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On the Extinction of Multiple Shocks in Scalar Viscous Conservation Laws\ast 

Jeanne Lin\dagger , Dmitry E. Pelinovsky\ddagger , and Bj\"orn de Rijk\S 

Abstract. We are interested in the dynamics of interfaces, or zeros, of shock waves in general scalar viscous
conservation laws with a locally Lipschitz continuous flux function, such as the modular Burgers
equation. We prove that all interfaces coalesce within finite time, leaving behind either a single
interface or no interface at all. Our proof relies on mass and energy estimates, regularization of
the flux function, and an application of the Sturm theorems on the number of zeros of solutions of
parabolic problems. Our analysis yields an explicit upper bound on the time of extinction in terms
of the initial condition and the flux function. Moreover, in the case of a smooth flux function, we
characterize the generic bifurcations arising at a coalescence event with and without the presence
of odd symmetry. We identify associated scaling laws describing the local interface dynamics near
collision. Finally, we present an extension of these results to the case of antishock waves converging
to asymptotic limits of opposite signs. Our analysis is corroborated by numerical simulations of the
modular Burgers equation.
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1. Introduction. We consider shock and antishock waves with multiple interfaces in the
scalar viscous conservation law

ut = uxx + f(u)x, t\geq 0, x\in \BbbR , u(t, x)\in \BbbR ,(1.1)

where f : \BbbR \rightarrow \BbbR is a locally Lipschitz continuous flux function. A classical example is the vis-
cous Burgers equation with f(u) = u2. Our regularity assumption on f allows for nonsmooth
choices such as f(u) = | u| , yielding the modular Burgers equation, which has been used to
model inelastic dynamics of particles with piecewise interaction potentials [7, 18] and whose
behavior has been studied analytically and numerically in [10, 15, 17].
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2324 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

Shock waves are solutions of (1.1) with initial data u0(x) converging to nonzero asymptotic
limits \phi \pm as x\rightarrow \pm \infty , which satisfy \phi + \not = \phi  - and obey the Gel'fand--Oleinik entropy condition

f(\phi \mathrm{m}\mathrm{i}\mathrm{n}) - f(z)

z  - \phi \mathrm{m}\mathrm{i}\mathrm{n}
>
f(\phi  - ) - f(\phi +)

\phi +  - \phi  - 
, z \in (\phi \mathrm{m}\mathrm{i}\mathrm{n}, \phi \mathrm{m}\mathrm{a}\mathrm{x}),(1.2)

where we denote \phi \mathrm{m}\mathrm{i}\mathrm{n} =min\{ \phi  - , \phi +\} and \phi \mathrm{m}\mathrm{a}\mathrm{x} =max\{ \phi  - , \phi +\} . On the other hand, antishock
waves are solutions of (1.1) with initial data u0(x) converging to nonzero asymptotic limits
\phi \pm , which satisfy \phi + \not = \phi  - and do not fulfill the entropy condition (1.2).

The Gel'fand--Oleinik entropy condition (1.2) is consistent with the existence of traveling
shock waves, which are solutions of (1.1) of the form u(t, x) = \phi (x - ct), where c \in \BbbR denotes
the propagation speed and the profile \phi : \BbbR \rightarrow \BbbR solves the differential equation

0 = \phi \xi + c (\phi  - \phi  - ) + f(\phi ) - f(\phi  - ),

where \xi := x - ct. Here, the profile \phi (\xi ) converges to the asymptotic limits \phi \pm as \xi \rightarrow \pm \infty ,
and the speed c is given by the Rankine--Hugoniot condition

c=
f(\phi  - ) - f(\phi +)

\phi +  - \phi  - 
.(1.3)

The traveling shock-wave solution u(t, x) = \phi (x - ct) defined for \phi  - \not = \phi + exists if and only if
the entropy condition (1.2) is fulfilled.

Traveling shock waves form an important class of asymptotic solutions of (1.1) in the sense
that they serve as global attractors for shock waves. More precisely, for twice continuously
differentiable flux functions f , it has been proven in [4, 8] that any shock-wave solution of the
viscous conservation law (1.1) converges as t\rightarrow \infty in both L1- and L\infty -norm to a traveling
shock wave, which necessarily possesses the same asymptotic limits \phi \pm at \pm \infty .

We are interested in the temporal dynamics of zeros, so-called interfaces, for shock- and
antishock-wave solutions of the viscous conservation law (1.1). In our analysis, we distinguish
among three classes of initial data u0, where both \phi + and \phi  - are nonzero:

\bullet Class I: u0(x) converges to asymptotic limits \phi \pm of opposite signs as x\rightarrow \pm \infty , which
obey the Gel'fand--Oleinik entropy condition (1.2);

\bullet Class II: u0(x) converges to asymptotic limits \phi \pm of the same sign as x\rightarrow \pm \infty ;
\bullet Class III: u0(x) converges to asymptotic limits \phi \pm of opposite signs as x \rightarrow \pm \infty ,

which do not satisfy the entropy condition (1.2).
We note that solutions of (1.1) with initial data of the class I are shock waves, whereas
solutions of (1.1) with initial data of class III are antishock waves. Although solutions of (1.1)
with initial data of class II can be either shock or antishock waves, it is not necessary to
distinguish between them in our analysis.

In addition to the above assumptions, we require that our initial datum u0 is uniformly
continuous and bounded and that u0  - \phi \pm is L1-integrable on \BbbR \pm . Then, by the compari-
son principle and standard parabolic regularity theory [11], the solution of (1.1) with initial
condition u0 stays bounded and is continuously differentiable for all positive times while main-
taining its asymptotic limits \phi \pm at \pm \infty . Nevertheless, if the flux function f is not continuously
differentiable, as in the case of the modular Burgers equation, the second derivative of the
solution of (1.1) may be discontinuous [10].
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2325

The classical Sturm theorems yield that, in parabolic semilinear equations, the number of
zeros of solutions is nonincreasing over time. Moreover, if, at some time t0, the solution has
an (isolated) multiple zero x0, then, in a sufficiently small neighborhood of x0, the number
of zeros strictly decreases when t passes through t0. We refer to [5] for a survey on Sturm's
theorems and their applications.

In this paper, we study finite-time coalescence of interfaces. In preliminary work [15], we
showed that the evolution of odd shock waves with three symmetric interfaces in the modular
Burgers equation leads to a finite-time coalescence of these interfaces to a single interface, and
we conjectured a scaling law for the local interface dynamics near the collision event based on
data fitting. In this work, we extend these results to general viscous conservation laws of the
form (1.1) and establish finite-time coalescence of interfaces for all solutions with initial data
of class I or II and thus of all shock-wave solutions. Moreover, we show that, in the specific
case of the modular Burgers equation, solutions with initial data of class III, i.e., antishock
waves, can also exhibit finite-time coalescence of interfaces.

For solutions of (1.1) with initial data of class I, we establish that all interfaces must
coalesce to a single interface within finite time. The argument generalizes the idea from [15]
and relies on a differential inequalities for the masses of u(t, x) - \phi + and u(t, x) - \phi  - measured
with respect to the position of the interface, in combination with smooth approximation of
the flux function and an application of the Sturm theorem from [1]. Our analysis yields an
explicit upper bound on the time at which all interfaces have collapsed to a single interface.
We emphasize that, although the results in [4, 8] imply that solutions with initial data of class
I converge in L1- and L\infty -norms to a traveling shock wave, which must necessarily be strictly
monotone and thus has precisely a single interface, this is not sufficient to conclude finite-time
coalescence to a single interface because interfaces of the solution might accumulate close to
the interface of the associated traveling shock wave.

We note that, for viscous conservation laws ut = \varepsilon uxx + f(u)x with small viscosity \varepsilon > 0
and smooth flux f(u), the concept of metastability offers a refined understanding of the
convergence of solutions with initial data of class I towards the traveling shock. One expects
the formation of a single shock layer on a short time scale, after which, on a longer time scale,
the layer slowly moves towards the traveling shock wave. This suggests that the coalescence
to a single interface arises on a short time scale. See [9, 12, 20] and references therein for more
background on slow dynamics and metastability in viscous conservation laws.

Initial data u0 of class II can always be bounded from above or below by a smooth function
\~u0, which satisfies \~u0(x)\rightarrow \~u\infty as x\rightarrow \pm \infty , where \~u\infty \not = 0 has the same sign as \phi \pm . For twice
continuously differentiable flux functions f , the finite-time extinction of all interfaces of the
solution \~u(t, \cdot ) of (1.1) with initial condition \~u0 follows by evoking the result from [4] that
\~u(t, \cdot ) converges in L\infty -norm to the constant state \~u\infty as t\rightarrow \infty . Consequently, the comparison
principle yields the finite-time extinction of interfaces of the solution u(t, \cdot ) of (1.1) with initial
condition u0. Yet, the result in [4] does not provide an explicit upper bound on the extinction
time and does not readily apply to the current setting of locally Lipschitz continuous flux
functions. To extend the conclusion to our setting, we apply a softer argument based on
energy estimates, smooth approximation of the flux function, conservation of mass, and the
Gagliardo--Nirenberg inequality to yield an explicit upper bound on the time at which all
interfaces of \~u(t, \cdot ), and thus, also of u(t, \cdot ), have gone extinct; cf. Remark 3.6.
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2326 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

Whether solutions of (1.1) with initial data of class III do exhibit finite-time coalescence of
interfaces to a single interface is currently an open problem. Since the entropy condition (1.2)
is not fulfilled, there exists no traveling shock to which u(t, \cdot ) can converge in norm as t\rightarrow \infty .
To shed some light on this open question, we consider antishock waves with initial data of class
III in the modular Burgers equation with flux function f(u) = | u| . Our analysis indicates that,
although all interfaces coalesce to a single interface in this case, the antishock wave converges
locally uniformly to 0 as t\rightarrow \infty , suggesting that obtaining a result in general might be subtle or
even false. Colloquially speaking, since the solution profile can converge to 0 uniformly, locally
near interfaces, diffusion might be too weak to enforce coalescence of interfaces. In fact, recent
results [6] imply that the \omega -limit set (in the locally uniform topology induced by L\infty 

\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR )) of
bounded solutions of scalar viscous conservation laws (1.1) can be complicated in the sense
that it can contain a solution that is neither a traveling shock nor a constant, underlining a
fundamental difference between shock waves and general bounded solutions of (1.1).

In addition to establishing finite-time coalescence of interfaces of shock and antishock
waves, we study the interface dynamics about a coalescence event in the case of a smooth flux
function f . If a coalescence event occurs for a solution u(t, x) of (1.1) at some time t= t0 and
point x= \xi 0, it must hold that ux(t0, \xi 0) = 0, and it follows from the classical Sturm theorems
[1] that there exist \delta > 0 and a neighborhood U \subset \BbbR of \xi 0 such that, for t \in (t0  - \delta , t0), there
are at least two interfaces in U , and for t \in (t0, t0 + \delta ), there is at most one interface in U .
Without the presence of additional symmetries, one generically has uxx(t0, \xi 0) \not = 0. We show
that, in this situation, a fold bifurcation occurs. That is, there are precisely two interfaces
\xi 1(t) < \xi 2(t) in U for t \in (t0  - \delta , t0) and no interfaces in U for t \in (t0, t0 + \delta ). Moreover, we
obtain the scaling law

\xi 1,2(t) - \xi 0 \sim \pm 
\sqrt{} 

2(t0  - t) as t\rightarrow t - 0 .(1.4)

In the case of an odd reflection symmetry, we generically have uxx(t0, \xi 0) = 0 and uxxx(t0, \xi 0) \not =
0. This leads to a pitchfork bifurcation, for which there are precisely three interfaces \xi 1(t)<
\xi (t)< \xi 2(t) in U for t\in (t0 - \delta , t0) and exactly one interface \xi (t) remains in U for t\in (t0, t0+\delta ).
We also identify the associated scaling laws

\xi 1,2(t) - \xi 0 \sim \pm 
\sqrt{} 

6(t0  - t) as t\rightarrow t - 0(1.5)

and

\xi (t) - \xi 0 \sim \alpha (t0  - t) as t\rightarrow t0(1.6)

for some \alpha \in \BbbR . We show that the conditions for a pitchfork bifurcation are satisfied in the
classical Burgers equation with flux function f(u) = u2 for odd shock waves with a single zero
on (0,\infty ). We note that the above results yield that the lower and upper bounds in Theorem
B from [1] on the number of interfaces before and after a coalescence event are sharp.

Finally, we corroborate our results with numerical simulations of the modular Burgers
equation. Our numerical approximations rely on a regularization of the modular nonlinearity
and employ an elementary finite-difference scheme. These numerical approximations are dif-
ferent from those used in [15], where the modular Burgers equation was solved on a partition
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2327

of a real line complemented with additional boundary conditions at the interfaces. We study
odd shock and antishock waves and observe finite-time coalescence of interfaces through a
pitchfork bifurcation. In addition, the numerics confirms the same scaling law (1.5) for the
interface extinction.

The derivation of scaling laws describing the interface dynamics near coalescence has
been addressed in other contexts as well and appeared to be challenging. In [2], a linear
inhomogeneous heat equation was considered as a simple model for oxygen diffusion. It
was suggested that the oxygen front (the interface) collapses according to the scaling law
(t0  - t)1/2. However, a more recent study in [14] based on new numerical algorithms for the
time-dependent Stefan problem showed that the scaling law (t0  - t)1/2 is not accurate due to
an additional singularity as t\rightarrow t - 0 . Other interface models were studied in [21, 22] by means of
matched asymptotic expansions in the context of the Kolmogorov-Petrovsky-Piskunov equa-
tion with a discontinuous cut-off in the reaction function.

We conjecture that the scaling laws (1.4), (1.5), and (1.6) proven for smooth flux func-
tions remain true for locally Lipschitz continuous flux functions such as the modular Burgers
equation. However, this question remains open for future research.

This paper is organized as follows. In section 2, we state well-posedness and approximation
results for solutions of the viscous conservation law (1.1). Section 3 is devoted to the analysis
of finite-time coalescence of interfaces for solutions with initial data of classes I, II, and III. In
section 4, we analyze the fold and pitchfork bifurcations describing the interface dynamics near
coalescence events and derive associated scaling laws. Section 5 presents numerical simulations
illustrating the pitchfork bifurcation for both shock and antishock waves in a regularized
version of the modular Burgers equation. Appendix A contains the proofs of the well-posedness
and approximation results of section 2.

