, an asymptotic method suitable for the analysis of

nonlinear periodic structures is the method of multiple scales (MSM) [24].

In the MSM, to the lowest order of approximation, the electric field is expressed as

some linear combination of the normal modes of the unperturbed linear medium. Nor-

mally, in non-stationary perturbation theory [26], the coefficients in this combination are

made to vary in space and time. While this is the case in the MSM, what distinguishes

it from other perturbative methods is the formal introduction of new time and space

scales over which the coefficients characteristically vary. The coefficients in the normal

mode expansion can then be made to vary only on the scale on which the normal modes

interact.

These coefficients, or envelopes, can be thought of as modulating the normal modes

and it is in those envelopes that the effects of a periodic nonlinearity can be found. The

envelopes can thereby be sufficient for understanding the nature of light propagation in

periodic nonlinear media, for example, [27, 28, 29]. The MSM avails us of a means of

determining these envelopes.

This method of studying the large scale behaviour of the unperturbed normal modes

was initially employed in optics in the study of deep nonlinear one-dimensional gratings

[24, 12], where the envelope modulating a Bloch mode of the periodic unperturbed

medium was found to satisfy a nonlinear Schrodinger equation. More recently, the

technique has been employed in studying high contrast nonlinear photonic crystals [27,

28].
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1.4 Objective

The focus of this work is on linearly periodic media that addtionally possess periodic

Kerr nonlinearities. In particular, we use the MSM to study coupled modes in low

contrast nonlinear photonic crystals, those in which the change in the dielectric per-

mittivity over one period of the crystal is small. Low contrast photonic crystals are

currently of experimental interest [30] but have not previously been the explicit subject

of any maximally general treatments.

Our objective is to develop, in the framework of the MSMs, a method that will

yield coupled mode equations (CME) for isotropic low-contrast nonlinear periodic media

having any geometry in one, two or three dimensions.

The CMEs derived here will, for the first time, permit analysis of the intensity-

dependent behaviour of multidimensionally-periodic low-contrast nonlinear media. The

applicability of the CMEs to multidimensional media will facilitate the extension of

previous work in 1-d devices to higher dimensions.

The CMES derived here describe resonant light incident from any direction on a

medium having any periodic index of refraction profile. This is in contrast to some

previous works wherein the index profile was fixed [32, 33]. Also, because it is explicitly

intended for low-contrast photonic crystals, the method presented here may provide a

more direct means for their analysis than the alternative of considering high contrast

methods [29] in the limit of low index contrast.

The details of the derivation of the CMES and some of their general consequences

are presented in Chapter 2. For illustration, this formalism is applied in Chapter 3 to

particular scenarios in three-dimensional media.
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Chapter 2

A Perturbative Approach

In this chapter, we enlist the method of multiple scales in obtaining nonlinear coupled

mode equations for any low-contrast nonlinear periodic structure. The central result of

this chapter will be generalized couple mode equations whose final form depends only on

the modes that are coupled and the Fourier series representation of the periodic index

of refraction.

What is essentially required for the understanding of Kerr nonlinear periodic struc-

tures is an approximate solution to Maxwell’s equations. The particular structures that

we endeavour to study are those possessing small, periodic spatial variations in both the

linear and nonlinear components of their indices of refraction, as given by (1.1).

It is by treating the small variation in the index of the structure as a perturbation

to a homogeneous linear medium that we obtain an approximate solution to Maxwell’s

equations. The approximation consists in only considering the envelopes modulating

the normal modes of interest. This treatment leads naturally to the use of the MSM.
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2.1 Generalized Coupled Mode Equations

Inside the perturbed medium, that having the position dependent and nonlinear index

of refraction, the electric field must satisfy the wave equation,

∇2E−∇(∇ · E) =
n2(x, |E|2)

c2

∂2E

∂t2
(2.1)

which is obtained with the assumption that

||n2(x, |E|2)∂
2E

∂t2
|| � ||2∂E

∂t

∂n2

∂t
+ E

∂2n2

∂t2
||

Equivalently, the components of the field must satisfy the projection of (2.1) onto their

respective axes, which we denote by j = 1, 2, 3, so that,

∇2Ej −
3∑

n=1

∂2En

∂xj∂xn

=
n2(x, |E|2)

c2

∂2Ej

∂t2
(2.2)

Inside the perturbed medium, the index of refraction is written as

n(x, |E|2) = n0 + ∆(x, |E|2) (2.3)

where n0 is the index in the linear, homogeneous unperturbed medium and ∆(x, |E|2) the

index perturbation. The index perturbation ∆ contains all of the position dependence

and nonlinearity found in the perturbed index n(x, |E|2) and is written as ∆(x, |E|2) =

∆l(x) + |E|2∆nl(x). The terms ∆l(x) and |E|2∆nl(x) are respectively the linear and

nonlinear components of the perturbation. That the perturbed medium is Kerr nonlinear

is manifest in the second term.

The relevant quantity in the wave equation (2.1) is the square of the total index
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which, using (1.1) and the full expression for ∆(x, |E|2), becomes

n2(x, |E|2) = n2
0 + 2n0∆(x, |E|2) + ∆2(x, |E|2)

= n2
0 + 2n0

(
∆l(x) + ∆nl(x)|E|2

)
+ ∆2(x, |E|2) (2.4)

The periodicity of ∆l(x) and ∆nl(x) in the perturbed medium implies the existence

of vectors Ti, i = 1, 2, 3 such that ∆l(x) = ∆l(x + Ti) and ∆nl(x) = ∆nl(x + Ti).

These vectors, called lattice vectors, form the lattice constituting the periodic medium.

An important consequence of the periodicity of this is that the components of the

perturbation can be as Fourier series in the following way,

∆l(x) =
∑
allG
G 6=0

∆l
Ge−i(G·x)

∆nl(x) =
∑
allG

∆nl
Ge−i(G·x) (2.5)

The vectors G are reciprocal lattice vectors (RLVs) defined in the usual way in terms of

the Ti [1]. The RLV G = 0 is omitted from the series for ∆l(x) because ∆l
0 represents

the component of the linear perturbation that is constant in space. We assume that

there exists no linear index mismatch between the perturbed and unperturbed media,

so that ∆l
0 is accounted for already by n0.

The Fourier coefficients ∆l
G are given by [1]

∆l
G =

1

Vpc

∫
pc

d3r∆l(r)ei(G·r)

where pc denotes the primitive cell of the real lattice and Vpc its volume. The compo-

nents ∆nl
G are given by an analogous expression. It is useful to note that, if the index

perturbations are real and possess inversion symmetry then, inasmuch as the primitive

cell of a lattice must always be symmetric about the origin of the lattice, the Fourier
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components are actually given by

∆l
G =

1

Vpc

∫
pc
2

d3r∆l(r) cos (G · r)

where pc
2

denotes half of the primitive cell.

That the perturbation ∆(x, |E|2) is small can be quantified by the introduction of a

perturbation parameter ξ, such that (2.4) becomes

n2(x, |E|2) = n2
0 + 2n0

(
∆̃l(x) + ∆̃nl(x)|E|2

)
ξ + ∆2ξ2 (2.6)

where ∆̃l and ∆̃nl are O(1). In what follows, the symbols ∆l(x) and ∆nl(x) will be used

to refer to ∆̃l and ∆̃nl. Because we do not consider corrections to the field that are

O(ξ2), the final term in (2.6) is simply omitted in the analysis that follows.

The solutions of the wave equation (2.1) are parameterized through ξ. Furthermore,

when ξ = 0, those solutions are known to be plane waves, given that the unperturbed

medium is charge free. Accordingly, the field is expanded in an asymptotic series about

ξ = 0,

E(r, t) =
∞∑

m=0

Em(x, t)ξm (2.7)

from which an approximation to the field can be obtained by truncating the series at a

sufficiently high order. Because the series is defined as being asymptotic, increasingly

higher order terms in the expansion introduce decreasingly large deviations from the

field in the unperturbed medium. This will be important in obtaining the CME.

As is additionally done in the MSM, new time and space scales are defined using ξ,

namely Xp = ξpx and Tp = ξpt for p = 0, 1, 2 . . .. Because our analysis is limited to O(ξ)

corrections, only the scales corresponding to p = 0 and p = 1 require consideration. In

particular, XF = x is the fast space variable corresponding to the periodicity of the

index lattice, and XS = ξx is the slow space variable corresponding to the interaction
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of the normal modes induced by the nonlinearity. Similarly, TF = t and TS = ξt are

the fast and slow time variables. The terms Em(x, t) will be assumed to be functions of

all of these scales and will be written as Em(Xβ, Tβ) with the dependence on all of the

scales implicit in the use of β.

