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Derivation of the expansion (7). We consider the linear eigenvalue problem for the 1D KG chain:

ω2W ′′n (τ) + 2λωW ′n(τ) + λ2Wn(τ) + V ′′(Un(τ))Wn(τ) = C(∆W )n(τ), (1)

where U(τ) ∈ H2
per((0, 2π); `2(Z)) is a time-periodic breather localized over the lattice with the frequency ω, λ ∈ C is a

spectral parameter and W (τ) ∈ H2
per((0, 2π); `2(Z)) is an eigenvector of the spectral problem.

We recall that Wn(τ) = U ′n(τ) is an eigenvector of (1) for λ = 0 generated by the time translation symmetry (associated with
the energy conservation). In addition, W̃n(τ) = ∂ωUn(τ) satisfies the derivative of (1) in λ for λ = 0, that is, it represents the
generalized eigenvector of (1) for λ = 0 generated by a shift of frequency. Indeed, the breather equation

ω2U ′′n (τ) + V ′(Un(τ)) = C(∆U)n(τ) (2)

implies that

(L∂ωU)n(τ) = 2ωU ′′n (τ), (3)

where

(LW )n(τ) = C(∆W )n(τ)− V ′′(Un(τ))Wn(τ)− ω2W ′′n (τ) (4)

is the linearized operator for the spectral problem (1) acting on a sequence of functions in H2
per((0, 2π); `2(Z)) with the range

in L2((0, 2π); `2(Z)). We assume the following:

• The spectral bands of (1) in the linearization of the zero equilibrium Un(τ) ≡ 0 are bounded away from λ = 0,

• The kernel of L is exactly one-dimensional with the eigenvector Wn(τ) = U ′n(τ).

• The dependence of breathers U(τ) and its energy H on the frequency ω is smooth and has a critical point ω0, where
H ′(ω0) = 0.

At ω = ω0, we are looking for a formal expansion of solutions to the linear eigenvalue problem (1) in powers of λ:

Wn(τ) = U ′n(τ) + λ∂ωUn(τ) + λ2Yn(τ) + λ3Zn(τ) + λ4Pn(τ) +O(λ5). (5)

Substituting (5) to (1), we obtain a chain of linear inhomogeneous equations

(LY )n(τ) = 2ω∂ωU
′
n(τ) + U ′n(τ), (6)

(LZ)n(τ) = 2ωY ′n(τ) + ∂ωUn(τ), (7)

(LP )n(τ) = 2ωZ ′n(τ) + Yn(τ). (8)



2

Projecting (6) to the homogeneous solution Wn = U ′n(x) and integrating by parts yields the Fredholm solvability condition
in the form

0 =

∫ 2π

0

∑
n∈Z

U ′n(τ) [2ω∂ωU
′
n(τ) + U ′n(τ)] dτ

= ω−1

∫ 2π

0

∑
n∈Z

[
ω2U ′n(τ)∂ωU

′
n(τ)− ω2U ′′n (τ)∂ωUn(τ) + ω[U ′n(τ)]2

]
dτ = TH ′(ω),

where we have introduced the time-independent breather energy

H(ω) =
∑
n∈Z

1

2
ω2[U ′n(τ)]2 + V (Un(τ)) +

1

2
C (Un+1(τ)− Un(τ))

2 (9)

and used the breather equation (2) for the derivative H ′(ω). The solvability condition is satisfied if ω = ω0 is a critical point of
the breather energy H(ω). In this case, there is a solution {Yn(τ)}n∈Z ∈ H2

per((0, 2π); `2(Z)) to the linear equation (6), which
can be made unique if it is orthogonal to the eigenvector Wn(τ) = U ′n(τ). Moreover, if Un(τ) is even in τ , then Yn(τ) is odd in
τ .

The Fredholm solvability condition is satisfied for the linear equation (7) because the parity of Y ′n(τ) and ∂ωUn(τ) is opposite
to the parity of U ′n(τ). Therefore, there exists a unique even solution {Zn(τ)}n∈Z ∈ H2

per((0, 2π); `2(Z)) to the linear equation
(7), which is thus orthogonal to the odd function Wn(τ) = U ′n(τ).