2. Global well-posedness and approximation. In this section, we establish global well-
posedness of uniformly continuous and bounded solutions of the viscous conservation law
(1.1). We first consider smooth flux functions f before studying the general case of a locally
Lipschitz continuous flux function. We show that, by locally approximating the flux function
f by a smooth function \~f , one can approximate solutions u(t, \cdot ) of (1.1) on any finite time
interval by a solution \~u(t, \cdot ) of the regularized problem

\~ut = \~uxx + \~f(\~u)x.(2.1)

Proofs of all results formulated in this section can be found in Appendix A.
For smooth flux functions f \in C\infty (\BbbR ), local existence and uniqueness of classical solutions

of (1.1) follow readily by standard regularity theory for parabolic semilinear equations [11].
The fact that (1.1) obeys a comparison principle [16, 19] then yields global well-posedness.
All in all, we establish the following result.

Lemma 2.1. Let f \in C\infty (\BbbR ) and u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Let M0 = sup\{ u0(x) : x \in \BbbR \} and m0 =

inf\{ u0(x) : x\in \BbbR \} . There exists a unique smooth global classical solution

u\in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR ))\cap C((0,\infty ),C2

\mathrm{u}\mathrm{b}(\BbbR ))\cap C1((0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR ))

of (1.1) with initial condition u(0, \cdot ) = u0 such that m0 \leq u(t, x)\leq M0 for all t\geq 0 and x\in \BbbR .
Moreover, we have u\in C\infty ((0,\infty )\times \BbbR ,\BbbR ) with \partial kt u(t, \cdot )\in C l

\mathrm{u}\mathrm{b}(\BbbR ) for t\geq 0 and k, l \in \BbbN 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2328 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

Next, we establish global well-posedness of solutions of (1.1) for locally Lipschitz con-
tinuous flux functions f . In this case, classical solutions in the sense of Lemma 2.1 cannot
always be expected. For instance, the modular Burgers equation with flux function f(u) = | u| 
admits, for any \phi \pm \in \BbbR with \phi  - < 0< \phi +, a traveling shock-wave solution u(t, x) = \phi (x - ct)
converging to asymptotic limits \phi \pm and propagating with speed

c=
\phi + + \phi  - 
\phi  -  - \phi +

,

whose profile

\phi (\pm \xi ) = \phi \pm 

\Bigl( 
1 - e - (1+c)\xi 

\Bigr) 
, \xi \geq 0

does lie in C1
\mathrm{u}\mathrm{b}(\BbbR ), but not in C2

\mathrm{u}\mathrm{b}(\BbbR ). Therefore, we consider mild solutions of (1.1), which
solve the associated integral equation

u(t, \cdot ) = e\partial 
2
xtu0 +

\int t

0
\partial xe

\partial 2
x(t - s)f(u(s, \cdot ))ds,(2.2)

where u(0, \cdot ) = u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ) denotes the initial condition and e\partial 

2
xt is the semigroup generated by

\partial 2x on C\mathrm{u}\mathrm{b}(\BbbR ). This heat semigroup is explicitly given by the Green's function representation

e\partial 
2
xtv(x) =

\int 
\BbbR 
K(t, x - y)v(y)dy

with kernel

K(t, x) =
1\surd 
4\pi t

e - 
x2

4t .

Standard analytic semigroup theory in combination with the fact that f is locally Lipschitz
continuous yields local existence and uniqueness of solutions of (2.2) in C\mathrm{u}\mathrm{b}(\BbbR ). We note that
it is important here to compose the derivative in (2.2) with the semigroup e\partial 

2
x(t - s), rather

than applying it to the flux function f , since f \prime is not necessarily locally Lipschitz continuous.
Global well-posedness follows by approximating the solution u(t, \cdot ) of (2.2) by the global
classical solution \~u(t, \cdot ) of the regularized problem (2.1), where \~f \in C\infty (\BbbR ) is a smooth local
approximation of f . This leads to the following result.

Lemma 2.2. Let f : \BbbR \rightarrow \BbbR be locally Lipschitz continuous and u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Let M0 =

sup\{ u0(x) : x \in \BbbR \} and m0 = inf\{ u0(x) : x \in \BbbR \} . There exists a unique global solution
u\in C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) of (2.2) such that m0 \leq u(t, x)\leq M0 for all t\geq 0 and x\in \BbbR . Moreover,
for each \tau > 0, there exist constants C0, \delta 0 > 0 such that, for each \delta \in (0, \delta 0) and \~f \in C\infty (\BbbR )
satisfying

sup
\Bigl\{ 
| f(v) - \~f(v)| : v \in [m0,M0]

\Bigr\} 
< \delta ,

the global classical solution

\~u\in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR ))\cap C((0,\infty ),C2

\mathrm{u}\mathrm{b}(\BbbR ))\cap C1((0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR ))(2.3)

of the regularized equation (2.1) with \~u(0, \cdot ) = u0, established in Lemma 2.1, obeys the estimates
m0 \leq \~u(t, x)\leq M0 for all t\geq 0 and x\in \BbbR and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2329

sup
0\leq s\leq \tau 

\| u(t, \cdot ) - \~u(t, \cdot )\| \infty \leq C0\delta .(2.4)

Next, we approximate mild solutions of (1.1) by solutions of the regularized equation (2.1)
in C1

\mathrm{u}\mathrm{b}-norm rather than in C\mathrm{u}\mathrm{b}-norm. The approximation in C1
\mathrm{u}\mathrm{b}-norm will be used in the

upcoming analysis to conclude that a single interface of the approximate solution also yields
a single interface of the original solution.

Lemma 2.3. Let f : \BbbR \rightarrow \BbbR be locally Lipschitz continuous. Let u\in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR )) be a

global solution of (2.2) with initial condition u(0) = u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Set M0 = sup\{ u0(x) : x\in \BbbR \} 

and m0 = inf\{ u0(x) : x\in \BbbR \} . Let R,\tau , \varepsilon > 0. There exists \delta 0 > 0 such that, for each \delta \in (0, \delta 0)
and \~f \in C\infty (\BbbR ) satisfying

sup
\Bigl\{ 
| f(v) - \~f(v)| : v \in [m0,M0]

\Bigr\} 
< \delta , sup

\Bigl\{ 
| \~f \prime (v)| : v \in [m0,M0]

\Bigr\} 
\leq R,

the global classical solution (2.3) of the regularized equation (2.1) with initial condition \~u(0, \cdot ) =
u0, established in Lemma 2.1, obeys the estimates

m0 \leq \~u(t, x)\leq M0, sup
0\leq s\leq \tau 

\| u(s, \cdot ) - \~u(s, \cdot )\| W 1,\infty < \varepsilon (2.5)

for x\in \BbbR and t\geq 0.

We emphasize that Lemma 2.3, in contrast to Lemma 2.2, is merely an approximation
result and does not imply the existence of a global mild solution in C1

\mathrm{u}\mathrm{b}(\BbbR ). This suffices
for our purposes because we only apply Lemma 2.3 to establish finite-time coalescence of
interfaces for solutions of (1.1) with initial data of class I, for which global existence of a mild
solution in C1

\mathrm{u}\mathrm{b}(\BbbR ) follows from a separate well-posedness result, which we will formulate next.
In the case of initial data of class I, the entropy condition (1.2) yields the existence of a

traveling shock wave with the same limits at \pm \infty . We require that the difference between the
initial condition and the traveling shock wave be L1-integrable and show that this integrability
is maintained over time, which will be important for the mass and energy estimates in the
upcoming proofs establishing finite-time coalescence of interfaces in section 3. Moreover,
by integrating the viscous conservation law (1.1), we obtain global well-posedness of mild
solutions in C1

\mathrm{u}\mathrm{b}(\BbbR ) rather than in C\mathrm{u}\mathrm{b}(\BbbR ).

Lemma 2.4. Let f : \BbbR \rightarrow \BbbR be locally Lipschitz continuous, and let u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Suppose

that there exist c,C \in \BbbR and a solution \phi \in C1
\mathrm{u}\mathrm{b}(\BbbR ) of the profile equation

0 = \phi \xi + c\phi + f(\phi ) +C.

Suppose that u0 - \phi is L1-integrable. Then, there exists a unique solution u\in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR ))

of (2.2) such that u(t, \cdot ) - \phi is L1-integrable for all t\geq 0.

3. Finite-time coalescence of interfaces. Here, we establish finite-time coalescence of
interfaces for solutions u(t, \cdot ) of (1.1) with initial data u(0, \cdot ) = u0 \in C1

\mathrm{u}\mathrm{b}(\BbbR ) of class I or II. We
emphasize that solutions with such initial data include all shock waves. On the other hand,
antishock waves converging to asymptotic limits of opposite signs are not included. We study
finite-time coalescence of interfaces of this type of antishock wave at the end of this section
in the specific setting of the modular Burgers equation.
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2330 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

3.1. Solutions with initial data of class I. Observing that solutions u(t, x) of (1.1) with
initial data u(0, \cdot ) = u0 \in C1

\mathrm{u}\mathrm{b}(\BbbR ) of type I maintain their asymptotic limits \phi \pm as x\rightarrow \pm \infty for
every t > 0 by Lemma 2.4, it readily follows that the solution possesses at least one interface
for all t\geq 0 since \phi + and \phi  - have opposite signs. We establish that all interfaces coalesce to
a single one within finite time in this case.

Theorem 3.1. Let f : \BbbR \rightarrow \BbbR be locally Lipschitz continuous and u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Suppose that

u0(x) converges to asymptotic limits \phi \pm as x\rightarrow \pm \infty such that \phi + and \phi  - have opposite signs
and the Gel'fand--Oleinik entropy condition (1.2) holds. Moreover, assume that u0  - \phi \pm is
L1-integrable on \BbbR \pm and that we have u0(x) \in [min\{ \phi  - , \phi +\} ,max\{ \phi  - , \phi +\} ] for all x \in \BbbR . Let
u \in C([0,\infty ),C1

\mathrm{u}\mathrm{b}(\BbbR )) be the global mild solution of (1.1), established in Lemma 2.4. Then,
there exists a time T > 0 such that, for all t > T , the solution u(t, \cdot ) possesses precisely one zero.

The proof of Theorem 3.1 is based on ideas developed in [15], where it is shown that the
interfaces of odd shock waves in the modular Burgers equation coalesce to a single one within
finite time. The analysis in [15] relies on a differential inequality for the mass measured with
respect to the fixed interface at 0. Indeed, due to odd symmetry, 0 is necessarily an interface
of the shock wave for all time and must be the middle interface.

In the general setting considered here, without the presence of an odd symmetry, interfaces
are a priori not fixed, which suggests mass functions of the form

\scrM 1(t) =

\int \xi 2(t)

 - \infty 
(u(t, x) - \phi  - )dx, \scrM 2(t) =

\int \infty 

\xi 2(t)
(\phi +  - u(t, x))dx,(3.1)

where \xi 2(t) is an interface of u(t, \cdot ), which now depends on time. As in [15], we aim to
show that the assumption that \xi 2(t) is an interface lying strictly between two other interfaces
\xi 1(t), \xi 3(t) leads to a contradiction with certain inequalities obeyed by the mass functions
\scrM 1(t) and \scrM 2(t). This then yields an explicit time T > 0 such that \xi 1(t) < \xi 2(t) < \xi 3(t)
cannot hold for t > T .

To derive the desired inequalities for \scrM 1(t) and \scrM 2(t), a standard strategy is to differen-
tiate with respect to time (using the Leibniz integral rule) and use (1.1) to express temporal
derivatives of u(t, x). Yet, as mentioned in section 2, it cannot be expected in the case of a
locally Lipschitz continuous flux function f that u(t, x) is a classical solution of (1.1), which is
differentiable with respect to time and twice differentiable with respect to space. In addition,
even if the flux function f were smooth, the interface \xi 2(t), being a root of the C1-function
u(t, x), is not necessarily differentiable. In fact, the upcoming analysis in section 4 shows that
\xi 2(t) may fail to be differentiable if two interfaces collide.

To address the first challenge, we approximate the solution u(t, x) of (1.1) by a classical
solution \~u(t, x) of the regularized problem (2.1), where \~f is a smooth approximation of f and
\~u(t, \cdot ) has the same initial condition as u(t, \cdot ). We then aim to show that any three interfaces
\~\xi 1(t)\leq \~\xi 2(t)\leq \~\xi 3(t) of \~u(t, \cdot ) coalesce to a single interface within finite time. We address the
second challenge by approximating \~\xi 2(t) on a compact time interval by a sequence of smooth
approximations \~\xi 2,n(t). Thus, the mass functions (3.1) with u(t, x) replaced by \~u(t, x) and
\xi 2(t) by \~\xi 2,n(t) are differentiable with respect to t, and we can obtain the desired inequalities,
which then yield that the interfaces \~\xi 1(t), \~\xi 2(t) and \~\xi 3(t) of \~u(t, x) coalesce to a single interface
before an explicit time T > 0, which is independent of the approximation function \~f .
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2331

The approximation of the flux f by a smooth function \~f introduces an additional difficulty.
Even with control on the norm \| u(t, \cdot ) - \~u(t, \cdot )\| W 1,\infty through Lemma 2.3, the fact that \~u(t, \cdot )
possesses a single interface is not sufficient to conclude that u(t, \cdot ) has a single interface
because interfaces of u(t, \cdot ) might accumulate close to the single interface of \~u(t, \cdot ). We address
this issue by bounding the derivative \partial x\~u(t, \cdot ) at the interface away from 0, precluding the
accumulation of multiple interfaces of u(t, \cdot ) close to the single interface of \~u(t, \cdot ).