Treating each of these new scales as independent variables gives the following ex-

pressions for the derivatives relevant to the wave equation (2.2),

∂2

∂x2
i

=
∂2

∂X2
F,i

+ 2ξ
∂2

∂XF,i∂XS,i

+ ξ2 ∂2

∂X2
S,i

∂2

∂xi∂xj

=
∂2

∂XF,i∂XF,j

+ ξ
( ∂2

∂XS,i∂XF,j

+
∂2

∂XF,i∂XS,j

)
+ ξ2 ∂2

∂XS,i∂XS,j

∂2

∂t2
=

∂2

∂T 2
F

+ 2ξ
∂2

∂TS∂TF

+ ξ2 ∂2

∂T 2
S

(2.8)

It should be noted that the index perturbations ∆l(x) and ∆nl(x) are functions only

of the fast variables, so that ∆l(x) = ∆l(XF ) and ∆nl(x) = ∆nl(XF ). The Fourier

series representing each of the perturbations retains the same form as (2.5) but with x

replaced by XF .

Equipped with the expansion (2.7) and the new derivatives (2.8), a recurrence equa-

tion for the Em(Xβ, Tβ) can be obtained by substituting the expansions into the wave

equation (2.2) and then using the linear independence of the powers of ξ. As will be

shown, the CME will be a direct consequence of the existence of a solution to these

recurrence relations.

Beginning by collecting terms proportional to ξ0 in (2.2), it is found that, to first

order, the recurrence equation is the wave equation in the unperturbed medium,

3∑
n=1

∂2E0,j

∂XF,n

+
3∑

n=1

∂2E0,n

∂XF,j∂XF,n

=
n2

0

c2

∂2E0,j

∂T 2
F
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which is equivalent to the vector equation,

∇2
FE0 −∇F (∇F · E0) =

n2
0

c2

∂2E0

∂T 2
F

(2.9)

where ∇F =
∑3

n=1 en
∂

∂XF,n
. ∇2

F ,∇F · are defined similarly.

Equation (2.9) differs slightly from the wave equation expected in a charge-free ho-

mogeneous medium because of the presence of the ∇F (∇F ·E0) term. However, taking

into account another of Maxwell’s equations, it will now be shown that that term is

identically zero. Using the expansion (2.7), the divergence of the electric field is given

by

∇ · E = ∇ ·
( ∞∑

m=0

Emξm
)

= ∇ · E0 +∇ ·
( ∞∑

m=1

Emξm
)

= ∇F · E0 + ξ∇S · E0 +∇ ·
( ∞∑

m=1

Emξm
)

The expansion ∇· = ∇F ·+ξ∇S· has been used in the last line, where ∇F · =
∑3

n=1
∂

∂XF,n

and ∇S· is defined similarly.

Now, invoking the constitutive relation D = n2(r, |E2|)E, and noting that the ab-

sence of charge in the medium requires ∇ ·D = 0, we find that

∇ · n2E = 0

= 2n(∇n)Ė + n2∇ · E

= 2ξn(∇F n) · E + n2
(
∇F · E0 + ξ∇S · E0 +∇ ·

( ∞∑
m=1

Emξm
))

= n2
0∇F · E0 + O(ξ)

From this it follows that ∇F · E = 0 identically. The third line above follows from the

15



index being dependent only on the fast scale XF , so that ∇Sn = 0.

Applying this result to (2.9) yields the following wave equation for E0,

∇2
FE0 =

n2
0

c2

∂2E0

∂T 2
F

(2.10)

the general solution to which is a superposition of plane waves ek,λ,e
i(k·XF−ωTF ) where

ω and k satisfy ||k||2 = ω2 n2
0

c2
. Here ek,λ denotes one of two unit vectors labelled by λ

that, together with k form an orthogonal triad. These two linearly independent normal

mode polarizations are required to create a complete set of normal modes. So,

E0(Xβ, Tβ) =

∫
d3k

2∑
λ=1

Ak(XS, TS)ek,λe
i(k·XF−ω(k)TF )

where the integral is over all k and the plane wave coefficients Ak(XS, TS) are functions

only of the slow variables XS and TS. These coefficients are in fact the mode envelopes

that we seek to determine through the CME. The zeroth order approximation to the field

thereby consists of normal modes of the unperturbed medium modulated by envelopes

that, for ξ = 0, do not vary in space or time, as expected. What is intended by requiring

that ∂Ak

∂XS,i
= 0 is that rapid variations in the electric field be embodied in the plane waves

ei(k·XF−ω(k)TF ).

The integrand above can be written as Ak(XS, TS)ϕk,ω where

Ak(XS, TS) =
2∑

λ=1

Ak,λ(XS, TS)ek,λ

and ϕk,ω = ei(k·XF−ω(k)TF ). We only consider monochromatic fields, so that, if E0, is

monochromatic at a frequency ω0, then the integral above can be written as a surface

integral over the sphere in k-space centered at the origin and having radius ω0n0

c
. For
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notational convenience, this integral will be written as a sum, so that

E0(Xβ, Tβ) =

(S)∑
k

Ak(XS, TS)ϕk (2.11)

In the case of monochromaticity, ω can be omitted from the normal mode notation

because the modes of interest are ϕk,ω0 with only k varying. Equation (2.11) is the form

of the leading order term that we will use throughout the remainder of the derivation.

Having obtained the leading order term, the next term, E1(Xβ, Tβ), can be deter-

mined by collecting in the wave equation (2.2) all terms proportional to ξ and requiring

that the resulting coefficient of ξ vanish. In doing so, it is useful to see that the intensity

of the electric field, using the asymptotic expansion of the electric field, is given by

|E(x, t)|2 =
∞∑

m,m′=0

EmEm′ξm′+m

= |E0|2 +
∞∑

m=0,m′=1

EmEm′ξm′+m +
∞∑

m=1,m′=0

EmEm′ξm′+m

It follows that in the wave equation (2.2), the only contribution to terms proportional

to ξ from the nonlinear term ξ∆nl(XF )|E|2 is ξ∆nl(XF )|E0|2.

So, collecting all of the terms in the wave equation that are proportional to ξ yields

the following equation for E1(Xβ, Tβ) in terms of E0(Xβ, Tβ).

3∑
m=1

∂2E1,i

∂X2
F,m

−
3∑

m=1

∂2E1,m

∂XF,m∂XF,i

− n2
0

c2

∂2E1,i

∂T 2
F

= −2
3∑

m=1

∂2E0,i

∂XF,m∂XS,m

+
3∑

m=1

( ∂2E0,m

∂XF,m∂XS,i

+
∂2E0,m

∂XF,i∂XS,m

)
+

2n2
0

c2

∂2E0,i

∂TF ∂TS

+

2n0

c2
∆l(XF )

∂2E0,i

∂T 2
F

+
2n0

c2
∆nl(XF )|E0|2

∂2E0,i

∂T 2
F

(2.12)

Note that the left side of this equation is the ith component of the vector expression
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∇2
FEm −∇F

(
∇F ·Em

)
− n2

0

c2
∂2Em

∂T 2
F

with m = 1. As is explained in section 2.4, this is the

case for all m in the recurrence relations determining the Em.

Now, using the solution obtained for E0 and recalling that the mode envelopes

Ak(XS, TS) are functions only of the slow variables, the equation above becomes

(
∇2

FE1 −∇F

(
∇F · E1

)
− n2

0

c2

∂2E1

∂T 2
F

)
i

=

(S)∑
k

[ 3∑
m=1

−2ikm
∂Ak,i

∂XS,m

ϕk +
3∑

m=1

(
ikm

∂Ak,m

∂XS,i

+ iki
∂Ak,m

∂XS,m

)
ϕk − i

2n2
0ω0

c2

∂Ak,i

∂TS

ϕk −

2n0ω
2
0

c2
∆l(XF )Ak,iϕk −

2n0ω
2
0

c2
∆nl(XF )|E0|2Ak,iϕk

]
(2.13)

We see that in (2.13), an expression for the intensity of the leading order term is

required in terms of the mode envelopes. The intensity of the leading order term is given

by

|E0|2 = E0E0

=

(S)∑
k′,k′′

Ak′ ·Ak′′e
i(k′−k′′)·XF

since ϕk′ϕk′′ = ei(k′−k′′)·XF . Using this expression for the leading order intensity as well

as the Fourier series for ∆l(XF ) and ∆nl(XF ), (2.5), and noting that e−iG·XF ϕk = ϕk−G,

(2.13) becomes
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(
∇2

FE1 −∇F

(
∇F · E1

)
− n2

0

c2

∂2E1

∂T 2
F

)
i

=

(S)∑
k

[
− i

(
k · ∇SAk,i −

1

2

3∑
m=1

(
km

∂Ak,m

∂XS,i

+ ki
∂Ak,m

∂XS,m

)
+

n2
0ω0

c2

∂Ak,i

∂TS

)
ϕk −

n0ω
2
0

c2

∑
G

∆l
GAk,iϕk−G −

n0ω
2
0

c2

(S)∑
k′,k′′

∑
G

∆nl
G

(
Ak′ ·Ak′′

)
Ak,iϕk+k′−k′′−G

]

=

(S)∑
k

[
− i

(
k · ∇SAk,i −

1

2
k · ∂Ak

∂XS,i

− 1

2
ki∇S ·Ak +

n2
0ω0

c2

∂Ak,i

∂TS

)
ϕk −

n0ω
2
0

c2

∑
G

∆l
GAk,iϕk−G −

n0ω
2
0

c2

(S)∑
k′,k′′

∑
G

∆nl
G

(
Ak′ ·Ak′′

)
Ak,iϕk+k′−k′′−G

]
(2.14)

This vector equation is the equation from which the coupled mode equations for

any lattice geometry are obtained. In particular, coupled mode equations are extracted

from (2.14) by identifying on its right side terms that are solutions to the homogeneous

problem corresponding to its left side, so called secular terms [34].