Finally, the linear inhomogeneous equation (8) does not have a solution in H2
per((0, 2π); `2(Z)) if the eigenvalue λ = 0 is

exactly quadruple. The quantity M appearing in the expansion (8) of the main text is obtained by projecting the linear equation
(8) to the homogeneous solution Wn = U ′n(x), namely,

M =

∫ 2π

0

∑
n∈Z

U ′n(τ) [2ωZ ′n(τ) + Yn(τ)] dτ

=

∫ 2π

0

∑
n∈Z

[U ′n(τ)Yn(τ)− 2ωU ′′n (τ)Zn(τ)] dτ

=

∫ 2π

0

∑
n∈Z

(
[U ′n(τ) + 2ω∂ωU

′
n(τ)]Yn(τ)− [∂ωUn(τ)]

2
)
dτ,

where we have used the linear inhomogeneous equations (3) and (7), smoothness and decay of Un, Yn and Zn, as well as the
self-adjoint properties of L.

We need to compute the sign of M in order to detect the regions where instability of breathers arises. Combining projections
to the linear equations (6) and (8), we obtain the expansion

λ2TH ′(ω) + λ4M +O(λ6) = 0. (10)

Expansion (10) shows how the zero eigenvalue of quadruple multiplicity splits if ω is close to but not equal to ω0, the critical
point of H . Justification of the expansion (10) for small |ω − ω0| can be constructed similarly to the perturbation theory used in
[1]. If M > 0, the expansion (10) shows that λ2 < 0 if H ′(ω) > 0 and λ2 > 0 if H ′(ω) < 0, whereas if M < 0, then λ2 < 0 if
H ′(ω) < 0 and λ2 > 0 if H ′(ω) > 0, where λ2 corresponds to the pair of either purely imaginary or real eigenvalues that split
from the double zero eigenvalue if ω 6= ω0 and H ′(ω) 6= 0.

It does not look feasible to compute the sign of M in a general case. However, working with small-amplitude breathers and
asymptotic multi-scale expansions, we can approximate KG breathers with the discrete nonlinear Schrödinger (dNLS) equation
[2] and thus obtain a definite conclusion on the sign ofM depending on whether the nonlinear potential V is hard or soft. Similar
expansions can be derived for the FPU lattice in strain variables, where the existence of breathers was studied earlier with the
dNLS equation based on the central manifold theory near optical frequencies [3, 4]. In both cases, we prove next that M > 0 for
hard potentials and M < 0 for soft potentials. Therefore, the fundamental breathers with increasing frequency-energy depen-
dence are stable in hard potentials and unstable in soft potentials and vice versa for the decreasing frequency-energy dependence.

Small-amplitude limit of KG breathers. We consider the on-site potential in the form V ′(u) = u ± εu1+2p, where ε is
a small positive parameter, p is a positive integer, and the plus/minus sign corresponds to the hard/soft potential. Using the
asymptotic approximation of small-amplitude breathers [2],

Un(τ) = Ane
iτ + Āne

−iτ +O(ε), (11)
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we obtain from (2) the stationary dNLS equation for the amplitude sequence {An}n∈Z ∈ `2(Z):

ε−1C(∆A)n = ε−1(1− ω2)An ± γ|An|2pAn, n ∈ Z, (12)

where γ = (2p + 1)!/(p!(p + 1)!) is a numerical constant. It is well-known [5] that a homoclinic orbit to the stationary dNLS
equation (12) exists for hard potentials (upper sign) if ω2 > 1 + 4C and for soft potentials (lower sign) if ω2 < 1. Moreover,
as ε → 0, the homoclinic orbit can be approximated by the NLS sech soliton [6] if ω2 = 1 + 4C + εΩ in the former case and
ω2 = 1− εΩ in the latter case, where Ω is a positive ε-independent parameter. Without loss of generality, {An}n∈Z ∈ `2(Z) can
be considered to be real, moreover, the sequence is strictly positive for soft potentials and sign-alternating for hard potentials [5].

Using (9) and (11), we have H(ω) = 2ω2P (Ω) + O(ε) with the power (also known as mass or charge) P (ω) = ‖A‖2`2 ,
therefore,

H ′(ω) = ±4ω3ε−1P ′(Ω) +O(1), (13)

where the sign of P ′(Ω) determines the stability of NLS solitons according to the Vakhitov–Kolokolov (VK) slope condition [7].
Thus, in the small-amplitude limit of KG breathers, the change of monotonicity of P ′(Ω) in the dNLS equation is tantamount to
the change of monotonicity of the energy H ′(ω) in the KG lattice.