We bound the derivative of \~u(t, \cdot ) away from 0 by considering a traveling shock-wave
solution \~u\mathrm{t}\mathrm{w}(t, x) = \psi (x  - ct) of (2.1), which propagates at some speed c \in \BbbR and connects
asymptotic limits \psi \pm of opposite signs satisfying | \psi \pm | < | \phi \pm | . Upon switching to a co-moving
frame, we may, without loss of generality, assume that c = 0. We then show, with the
same methods as before, that all interfaces of the difference v(t, \cdot ) = \~u(t, \cdot )  - \psi converge to
a single interface within finite time; see Figure 3.1. This then yields the desired lower bound
on \| \partial x\~u(t, \cdot )\| L\infty . Using that \| u(t, \cdot ) - \~u(t, \cdot )\| W 1,\infty can be taken sufficiently small by taking a
better approximation \~f of f if necessary, we thus conclude that the solution u(t, \cdot ) must have
a single interface for t > T since the same holds for the approximation \~u(t, \cdot ).

Before we proceed with the proof of Theorem 3.1, we first state the following technical
lemma, which establishes a suitable smooth approximation \~f of the flux function f in (1.1).
Naturally, we require that \~f lies sufficiently close to f and its derivative is well-behaved.
Moreover, we wish that the regularized problem (2.1) admits a traveling shock-wave solution
connecting the asymptotic states \phi \pm but also a traveling shock wave with asymptotic limits
\psi \pm of opposite signs lying between \phi  - and \phi +; see also Figure 3.1. Without loss of generality,
we can restrict to the case \phi  - < 0<\phi +, and we may assume that f(\phi +) = f(\phi  - ) by replacing
f(u) by f(u) + cu, where c is given by the Rankine--Hugoniot condition (1.3).

Lemma 3.2. Let f be locally Lipschitz continuous, and let \phi \pm \in \BbbR with \phi  - < 0 < \phi +.
Suppose that f(\phi +) = f(\phi  - ) and the Gel'fand--Oleinik entropy condition

f(z) - f(\phi \pm )< 0(3.2)

Figure 3.1. Left: the approximate shock-wave solution \~u(t, \cdot ) of (2.1) with asymptotic limits \phi \pm , the traveling
shock wave \psi with asymptotic limits \psi \pm , and the interfaces \~\xi 1(t), \~\xi 2(t), and \~\xi 3(t) of the difference v(t, \cdot ) =
\~u(t, \cdot ) - \psi . In the proof of Theorem 3.1, we bound the shaded areas above and below the graph of \~u(t, \cdot ) from
below by the orange subareas. Right: the smooth approximation \~f of the flux function f , established in Lemma
3.2. One observes that the regularized problem (2.1) admits a standing shock-wave solution connecting the
asymptotic limits \phi \pm and one connecting the asymptotic states \psi \pm , where \phi  - <\psi  - < 0<\psi + <\phi +.
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2332 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

holds for all z \in (\phi  - , \phi +). Then, for each \kappa \in (f(0), f(\phi \pm )), there exists a constant R> 0 such
that, for all \delta \in (0, \kappa  - f(0)), there exist \~f \in C\infty (\BbbR ) and \psi \pm \in (\phi  - , \phi +) with \psi  - < 0<\psi + such
that the following assertions hold:

i) For all z \in (\phi  - , \phi +), we have

\~f(\phi +) = \~f(\phi  - ), \~f \prime (\phi \pm ) \not = 0, \~f(z) - \~f(\phi \pm )< 0.(3.3)

ii) For all z \in (\psi  - ,\psi +), it holds that

\~f(\psi +) = \kappa = \~f(\psi  - ), \~f \prime (\psi \pm ) \not = 0, \~f(z) - \~f(\psi \pm )< 0.(3.4)

iii) For all z \in [\phi  - , \phi +], we have

| f(z) - \~f(z)| < \delta , | \~f \prime (z)| <R.(3.5)

Proof. We first recall that, since f is locally Lipschitz continuous, Rademacher's theorem
asserts that f is differentiable almost everywhere and that its derivative f \prime is essentially
bounded on each bounded interval. We denote

R1 := sup\{ | f \prime (u)| : u\in [\phi  - , \phi +]\} .

Take \delta \in (0, \kappa  - f(0)). Let \Phi : \BbbR \rightarrow \BbbR be a mollifier with \| \Phi \| 1 = 1, \Phi (x)> 0 for x\in (\phi  - , \phi +)
and \Phi (x) = 0 for x \in \BbbR \setminus (\phi  - , \phi +). Set \Phi \eta (x) = \Phi (x/\eta )/\eta for \eta > 0. The function g : \BbbR \rightarrow \BbbR 
given by g(x) =min\{ f(x)+ \delta 

4 , f(\phi  - )\} is locally Lipschitz continuous. Moreover, it holds that
| g\prime (x)| \leq | f \prime (x)| for each x \in [\phi  - , \phi +]. Since g is continuous, it can be approximated by the
sequence g\eta := \Phi \eta \ast g of smooth functions. That is, there exists \eta 0 > 0 such that

| g\eta (u) - g(u)| < \delta 

4

for all u \in [\phi  - , \phi +] and \eta \in (0, \eta 0). By construction, we have g\eta (x) \leq f(\phi \pm ) for all x \in \BbbR 
and \eta > 0. In addition, since g is constant in a neighborhood of \phi \pm and it holds that
g\prime \eta = \Phi \eta \ast g\prime , there exists \eta 1 \in (0, \eta 0) such that g\eta (\phi \pm ) = f(\phi \pm ) and | g\prime \eta (u)| \leq \| \Phi \eta \| 1R1 = R1

for all \eta \in (0, \eta 1]. We conclude that \~g = g\eta 1
 - \delta \Phi /(4\| \Phi \| \infty ) is a smooth function that satisfies

\~g(z)< \~g(\phi \pm ) = f(\phi \pm ) for z \in (\phi  - , \phi +). Moreover, it holds that

| \~g(u) - f(u)| \leq | g\eta 1
(u) - g(u)| + \delta 

4
+ | g(u) - f(u)| < 3\delta 

4

and

| \~g\prime (u)| \leq R1 +
\delta \| \Phi \prime \| \infty 
4\| \Phi \| \infty 

for u\in [\phi  - , \phi +].
Since we have \~g(0)< f(0)+ \delta < \kappa < f(\phi \pm ) = \~g(\phi \pm ), the open set \~g - 1[\{ z \in \BbbR : z < \kappa \} ] must

contain an interval (\psi  - ,\psi +) with \phi  - < \psi  - < 0< \psi + < \phi + and \~g(\psi +) = \kappa = \~g(\psi  - ). Hence, it
holds that \~g(z)< \~g(\psi \pm ) for z \in (\psi  - ,\psi +). Finally, set d=

1
2 min\{ \phi + - \psi +,\psi +, - \psi  - ,\psi  -  - \phi  - \} >

0, and let \Psi : \BbbR \rightarrow \BbbR be an even, smooth cut-off function such that \Psi (0) = 1, \| \Psi \| \infty \leq 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

4/
24

 to
 1

30
.1

13
.1

09
.5

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ON THE EXTINCTION OF MULTIPLE SHOCKS 2333

\Psi (x) > 0 for all x \in ( - d, d) and \Psi (x) = 0 for all x \in \BbbR \setminus ( - d, d). Recalling the properties of
the function \~g, we conclude that, for any \kappa \pm , \lambda \pm \in [0, \delta /(4(\phi +  - \phi  - ))], the smooth function

\~f(x) = \~g(x) - \kappa  - (x - \phi  - )\Psi (x - \phi  - ) - \lambda  - (x - \psi  - )\Psi (x - \psi  - ) + \lambda +(x - \psi +)\Psi (x - \psi +)

+ \kappa +(x - \phi +)\Psi (x - \phi +)

satisfies (3.5); it holds that

\~f(\phi +) = \~f(\phi  - ), \~f \prime (\phi \pm ) = \~g\prime (\phi \pm )\pm \kappa \pm , \~f(z) - \~f(\phi \pm )< 0

for all z \in (\phi  - , \phi +), and we have

\~f(\psi +) = \kappa = \~f(\psi  - ), \~f \prime (\psi \pm ) = \~g\prime (\psi \pm )\pm \lambda \pm , \~f(z) - \~f(\psi \pm )< 0(3.6)

for all z \in (\psi  - ,\psi +). Hence, choosing \kappa \pm , \lambda \pm \in [0, \delta /(4(\phi +  - \phi  - ))] in such a way that
\~f \prime (\phi \pm ), \~f

\prime (\psi \pm ) \not = 0, we find that \~f satisfies (3.3), (3.4), and (3.5).

Having established a suitable approximation \~f of the flux function f , we now provide the
proof of Theorem 3.1 following the outline sketched above.

Proof of Theorem 3.1. We consider the case \phi  - < 0 < \phi +. The case \phi + < 0 < \phi  - is
handled analogously. Clearly, the zeros (including their multiplicities) of u(t, \cdot ) are the same
as those of the translate u(t, \cdot  - ct) for any t\geq 0. Thus, upon replacing f(u) by f(u) + cu in
(1.1), where c is given by (1.3), we may assume that

f(\phi +) = f(\phi  - )

so that (1.2) yields

f(z) - f(\phi +) = f(z) - f(\phi  - )< 0

for all z \in (\phi  - , \phi +). By continuity of f , there exists \eta > 0 such that, for all z \in [\phi  - , \phi  - + \eta ]\cup 
[\phi +  - \eta ,\phi +], it holds that

f(z)>
f(\phi \pm ) + f(0)

2
.(3.7)

Note that, since f(0)< f(\phi \pm ), we must have \eta < | \phi \pm | . Since u0 is continuous and converges
to \phi \pm \not = 0 as x\rightarrow \pm \infty , the function u0  - \phi + + \eta possesses a largest root \xi + and u0  - \phi  -  - \eta 
possesses a smallest root \xi  - . We set

T =

max

\biggl\{ \int \xi +

 - \infty 
(u0(x) - \phi  - )dx,

\int \infty 

\xi  - 

(\phi +  - u0(x))dx

\biggr\} 
f(\phi +) - f(0)

> 0.(3.8)

We argue by contradiction and assume that there exists \tau > T such that u(\tau , \cdot ) has at
least two distinct zeros. Then, since u is continuously differentiable, there must exist a zero
x0 of u(\tau , \cdot ) with ux(\tau ,x0)\leq 0. Fix \kappa > f(0) such that

(\kappa  - f(0))\tau < (f(\phi  - ) - f(0)) (\tau  - T ) , \kappa <
f(0) + f(\phi \pm )

2
.(3.9)
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2334 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

Denote by L> 0 the Lipschitz constant of f on [\phi  - , \phi +], and let R> 0 be the constant from
Lemma 3.2 (which depends on \kappa ). Fix \varepsilon > 0 such that

(L+ 2)\varepsilon < \kappa  - f(0), (R+ 1)\varepsilon < \kappa  - f(0), \varepsilon <min\{ M\eta ,m\eta \} .(3.10)

Finally, let \delta 0 > 0 be the constant from Lemma 2.3 (which depends on R,\tau , \varepsilon > 0), and take
\delta > 0 such that

\delta <min\{ \delta 0, \varepsilon , \kappa  - f(0)\} , \delta <
f(0) + f(\phi \pm )

2
 - \kappa ,

\delta \tau < (f(\phi  - ) - f(0)) (\tau  - T ) - (\kappa  - f(0))\tau ,
(3.11)

which is possible by (3.9).
By Lemma 3.2, there exist \~f \in C\infty (\BbbR ) and \psi \pm \in (\phi  - , \phi +) with \psi  - < 0 < \psi + satisfying

(3.3), (3.4), and (3.5). Lemma 2.3 then yields a global classical solution (2.3) of (2.1) with
initial condition \~u(0, \cdot ) = u0 satisfying (2.5). Then, it must hold that

\~ux(\tau ,x0)\leq \varepsilon , | \~u(\tau ,x0)| \leq \varepsilon .(3.12)

On the other hand, the mean value theorem implies that

\kappa  - \~f(0) = \~f(\psi \pm ) - \~f(0)\leq R| \psi \pm | .

Combining the latter with (3.5), and (3.10) yields

| \psi \pm | \geq 
\kappa  - f(0) - \delta 

R
\geq \kappa  - f(0) - \varepsilon 

R
> \varepsilon .(3.13)

On the other hand, (3.4), (3.7), and (3.9) imply that

\phi  - + \eta < \psi  - < 0<\psi + <\phi +  - \eta .(3.14)

By (3.3) and (3.4), there exist heteroclinic solutions \phi (x) and \psi (x) of the profile equations

0 = \phi \xi + \~f(\phi ) - \~f(\phi \pm ), 0 =\psi \xi + \~f(\psi ) - \~f(\psi \pm ),(3.15)

respectively, converging exponentially to the asymptotic limits \phi \pm and \psi \pm , respectively, as
x\rightarrow \pm \infty . Since u0  - \phi \pm is L1-integrable on \BbbR \pm , so is u0  - \phi . Therefore, Lemma 2.4 yields
that \~u(t, \cdot ) - \phi is L1-integrable for all t\geq 0. We conclude that \~u(t, \cdot ) - \phi \pm is L1-integrable on
\BbbR \pm for all t\geq 0.

Using (3.12) and (3.13) and the fact that \psi (x) is strictly monotone and converges to \psi \pm 
as x\rightarrow \pm \infty , there must exist a translate x1 \in \BbbR such that the point (x0, \~u(\tau ,x0)) lies on the
graph of \psi (\cdot  - x1). Our aim is to show that the difference v(t, \cdot ) = \~u(t, \cdot ) - \psi (\cdot  - x1) has only
a single zero at t = \tau , which must lie at x0. This then leads to a contradiction with (3.9),
(3.11), (3.10), and (3.12) by our choice of constants \kappa , \varepsilon , and \delta .