That the expansion (2.7) is asymptotic requires that the secular terms on the right

side of (2.14) collectively vanish. Were these terms to remain, there would exist terms in

the solution of E1 that would grow linearly with time, the result of which would be that

the term E1ξ would be O(1) at times on the order of ξ−1, destroying the asymptoticity

of the expansion (2.14).

Alternatively, this treatment of secular terms can be shown to be a consequence of

the existence of the first order solution E1. This can be seen by casting (2.14) into the

form LE1 = f , where L = ∇2
F −∇F

(
∇F ·

)
− n2

0

c2
∂2

∂T 2
F

is a self-adjoint linear operator, and

f a vector whose ith component is given by the right side of (2.14). Now, for a solution

E1 to exist, f must be in the range of L which is denoted R(L) . This in turn requires

that f be orthogonal to the null space of the adjoint of L, which is simply the null space

of L, N(L). N(L) contains the solutions to the homogeneous problem LE = 0. That
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is, N(L) ⊃ {ekϕk,ω : ||k|| = n0ω
c

, ek · k = 0}. Thus,
〈
ekϕk, f

〉
=

∑3
i=1 ei

〈
ϕk, fi

〉
= 0 for

all ϕk such that ||k|| = n0ω0

c
, where the inner product

〈
ϕk, fi

〉
is just

∫
d3xϕk(x)fi(x).

In calculating the integral
〈
ϕk, fi

〉
explicitly, we treat the multiple scales as inde-

pendent variables so that, for example,

〈
ϕk|k ·

∂Ak

∂XS,i

|ϕk′
〉

=

∫
d3XFk · ∂Ak

∂XS,i

ϕk(XF)ϕk′

= k · ∂Ak

∂XS,i

∫
d3XF ϕk(XF)ϕk′

= k · ∂Ak

∂XS,i

〈
ϕk|ϕk′

〉
Explicitly writing out the inner product of ekϕk with (2.14) yields the following equation,

3∑
i=1

ek,i

[(
k · ∇SAk,i −

1

2
k · ∂Ak

∂XS,i

− 1

2
ki∇S ·Ak +

n2
0ω0

c2

∂Ak,i

∂TS

)〈
ϕk, ϕk

〉
−

n0ω
2
0

c2

(S)∑
k′

∑
allG

∆l
GAk,i

〈
ϕk, ϕk′−G

〉
−

n0ω
2
0

c2

(S)∑
k′,k′′,k′′′

∑
allG

∆nl
G

(
Ak′′ ·Ak′′′

)
Ak′,i

〈
ϕk, ϕk′+k′′−k′′′−G

〉]
= 0 (2.15)

which, carrying out the sum over i, becomes

i
(
k · ∇S(ek · Ak)−

1

2
k · (ek · ∇S)Ak +

n2
0ω0

c2

∂(ek · Ak)

∂TS

)〈
ϕk, ϕk

〉
−

n0ω
2
0

c2

(S)∑
k′

∑
allG

∆l
G(ek ·Ak′)

〈
ϕk, ϕk′−G

〉
−

n0ω
2
0

c2

(S)∑
k′,k′′,k′′′

∑
allG

∆nl
G

(
Ak′′ ·Ak′′′

)
(ek ·Ak′)

〈
ϕk, ϕk′+k′′−k′′′−G

〉
= 0 (2.16)

where the notation (ek·∇S)Ak refers to a vector whose jth component is
∑3

i=1 ek,i
∂

∂XS,i
Ak,j.
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Equation (2.16) is the generalized coupled mode equation mentioned at the beginning

of the chapter.

Equation (2.16) was obtained in part using the orthogonality of the normal modes

ϕk,
〈
ϕk, ϕk′

〉
= δ(3)(k− k′). The left side of equation (2.16) is the component of f that

lies on the homogeneous solution ekϕk. It is by requiring that the projection of f on

each homogeneous solution vanish that the coupled mode equations are obtained.

Obtaining the coupled mode equations in this way may seem to present some diffi-

culty because, in the first instance, of the existence of an infinite number of solutions

ekϕk for a given k. This suggests the existence of an infinite number of coupled mode

equations, one for each projection
〈
ekϕk, f

〉
. In fact however, all of these equations can

be expressed as a linear combination of two linearly independent equations obtained by

projecting f onto any two vectors ek that span the plane defined by k. This follows

from the linearity of (2.16) with respect to ek and guarantees that of all the projections〈
ekϕk, f

〉
vanish. Thus, given the condition k ·Ak = 0 as well as these two linearly

independent differential equations, we find that there exist three independent equations

for each mode envelope Ak, the components of which can thereby be determined.

Equation (2.16) is in fact a coupled mode equation for the mode ϕk, although not in

its final form. To reduce the equation further requires finding all of the
〈
ϕk, ϕk−G

〉
that

are nonzero. From the orthogonality of the normal modes, this is equivalent to finding

all wavevectors k′ and all RLVs G such that k′ −G = k as well as all k′,k′′,k′′′ and

G such that k′ + k′′ − k′′′ −G = k. The modes corresponding to those wavevectors are

then said to be coupled because, as will be shown shortly, the envelopes of these modes

influence the evolution of one another.

Turning now to the problem of finding the nonzero terms
〈
ϕk, ϕk−G

〉
, we first con-

sider the mode coupling caused by the linear index perturbation. As is evident in (2.14),

it is the linear component of the index perturbation that couples modes ϕk, ϕk′ corre-
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sponding to wavevectors that satisfy k = k′ −G and ||k|| = ||k′|| = n0ω0

c
. Now, the con-

dition ||k|| = ||k′|| is equivalent to ||k||2 = ||k + G||2, which requires that k ·G = − ||G||
2

.

By the construction of Brillouin zones, the wavevector k must then necessarily lie on

the face of a particular Brillouin zone and, in particular, the face corresponding to the

RLV G. Conversely, for k to lie on the face of a Brillouin zone, it is sufficient for

k ·G = − ||G||
2

for some RLV G, in which case ||k + G|| = ||k|| and k is then coupled

to k + G. So, for the wavevector k to be coupled to another wavevector lying on the

sphere S, it is necessary and sufficient for k to lie on the face of a Brillouin zone of

the index lattice. A wavevector is coupled to more than one other wavevector when it

lies on more than one face of a Brillouin zone. This occurs when the wavevector lies

at the intersection of some number of faces of a Brillouin zone. This number is then

the number of directions to which the given wavevector is coupled. It is coupled by the

RLVs corresponding to the faces on which it lies.

This process of identifying the modes coupled by the linear perturbation to a given

mode ϕk is exhaustive in that all of the wavevectors k′ such that k = k′ −G with

||k′|| = ||k|| can be determined from the position of k with respect to the Brillouin

zones of the index lattice. Moreover, the set of modes that a given mode is coupled to

are themselves coupled only to modes in that set. To see this, suppose that a wavevector

k1 was coupled to another, k2, and that k2 was itself coupled to k3. This requires that

k1 = k2 and ||k2|| = ||k3|| as well as the existence of RLVs G12 and G23 such that

k2 = k1 −G12 and k3 = k2 −G23. This in turn implies that ||k1|| = ||k3|| and that

k3 = k1 − (G12 + G23) so that k1 and k3 are indeed coupled inasmuch as G12 −G23 is

itself an RLV (lattices are closed under vector addition).

Having characterized the modes coupled by the linear index perturbation, we now

turn to the nonlinear perturbation, ∆nl. The nonlinear component of the index perturba-

tion couples modes whose wavevectors lie on the sphere S and that satisfy k′ + k′′ − k′′′
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−G = k for some RLV G. Now, all of the wavevectors that are coupled by the linear

perturbation and that are characterized in the preceding paragraph necessarily differ

by an RLV. The condition for coupling by the nonlinear perturbation can be rewritten

as (k− k′′′) + (k′ − k′′) = G. So, if those wavevectors are ones coupled by the linear

perturbation, there always exists an RLV G satisfying that condition, insofar as k− k′′′

and k′ − k′′ are both RLVs in this case. It is sufficient then, for modes to be coupled

by the linear perturbation for them to be coupled by the nonlinear perturbation. The

converse however, is not true. It is not necessary for modes to be coupled by the lin-

ear perturbation to be coupled by the nonlinear perturbation. This can be seen from

the condition (k− k′′′) + (k′ − k′′) = G when k and k′′′ are linearly coupled and when

k′ = k′′. In this case, k′ and so k′′ can be any wavevectors on the sphere S and still

satisfy the nonlinear coupling condition. In particular, the nonlinear perturbation cou-

ples together all of the modes in the expansion (2.7), a difficultly that we will address

shortly.