Using the approximation (11), we find the leading-order contribution to the linear inhomogeneous equation (6) in the form

Yn(τ) = iε−2
[
Bne

iτ − B̄ne−iτ
]

+O(ε−1), (14)

where the sequence {Bn}n∈Z satisfies the linear inhomogeneous equation

(L−B)n = ±4ω2∂ΩAn, (15)

where

(L−B)n = ε−1C(∆B)n − ε−1(1− ω2)Bn ∓ γ|An|2pBn (16)

is the linearized operator for the stationary dNLS equation (12) associated with the imaginary part of the perturbation to the
stationary mode {An}n∈Z. L− is a bounded discrete Schrödinger operator defined on `2(Z) for every ε > 0. Since (L−A)n = 0
and {An}n∈Z is real and strictly positive for soft potentials or sign-alternating for hard potentials, the spectrum of L− is sign
definite. It is easy to show that L− is positive for hard potentials and negative for soft potentials. Furthermore, for every
sufficiently small ε, there is an ε-independent constant C such that

±〈L−B,B〉`2 ≥ C‖B‖2`2 (17)

for every B orthogonal to A [6].
Since (L−A)n = 0, there exists a solution to the linear inhomogeneous equation (15) if and only if P ′(Ω) = 0. This Fredholm

solvability condition represents the reduced energy condition that comes from the expansion (13). Moreover, a solution {Bn}n∈Z
is unique if it is defined to be orthogonal to the homogeneous solution {An}n∈Z. Substituting (11) and (14) into the expression
for M in (10), we obtain

M = 4πε−3〈L−B,B〉`2 +O(ε−2). (18)

Thanks to the bounds (17), the leading-order contribution for M in (18) occurs at the order O(ε−3) and it is sign-definite.
Therefore, we have M > 0 for hard potentials and M < 0 for soft potentials, if ε is sufficiently small. As follows from the
expansion (10), the small-amplitude breathers of the KG lattice are stable if H ′(ω) > 0 and unstable if H ′(ω) < 0 for hard
potentials, and vice versa for soft potentials.

Breathers in FPU lattices. Discrete breathers of the FPU lattice have to be reformulated in the variable rn = un+1 − un in
the sequence space `2(Z), since {un}n∈Z is no longer decaying at infinity. Therefore, we can modify all the expressions starting
with the FPU equation

r̈n = W ′(rn+1)− 2W ′(rn) +W ′(rn−1), n ∈ Z. (19)

Implementing the change in notations un → rn, the rest of our analysis is repeated verbatimly and results in the condition
H ′(ω) = 0, where the breather energy is now given by

H(ω) =
∑
n∈Z

1

2
ω2[U ′n(τ)]2 +W (Rn(τ)), Rn(τ) := Un+1(τ)− Un(τ). (20)
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We can also obtain the same expansion (10) with the same expression for quantity M . The necessity to work with the strain
variable can be understood by looking at the generalized eigenvector W̃n(τ) = ∂ωUn(τ) satisfying the linear inhomogeneous
equation (3). This sequence does not decay to zero at infinity in n, whereas it does decay to zero and is well defined in
H2

per((0, 2π); `2(Z)) in the strain variable ∂ωRn(τ).
Next, we show that M > 0 in the small-amplitude limit of FPU breathers in monoatomic chains. In monoatomic chains,

the small-amplitude breathers only exist in hard inter-site potential W [3]. Let the inter-site potential be taken in the form
W ′(u) = Cu+ εu1+2p, where ε is a small positive parameter and p is a positive integer. Using the asymptotic approximation of
small-amplitude breathers [3],

Rn(τ) = Ane
iτ + Āne

−iτ − ε
(
Ane

iτ + Āne
−iτ)1+2p

+O(ε2), (21)

we obtain the stationary dNLS equation for the amplitude sequence

ε−1C(∆A)n = 4γ|An|2pAn − ε−1ω2An, n ∈ Z, (22)

where γ = (2p + 1)!/(p!(p + 1)!) is the same numerical constant. A homoclinic orbit to the stationary dNLS equation (22)
exists now for ω2 > 4C [5] and has similar properties with that in (12). In particular, setting ω2 = 4C + εΩ with a positive
ε-independent parameter Ω, one can proceed similarly to the analysis of small-amplitude limit of KG breathers and obtain
M > 0 for hard inter-site potentials. Thus, the small-amplitude breathers of the monotonic FPU lattice with hard inter-site
potential W are stable if H ′(ω) > 0 and unstable if H ′(ω) < 0.