Upon replacing the traveling shock wave \psi by its translate \psi (\cdot  - x1), we may, without loss
of generality, assume that x1 = 0. We observe that

v \in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR ))\cap C((0,\infty ),C2

\mathrm{u}\mathrm{b}(\BbbR ))\cap C1((0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR ))(3.16)
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2335

is a global classical solution of the equation

vt = vxx + \~f(v+\psi )x  - \~f(\psi )x.(3.17)

We can apply the Sturm theorem, [1, Theorem B], upon recasting (3.17) as the linear parabolic
equation

vt = vxx + b(t, x)vx + a(t, x)v(3.18)

with

b(t, x) = \~f \prime (v(t, x) +\psi (t, x)), a(t, x) =\psi x(t, x)
\~f \prime (v(t, x) +\psi (x)) - \~f \prime (\psi (x))

v(t, x)
,

where we note that a, b, bx, and bt are bounded on the strip \BbbR \times [0, s] for any s > 0 by (3.16)
and the fact that \~f and \psi are smooth. Applying [1, Theorem B] to (3.18) yields that, if it
holds that v(t0, \xi 0) = 0= vx(t0, \xi 0) at some (t0, \xi 0)\in (0,\infty )\times \BbbR , then there exist \theta \in (0, t0) and
a neighborhood U \subset \BbbR of \xi 0 such that, for t\in (t0 - \theta , t0), there are at least two zeros of v(t, \cdot )
in U , and for t \in (t0, t0 + \theta ), there is at most one zero of v(t, \cdot ) in U . Noting that v(t, x) is
continuously differentiable with respect to x and t, this leads to two important observations.
First, no new zeros of v(t, \cdot ) can form dynamically over time. Second, multiple roots are
isolated in \BbbR \times (0,\infty ).

Now, assume by contradiction that, for all t \in [0, \tau ], there exist at least two zeros of
v(t, \cdot ). A consequence of the above two observations, the regularity of v(t, \cdot ) and the fact that
v(t, \cdot ) converges to \phi \pm  - \psi \pm at \pm \infty with \phi  -  - \psi  - < 0 < \phi +  - \psi +, is that there must be
three functions \~\xi 1,2,3 : [0, T ] \rightarrow \BbbR that depend continuously on time such that it holds that
\~\xi 1(t)< \~\xi 2(t)< \~\xi 3(t), v(t, \~\xi i(t)) = 0 for i= 1,2,3, v(t, x)> 0 for all x \in (\~\xi 1(t), \~\xi 2(t)), v(t, x)< 0
for all x \in (\~\xi 2(t), \~\xi 3(t)), and vx(t, \~\xi 2(t))\leq 0 for all t \in [0, T ]. We note that, by (3.14), it must
hold that \xi  - < \~\xi 2(0)< \xi +.

Take a sequence \{ \~\xi 2,n\} n of smooth functions converging uniformly in C([0, \tau ]) to \~\xi 2 as
n\rightarrow \infty . Define the masses

M1,n(t) =

\int \~\xi 2,n(t)

 - \infty 
(v(t, x) - \phi  - +\psi  - )dx

=

\int \~\xi 2,n(t)

 - \infty 
(\~u(t, x) - \phi  - )dx - 

\int \~\xi 2,n(t)

 - \infty 
(\psi (x) - \psi  - )dx,

M1(t) =

\int \~\xi 2(t)

 - \infty 
(v(t, x) - \phi  - +\psi  - )dx=

\int \~\xi 2(t)

 - \infty 
(\~u(t, x) - \phi  - )dx - 

\int \~\xi 2(t)

 - \infty 
(\psi (x) - \psi  - )dx,

which are well-defined because \~u(t, \cdot ) - \phi  - and \psi  - \psi  - are L1-integrable on \BbbR  - for all t\geq 0.
Applying the Leibniz rule, we find that

M \prime 
1,n(s) =

\~\xi \prime 2,n(s)
\Bigl( 
v(s, \~\xi 2,n(s)) - \phi  - +\psi  - 

\Bigr) 
+

\int \~\xi 2,n(s)

 - \infty 

\Bigl( 
vxx(s,x) + \partial x

\Bigl( 
\~f(v(s,x) +\psi (x)) - \~f(\psi (x))

\Bigr) \Bigr) 
dx

= \partial s

\Bigl( 
\~\xi 2,n(s)

\Bigl( 
v(s, \~\xi 2,n(s)) - \phi  - +\psi  - 

\Bigr) \Bigr) 
 - \~\xi 2,n(s)\partial s

\Bigl( 
v(s, \~\xi 2,n(s))

\Bigr) 
+ vx(s, \~\xi 2,n(s))

+ \~f(v(s, \~\xi 2,n(s)) +\psi (\~\xi 2,n(s))) - \~f(\psi (\~\xi 2,n(s))) - \~f(\phi  - ) + \~f(\psi  - )
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2336 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

for s\in (0, \tau ]. Integrating the latter from 0 to t, we obtain

M1,n(t) =M1,n(0) + \~\xi 2,n(t)
\Bigl( 
v(t, \~\xi 2,n(t)) - \phi  - +\psi  - 

\Bigr) 
 - \~\xi 2,n(0)

\Bigl( 
v(0, \~\xi 2,n(0)) - \phi  - +\psi  - 

\Bigr) 
+

\int t

0

\Bigl( 
\~\xi 2,n(s)\partial s

\Bigl[ 
v(s, \~\xi 2,n(s))

\Bigr] 
+ vx(s, \~\xi 2,n(s))

\Bigr) 
ds+

\Bigl( 
\~f(\psi  - ) - \~f(\phi  - )

\Bigr) 
t

+

\int t

0

\Bigl( 
\~f(v(s, \~\xi 2,n(s)) +\psi (\~\xi 2,n(s))) - \~f(\psi (\~\xi 2,n(s)))

\Bigr) 
ds

for t \in (0, \tau ]. Taking the limit n\rightarrow \infty while recalling the regularity (3.16) of v(t, \cdot ) and the
fact that vx(\~\xi 2(s), s)\leq 0 for all s\in [0, T ], we arrive at

M1(t) =M1(0) - (\~\xi 2(t) - \~\xi 2(0)) (\phi  -  - \psi  - ) +

\int t

0
vx(s, \~\xi 2(s))ds+

\Bigl( 
\~f(\psi  - ) - \~f(\phi  - )

\Bigr) 
t

\leq M1(0) + (\~\xi 2(t) - \~\xi 2(0))(\psi  -  - \phi  - ) +
\Bigl( 
\~f(\psi  - ) - \~f(\phi  - )

\Bigr) 
t,

implying that\int \~\xi 2(t)

 - \infty 
(\~u(t, x) - \phi  - )dx\leq 

\int \~\xi 2(0)

 - \infty 
(u0(x) - \phi  - )dx+

\int \~\xi 2(t)

\~\xi 2(0)
(\psi (x) - \phi  - )dx

+
\Bigl( 
\~f(\psi  - ) - \~f(\phi  - )

\Bigr) 
t

for t\in [0, \tau ]. On the other hand, since \~u(t, \cdot ) - \phi  - is nonnegative for all t\geq 0 by (2.5), it holds
that \int \~\xi 2(t)

\~\xi 1(t)
(\psi (x) - \phi  - )dx\leq 

\int \~\xi 2(t)

 - \infty 
(\~u(t, x) - \phi  - )dx;(3.19)

cf. Figure 3.1. Combining the latter two inequalities while using \~\xi 2(0)< \xi +, we obtain\int \~\xi 2(0)

\~\xi 1(t)
(\psi (x) - \phi  - )dx\leq 

\int \~\xi 2(0)

 - \infty 
(u0(x) - \phi  - )dx+

\Bigl( 
\~f(\psi  - ) - \~f(\phi  - )

\Bigr) 
t

\leq 
\int \xi +

 - \infty 
(u0(x) - \phi  - )dx+ (f(0) - f(\phi  - )) t+ (\kappa  - f(0)) t+ \delta t.

Inserting t= \tau in the latter, applying (3.11), and recalling (3.8), we arrive at\int \~\xi 2(0)

\~\xi 1(t)
(\psi (x) - \phi  - )dx\leq (f(0) - f(\phi  - )) (\tau  - T ) + (\kappa  - f(0)) \tau + \delta \tau < 0,

yielding \~\xi 2(0)\leq \~\xi 1(\tau )< \~\xi 2(\tau ) since we have \psi (x) - \phi  - \geq \psi  -  - \phi  - > 0 for all x\in \BbbR .
Similarly, we establish\int \~\xi 3(t)

\~\xi 2(0)
(\phi +  - \psi (x))dx\leq 

\int \infty 

\~\xi 2(0)
(\phi +  - u0(x))dx+

\Bigl( 
\~f(\psi +) - \~f(\phi +)

\Bigr) 
t,
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2337

yielding \int \~\xi 3(t)

\~\xi 2(0)
(\phi +  - \psi (x))dx\leq (f(0) - f(\phi +)) (\tau  - T ) + (\kappa  - f(0)) \tau + \delta \tau < 0,

and thus, \~\xi 2(\tau ) < \~\xi 3(\tau ) \leq \~\xi 2(0), which contradicts \~\xi 2(0) < \~\xi 2(\tau ). Hence, there must ex-
ist a t \in [0, \tau ] such that v(t, \cdot ) has only a single zero. Recalling that the number of zeros
is nonincreasing, we conclude that v(\tau ) has a single zero, which must be x0. Since v(t, \cdot )
converges to \phi \pm  - \psi \pm as x \rightarrow \pm \infty and we have \phi  - < \psi  - < 0 < \psi + < \phi +, it must hold
that \~ux(\tau ,x0)  - \psi \prime (x0) = vx(\tau ,x0) \geq 0. On the other hand, using that \psi solves (3.15) and
0= v(\tau ,x0) = \~u(\tau ,x0) - \psi (x0) while recalling (3.5) and (3.12), we infer that

\varepsilon \geq \~ux(\tau ,x0)\geq \psi \prime (x0) = - \~f(\psi (x0)) + \~f(\psi \pm ) = - \~f(\~u(\tau ,x0)) + \kappa 

= - \~f(\~u(\tau ,x0)) + f(\~u(\tau ,x0)) - f(\~u(\tau ,x0)) + f(0) + \kappa  - f(0)

\geq  - \delta  - L\varepsilon + \kappa  - f(0).

Combining the latter with (3.11) yields

(L+ 2)\varepsilon \geq \kappa  - f(0),

which contradicts (3.10). We conclude that, for each t > T , the function u(t, \cdot ) possesses at
most one zero.

Remark 3.3. We note that the proof of Theorem 3.1 provides an explicit upper bound T
given by (3.8) on the time at which all interfaces of the solution u(t, \cdot ) of (1.1) have collapsed
to a single interface. The upper bound (3.8) only depends on the flux function f and the
initial condition u0.

Remark 3.4. We expect that it might be possible to lift the assumption that u0(x) \in 
[min\{ \phi  - , \phi  - \} ,max\{ \phi  - , \phi +\} ] for all x\in \BbbR in Theorem 3.1 by bounding u0(x) from below by a
smooth function u - (x) and from above by a smooth function u+(x) satisfying

lim
x\rightarrow \pm \infty 

u - (x) =min\{ \phi  - , \phi +\} and lim
x\rightarrow \pm \infty 

u+(x) =max\{ \phi  - , \phi +\} .

It has been established in [4] that the solutions \~u\pm (t, \cdot ) of the regularized problem (2.1) with
initial conditions \~u\pm (0, \cdot ) = u\pm converge in L1- and L\infty -norm to their asymptotic limits as
t \rightarrow \infty . So, by the comparison principle, the area of \~u(t, \cdot ) under min\{ \phi  - , \phi +\} or above
max\{ \phi  - , \phi +\} converges to 0 as t \rightarrow \infty . We expect that, using similar techniques as in the
proof of Theorem 3.5, one can obtain decay estimates on this area that are independent of the
approximation \~f of the flux function f . One would then hope to find an explicit time T1 > 0
only depending on f and the initial condition u0 such that, for t > T1, this area is so small
that the estimate (3.19) is still valid and one can proceed as in the proof of Theorem 3.1.
We decided to refrain from providing this exposition since it merely introduces additional
technicalities obscuring the main ideas of the proof.
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2338 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

3.2. Solutions with initial data of class II. We prove the finite-time extinction of all
interfaces of solutions with initial data of class II. That is, we consider a solution u(t, x) of
(1.1) with initial condition u(0, x) = u0(x), which converges to nonzero asymptotic limits \phi \pm 
as x \rightarrow \pm \infty that have the same sign. By approximating the solution u(t, x) by a solution
\~u(t, x) to the regularized problem (2.1) with smooth flux function \~f and bounding the initial
condition u0 from below or above, it suffices by the comparison principle of [16, 19] to prove
the statement for a solution \~v(t, \cdot ) of the regularized problem (2.1), which possesses the same
nonzero asymptotic limit \phi 0 at \pm \infty ; see Figure 3.2. We show that all interfaces of \~v(t, \cdot ) go
extinct within finite time by deriving an energy inequality for the difference \~v(t, \cdot ) - \phi 0. The
energy estimate relies on the Gagliardo--Nirenberg inequality and the conservation of mass.

Theorem 3.5. Let f : \BbbR \rightarrow \BbbR be locally Lipschitz continuous and u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Suppose

that u0(x) converges to nonzero asymptotic limits \phi \pm as x\rightarrow \pm \infty such that \phi + and \phi  - have
the same sign. Let u \in C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) be the global mild solution of (1.1) established in
Lemma 2.2. Then, there exists a time T > 0 such that, for all t > T , the solution u(t, \cdot )
possesses no zeros.