Having determined how to identify the nonzero projections
〈
ϕk, ϕk′

〉
, the coupled

mode equation (2.16) can be put into its final form by replacing each of the double sums

therein by the terms corresponding to those nonzero projections. The resulting equation

is also referred to as an asymptotic solvability condition.

We now see that the effect of the nonlinearity coupling all modes together is to

introduce an infinite number of terms into the expressions fk via the rightmost double

sum in (2.7). Also, because there exists a solvability condition for each wavevector lying

on the sphere S, there exists an infinite number of coupled mode equations. However,

only a finite number of equations, those corresponding to the modes that are coupled by

the linear perturbation, contain terms from both the linear and nonlinear perturbations.

If the leading order solution E0 were to be a sum only of those modes which are coupled

by the linear perturbation, the number of coupled mode equations would become finite
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and the equations themselves would contain only a finite number of terms.

Thus, the approach we adopt in finding the CME is, given a wavevector ki that is

known to be present in the medium, to expand the leading order solution E0 only in

terms of ϕki
and the modes to which it is coupled. To solve for the mode envelopes Ak,

we use the projection (2.16) with two linearly independent solutions for each wavevector,

ek,mϕk, m = 1, 2. This, in conjunction with the condition Ak · k = 0 provides three

independent equations for each mode envelope. We thus have a number of independent

equations that is equal to the number of unknowns in the problem, the number of mode

envelope components.

Given this approach, (2.16) can be recast into a slightly more compact form. If the

set of wavevectors to which a given wavevector k is linearly coupled is Ω = {k} ∪ {ki :

i = 1, 2, . . . N − 1} so that there are N coupled modes, the CME for Ak is,

i
(
k̂ · ∇S(ek · Ak)−

1

2
k̂ · (ek · ∇S)Ak +

n0

c

∂(ek · Ak)

∂TS

)
−

1

n0||k||
∑
k′∈Ω

∆l
k′−k(ek ·Ak′)−

1

n0||k||
∑

k′,k′′,k′′′∈Ω

∆nl
k′+k′′−k′′′−k

(
Ak′′ ·Ak′′′

)
(ek ·Ak′) = 0 (2.17)

where k̂ = k
||k|| . Here we have used the condition ||k|| = n0ω0

c
. Equation (2.17) follow

from (2.16) by recognizing that the terms in the sums over the reciprocal lattice vectors

in (2.16) are nonzero only when, in the linear perturbation terms, G = k− k′ and in

the nonlinear terms when G = k′ + k′′ − k′′′ − k. The sums over all reciprocal lattice

vectors reduce in this way to sums only over those generated by the wavevectors in Ω.

This is elucidated in section 2.2.

Given that the field is expanded using a finite number of modes, the number of

terms in the CMEs originating from the nonlinear perturbation will in turn be finite.

In particular, the CMEs for an expansion involving N modes will contain N3 nonlinear
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terms. This is confirmed, and the nonlinear terms enumerated in section 2.2.

Before proceeding to obtain sets of CME using the method outlined in the previous

section, we briefly discuss some physical aspects of (2.16), the most prominent of which

are the effects of the Kerr nonlinearity. These effects are embodied in the terms ∆nl
G

(
Ak′ ·

Ak′′
)
Ak,i, which correspond to cross-phase modulation for k′ 6= k′′ and to self-phase

modulation otherwise. The strength of these terms as well as that of the linear coupling

is proportional to the fourier components ∆nl
G and ∆l

G. Indeed, it is the terms such as

∆nl
Gcos(G · r) constituting the index perturbations that are exclusively responsible for

the coupling between modes. The coupling corresponding to a given coefficient ∆l
G or

∆nl
G would continue to occur even if it were the only nonzero Fourier coefficient in the

perturbations.

The linear perturbation is exactly analogous to the elastic scattering of x-rays by

semiconductor crystals. The conditions for coherent scattering in that case are the

same as those found above, ||k|| = ||k′|| and k′ − k = G for wavevectors k and k′

and RLV G. These are known as the Bragg, or Laue conditions for strong scattering.

These conditions ensure that plane waves with wavevectors k and k′ scattered by the

family of lattice planes defined by G are in phase with one another and thereby interfere

constructively [1].

2.2 Nonlinear Terms

In discussing the nonlinear coupling mechanism in section 2.1, we stated the CMEs

describing N linearly coupled modes should contain N3 nonlinear terms of the form

∆nl
GAkj

· Akj
(ekn · Aki

). This section addresses that expectation and enumerates the

nonlinear terms found in all CMEs.

If the set of wavevectors of the coupled modes is Ω = {ki : i ∈ S = {1, 2, . . . N}},

then the CME for the mode kn ∈ Ω, will contain a nonlinear term of the form ∆nl
GAkj

·
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Akj
(ekn ·Aki

) if and only if kn = ki +kj −kk−G. This follows from the inner product〈
ϕkn , ϕki+kj−kk−G

〉
= δ(3)(kn−ki−kj +kk +G) that is formed in finding the CME for

Akn .

The condition kn = ki + kj − kk − G can be recast as Gin + Gjk = G where

Gin = ki − kn and Gjk = kj − kk. Gin and Gjk are necessarily RLVs inasmuch as all

pairwise differences between elements of Ω are RLVs.

It is clear from this alternative nonlinear coupling condition that for each triplet

(i, j, k) with i, j, k ∈ S = {1, 2 . . . N}, there exists an RLV G such that ϕki+kj−kk−G =

ϕkn or
〈
ϕkn = ϕki+kj−kk−G

〉
6= 0. Then, because the CME for Ak contains a nonlinear

term for each nonzero inner product
〈
ϕkn = ϕki+kj−kk−G

〉
and because there are N3

triplets (i, j, k) where i, j, k ∈ S, there will be N3 nonlinear terms in the CME for each

mode in Ω.

The task of enumerating the nonlinear terms in the CME for Akn now consists of

finding all of the RLVs G = Gin + Gjk generated as i, j and k vary over S. It is worth

mentioning again that the nonlinear term corresponding to a particular triplet (i, j, k)

is ∆nl
GAkj

·Akj
(ekn ·Aki

).

To obtain an exhaustive organization of the nonlinear coupling RLVs, we partition

the set S3 = {(i, j, k) : i, j, k ∈ S}. That is, the set is decomposed into disjoint subsets

each characterized by some relationship between n, which is fixed for each CME, and

i, j, k. This is turn provides a means or organizing the RLVs G = Gin +Gjk into groups

within which the triplets labelling the RLVs share some common form.
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The disjoint sets constituting S3 are,

S3
1,n = {(i, j, k) : (i = n, k = j) or (i = k, j = n, k 6= n)}

S3
2,n = {(i, j, k) : (k = j, i 6= n) or (i = k 6= j, j 6= n)}

S3
3,n = {(i, j, k) : i = j = n, k 6= n}

S3
4,n = {(i, j, k) : (i 6= k, i 6= n, k 6= n, j = n) or (i = n, j 6= k, j 6= n, k 6= n)}

S3
5,n = {(i, j, k) : i = j 6= n, k = n}

S3
6,n = {(i, j, k) : i 6= n, i 6= k, j 6= k, j 6= n}

Note that in the definitions of each subset, only n is fixed while i, j and k can be any

element of S. The subsets are labelled by n because their contents depend on n, which

labels the mode whose CME is being studied.

The equalities and inequalities defining each subset of S3 are in place to ensure that

they are disjoint. Thus, to show that the union of these subsets does indeed constitute

a partition of S3, it is sufficient to show that the sum of their cardinalities is |S3| = N3.

The cardinalities of the subsets, together with brief explanations of how they are found,

are listed below.

|S3
1,n| = N + N− 1 = 2N− 1

In the case i = n, k = j, j and so k can be any element of S, while i is fixed at n,

giving N triplets. In the other case defining the subset S3
1 , i = k, j = n and i 6= k,

giving N − 1 triplets with one for each choice of k ∈ S − {n}, since k 6= n.

|S3
2,n| = N(N− 1) + (N− 1)(N− 1) = (2N− 1)(N− 1)

The relations k = j, i 6= n define N(N − 1) triplets since there are N − 1 choices for

i(6= n) ∈ S and N choices of k(= j). In the case i = k 6= j, j 6= n, i(= k) can be

any element of S − {j}, yielding N − 1 choices, while j can also be any element of
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S − {n}. This second condition thus defines (N − 1)(N − 1) triplets (i, j, k).

|S3
3,n| = N− 1

The condition i = j = n, k 6= n which defines S3
3 defines N − 1 triplets, one for each

choice of k ∈ S − {n}.

|S3
4,n| = (N− 1)(N− 2) + (N− 1)(N− 2) = 2(N− 1)(N− 2)

In the first case defining the triplets in S3
4 , j = n, i 6= n, k 6= n, i 6= k. Here, i can

be any of the N − 1 elements in S − {n}, leaving N − 2 choices for k, namely any

element but i or n. This defines (N − 1)(N − 2) triplets. The same is true of the

other defining condition for S3
4 , i = n, j 6= n, k 6= n, j 6= k.

|S3
5,n| = N− 1

S3
5 is defined by i = j 6= n, k = n so that there is a triplet in S3

5 for each element of

S − {n} (for each choice of i(= j 6= n).

|S3
6,n| = (N− 1)(N− 1)(N− 2)

The conditions i 6= n, k 6= i, j 6= k, j 6= n allow i and k to be any elements of S−{n}

and S − {i} respectively while j can be any element of S − {k, n}. These relations

define (N − 1)(N − 1)(N − 2).