Energy criterion in the AC limit of KG lattices. The stability threshold H ′(ω) = 0 cannot be achieved near the AC limit
C = 0 for the KG lattice. Indeed, if T (E) is the energy-period dependence of an individual oscillator satisfying ϕ̈+ V ′(ϕ) = 0
and its first-order invariant is E = 1

2 ϕ̇
2 + V (ϕ), then

H ′(ω)→ − T

ωT ′(E)

in the AC limit. Since T ′(E) cannot be infinite for an individual oscillator satisfying the second-order differential equation,
H ′(ω) is sign-definite. Moreover, H ′(ω) > 0 for hard potentials with T ′(E) < 0 and H ′(ω) < 0 for soft potentials with
T ′(E) > 0. The individual oscillator is always stable, therefore, the fundamental breather of the KG lattice in the AC limit is
stable with H ′(ω) > 0 for hard potentials and H ′(ω) < 0 for soft potentials.

Description of the numerical methods used for calculating discrete breathers. Let us recall that a 1D nonlinear lattice
equation can be expressed as:

ün + V ′(un) = W ′(un+1 − un)−W ′(un − un−1), (23)

whereas the 2D generalization is given by

ün,m + V ′(un,m) = W ′(un+1,m − un,m)−W ′(un,m − un−1,m) +W ′(un,m+1 − un,m)−W ′(un,m − un,m−1). (24)

We will explain below the numerical methods used for calculating discrete breather solutions and analyzing their stability in the
1D case, being the generalization to the 2D case straightforward.

In order to calculate periodic orbits in the system (23), we make use of the Fourier series approximations and a path-following
(Newton-Raphson) method for continuations of solutions in frequency. Applications of the Fourier methods is enabled by the
fact that the breather solutions are T -periodic; for a detailed explanation of these methods, the reader is referred to Refs. [8, 9].
The method has the advantage, among others, of providing an explicit, analytical form of the Jacobian. Thus, a periodic orbit
solution can be expressed in terms of a truncated Fourier series expansion:

un(t) =

km∑
k=−km

zk,n exp(ikωt) (25)

with km being the maximal index in the Galerkin truncation. Substituting (25) into (23) yields a set of N × (2km + 1) coupled
algebraic equations:

−ω2k2zk,n + Fk[V ′(un)]−Fk[W ′(un+1 − un)] + Fk[W ′(un − un−1)] = 0, (26)

where Fk denotes the Discrete Fourier Transform at k. As un(t) in (25) must be a real, it implies that z−k,n = z∗k,n.
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Notice that in the case of Klein–Gordon lattices, W ′(u) = Cu, breathers are found by making use of the anti-continuous
limit concept [10]. That is, a breather at the limit C = 0 is composed by one (or more) excited oscillator(s) with the remaining
ones at rest. Then, this solution is continued by varying the coupling constant C up to the prescribed value. In the case of FPU
lattices, the anti-continuous limit is attained by supposing a diatomic lattice with the masses Mn so that Mn = 1 for even sites
and Mn = 1/ε2 for odd sites; then, at ε = 0 the odd site masses are infinite and the oscillators decouple.

In order to study the spectral stability of periodic orbits, we introduce a small perturbation {ξn(t)} to a given breather solution
{un(t)} of the system (23). Then, the linearized equations satisfied to first order in ξn read:

ξ̈n + V ′′(un)ξn −W ′′(un+1 − un)(ξn+1 − ξn) +W ′′(un − un−1)(ξn − ξn−1) = 0. (27)

Floquet analysis of the linearized equations (27) can be performed if {un(t)} is the T -periodic solution, so that the map
{un(0), u̇n(0)} → {un(T ), u̇n(T )} has a fixed point. Then, the stability properties of breathers are defined by the spectrum of
the Floquet operatorM given by (

{ξn(T )}
{ξ̇n(T )}

)
=M

(
{ξn(0)}
{ξ̇n(0)}

)
. (28)

The 2N × 2N eigenvalues µ = exp(iθ) ofM are dubbed the Floquet multipliers with θ being Floquet exponents.
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