Proof. Throughout the proof, C > 0 denotes the constant appearing in the Gagliardo--
Nirenberg interpolation inequality

\| g\| \infty \leq C\| g\prime \| 
2

3

2 \| g\| 
1

3

1 ,(3.20)

which holds for all g \in L1(\BbbR )\cap H1(\BbbR ).
We consider the case 0<\phi  - \leq \phi +. The cases 0<\phi + \leq \phi  - , \phi  - \leq \phi + < 0, and \phi + \leq \phi  - < 0

are handled analogously. Take any v0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ) such that v0  - 2

3\phi  - is L1-integrable, not
identically zero, and nonpositive, and it holds that v0(x)\leq u0(x) for all x\in \BbbR . Set

T =
27C3

\bigm\| \bigm\| v0  - 2
3\phi  - 

\bigm\| \bigm\| 2
2

\bigm\| \bigm\| v0  - 2
3\phi  - 

\bigm\| \bigm\| 
1

2\phi 3 - 
> 0.(3.21)

Let \tau > T . By Lemma 2.2, there exists \~f \in \BbbC \infty (\BbbR ) such that the global classical solution
\~u(t, \cdot ) of the regularized problem (2.1) with initial condition \~u(0, \cdot ) = u0 satisfies (2.3) and

\| u(\tau , \cdot ) - \~u(\tau , \cdot )\| \infty <
1

3
\phi  - .(3.22)

Let

\~v \in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR ))\cap C((0,\infty ),C2

\mathrm{u}\mathrm{b}(\BbbR ))\cap C1((0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR ))

be the solution of (2.1) with initial condition \~v(0, \cdot ) = v0; cf. Lemma 2.1. By the comparison
principle (cf. [16, 19]), it holds that

\~v(t, x)\leq \~u(t, x), \~v(t, x)\leq 2

3
\phi  - (3.23)

for all t \geq 0 and x \in \BbbR . Our aim is to show that we have \~v(\tau ,x) \geq 1
3\phi  - for all x \in \BbbR , which,

together with (3.22) and (3.23), yields the desired result that u(\tau , \cdot ) does not posses any zeros;
cf. Figure 3.2.
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2339

Figure 3.2. Left: the shock wave u(t, \cdot ) and its approximation \~u(t, \cdot ) from the proof of Theorem 3.1 at time
t = \tau . The shock wave u(\tau , \cdot ) possesses the asymptotic limits \phi \pm at \pm \infty and has an interface at x0. The
translate \psi (\cdot  - x1) of the traveling shock wave \psi , connecting the asymptotic states \psi \pm , passes through the
point (x0, \~u(\tau , x0)). Right: the approximate solution \~u(t, \cdot ) connecting the asymptotic end states \phi \pm and its
subsolution \~v(t, \cdot ) possessing the asymptotic limit 2

3
\phi  - at \pm \infty . In the proof of Theorem 3.5, we approximate

the energy of \~v(t, \cdot ) - 2
3
\phi  - at a point t= \tau from below by (\xi 2  - \xi 1)

1
9
\phi 2
 - .

We argue by contradiction and assume that there exist \xi 1, \xi 2 \in \BbbR with \xi 1 < \xi 2 such that
\~v(\tau , \xi 1) =

1
3\phi  - = \~v(\tau , \xi 2). First, we observe that (\tau , \xi 1) is a root of z(t, x) = \~v(t, x)  - 1

3\phi  - ,
which satisfies the linear equation

zt = zxx + b(t, x)zx,(3.24)

where the spatial and temporal derivative of b(t, x) = \~f \prime (\~v(t, x)) are bounded on the strip
\BbbR \times [0, s] for any s > 0. Applying the Sturm theorem [1, Theorem B] to (3.24) yields that
z(t, \cdot ) must have a zero for all t\in [0, \tau ]. That is, it holds that\bigm\| \bigm\| \bigm\| \bigm\| \~v(t, \cdot ) - 2

3
\phi  - 

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\geq 1

3
\phi  - (3.25)

for all t\in [0, \tau ].
Next, we observe that the mass

M(t) =

\int 
\BbbR 

\biggl( 
\~v(t, x) - 2

3
\phi  - 

\biggr) 
dx, t\geq 0

is conserved. Indeed, it holds that

M \prime (t) =

\int 
\BbbR 

\Bigl( 
\~vxx(t, x) + \partial x( \~f(\~v(t, x)))

\Bigr) 
dx= 0,

and thus, we have M(t) =M(0) for all t\geq 0. Second, we establish an estimate for the energy

E(t) =

\bigm\| \bigm\| \bigm\| \bigm\| \~v(t, \cdot ) - 2

3
\phi  - 

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

.
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2340 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

We compute using integration by parts

E\prime (t) = 2

\int 
\BbbR 

\biggl( 
\~v(t, x) - 2

3
\phi  - 

\biggr) \Bigl( 
\~vxx(t, x) + \partial x( \~f(\~v(t, x)))

\Bigr) 
dx

= - 2

\int 
\BbbR 
\~vx(t, x)

\Bigl( 
\~vx(t, x) + \~f(\~v(t, x))

\Bigr) 
dx

= - 2\| \~vx(t, \cdot )\| 22

for t\geq 0. Therefore, using the Gagliardo--Nirenberg inequality (3.20), the bound (3.23), and
the fact that the (nonzero) mass M(t) is conserved, we obtain the energy estimate

E\prime (t)\leq  - 2

C3| M(t)| 

\bigm\| \bigm\| \bigm\| \bigm\| \~v(t, \cdot ) - 2

3
\phi  - 

\bigm\| \bigm\| \bigm\| \bigm\| 3
\infty 

= - 2

C3| M(0)| 

\bigm\| \bigm\| \bigm\| \bigm\| \~v(t, \cdot ) - 2

3
\phi  - 

\bigm\| \bigm\| \bigm\| \bigm\| 3
\infty 

for t\geq 0. Integrating the latter from 0 to \tau while using (3.25) and \tau > T , we obtain

(\xi 2  - \xi 1)
\phi 2 - 
9

\leq E(\tau )\leq E(0) - 2

C3| M(0)| 

\int \tau 

0

\bigm\| \bigm\| \bigm\| \bigm\| \~v(t, \cdot ) - 2

3
\phi  - 

\bigm\| \bigm\| \bigm\| \bigm\| 3
\infty 
dt

\leq E(0) - 
2\phi 3 - 

27C3| M(0)| 
\tau =E(0)

\Bigl( 
1 - \tau 

T

\Bigr) 
< 0,

which contradicts \xi 1 < \xi 2; see Figure 3.2. Therefore, \~v(\tau , \cdot )  - 1
3\phi  - can possess at most one

single zero, which, together with estimates (3.22) and (3.23) and the fact that \~v(\tau ,x) converges
to 2

3\phi  - as x\rightarrow \pm \infty , implies that u(\tau , \cdot ) cannot have any zeros.

Remark 3.6. Assume that the initial condition u0 in Theorem 3.5 possesses an interface
and that it holds 0<\phi  - \leq \phi +. By mollifying the compactly supported, nonpositive, nonzero
function u1(x) = min\{ 2

3\phi  - , u0(x)\}  - 
2
3\phi  - , one readily finds a sequence \{ zn\} n of nonpositive,

nonzero, smooth, and compactly supported functions such that zn converges in Lp(\BbbR ) to u1
as n \rightarrow \infty for p = 1,2. Thus, wn = zn + 2

3\phi  - is a smooth function such that wn  - 2
3\phi  - is

L1-integrable, not identically zero, and nonpositive such that wn(x) \leq u0(x) for all n \in \BbbN .
Hence, wn satisfies the criteria for the function v0 in the proof of Theorem 3.5 for any n\in \BbbN .
That is, we find that the upper bound (3.21) on the time at which all interfaces of the solution
u(t, \cdot ) have gone extinct could be taken equal to

T =
27C3\| u1\| 22\| u1\| 1

2\phi 3 - 
.

We stress that T only depends on the initial condition u0 of the solution u(t, \cdot ) and the positive
constant C from the Gagliardo--Nirenberg inequality (3.20).

3.3. Solutions with initial data of class III. In Theorem 3.1, we proved finite-time coa-
lescence of interfaces for shock waves converging to asymptotic limits of opposite signs. This
prompts the question of whether antishock waves converging to asymptotic limits of opposite
signs also exhibit finite-time coalescence of interfaces. One readily observes that the proof
of Theorem 3.1 strongly relies on the Gel'fand--Oleinik entropy inequality (1.2) to bound the
mass. It cannot be expected that the same strategy applies to the case of antishock waves
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2341

that violate (1.2). Therefore, the question of whether finite-time coalescence of interfaces can
be established for solutions with initial data of class III remains open.

Nevertheless, we can study the interface dynamics of solutions with initial data of class
III in the framework of the modular Burgers equation

ut = uxx + | u| x,(3.26)

which corresponds to the scalar viscous conservation law (1.1) with the modular flux function
f(u) = | u| . Our upcoming analysis establishes finite-time coalescence of interfaces for antishock
waves converging to asymptotic limits \mp \phi \ast as x\rightarrow \pm \infty with \phi \ast > 0. We make the following
assumption on the regularity of solutions to the modular Burgers equation (3.26).

Assumption 3.7. For every u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ) converging to nonzero asymptotic limits \phi \pm at

\pm \infty , the global mild solution u\in C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) of (3.26), established in Lemma 2.2, with
initial condition u(0, \cdot ) = u0 satisfies u \in C1((0,\infty )\times \BbbR ,\BbbR ) such that u(t, \cdot ), t\geq 0 is piecewise
C2 with the finite jump condition

uxx(t, \xi (t)
+) - uxx(t, \xi (t)

 - ) = - 2| ux(t, \xi (t))| (3.27)

across any interface x= \xi (t)\in \BbbR .

Assumption 3.7 was proven in [10] for the class of solutions to (3.26) with a single interface
in a local neighborhood of a traveling shock wave. In a more general setting, the validity of
Assumption 3.7 is an open question.

We expect that Assumption 3.7 can be proven in a general case by using approximation
by solutions of the regularized equation as in Theorems 3.1 and 3.5. However, since our main
goal is to illustrate the finite-time coalescence of interfaces of solutions of (1.1) with initial
data of class III rather than proving a general well-posedness result for piecewise smooth flux
functions, we refrain from doing so.

The following lemma establishes that the odd parity of initial data is preserved in the time
evolution of the modular Burgers equation (3.26).

Lemma 3.8. Let u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ) satisfy u0( - x) =  - u0(x) for every x \in \BbbR . Then, the mild

solution u\in C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) of (3.26), established in Lemma 2.2, satisfies u(t, - x) = - u(t, x)
for every t\geq 0 and x\in \BbbR .

Proof. First, observe that, if z \in C\mathrm{u}\mathrm{b}(\BbbR ) is odd, then

e\partial 
2
xtz =

\int 
\BbbR 

e - 
y2

4t

\surd 
4\pi t

z(x - y)dy

is also odd, which follows by the substitution y \mapsto \rightarrow  - y. Now, the mild solution u(t, \cdot ) of (3.26)
is given by

u(t, \cdot ) = e\partial 
2
xtu0 + \partial x

\int t

0
e\partial 

2
x(t - s) | u(s, \cdot )| ds

for t\geq 0. Since u0 is odd, so is e\partial 
2
xtu0. Hence, using again the substitution y \mapsto \rightarrow  - y, we obtain

u(t, \cdot ) + u(t, - \cdot ) = \partial x

\int t

0
e\partial 

2
x(t - s) (| u(s, \cdot )|  - | u(s, - \cdot )| )ds
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2342 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

for t\geq 0. Taking norms in the latter and using the well-known fact that there exists a constant
C > 0 such that \bigm\| \bigm\| \bigm\| \partial xe\partial 2

xtv
\bigm\| \bigm\| \bigm\| 
L\infty 

\leq Ct - 1/2\| v\| L\infty (3.28)

for t > 0 and v \in L\infty (\BbbR ) yields

\| u(t, \cdot ) + u(t, - \cdot )\| L\infty \leq C

\int t

0

1\surd 
t - s

\| | u(s, \cdot )|  - | u(s, - \cdot )| \| L\infty ds

\leq C

\int t

0

1\surd 
t - s

\| u(s, \cdot ) + u(s, - \cdot )\| L\infty ds

for t\geq 0. Therefore, Gr\"onwall's inequality (cf. [11, Lemma 7.0.3]) implies that

\| u(t, \cdot ) + u(t, - \cdot )\| L\infty = 0

for all t\geq 0, which finishes the proof.

The main result of this section is the following theorem.

Theorem 3.9. Suppose that Assumption 3.7 holds. Take \phi \ast > 0 and x0,1 \in \BbbR with 0 <
x1  - x0 <

1
6 . Let \phi : \BbbR \rightarrow \BbbR be the odd function given by

\phi (x) = \phi \ast (e
 - x  - 1)

for x\geq 0. Consider u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ) satisfying

\phi (x - x0)\leq u0(x)\leq \phi (x - x1)(3.29)

for all x\in \BbbR . Let u\in C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) be the mild solution of (3.26) established in Lemma 2.2.
Then, u(t, \cdot ) cannot posses two consecutive simple zeros \xi 1(t), \xi 2(t) that exist for all t\geq 0.

Proof. Our analysis relies on comparison with an explicit reference solution u\mathrm{r}\mathrm{e}\mathrm{f}(t, x) of
(3.26) with odd initial condition u\mathrm{r}\mathrm{e}\mathrm{f}(0, \cdot ) = \phi \in C1

\mathrm{u}\mathrm{b}(\BbbR ). By Lemma 3.8, the solution u\mathrm{r}\mathrm{e}\mathrm{f} \in 
C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) is spatially odd. It satisfies the diffusion-advection boundary-value problem\left\{     

ut = uxx  - ux, t > 0, x > 0,

u(t,0) = 0, t\geq 0,

u(0, x) = \phi (x), x\geq 0,

whose solution is explicitly given by

u\mathrm{r}\mathrm{e}\mathrm{f}(t, x) =

\int \infty 

0
G(t, x, y)\phi (y)dy

for t\geq 0 and x\in \BbbR , where G(t, x, y) is the Green's function used in [10]:

G(t, x, y) =
1\surd 
4\pi t

\Bigl( 
e - 

(x - y - t)2

4t  - e - ye - 
(x+y - t)2

4t

\Bigr) 
.
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2343

Evaluating the integral, we find

u\mathrm{r}\mathrm{e}\mathrm{f}(t, x) =
\phi \ast 
2

\biggl( 
exerfc

\biggl( 
t+ x

2
\surd 
t

\biggr) 
 - erfc

\biggl( 
t - x

2
\surd 
t

\biggr) 
 - e2t - x

\biggl( 
erfc

\biggl( 
x - 3t

2
\surd 
t

\biggr) 
+ e3xerfc

\biggl( 
3t+ x

2
\surd 
t

\biggr) 
 - 2

\biggr) \biggr) 
for t\geq 0 and x\in \BbbR .