The sum of the cardinalities found above is indeed N3 and the disjoint subsets

S3
i , i = 1, 2, . . . 6 thereby constitute a partition of S3.

The categorization of triplets in S3 induces a grouping of the RLVs that they label,

namely Gin + Gjk. To each of the subsets described above will correspond a group

of RLVs all having some common form. This form will in turn be determined by the

relations defining the triplets in each subset. The number of RLVs in a given group will

equal the cardinality of the corresponding subset of S3.

The following rules, which follow from the definition Gij = ki− kj, will be useful in
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determining the RLVs corresponding to each of the subsets S3
i .

Gii = 0

Gij = −Gji

Gji + Gik = Gjk

Gij + Gkl = Gil + Gkj

Using these rules, we find that the following forms of Gin +Gjk are associated with each

subset.

(i, j, k) ∈ S3
1,n ⇒ Gin + Gjk = 0

(i, j, k) ∈ S3
2,n ⇒ Gin + Gjk =


Gin (6= 0⇐ i 6= n)

or

Gjn (6= 0⇐ j 6= n)

(i, j, k) ∈ S3
3,n ⇒ Gin + Gjk = Gnk (6= 0⇐ k 6= n)

(i, j, k) ∈ S3
4,n ⇒ Gin + Gjk =


Gik (6= 0⇐ i 6= k)

or

Gjk (6= 0⇐ j 6= k)

(i, j, k) ∈ S3
5,n ⇒ Gin + Gjk = 2Gin (6= 0⇐ i 6= n)

For (i, j, k) ∈ S3
6 , the form of Gin + Gjk cannot, a priori, be simplified.

It is important to note that although the subsets S3
i , i = 1, 2, . . . 6 are disjoint,

the corresponding groups of RLVs are not. As an example of this, consider the two-

dimensional square lattice and a wavevector k lying on a corner of its first Brillouin

zone. The wavevector k is linearly coupled to three others, ki, i = 1, 2, 3 each lying at

a different corner of the Brillouin zone. In this example then, Ω = {ki : i ∈ S =
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{1, 2, 3, 4}} where, for convenience, the labels of the wavevectors proceed clockwise

around the corners of the Brillouin zone. Under this labelling scheme, G21 = G43. Thus,

with n = 1, Gin + Gjk|(i,j,k)=(2,3,3) = Gin + Gjk|(i,j,k)=(1,4,3) despite that (2, 3, 3) ∈ S3
2,1

and (1, 4, 3) ∈ S3
4,1, which are disjoint.

Before proceeding, it will be useful to demonstrate how the results developed in this

section can be used to obtain the nonlinear terms in any CME. Beginning with the set of

linearly coupled modes, Ω = {ki : i ∈ S = {1, 2, . . . N}}, we will the study the CME for

the envelope Ak. This CME will contain nonlinear terms proportional to ∆nl
0 . From the

results of this section, there will be at least |S3
1,1| = 2N−1 such terms, each of one of the

forms ∆nl
0 (Akj

·Akj
)(ek1 ·Ak1) with j ∈ S, or ∆nl

0 (Ak1 ·Aki
)(ek1 ·Aki

) with i ∈ S, i 6= 1.

As another example, consider the term proportional to ∆nl
2G21

, corresponding to the

triplet (2, 2, 1). The CME for Ak1 will contain the term ∆nl
2G21

(Ak2 · Ak1)(ek1 · Ak1).

The remainder of the nonlinear terms can be found in a similar manner.

Finally, we note that the emphasis here has been preponderantly on the nonlinear

terms because the linear terms in the CMEs are straightforward to determine. It is

clear from the selection rule
〈
ϕk|ϕk′−G

〉
multiplying ∆l

G(ek ·Ak′) that the linear terms

in the CME for Aki
,ki ∈ Ω will be all of the elements of {∆l

Gij
(eki

· Akj
) : j ∈ S =

{1, 2, . . . N}}.

2.3 Symmetries

In the case that a resonant mode is incident on a dielectric lattice along one of its axes

of rotational symmetry, it might be expected that the modes into which the incident

one is diffracted be related by that symmetry. To confirm this intuition, we begin by

comparing the solutions of the CMEs in two different lattices that are related to one

another by an arbitrary rotation.

To make the investigation precise, consider one lattice described by the index per-
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turbation ∆(r) and another described by ∆′(r). It will be assumed that ∆ and ∆′ are

related by ∆(r) = ∆′(r′) where the co-ordinates r and r′ are themselves related by

r′ = T−1r. Here, T is an orthogonal matrix, so that T−1 = T†. The co-ordinates r′

are those of the point described by r but subsequent to the rotation characterized by

the matrix T. It follows that what is entailed by the relation ∆(r) = ∆′(r′) is that ∆′

assumes the value ∆(r) at the point into which that with co-ordinates r is rotated by

T. Simply, ∆′ is a rotated version of ∆.

Suppose now that a resonant mode ϕk is incident on the lattice ∆(r) and is linearly

coupled to modes with wavevectors in the set Ω = {ki : i ∈ S = {1, 2, . . . N − 1}}. The

CME for the envelope Aki
will be, from (2.16),

i
(
ki · ∇S(eki,m ·Aki

)− 1

2
ki · (eki,m · ∇S)Aki

+
n2

0ω0

c2

∂(eki,m ·Aki
)

∂TS

)
−

n0ω
2
0

c2

∑
p∈Ω

∆l
p−ki

(eki,m ·Ap)− n0ω
2
0

c2

∑
q,r,s∈Ω

∆nl
q+r−s−ki

(
Aq ·Ar

)
(eki,m ·As) = 0

(2.18)

Consider next a mode ϕk′ incident on the lattice ∆′(x) = ∆(Tx) where k′ = T−1k.

The mode ϕk′ is thus rotated with respect to ϕk in the same manner that ∆′(r) is with

respect ∆(r). To understand how ϕk′ is coupled, consider first that the lattice reciprocal

to that formed by ∆′ is simply the image of the reciprocal lattice of ∆ under the rotation

T. That is, the reciprocal lattice of ∆′ is {T−1G : G ∈ reciprocal lattice of ∆}. It

then follows from the orthogonality of T that the set of wavevectors to which k′ = T−1k

is coupled is Ω′ = {k′
i = T−1ki : i ∈ S = {1, 2, . . . N − 1}}. Furthermore, the set of

reciprocal lattice vectors which couple the wavevectors in Ω′ is simply {T−1(ki − kj) :

ki,kj ∈ {k} ∪ Ω}

What has thus been established is that all of the coupled modes in the lattice ∆′ are

related to those in ∆ by the rotation T.
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The CME for the envelope A
′

k
′
i

where k
′
i = T−1ki,ki ∈ Ω is,

i
(
k
′

i · ∇S(e
′

k
′
i,m
·A′

k
′
i
)− 1

2
k
′

i · (e
′

k
′
i,m
· ∇S)A

′

k
′
i
+

n2
0ω0

c2

∂(e
′

k
′
i,m
·A′

k
′
i

)

∂TS

)
−

n0ω
2
0

c2

∑
p′∈Ω′

∆l′

p′−k
′
i
(e

′

k
′
i,m
·Ap′

′
)− n0ω

2
0

c2

∑
q′,r′,s′∈Ω′

∆nl′

q′+r′−s′−k
′
i

(
Aq′

′ ·A
′

r′

)
(e

′

k
′
i,m
·As

′
) = 0

(2.19)

Here, e
′

k
′
i,m

is one of two linearly independent vectors (e
′

k
′
i,1

and e
′

k
′
i,2

), both or-

thogonal to k
′
i. It is possible, though not necessary, to take e

′

k
′
i,m

= T−1eki,m since〈
T−1eki,m|k

′
i

〉
=

〈
T−1eki,m|T−1ki

〉
=

〈
eki,m|ki

〉
= 0, using the orthogonality of T.

We can now exploit the similarity between equations (2.18) and (2.19) to establish

a relationship between A
′

k
′
i

and Aki
.

Beginning with the coefficients ∆′nl
G′ ,

∆′nl
G′ = ∆′nl

T−1G =
1

V ′
pc

∫
d3x∆′(x)e−iG′·x

=
1

V ′
pc

∫
d3x∆′(x)e−i

〈
T−1G|x

〉
=

1

V ′
pc

∫
d3x′∆′(T−1x)e−i

〈
G|Tx

〉
=

1

Vpc

∫
d3x′∆(x′)e−iG·x′ = ∆nl

G

The fourth line above follows from the orthogonality of T and the fifth line from the

definition of ∆′. The sixth line acknowledges that Vpc = V ′
pc where Vpc and V ′

pc are the

volumes of the primitive cells associated respectively with ∆ and ∆′. This must hold

insofar as ∆ and ∆′ are related by an isometry, T.