By the comparison principle (cf. [3, Corollary 3.1]) and (3.29), it holds that

u - (t, x)\leq u(t, x)\leq u+(t, x)

for x\in \BbbR and t\geq 0, where u - (t, x) = u\mathrm{r}\mathrm{e}\mathrm{f}(t, x - x0) and u+(t, x) = u\mathrm{r}\mathrm{e}\mathrm{f}(t, x - x1) are translates
of the reference solution u\mathrm{r}\mathrm{e}\mathrm{f}(t, x) of (3.26); see Figure 3.3. Note that u - (t, \cdot ) and u+(t, \cdot )
possess an odd symmetry with respect to the points x = x0 and x = x1, respectively. In
particular, it holds that u - (t, x0) = 0= u+(t, x1).

We argue by contradiction and assume that u(t, x) possesses zeros \xi 1(t), \xi 2(t), \xi 3(t) for
all t \geq 0 such that \xi 1(t) < \xi 2(t) < \xi 3(t), u(t, x) < 0 for x \in (\xi 1(t), \xi 2(t)), u(t, x) > 0 for
all x \in (\xi 2(t), \xi 3(t)), and ux(t, \xi 2(t)) > 0 for all t \geq 0. Since u\pm (t, \cdot ) are monotone, it holds
\xi i(t)\in (x0, x1) for all t\geq 0 and i= 1,2,3; see Figure 3.3. By translational invariance, we may
assume, without loss of generality, that x0 = 0.

As in the proof of Theorem 3.1, we derive differential inequalities for the masses

M1(t) =

\int \xi 2(t)

 - \infty 
(\phi \ast  - u(t, x))dx, M2(t) =

\int \infty 

\xi 2(t)
(u(t, x) + \phi \ast )dx.

However, in contrast to the proof of Theorem 3.1, we cannot employ the Gel'fand--Oleinik
entropy inequality to boundM1(t) andM2(t). Instead, we use explicit expressions of the refer-
ence solutions u\pm (t, \cdot ) to boundM1(0) andM2(0) from above andM1(t) andM2(t) from below.

Recalling ux(\xi 2(t),0)> 0, the implicit function theorem implies that \xi 2(t) is differentiable
with respect to t. We apply Leibniz's rule to compute

Figure 3.3. The antishock wave u(t, \cdot ) connecting the asymptotic end states \mp \phi \ast at \pm \infty , the odd subsolution
u - (t, \cdot ) with zero x0, the odd supersolution u+(t, \cdot ) with zero x1, and the interfaces \xi 1(t), \xi 2(t), and \xi 3(t) of
u(t, \cdot ) (we suppressed the t-dependency of the interfaces). We bound the shaded area below the graph of u(t, \cdot )
from below by the orange subareas.
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2344 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

M \prime 
2(t) = - \xi \prime 2(t)\phi \ast +

\int \infty 

\xi 2(t)
(uxx(t, x) + | u| x(t, x))dx

= - \xi \prime 2(t)\phi \ast + \phi \ast  - ux(t, \xi 2(t))

<\phi \ast 
\bigl( 
1 - \xi \prime 2(t)

\bigr) 
.

Integrating this inequality, we arrive at

M2(t)\leq M2(0) + \phi \ast t - (\xi 2(t) - \xi 2(0))\phi \ast .

On the other hand, since u(t, \cdot ) - \phi \ast and u(t, \cdot ) - u - (t, \cdot ) are nonnegative by the comparison
principle, it holds that

(\xi 3(t) - \xi 2(t))\phi \ast +

\int \infty 

x1

(u - (t, x) + \phi \ast )dx\leq M2(t);

see also Figure 3.3. Finally, since u+(0, \cdot ) - u(0, \cdot ) is nonnegative, we arrive at

M2(0)\leq 2x1\phi \ast +

\int \infty 

x1

(u+(0, x) + \phi \ast )dx= 2x1\phi \ast +

\int \infty 

0
(\phi (x) + \phi \ast )dx= \phi \ast (2x1 + 1).

We compute

F (t) :=

\int \infty 

x1

\biggl( 
u - (t, x)

\phi \ast 
+ 1

\biggr) 
dx - t

=
1

4

\biggl( 
 - (2t+ 3)erf

\biggl( 
x1  - t

2
\surd 
t

\biggr) 
+ 2x1erfc

\biggl( 
t - x1

2
\surd 
t

\biggr) 
 - 2e2t - x1erfc

\biggl( 
x1  - 3t

2
\surd 
t

\biggr) 
 - 2ex1erfc

\biggl( 
x1 + t

2
\surd 
t

\biggr) 
+ e2(x1+t)erfc

\biggl( 
x1 + 3t

2
\surd 
t

\biggr) 
+ 4e2t - x1

+
4
\surd 
t\surd 
\pi 
e - 

(x1 - t)2

4t  - 4x1  - 2t+ 3

\biggr) 
and obtain

lim
t\rightarrow \infty 

F (t) =
3

2
 - x1.

All in all, we have established that

\phi \ast (\xi 3(t) - \xi 2(t) + F (t) + t)\leq M2(t)\leq \phi \ast (2x1 + 1+ t - (\xi 2(t) - \xi 2(0))) ,

yielding

\xi 3(t) - \xi 2(0)\leq 2x1 + 1 - F (t)\rightarrow 3x1  - 
1

2
as t\rightarrow \infty .

Consequently, as x1 <
1
6 , there exists t2 > 0 such that \xi 2(t)< \xi 3(t)\leq \xi 2(0) for all t\geq t2.

Similarly, by bounding the integral M1(t), one finds t1 > 0 such that \xi 2(0)\leq \xi 1(t)< \xi 2(t)
for all t\geq t1, which contradicts the fact that \xi 2(t)< \xi 2(0) for all t\geq t2. Hence, the interfaces
\xi 1(t), \xi 2(t), and \xi 3(t) must coalesce within finite time.

4. Dynamics near a coalescence event for smooth flux functions. Let us consider the
initial-value problem for the viscous conservation law:
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2345\Biggl\{ 
ut = uxx + f \prime (u)ux, t > 0, x\in \BbbR ,
u(0, x) = u0(x), x\in \BbbR ,

(4.1)

where f \in C\infty (\BbbR ) satisfies f \prime (0) = 0. We assume that the initial condition u0 \in C\infty (\BbbR ) is
bounded and has bounded derivatives.

From the well-posedness of the viscous conservation law in the class of smooth data (cf.
Lemma 2.1), we know that there exists a smooth solution u \in C\infty ((0,\infty ) \times \BbbR ,\BbbR ) to the
initial-value problem (4.1). A zero x = \xi (t) of u(t, \cdot ) on \BbbR is a C1-function of t as long as
ux(t, \xi (t)) \not = 0 by the implicit function theorem.

Here, we classify the first two bifurcations, for which the function t\rightarrow \xi (t) exists for t in
some interval [0, t0] with t0 > 0 such that u(t, \xi (t)) = 0 for t \in [0, t0] and ux(t, \xi (t)) \not = 0 for
t\in [0, t0) but may fail to exist for t > t0 because we have ux(t0, \xi 0) = 0 at \xi 0 = \xi (t0).

4.1. Fold bifurcation. The main result is given by the following proposition.

Proposition 4.1. Assume that there exists (t0, \xi 0)\in (0,\infty )\times \BbbR such that

ux(t0, \xi 0) = 0 and uxx(t0, \xi 0) \not = 0.

Then, there exist two roots of u(t, \cdot ) near \xi 0 for t < t0 near t0, denoted by \xi 1,2(t), such that

\xi 1,2(t) - \xi 0 =\pm 
\sqrt{} 

2(t0  - t) +\scrO (t0  - t) as t\rightarrow t - 0(4.2)

and

ux(t, \xi 1,2(t)) =\pm 
\sqrt{} 

2(t0  - t)uxx(t0, \xi 0) +\scrO (t0  - t) as t\rightarrow t - 0 .(4.3)

No roots of u(t, \cdot ) near \xi 0 exist for t > t0 near t0.

Proof. By using the equation of motion in (4.1), we have

ut(t0, \xi 0) = uxx(t0, \xi 0) \not = 0.

Moreover, using Taylor expansions for smooth solutions, we obtain, for any root \xi (t) of u(t, \cdot )
near \xi 0, the following:

0 = u(t, \xi (t))

= u(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+(t - t0)ut(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+(\xi (t) - \xi 0)ux(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+
1

2
(t - t0)

2utt(t0, \xi 0) + (t - t0)(\xi (t) - \xi 0)utx(t0, \xi 0) +
1

2
(\xi (t) - \xi 0)

2 uxx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+\scrO (3).

It follows from the Newton's polygon in Figure 4.1 (left) that this expansion defines two roots
for \xi (t), denoted by \xi 1,2(t), which are given by the expansion

\xi 1,2(t) - \xi 0 =\pm 

\sqrt{} 
2ut(t0, \xi 0)

uxx(t0, \xi 0)
(t0  - t) +\scrO (t0  - t)

=\pm 
\sqrt{} 

2(t0  - t) +\scrO (t0  - t),

which exist for t < t0 near t0, coalesce at t= t0, and disappear for t > t0. We also obtain
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Figure 4.1. Newton's polygons used in the proofs of Proposition 4.1 (left) and Proposition 4.2 (right).

ux(t, \xi 1,2(t)) = ux(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+(t - t0)utx(t0, \xi 0) + (\xi 1,2(t) - \xi 0)uxx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+\scrO (2)

=\pm 
\sqrt{} 

2(t0  - t)uxx(t0, \xi 0) +\scrO (t0  - t).

Both expansions prove the validity of (4.2) and (4.3).

4.2. Pitchfork bifurcation. The main result is given by the following proposition.

Proposition 4.2. Assume that there exists (t0, \xi 0)\in (0,\infty )\times \BbbR such that

ux(t0, \xi 0) = 0, uxx(t0, \xi 0) = 0, and uxxx(t0, \xi 0) \not = 0.

Then, there exist three roots of u(t, \cdot ) near \xi 0 for t < t0 near t0 and one root near \xi 0 for t > t0
near t0. Two roots, denoted by \xi 1,2(t), are not continued for t > t0 and satisfy

\xi 1,2(t) - \xi 0 =\pm 
\sqrt{} 

6(t0  - t) +\scrO (t0  - t) as t\rightarrow t - 0 ,(4.4)

whereas the third root, denoted by \xi (t), is continued for t > t0 and satisfies

\xi (t) - \xi 0 =
utt(t0, \xi 0)

2uxxx(t0, \xi 0)
(t0  - t) +\scrO ((t0  - t)2) as t\rightarrow t0.(4.5)

We also have

ux(t, \xi 1,2(t)) = 2uxxx(t0, \xi 0)(t0  - t) +\scrO ((t0  - t)3/2) as t\rightarrow t - 0(4.6)

and

ux(t, \xi (t)) = uxxx(t0, \xi 0)(t - t0) +\scrO ((t0  - t)2) as t\rightarrow t0.(4.7)

Remark 4.3. The scaling laws (4.4) and (4.6) were conjectured in [15] based on numeri-
cal simulations of spatially odd solutions of the modular Burgers equation. Proposition 4.2
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2347

shows that this behavior holds for every scalar viscous conservation law (1.1) with smooth
nonlinearity and smooth initial data.

Remark 4.4. The asymptotic expansions (4.4) and (4.6) imply that

uxx(t, \xi 1,2(t)) =\pm uxxx(t0, \xi 0)
\sqrt{} 

6(t0  - t) +\scrO (t0  - t) as t\rightarrow t - 0 ,(4.8)

which was also conjectured in [15]. Indeed, if we differentiate u(t, \xi (t)) = 0 with the chain
rule for the smooth solutions u \in C\infty ((0,\infty ) \times \BbbR ,\BbbR ) for t \in (0, t0) while assuming that
ux(t, \xi (t)) \not = 0, for any root \xi (t) of u(t, \cdot ), then we obtain from (4.1) with f \prime (0) = 0,

ut(t, \xi (t)) + \xi \prime (t)ux(t, \xi (t)) = 0 \Rightarrow uxx(t, \xi (t)) = - \xi \prime (t)ux(t, \xi (t))

for t\in (0, t0). Hence, (4.4) and (4.6) imply (4.8). Similarly, we can derive from (4.5) and (4.7)
that

uxx(t, \xi (t)) =
1

2
utt(t0, \xi 0)(t - t0) +\scrO ((t0  - t)2) as t\rightarrow t0(4.9)

for the third root \xi (t), which exists for all t near t0.

Remark 4.5. It follows from (4.4) and (4.5) that the three interfaces satisfy the natural
ordering for the pitchfork bifurcation

\xi 1(t)< \xi (t)< \xi 2(t)

for t < t0 near t0. It follows from (4.6) and (4.7) that the sign of the first partial derivative of
u(t, x) in x at x= \xi (t) is opposite to the one at x= \xi 1,2(t) for t < t0 near t0.

Remark 4.6. If u0( - x) = - u0(x) and f \prime ( - z) = - f \prime (z) for z \in \BbbR in (4.1), then u(t, - x) =
 - u(t, x) for every t > 0 and x \in \BbbR . In this case of odd symmetry, if the assumptions of
Proposition 4.2 are satisfied and \xi 0 = 0, then \xi (t) = 0 for all t\geq 0. Consequently, we have

u(t,0) = uxx(t,0) = 0

for all t\geq 0.

Proof of Proposition 4.2. By using the equation of motion in (4.1), we have

ut(t0, \xi 0) = 0 and utx(t0, \xi 0) = uxxx(t0, \xi 0) \not = 0.

Moreover, using Taylor expansions for smooth solutions, we obtain, for any root \xi (t) of u(t, \cdot )
near \xi 0,

0 = u(t, \xi (t))

= u(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+(t - t0)ut(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+(\xi (t) - \xi 0)ux(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+
1

2
(t - t0)

2utt(t0, \xi 0) + (t - t0)(\xi (t) - \xi 0)utx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+
1

2
(\xi (t) - \xi 0)

2 uxx(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+
1

6
(t - t0)

3uttt(t0, \xi 0) +
1

2
(t - t0)

2(\xi (t) - \xi 0)uttx(t0, \xi 0)

+
1

2
(t - t0)(\xi (t) - \xi 0)

2utxx(t0, \xi 0) +
1

6
(\xi (t) - \xi 0)

3 uxxx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+\scrO (4).
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It follows from the Newton's polygon in Figure 4.1 (right) that this expansion defines two sets
of roots. One set appears at the balance of (t - t0)(\xi (t) - \xi 0) and (\xi (t) - \xi 0)

3 terms, and the
other set appears at the balance between (t - t0)

2 and (t - t0)(\xi (t) - \xi 0) terms.
The former set is represented by two roots denoted as \xi 1,2(t), which satisfy the expansion

\xi 1,2(t) - \xi 0 =\pm 

\sqrt{} 
6utx(t0, \xi 0)

uxxx(t0, \xi 0)
(t0  - t) +\scrO (t0  - t)

=\pm 
\sqrt{} 

6(t0  - t) +\scrO (t0  - t).

The two roots exist for t < t0 near t0, coalesce at t = t0, and disappear for t > t0. We also
obtain

ux(t, \xi 1,2(t)) = ux(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+(t - t0)utx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+(\xi 1,2(t) - \xi 0)uxx(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+
1

2
(t - t0)

2uttx(t0, \xi 0) + (t - t0)(\xi 1,2(t) - \xi 0)utxx(t0, \xi 0)

+
1

2
(\xi 1,2(t) - \xi 0)

2 uxxx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+\scrO (3),

which implies that

ux(t, \xi 1,2(t)) = 2uxxx(t0, \xi 0)(t0  - t) +\scrO ((t0  - t)3/2) as t\rightarrow t - 0 .

These expansions prove the validity of (4.4) and (4.6).
The latter set is represented by one root denoted by \xi (t), which satisfies the expansion

\xi (t) - \xi 0 =
utt(t0, \xi 0)

2utx(t0, \xi 0)
(t0  - t) +\scrO ((t0  - t)2)

=
utt(t0, \xi 0)

2uxxx(t0, \xi 0)
(t0  - t) +\scrO ((t0  - t)2).

The root \xi (t) persists for all t near t0. We also obtain

ux(t, \xi (t)) = ux(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+(t - t0)utx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+(\xi (t) - \xi 0)uxx(t0, \xi 0)\underbrace{}  \underbrace{}  
=0

+
1

2
(t - t0)

2uttx(t0, \xi 0) + (t - t0)(\xi (t) - \xi 0)utxx(t0, \xi 0)

+
1

2
(\xi (t) - \xi 0)

2 uxxx(t0, \xi 0)\underbrace{}  \underbrace{}  
\not =0

+\scrO (3),

which implies that

ux(t, \xi (t)) = uxxx(t0, \xi 0)(t - t0) +\scrO ((t0  - t)2) as t\rightarrow t0.

These expansions prove the validity of (4.5) and (4.6).
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2349

4.3. Bifurcations of higher order. By continuing the analysis from the previous two
subsections, one can characterize coalescence of roots of u(t, \cdot ) in the nongeneric case when
there exists an integer m\geq 4 and (t0, \xi 0)\in (0,\infty )\times \BbbR such that all partial derivatives of u(t, x)
in x at (t0, \xi 0) are zero up to the mth order and the mth partial derivative of u(t, x) in x at
(t0, \xi 0) is nonzero.

4.4. Viscous Burgers equation with quadratic nonlinearity. We give a precise descrip-
tion of a class of solutions to the viscous Burgers equation whose zeros undergo a pitchfork
bifurcation. Thus, we take f(u) = u2 in (4.1) and consider the initial value problem for the
Burgers equation: \Biggl\{ 

ut = uxx + 2uux, t > 0,

u(0, x) = u0(x), x\in \BbbR .
(4.10)

As is well-known, (4.10) can be solved explicitly using the Cole--Hopf transformation (see
section 3.6 in [13]). We will use the decomposition near the stationary shock-wave solution
\phi (x) = tanh(x) of (4.10) to show that the pitchfork bifurcation of Proposition 4.2 does happen
within finite time for all solutions of (4.10) with spatially odd initial data u0 having a single
zero on (0,\infty ). The main result is given by the following proposition.

Proposition 4.7. Let u0 \in C\infty (\BbbR ) satisfy the following:
\bullet u0 \mp 1, u\prime 0 and u\prime \prime 0 are L2-integrable on \BbbR \pm ;
\bullet u0( - x) = - u0(x) for x\in \BbbR ;
\bullet for some x0 \in \BbbR +, we have u0(x)< 0 for x\in (0, x0) and u0(x)> 0 for x\in (x0,\infty ).

Then, there exist a time t0 \in (0,\infty ) and \xi \in C\infty ((0, t0),\BbbR +) such that the solution u \in 
C\infty ((0,\infty )\times \BbbR ,\BbbR ) to the initial-value problem (4.10) satisfies the following:

(i) limx\rightarrow \pm \infty u(t, x) =\pm 1 for t\geq 0;
(ii) u(t, - x) = - u(t, x) for t\geq 0 and x\in \BbbR ;
(iii) u(t, x)< 0 for x\in (0, \xi (t)) and u(t, x)> 0 for x\in (\xi (t),\infty ) if t\in [0, t0);
(iv) u(t, x)> 0 for x\in (0,\infty ) if t\geq t0.

Moreover, we have ux(t0,0) = 0, uxx(t0,0) = 0, and uxxx(t0,0)> 0.

Remark 4.8. For u \in C\infty ((0,\infty ) \times \BbbR ,\BbbR ) and \xi \in C\infty ((0, t0),\BbbR +) in Proposition 4.7, we
obtain the identities (4.4), (4.5), (4.6), and (4.7) since the assumptions of Proposition 4.2 are
satisfied.

Proof of Proposition 4.7. We use the decomposition of u at the stationary shock-wave
solution \phi (x) = tanh(x) of 0 = 2uux + uxx and write

u(t, x) = tanh(x) + v(t, x).(4.11)

The perturbation v (which is not necessarily small) satisfies

vt = vxx + 2vvx + 2(tanh(x)v)x.(4.12)

This nonlinear equation can be linearized with the Cole--Hopf transformation

v(t, x) = \partial x log\psi (t, x).(4.13)
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2350 JEANNE LIN, DMITRY PELINOVSKY, AND BJ\"ORN DE RIJK

By substituting (4.13) into (4.12), we obtain the following linear advection-diffusion equation

\psi t =\psi xx + 2tanh(x)\psi x.(4.14)

We are looking for a solution of (4.14) that is bounded away from zero by a positive constant.
Without loss of generality, this constant can be normalized to unity so that we can look for a
solution of the form

\psi (t, x) = 1+ \^\psi (t, x), \^\psi (t, \cdot )\in H2(\BbbR ), t\in \BbbR +.(4.15)

To obtain the exact solution of (4.14), we write

\^\psi (t, x) = sech(x)\chi (t, x)(4.16)

and obtain the linear diffusion equation with constant dissipation for \chi :

\chi t = \chi xx  - \chi .(4.17)

The solutions of this linear equation are given by

\chi (t, x) =
e - t

\surd 
4\pi t

\int 
\BbbR 
\chi 0(y)e

 - (x - y)2

4t dy,(4.18)

where \chi 0 := \chi (0, \cdot ) denotes the initial condition. The associated solution of the Burgers
equation (4.14) is then obtained from (4.11), (4.13), (4.15), and (4.16) in the form

u(t, x) =
sinh(x) + \chi x(t, x)

cosh(x) + \chi (t, x)
,(4.19)

where \chi (t, x) is given by (4.18).
If \chi 0 \in C\infty (\BbbR ) satisfies 1 + \chi \prime \prime 

0(0)< 0 and \chi 0(0)> 0, then

u\prime 0(0) = (1 + \chi \prime \prime 
0(0))/(1 + \chi 0(0))< 0

so that there exists a root x0 \in \BbbR + of u0. The positive root x0 must be unique by the
assumptions on u0. Thus, we find by (4.11), (4.13), (4.15), and (4.16) that the assumptions
on u0 are in one-to-one correspondence with the class of even functions \chi 0 \in C\infty (\BbbR ) such that
sech(\cdot )\chi 0 \in H2(\BbbR ) and

\bullet \chi 0(x)> 0 for all x\in \BbbR ,
\bullet x \mapsto \rightarrow cosh(x) + \chi \prime \prime 

0(x) is monotonically increasing on \BbbR + with 1 + \chi \prime \prime 
0(0)< 0.

Now, take such \chi 0 \in C\infty (\BbbR ). Then, cosh(x)+\chi 0(x)> 0 for all x\in \BbbR , and sinh(x)+\chi \prime 
0(x) has

a single root x0 \in (0,\infty ). Since \chi 0 is even, so is \chi \in C\infty ((0,\infty )\times \BbbR ,\BbbR ), which implies that
u(t, \cdot )\in C\infty ((0,\infty )\times \BbbR ,\BbbR ) is spatially odd so that (ii) holds. Furthermore, sech(\cdot )\chi 0 \in H2(\BbbR )
ensures by (4.18) that sech(\cdot )\chi (t, \cdot ) \in H2(\BbbR ) for all t \geq 0. Since \^\psi (t, \cdot ) \in H2(\BbbR ) for all t \geq 0,
we have from (4.11), (4.13), and (4.15) that limx\rightarrow \pm \infty v(t, x) = 0 and limx\rightarrow \pm \infty u(t, x) =\pm 1 so
that (i) holds.

It follows from the exact solution (4.18) that, for every t \geq 0, we have \chi (t, x) > 0 for
all x \in \BbbR and that x \mapsto \rightarrow cosh(x) + \chi xx(t, x) is monotonically increasing on (0,\infty ). Hence,
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2351

cosh(x) + \chi (t, x) > 0 for all x \in \BbbR , and sinh(x) + \chi x(t, x) has a single root \xi (t) \in (0,\infty ) for
t\in [0, t0) as long as 1 + \chi xx(t,0)< 0. Since

\chi xx(t,0) =
e - t

\surd 
4\pi t

\int 
\BbbR 
\chi \prime \prime 
0(y)e

 - y2

4t dy

and sech(\cdot )\chi 0 \in H2(\BbbR ), the mapping t \mapsto \rightarrow \chi xx(t,0) is monotonically increasing from a negative
value \chi \prime \prime 

0(0)< - 1 towards 0 as t\rightarrow +\infty . Hence, there exists a unique time t0 \in \BbbR + such that
1 + \chi xx(t,0) crosses 0 at t= t0 and becomes positive for t > t0 so that (iii) and (iv) hold.

Let us now show the nondegeneracy assumption at t = t0, for which ux(t0,0) = 0. Since
the solution is smooth and spatially odd, we also have uxx(t0,0) = 0. Since the mapping
t \mapsto \rightarrow \chi xx(t,0) is monotonically increasing and t \mapsto \rightarrow \chi (t,0) is monotonically decreasing, then
t \mapsto \rightarrow ux(t,0) is monotonically increasing, where

ux(t,0) =
1+ \chi xx(t,0)

1 + \chi (t,0)
.

Thus, utx(t0,0)> 0 and the Burgers equation in (4.10) implies that uxxx(t0,0)> 0.

Figure 4.2 gives an illustration of the exact solution to the Burgers equation (4.10) obtained
by means of (4.18) and (4.19). The initial condition for (4.18) is set as \chi 0(x) := cosh2(1)sech(x)
so that the initial condition u0 for (4.10) has a positive zero at x= 1. The integration of the
exact solution in (4.18) was executed by using a numerical integration package. The root \xi (t)
of u(t, \cdot ) on (0,\infty ) exists for t \in [0, t0), coalesces at 0 at t = t0, and disappears for t > t0,
where t0 \approx 0.205. The solution u(t, x) approaches the stationary shock wave \phi (x) = tanh(x)
as t\rightarrow \infty , which is represented by the dashed line.

5. Numerical simulations in the modular Burgers equation. Here, we report on numer-
ical simulations of the viscous Burgers equation with modular nonlinearity. The associated
initial value problem reads \Biggl\{ 

ut = uxx + | u| x, t > 0, x\in \BbbR ,
u(0, x) = u0(x), x\in \BbbR .

(5.1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

-0.2

0

0.2

0.4

0.6

0.8

1

u(
t,x

)

t = 0

t = 0.1

t = 0.205

t = 1

tanh(x)

Figure 4.2. Numerical solution of the Burgers equation (4.10) illustrating the finite-time extinction of a
multiple shock.
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Numerical computations in [15] implemented the finite-difference method for spatially odd
solutions of (5.1) (see Lemma 3.8), for which the initial-value problem (5.1) can be closed on
the half-line [0,\infty ) subject to a Dirichlet boundary condition at x = 0. The jump condition
(3.27) was used at x = 0 as well as at x = \pm \xi (t). The three interfaces were transformed to
time-independent grid points after a scaling transformation.

Here, we will confirm the scaling law (1.5) of the finite-time extinction. Compared to the
previous numerical simulations in [15], we use a regularization for the modular nonlinearity
in the initial-value problem (5.1), for which the finite-difference method can be implemented
without any additional equations for the interface dynamics. The numerical data is extracted
from zeros of the solution u(t, \cdot ) on (0,\infty ) to determine the power of the scaling law of the
interface coalescence.

5.1. Regularization. The modular Burgers equation can be rewritten as

ut = uxx + sgn(u)ux,(5.2)

where sgn(u) has a jump discontinuity at u = 0. To smoothen out the jump, we define the
following smooth nonlinearity for \varepsilon > 0:

f \prime \varepsilon (u) :=
u\surd 

\varepsilon 2 + u2
.

We have f \prime \varepsilon (u)\rightarrow sgn(u) as \varepsilon \rightarrow 0 for all u\in \BbbR ; i.e., f \prime \varepsilon (u) converges pointwise to sgn(u). This
yields the regularized equation

ut = uxx +
u\surd 

\varepsilon 2 + u2
ux.(5.3)

We consider initial data u(0, x) = u0(x) for shock and antishock waves with the boundary
condition u0(x) \rightarrow u\pm as x\rightarrow \pm \infty , where u\pm have opposite signs. The case of u - < 0 < u+
includes a monotone, steadily traveling shock wave, to which the evolution of small exponen-
tially decaying perturbations converges [10]. The antishock case of u - > 0 > u+ does not
admit any steadily traveling shock-wave solutions.