Thus, the coefficients ∆′nl
G′ and ∆′l

G′ in (2.19) can be replaced by their unprimed

counterparts ∆nl
G′ and ∆l

G′ , where G = TG′.

Turning now to the term k
′
i · ∇S(e

′

k
′
i,m
·A′

k
′
i

) in (2.19), we assume, without loss of
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generality, that the e
′

k
′
i,m

have been chosen as e
′

k
′
i,m

= T−1eki,m. Hence,
〈
e
′

k
′
i,m

,A
′

k
′
i

〉
=〈

T−1eki,m,A
′

k
′
i

〉
=

〈
eki,m,TA

′

k
′
i

〉
.

Secondly, we have that, for any differentiable f , ∇Sf(XS) = ∇Sf(T−1(TXS)) =

∇Sf(T−1X′
S) = T−1∇′

Sf(T−1X′
S) where ∇′

S,i = ∂
∂X′

S,i
and X′

S = TXS. This fol-

lows from a simple application of the chain rule, ∂
∂XS,i

=
∑3

i=1

∂X′
S,i

∂XS,i

∂
∂X′

S,i
. Thus, k′

i ·

∇Sf(XS) =
〈
k′

i,T
−1∇′

Sf(T−1X′
S)

〉
=

〈
T−1ki,T

−1∇′
Sf(T−1X′

S)
〉

= ki · ∇′
Sf(T−1X′

S),

which follows from the orthogonality of T.

Combining the observations made in the two preceding paragraphs, k′
i · ∇S(e′k′i,m

·

A
′

k
′
i

(XS)) = ki · ∇
′
S(eki,m ·TA

′

k
′
i

(T−1X′
S)).

Lastly, we consider the term k′
i ·(e′k′i ·∇S)A′

k′i
. Note that

〈
e′k′i

,∇S

〉
=

〈
eki

,T−1∇S

〉
=〈

eki
,∇′

S

〉
and that

〈
k′

i,
〈
e′k′i

,∇S

〉
A′

k′i
(XS)

〉
=

〈
ki,T

〈
e′k′i

,∇S

〉
A′

k′i
(T−1X′

S)
〉

=〈
ki,

〈
e′k′i

,∇S

〉
TA′

k′i
(T−1X′

S)
〉
. Thus, k′

i · (e′k′i · ∇S)A′
k′i

= ki · (eki
· ∇′

S)TA′
k′i

(T−1X′
S).

The effect of all of the observations made above is to transform (2.19) into the

following CME,

i
(
ki · ∇′

S(eki,m ·TA
′

k
′
i
(T−1X′

F ))− 1

2
ki · (eki,m · ∇′

S)TA
′

k
′
i
(T−1X′

F ) +

n2
0ω0

c2

∂(eki,m ·TA
′

k
′
i

(T−1X′
F ))

∂TS

)
− n0ω

2
0

c2

∑
p′∈Ω′

∆l
p′−k

′
i
(eki,m ·TAp′

′
(T−1X′

F ))−

n0ω
2
0

c2

∑
q′,r′,s′∈Ω′

∆nl
q′+r′−s′−k

′
i

(
Aq′

′ ·A
′

r′

)
(eki,m ·TAs

′
(T−1X′

F )) = 0

(2.20)

Note that in (2.20), the Fourier coefficients of the perturbation and the unit vectors

eki,m are unprimed. Given this, and comparing (2.20) with (2.18), we find that, by the

uniqueness of the solutions to these CMEs,

Aki
(XF ) = TA′

k′i
(T−1XF ) (2.21)
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This identification does assume, however, that the boundary conditions on the en-

velopes Aki
and TA′

k′i
are themselves related by (2.21).

Equation (2.21) is a canonical transformation relationship for vector fields related

by rotations [35]. It confirms what should have been expected from the outset, that the

envelopes in the lattice ∆′ are simply rotated versions of those in ∆. The significance

of this results becomes patent in light of a class of special cases that we now consider in

detail.

Suppose once again that a mode ϕk is incident on an NLPC, but is now incident

along an axis of M -fold rotational symmetry of the lattice. The first observation to be

made is that ϕk is coupled to either 1, αM or 1 + αM other modes where α ∈ Z+.

To see this, let Ω = {ki : i ∈ {1, 2, . . . N}} be the set of wavevectors to which k

is coupled. If k is taken to lie on a Brillouin zone of the lattice, it coupled either to

exactly one other mode or it is coupled to more than one other mode. In the first case,

clearly N = 1 and the mode to which ϕk is coupled is then ϕ−k. Suppose now that

ϕk is coupled to more than one mode. At least one of these is necessarily not on the

pertinent axis of symmetry, that on which k lies. Label this wavevector k1. Now, if

we consider a lattice ∆′ that is simply ∆ rotated about k by an angle of 2π
M

and if this

rotation is denoted by T−1, then we find that, in ∆′, k is linearly coupled to T−1k1.

However, because k is an axis of M -fold rotational symmetry of the lattice, ∆′ = ∆ and

so k is coupled to T−1k1 in ∆ as well.

On applying this argument M times, we find that the set of wavevectors to which k

is coupled contains {(T−1)pk1 : p = 0, 1, . . . M − 1}. It could be however that not all of

the wavevectors in Ω are generated in this way. That is, there may be some wavevectors

in Ω that are not related to k1 by any of the (T−1)p. If we suppose that there are α− 1

such wavevectors that themselves do not rotate into one another, then, on applying

the argument above to each of these wavevectors, we find (α− 1)M additional coupled

34



modes. The complete set of coupled modes, apart from −k, is then Π = {(T−1)pki :

i = 1, 2, . . . α, p = 0, 1, . . . M − 1}.

The total set of coupled modes, exclusive of k, is then either {−k} ∪Π, or Π. Thus,

N = 1, αM or αM + 1 and our observation is confirmed.

We now consider the mode envelopes {Aki
: ki ∈ {ki,−ki} ∪ Π}. The wavevectors

in Π are taken to be labelled such that kiM+p = (T−1)pki for p = 0, 1, . . . M − 1

and i = 1, . . . α. Returning again to ∆′, we find that for i ∈ {1, . . . , α}, from (2.21),

Aki
(XF ) = TA′

T−1ki
(T−1XF ) = TA′

ki+M
(T−1XF ).

The salient point to be made here is that, because ∆ = ∆′, A′
T−1ki

= AT−1ki
and

so Aki
(XF ) = TAki+M

(T−1XF ). Indeed, after applying rotations of 2π
M

p for 1 ≤ p < M

and applying the same argument, we find that,

Aki
(XF ) = TpAki+pM

((T−1)pXF ) (2.22)

That is, for a given ki, 1 ≤ i ≤ α, the envelopes {Aki+pM
: p = 0, 1, . . . M − 1} are not

independent and are related by (2.22).

In light of these developments, a number of CMEs describing the electric field in

the situation being considered can be eliminated using (2.22). In particular, all of the

CMEs for the modes ki+pM with i fixed can be eliminated because their envelopes are

given by (T−1)pAki
(TpXS). Only the CMEs for Aki

, 1 ≤ i ≤ α need be solved and in

them, all envelopes of the form Akj+pM
, 1 ≤ j ≤ α can be replaced by (T−1)pAkj

(TpXS)

assuming the initial conditions for the envelopes Akj+pM
with j fixed, are the same.

2.4 Recurrence Relations

The perturbative methods discussed in section 2.1 generalize to the problem LE = 0

where E ∈ C2
3 , the space of twice-differentiable mappings from R4 to R3, L is a linear
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differential operator on that space, and both E and L have expansions in some parameter

ξ with the following forms,

L =
∞∑

m=0

ξmL(m)

E =
∞∑

m=0

ξmEm

In section 2.1, L0 = ∇2
F −∇(∇·)− n2

0

c2
∂2

∂T 2
F
.

The kth order term in LE = 0 is then
∑k

m=0 L(m)Ek−m = 0, or L0Ek = −
∑k

m=1 L(m)

Ek−m. With this comes the validity of the claim concerning equation (2.12), namely that

the recurrence relations that determine Em are differential equations whose homogeneous

solutions are those of L0.

2.5 Summary

The method developed in this chapter provides a means of obtaining a first order ap-

proximation to the electric field in any low-contrast nonlinear periodic medium. All

that is required to obtain this approximation is the form of the index perturbation,

or equivalently its Fourier series representation. Having determined what modes are

coupled using the Brillouin zone of the lattice, the approximation can be acquired as

the solution to the system of coupled, nonlinear partial differential equations that yields

the mode envelopes Ak (2.17). While in general this system will not have an analytic

solution, it will be amenable to numerical methods.
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Chapter 3

Applying The Formalism

To illustrate how the method developed in the previous chapter can generate coupled

mode equations, we employ it in this chapter in two distinct settings. The first of these

will involve two coupled modes in a two-dimensional lattice in which the electric field

will, by assumption, be polarized in the direction orthogonal to the lattice. The second

setting will consist of three modes coupled in a three-dimensional nonlinear periodic

medium, in which no simplifying assumptions will, or indeed can, be made. Numerical

simulations of equations obtained using the results of chapter 2 can be found in [36].

3.1 Two Modes In a Two Dimensional Lattice

We begin with a two dimensional lattice taken as lying in the xy-plane and having any

lattice geometry. A mode ϕk whose wavevector k lies on an edge of a Brillouin zone of

this lattice, but not at the intersection of any edges, is coupled only to one other mode

ϕk′ . The wavevector k′ is related to k by k′ = k + G where G is the reciprocal lattice

vector corresponding to the edge on which k lies. If this mode is assumed to be present

in the medium, then, assuming that the leading order term E0 can be expressed as a
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sum of ϕk and the modes to which it is coupled by the linear perturbation,

E0(Xβ, Tβ) = ez(A1(XS, TS)ϕk1 + A2(XS, TS)ϕk2)

where is has been additionally assumed that the field is polarized perpendicular to the

lattice plane. This assumption allows for the use of scalar mode envelopes. Moreover,

it requires projecting (2.16) only onto solutions ekϕk for which ek = ez.

The terms in (2.16) that remain subsequent to projecting on ezϕk are −i(k1 ·∇SA1+

n2
0ω0

c2
∂A1

∂TS
),

n0ω2
0

c2
∆l

GA2 and
n0ω2

0

c2

[
∆nl

0 A1(|A1|2 +2|A2|2)+∆nl
G(A2

1A2 +A2(2|A1|2 + |A2|2))+

∆nl
2GA1A

2
2

]
. The solvability conditions then require that

−i
(
k1 · ∇SA1 +

n2
0ω0

c2

∂A1

∂TS

)
+

n0ω
2
0

c2
∆l

GA2 +
n0ω

2
0

c2

[
∆nl

0 A1(|A1|2 + 2|A2|2)

+∆nl
G(A2

1A2 + A2(2|A1|2 + |A2|2)) + ∆nl
2GA1A

2
2

]
= 0

Similarly, projecting onto ezϕk′ and requiring that the terms vanish results in the second

coupled mode equation,

−i
(
k2 · ∇SA2 +

n2
0ω0

c2

∂A2

∂TS

)
+

n0ω
2
0

c2
∆l

GA1 +
n0ω

2
0

c2

[
∆nl

0 A2(2|A1|2 + |A2|2)

+∆nl
G(A2

2A1 + A1(|A1|2 + 2|A2|2)) + ∆nl
2GA2A

2
1

]
= 0 (3.1)

It has been assumed here that the index perturbation ∆(XF ) has inversion symmetry

so that ∆(XF ) = ∆(−XF ). This requires that its Fourier components satisfy ∆G =

∆−G. It has also been assumed that the component of the linear index perturbation

that is constant in space is zero, so that ∆l
0 = 0. This is equivalent to the unperturbed

and perturbed media having matched linear homogeneous index components. Apart

from this and the assumption that the electric field is perpendicular to the lattice plane,

the equations above are the coupled mode equations for any two modes lying on a single
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edge of the Brillouin zone of the index lattice.

Beyond permitting the use of scalar envelopes, we see that assuming the field po-

larization to be orthogonal to the lattice additionally simplifies the CME (3.1) by elim-

inating the k · (ek · ∇S)Ak term from (2.16). This is a consequence of the relation

∇ · εE = ε∇ · E + E · ∇ε. Our assumption about the field requires that E · ∇ε = 0,

inasmuch as ∇ε has no component orthogonal to the lattice. Thus,

∇ · εE = ∇ ·D

= 0

= ε∇ · E

so that ∇ · E = 0. The absence of the terms k · (ek · ∇S)Ak from (3.1) follows from

observing that their source is the divergence of E in the wave equation (2.1).

In the case that k = −G
2
, for some reciprocal lattice vector G, k necessarily lies

on a single edge of the Brillouin zone of the index lattice and is only coupled by G to

k + G = G
2

= −k. Labelling the envelope for ϕk as A+ and that for ϕ−k as A− and

continuing to assume that the field is orthogonal to the lattice plane, the coupled mode

equations become

−i
(
k · ∇SA+ +

n2
0ω0

c2

∂A+

∂TS

)
+

n0ω
2
0

c2
∆l

GA− +
n0ω

2
0

c2

[
∆nl

0 A−(|A−|2 + 2|A+|2)

+∆nl
G(A2

−A+ + A+(2|A−|2 + |A+|2)) + ∆nl
2GA−A2

+

]
= 0

−i
(
− k · ∇SA− +

n2
0ω0

c2

∂A−

∂TS

)
+

n0ω
2
0

c2
∆l

GA+ +
n0ω

2
0

c2

[
∆nl

0 A−(2|A+|2 + |A−|2)

+∆nl
G(A2

−A+ + A+(|A+|2 + 2|A−|2)) + ∆nl
2GA−A2

+

]
= 0

A new coordinate system can be defined such that its axes, say X ′
S, Y ′

S and Z ′
S, are
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respectively along a unit vector in the direction of k and any two vectors that are

orthonormal to k and to one another. The coordinates of a vector in the original

coordinate system have the following relationships with X ′
S of the new system.

∂XS

∂X ′
S

= k̂x

∂YS

∂X ′
S

= k̂y

∂ZS

∂X ′
S

= k̂z(= 0)

where k̂ = (k̂x, k̂y, k̂z) is a unit vector in the direction of the wavevector k.

Now, if for each envelope a new function A′
λ(XS, t), (λ = +,−) is defined such that

Aλ(XS, TS) = A′
λ(T

−1XS, TS), where T is the change of basis matrix from the original

coordinate system to the new one, then, using the chain rule,

∇SA+ = k̂x
∂A+

∂XS

+ k̂y
∂A+

∂YS

+ k̂z
∂A+

∂ZS

= k̂x
∂A+

∂XS

+ k̂y
∂A+

∂YS

=
∂A′

+

∂X ′
S

Similarly, ∇SA− =
∂A′

−
∂X′

S
.

So, finally, the equations above reduce, in the new coordinate system, to

−i
(n0ω0

c

∂A′
+

∂X ′
S

+
n2

0ω0

c2

∂A′
+

∂TS

)
+

n0ω
2
0

c2
∆l

GA′
− +

n0ω
2
0

c2

[
∆nl

0 A′
−(|A′

−|2 + 2|A′
+|2)

+∆nl
G(A′

−
2
A′

+ + A′
+(2|A′

−|2 + |A′
+|2)) + ∆nl

2GA′−A′
+

2]
= 0
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−i
(
− n0ω0

c

∂A′
+

∂X ′
S

+
n2

0ω0

c2

∂A′
−

∂TS

)
+

n0ω
2
0

c2
∆l

GA′
+ +

n0ω
2
0

c2

[
∆nl

0 A′
−(2|A′

+|2 + |A′
−|2)

+∆nl
G(A′

−
2
A′

+ + A′
+(|A′

+|2 + 2|A′
−|2)) + ∆nl

2GA′−A′
+

2]
= 0

which are the familiar one dimensional coupled mode equations [15].

Thus, for any wavevector k lying in the plane of a 2-d crystal such that k = −G
2

for some reciprocal lattice vector G, the electric field can be expanded using modes

whose amplitudes are determined by equations identical to those for a 1-d crystal with

a normally incident field. An important consequence of this is that the behaviour of

pulses incident on a 2-d crystal from a direction that is parallel to some reciprocal lattice

vector and that are orthogonal to the crystal plane will be the same as that of a pulse

incident on a one dimensional crystal. Pulses in one dimensional periodic Kerr-nonlinear

structures are studied in [37].

When k = −G
2

for a reciprocal lattice vector G, the incident field propagates in a

direction normal to a family of lattice planes defined by G. The set of lattice planes

defined by G will in this case act as the boundaries between the alternating layers

in a 1-d crystals. The pulse will experience what is effectively a square wave index

perturbation in one dimension with Fourier components ∆nl
0 , ∆l

G, ∆nl
G and so on.

3.2 Three Modes In a Three Dimensional Lattice

The use of scalar mode envelopes in the previous section was made permissible by

assuming the electric field to be polarized in the unique direction in which E ·∇ε = 0 In

general, however, this will not be the case and the field in a two-dimensional lattice will

have a nonzero component in the lattice plane. Indeed, in a three-dimensionally periodic

medium, there exists no direction in which E · ∇ε = 0 inasmuch as no component of

∇ε is identically zero in such a medium. Moreover, the direction in which the electric

field is polarized may change with time and with position in the medium. Under these
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more general circumstances, the use of vector envelopes in the coupled mode equations

is required. In what follows, we obtain coupled mode equations in a three-dimensionally

periodic medium in which three modes are linearly coupled.

What is first required in this endeavour is a set of three normal modes, ϕki
, that

are coupled only to one another by the linear index perturbation. In this case, the

corresponding wavevectors differ from another by a reciprocal lattice vector. These

reciprocal lattice vectors will be labelled Gij where Gij = kj − ki. It will be sufficient

here to note that such sets of normal modes do exist and in general can be found by

choosing wavevectors that lie at the intersection of exactly two faces of a Brillouin

zone of the perturbation lattice. While this method will yield four coupled modes in a

simple cubic lattice, it will produce only three in more general lattice structures. For

example, in an FCC lattice with lattice constant a, the wavevectors 2π
a

(1
4
, 1

4
,±1

4
) and

2π
a

(− 7
16

,− 5
16

, 0) all lie on edges of the first Brillouin zone of the lattice at which no more

than two zone faces intersect. Each wavevector is coupled only to itself and the two

other wavevectors in the set.

Following the formalism established in the previous chapter, two linearly independent

unit vectors, ekj ,m, m = 1, 2, must be found for each wavevector kj such that ekj ,m ·

kj = 0. Having obtained these vectors, equation (2.14) is projected on ekj ,mϕkj
to

obtain (2.16) for j = 1, 2, 3 and m = 1, 2. We label the envelope of mode ϕkj
as Aj.

Proceeding to find the nonzero projections
〈
ϕkj

, ϕk

〉
and

〈
ϕkj

, ϕk′+k′′−k′′′−G

〉
, equation

(2.16) becomes
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(
ki · ∇S(eki,m ·Ai)−

1

2
ki · (eki,m · ∇S)Ai +

n2
0ω0

c2

∂(eki,m ·Ai)

∂TS

)
= ∆nl

0

[( 3∑
p=1

Ap ·Ap

)
(eki,m ·Ai) + (Ai ·Aj)(eki,m ·Aj) + (Ai ·Ak)(eki,m ·Ak)

]
+

∆nl
Gij

[
(Ai ·Aj + Aj ·Ai)(eki,m ·Ai) +

( 3∑
p=1

Ap ·Ap

)
(eki,m ·Aj) + (Aj ·Ak)(eki,m ·Ak)

]
+

∆nl
Gik

[
(Ai ·Ak + Ak ·Ai)(eki,m ·Ai) + Ak ·Aj(eki,m ·Aj) +

( 3∑
p=1

Ap ·Ap

)
(eki,m ·Ak)

]
+

∆nl
Gjk

[
(Aj ·Ak + Ak ·Aj)(eki,m ·Ai) + Ai ·Ak(eki,m ·Aj) + Ai ·Aj(eki,m ·Ak)

]
+

∆nl
2Gij

Aj ·Ai(eki,m ·Aj) + ∆nl
2Gik

Ak ·Ai(eki,m ·Ak) + ∆nl
Gij+Gkj

Aj ·Ak(eki,m ·Aj) +

∆nl
Gik+Gjk

Ak ·Aj(eki,m ·Ak)) + ∆nl
Gij+Gik

[
Ak ·Ai(eki,m ·Aj) + Aj ·Ai(eki,m ·Ak)

]
(3.2)

where {i, j, k} is a cyclic permutation of {1, 2, 3}.

The nonlinear terms appearing in (3.2) can be obtained systematically in light of the

developments of section 2.2. In this example, S3 is the set of triplets over {1, 2, 3} and

S3
1,i, S

3
2,i, . . . are, as usual, subsets of S3.

For example, the terms involving the Fourier coefficient ∆nl
0 are all characterized by

the relations defining S3
1,i, which was referred to as S3

1,n in 2.2.

The terms involving the coefficients ∆nl
Gij

and ∆nl
Gik

correspond to triplets in the

sets S3
2,i and S3

3,i. This coincidence of terms results from assuming that the index

perturbation possesses inversion symmetry. The result of this is that the Fourier com-

ponents corresponding to the RLVs characterized by S3
3,i, which have the form Gmi, m ∈

{1, 2, 3}, m 6= i, satisfy ∆nl
Gmi

= ∆nl
Gim

. Consequently, the terms associated with ∆nl
Gmi

can be grouped with those associated with ∆nl
Gim

, which correspond to S3
2,i.

A necessary condition for the nonlinear terms in (3.2) to be correct is that they

satisfy the cardinality relations obtained in 2.2. The number of terms proportional to
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Subset Fourier Coefficients Cardinality

S1,i ∆nl
0 5

S2,i ∆nl
Gij

4

∆nl
Gik

4

S3,i ∆nl
Gji

2

∆nl
Gki

4

S4,i ∆nl
Gjk

4

S5,i ∆nl
2Gij

1

∆nl
2Gik

1

S6,i ∆nl
Gij+Gkj

1

∆nl
Gik+Gjk

1

∆nl
Gij+Gik

2

Table 3.1: The Fourier coefficient ∆nl
G is grouped according to the subset of S3 into

which falls the triplet over {1, 2, 3} that defines G (see section 2.2). The cardinalities
listed in the third column indicate how many terms in (3.2) are proportional to their
corresponding Fourier coefficient.

each fourier coefficient appearing in (3.2) is given in table 3.2 wherein the coefficients

are grouped according to the subset of S3 that they are associated with.

From this table, it is clear that the total number of terms is, as expected, N3 where

N = 3, and that the number of terms in each of the subsets S3
1,i, S

3
2,i . . . is equal to the

cardinalities presented in section 2.2.

3.3 A Note On Numerical Simulations

As was mentioned in chapter 2, and what may be patent in their general form (2.17), the

CMEs are in general analytically intractable. Indeed, the solution of the CMEs requires

numerical methods.

The CMEs may nonetheless appear to cause additional difficulty in that the number
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of terms they contain grows as N3. The nonlinear terms discussed in section 2.2, each

of which has the form ∆nl
GAkj

·Akj
(ekn ·Aki

), can provide insight into the nature of the

nonlinear interaction between the mode envelopes in the field expansion. In particular,

they may show which Fourier coefficients in the series (2.5) give rise to cross and self

phase modulation between the mode envelopes.

Obtaining this information for each Fourier coefficient will become increasingly dif-

fcult as N increases. However, if the details of the nonlinear interactions given by these

terms individually is not pertinent, the large number of terms in the CMEs will not

be problematic. This is because the evaluation of the sums appearing in (2.17) for the

purposes of numerical simulation need not be done explicitly.

To see this, consider that all of the terms in the first sum in (2.17) can be expressed

as a dot product between two N dimensional vectors uki
and v where (uki

)p = ∆l
p−ki

and (v)p = eki,m ·Ap and where N is the number of coupled modes. So, to implementing

this sum for each equation, for each ki ∈ Ω, would simply require an N by N matrix U

such that (U)ij = ∆l
kj−ki

. The sum appearing in the equation for ki would then be the

dot product of the ith row of U with v.

The second sum appearing in (2.17), that containing the nonlinear terms, can be

implemented in a similar way using an N by N by N multidimensional array W such

that (W)qrs = ∆nl
kq+kr−ks−ki

in the equation for ki.

The salient point to be made here is that the potentially complicated nature of

the CMEs (2.17) should make their numerical solution no more complicated than any

equation of the form LAk = f(Ak,Ak2 , . . . ,AkN
) for any function f : CN → C and

some continuous operator L : C3 → C.
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3.4 Summary

The formalism developed in chapter two was deployed in this chapter in the first instance

to obtain some general results concerning two coupled modes in two dimensional lattices,

and in the second case to obtain equations governing any three coupled modes in a three

dimensional lattice. Equations, and in particular nonlinear terms, for the most general

circumstances can be derived following precisely the same method detailed in section

3.2, which itself relied on the details of section 2.2.
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Chapter 4

Discussion and Conclusion

We have developed a coupled mode theory for low-contrast nonlinear photonic crystals,

the central result of which is equation (2.17).

Though the formalism offers greater generality than previous attempts to construct

coupled mode theory, it is not completely general. In addition to ways in which this work

could be augmented, we discuss below future work that would lend to its completeness.

4.1 Future Work

Though this work is suited to the analysis of very general low-contrast nonlinear photonic

crystals, it is not applicable to the most general periodic nonlinear media. This is patent,

indeed by definition, in that it is explicitly intended for photonic crystals in which large

index contrasts are absent. It is more subtly evident, however, in some approximations

made in the derivation of Chapter 2.

For example, the wave equation from which the CMEs are obtained is itself an

approximation, as is our truncation of the square of the index of refraction in (2.4).

These approximations, however, are reasonable in light of our assumptions of slowly

varying fields in low-contrast media. In any case, the validity of our assumptions must
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be tested against experiment.

Perhaps the most significant approximation is that the electric field is accurately

represented by a zeroth-order expansion in ξ. This awaits rigourous demonstration,

perhaps beginning with section 2.4.

The limit at which this assumption is no longer true is that at which the unperturbed

medium index contrast to too large for normal modes therein to be plane waves. In this

limit, they must be Bloch modes, as in [24, 27, 28] and more recently, [38].

In light of this, and to determine if the coupled mode theory developed here agrees

with work aimed at high-contrast media, it would be fruitful to determine whether works

such as [24, 27, 28] reduce in the limit of low-contrast to a theory resembling ours.

Our theory could additionally be supplemented by considering anisotropic media, as

is done for high-contrast media in [39, 40]

4.2 Conclusion

In summary, we have developed a method sufficient for obtaining CMEs in any Kerr-

nonlinear, low-contrast photonic crystal. The full generality of the method awaits to

be exploited by, for example, its application to 3-d crystals, 1-d or 2-d crystals with

arbitrary field polarizations, or to time dependent problems.
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