For the simulation of shock-wave solutions with the normalized asymptotic limits u\pm =\pm 1,
we take the following initial condition:

u0(x) = tanh(x)
\Bigl( 
1 - e\alpha (1 - x2)

\Bigr) 
,(5.4)

where \alpha > 0 is a free parameter. The parameter \alpha > 0 can be used to construct slopes of
the initial data at x= 1. For the simulation of antishock-wave solutions with the normalized
asymptotic limits u\pm =\mp 1, we take the negative version of (5.4); that is,

u0(x) = - tanh(x)
\Bigl( 
1 - e\alpha (1 - x2)

\Bigr) 
.(5.5)

Both in (5.4) and (5.5), the convergence of u0(x)\rightarrow u\pm as x\rightarrow \pm \infty is exponentially fast.

5.2. Finite-difference method. We rewrite the regularized Burgers equation (5.3) in the
equivalent form,

ut = uxx + f\varepsilon (u)x(5.6)

with f\varepsilon (u) =
\sqrt{} 
\varepsilon 2 + u2\varepsilon  - \varepsilon .
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ON THE EXTINCTION OF MULTIPLE SHOCKS 2353

We will use the Crank--Nicolson method based on the trapezoidal rule to set up our
numerical simulations for (5.6). For the numerical discretization, we first define the spatial
domain [0,L] partitioned into (N + 1) grid points with spatial step h and the time domain
[0, T ] partitioned into (M + 1) grid points with time step \tau . We let xn for 0\leq n\leq N be the
spatial grid point and tm for 0 \leq m \leq M be the temporal grid point. We impose a Dirichlet
condition at x = 0, which yields um0 = 0, and a Neumann condition at x = L. By using the
virtual grid point xN+1 >L, the Neumann condition reads umN+1 = umN - 1.

The Crank--Nicolson method is based on the discretization rule,

um+1
n = umn +

\tau 

2h2
\bigl[ 
umn+1  - 2umn + umn - 1 + um+1

n+1  - 2um+1
n + um+1

n - 1

\bigr] 
+

\tau 

4h

\bigl[ 
f\varepsilon (u

m
n+1) - f\varepsilon (u

m
n - 1) + f\varepsilon (u

m+1
n+1 ) - f\varepsilon (u

m+1
n - 1 )

\bigr] 
.

We need to solve N equations for N unknowns \{ um+1
n \} Nn=1 at each 0\leq m\leq M  - 1. Hence, we

rearrange the discretization scheme to get the unknown variables on the left and the known
variables on the right as

um+1
n +

\tau 

h2
um+1
n  - \tau 

2h2
\bigl( 
um+1
n+1 + um+1

n - 1

\bigr) 
 - \tau 

4h

\bigl[ 
f\varepsilon (u

m+1
n+1 ) - f\varepsilon (u

m+1
n - 1 )

\bigr] 
= umn +

\tau 

2h2
\bigl( 
umn+1 + umn - 1

\bigr) 
 - \tau 

h2
umn +

\tau 

4h

\bigl[ 
f\varepsilon (u

m
n+1) - f\varepsilon (u

m
n - 1)

\bigr] 
.

(5.7)

To simplify the expression, we use a predictor-corrector method (also known as Heun's
method). The idea is to use the solution at an initial point um and to calculate an ini-
tial guess value of the next point (u\ast )m+1. Heun's method then improves this initial guess
value using the trapezoidal rule to determine a better estimate of the next term um+1.

To represent the predictor-corrector method, we introduce two matrices:

A\pm =

\left[            

1\pm \tau 
h2 \mp \tau 

2h2 0 \cdot \cdot \cdot 0

\mp \tau 
2h2 1\pm \tau 

h2 \mp \tau 
2h2 \cdot \cdot \cdot 

...
... \mp \tau 

2h2

. . .
. . .

...
...

. . .
. . .

. . .
...

... \mp \tau 
2h2 1\pm \tau 

h2 \mp \tau 
2h2

0 0 \cdot \cdot \cdot \mp \tau 
h2 1\pm \tau 

h2

\right]            
,

where the elements of A\pm at the (N,N  - 1) entry are doubled due to the Neumann condition
umN+1 = umN - 1. We also represent the regularized terms in matrix vector notion,

b(um) =

\left[         

f\varepsilon (u
m
2 )

f\varepsilon (u
m
3 ) - f\varepsilon (u

m
1 )

f\varepsilon (u
m
4 ) - f\varepsilon (u

m
2 )

...
f\varepsilon (u

m
N ) - f\varepsilon (u

m
N - 2)

0

\right]         
,
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where we note that f\varepsilon (0) = 0 by construction of f\varepsilon and the Dirichlet condition and f\varepsilon (u
m
N+1) - 

f\varepsilon (u
m
N - 1) = 0 by the Neumann condition umN+1 = umN - 1. The prediction step is computed from

(5.7) by Euler's method as

(u\ast )m+1 =A - 1
+

\Bigl( 
A - u

m +
\tau 

2h
b(um)

\Bigr) 
.(5.8)

The correction step is computed from (5.7) by Heun's method as

um+1 =A - 1
+

\Bigl( 
A - u

m +
\tau 

4h
b(um) +

\tau 

4h
b((u\ast )m+1)

\Bigr) 
.(5.9)

We now extract the interface position \xi (tm) from um at t= tm by finding the two adjacent grid
points xn and xn+1, where un and un+1 are of opposite signs. By the straight line interpolation
between (xn, un) and (xn+1, un+1), we obtain

u(x) =

\biggl( 
un+1  - un
xn+1  - xn

\biggr) 
(x - xn) + un.

The value of \xi (tm) is obtained by finding the root of u as

\xi (tm) =
unxn+1  - un+1xn

un  - un+1
.(5.10)

5.3. Numerical simulations for shock waves. We have performed iterations on the do-
main [0,L] discretized with the grid size h= 0.01. The time step was chosen to be \tau = 0.0005.
Moreover, we took \varepsilon = 10 - 16.

Figure 5.1 depicts the outcome of numerical simulations of the regularized approximation
(5.6) of the modular Burgers equation (5.2) for the initial condition (5.4) with \alpha = 1, for
which we take L = 5. It is observed that \xi (t) indeed goes to 0 in finite time, after which
numerical computations can be continued. Yet, we stop them since we are only interested in
the dynamics up to coalescence.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
(x

,t
)

t=0

t=0.126

t=0.2535

0 0.05 0.1 0.15 0.2 0.25 0.3

Time t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(t
)

Figure 5.1. Evolution of (5.6) for the initial data (5.4) with \alpha = 1. Left: u(t, x) versus x for different times.
Right: evolution of \xi (t) versus t.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

4/
24

 to
 1

30
.1

13
.1

09
.5

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ON THE EXTINCTION OF MULTIPLE SHOCKS 2355

0 1 2 3 4 5 6 7 8 9 10

x

-12

-10

-8

-6

-4

-2

0

u
(x

,t
)

t=0

t=0.692

t=1.3285

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(t
)

Figure 5.2. The same as in Figure 5.1 but with \alpha = 4.

We have also performed numerical simulations for the initial condition (5.4) with \alpha = 4
shown in Figure 5.2. For these simulations, we have taken L= 10 to avoid the boundary effects
from the Neumann boundary condition at x=L. With smaller values of L, the solution decays
below 1 at x= L before the interface reaches 0. Although the initial condition u0 has larger
negative parts on [0,1], we observe that \xi (t) still goes to 0 in a finite time. Compared to
Figure 5.1, \xi (t) is nonmonotone because it first expands before it converges to 0.

To confirm the scaling law (1.5) of the interface coalescence, we use linear regression in
the log-log variable to approximate the associated power. That is, we consider

log \xi (t) versus c1 log (t0  - t) + c2,(5.11)

where the coefficient c1 represents the power of the scaling law. Note that the regression
(5.11) depends on the unknown time t0 of the interface coalescence. Thus, we first conduct
computations for t0 defined on a numerical grid and obtain the best fit by minimizing the
approximation error.

The outcomes of these computations are depicted in Figures 5.3 and 5.4 for the approxi-
mations shown in Figures 5.1 and 5.2. The left panel shows the power c1 versus t0, and the
right panel shows the corresponding approximation error

E :=

M\sum 
m=1

| log \xi (tm) - c1 log(t0  - tm) - c2| 2(5.12)

versus t0, where \{ tm\} Mm=1 is the temporal grid before the termination time t0. The minimal
error for \alpha = 1 is attained at t0 = 0.2538, and this value of t0 corresponds to c1 = 0.5068.
The minimal error for \alpha = 4 is attained at t0 = 1.3853, and this value of t0 corresponds to
c1 = 0.5127. In both cases, the power is close to the claimed value of 0.5. We note that the
time t0 of extinction is larger for \alpha = 4 than for \alpha = 1.

5.4. Numerical simulations for antishock waves. We have also simulated (5.6) for the
antishock wave initial condition (5.5). Figures 5.5 and 5.6 depict the outcomes of numerical
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Figure 5.3. Left: power c1 of the linear regression (5.11) for Figure 5.1 versus t0. Right: approximation
error E in (5.12) versus t0.
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Figure 5.4. The same as in Figure 5.3 but for the data in Figure 5.2.

simulations for \alpha = 1 and \alpha = 4, respectively. For \alpha = 1, the interface position \xi (t) goes to
0 monotonically, similar to the computations in Figure 5.1. For \alpha = 4, \xi (t) first expands and
then reduces towards 0, similar to Figure 5.2.

Figures 5.7 and 5.8 show the power c1 of the linear regression (5.11) and the approximation
error E in (5.12) versus t0 for the simulations shown in Figures 5.5 and 5.6. The minimum
error for \alpha = 1 is attained at t0 = 0.3284, and this value of t0 corresponds to the power
c1 = 0.4846. The minimum error for \alpha = 4 is attained at t0 = 1.4459, and this value of t0
corresponds to c1 = 0.4884. In both cases, the power is close to 0.5, and thus, the scaling
law (1.5) is shown numerically to hold for antishock-wave solutions considered here. However,
the finite time of extinction is slightly larger for the antishock waves compared to that of the
shock waves both for \alpha = 1 and \alpha = 4.
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Figure 5.5. Evolution of (5.6) for the initial data (5.5) with \alpha = 1. Left: u(t, x) versus x for different times.
Right: evolution of \xi (t) versus t.
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Figure 5.6. The same as in Figure 5.5 but with \alpha = 4.
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Figure 5.7. Left: power c1 of the linear regression (5.11) for Figure 5.5 versus t0. Right: approximation
error E in (5.12) versus t0.
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Figure 5.8. The same as in Figure 5.7 but for the data in Figure 5.6.

Appendix A. Proofs of well-posedness and approximation results. Here, we provide
proofs of the well-posedness and approximation results stated in section 2. Local well-
posedness of the scalar viscous conservation law (1.1), as well as approximation by solutions of
the regularized equation (2.1), follows from standard theory for semilinear parabolic equations
(cf. [11]), whereas global well-posedness relies on the comparison principle; cf. [16, 19].

Proof of Lemma 2.1. First, it is well-known that \partial 2x is a sectorial operator on C\mathrm{u}\mathrm{b}(\BbbR ) with
domain C2

\mathrm{u}\mathrm{b}(\BbbR ) and that there exists a constant C > 0 such that\bigm\| \bigm\| \bigm\| \partial mx e\partial 
2
xtu

\bigm\| \bigm\| \bigm\| 
\infty 

\leq Ct - 
m

2 \| u\| \infty (A.1)

for m= 0,1,2, t > 0, and u \in C\mathrm{u}\mathrm{b}(\BbbR ); see also (3.28). Second, the map N : C1
\mathrm{u}\mathrm{b}(\BbbR )\rightarrow C\mathrm{u}\mathrm{b}(\BbbR )

given by N(u) = f \prime (u)ux is locally Lipschitz continuous since f is smooth. Third, C1
\mathrm{u}\mathrm{b}(\BbbR ) is an

intermediate space of class J1/2 between C\mathrm{u}\mathrm{b}(\BbbR ) and C2
\mathrm{u}\mathrm{b}(\BbbR ). Hence, it follows from standard

analytic semigroup theory (cf. [11]) that there exist a maximal time T \in (0,\infty ] and a unique
classical solution

u\in C([0, T ),C1
\mathrm{u}\mathrm{b}(\BbbR ))\cap C((0, T ),C2

\mathrm{u}\mathrm{b}(\BbbR ))\cap C1((0, T ),C\mathrm{u}\mathrm{b}(\BbbR ))

of (1.1) with initial condition u(0, \cdot ) = u0 \in C1
\mathrm{u}\mathrm{b}(\BbbR ). Moreover, if we have T < \infty , then it

holds that limsupt\rightarrow T - \| u(t, \cdot )\| W 1,\infty =\infty . A standard bootstrapping argument, using the fact
that f \in C\infty (\BbbR ), then yields \partial kt u(t, \cdot ) \in C l

\mathrm{u}\mathrm{b}(\BbbR ) for any k, l \in \BbbN 0 and t \in [0, T ), implying that
u\in C\infty ((0, T )\times \BbbR ,\BbbR ).

It is well-known [16, 19] that the scalar conservation law (1.1) obeys a comparison principle
yieldingm0 \leq u(t, \cdot )\leq M0 for all t\in [0, T ) upon comparison with the constant solutions u\equiv m0

and u\equiv M0 of (1.1). Differentiating the mild formulation of (1.1), we obtain

ux(t, \cdot ) = e\partial 
2
xtu\prime 0 +

\int t(1 - \delta )

0
\partial 2xe

\partial 2
x(t - s)f(u(s, \cdot ))ds

+

\int t

t(1 - \delta )
\partial xe

\partial 2
x(t - s)f \prime (u(s, \cdot ))ux(s, \cdot )ds(A.2)
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for t\in [0, T ), where \delta \in (0,1) will be fixed a posteriori. Let R\geq 1 be such that

sup\{ | f(v)| + | f \prime (v)| : v \in [m0,M0]\} \leq R.

Fix some \tau \in [0, T ). Taking norms in (A.2) while using (A.1) and the fact that m0 \leq u(t, \cdot )\leq 
M0, we establish that

\| ux(t, \cdot )\| \infty \leq C\| u0\| W 1,\infty +

\int t(1 - \delta )

0

CR

t - s
ds+

\int t

t(1 - \delta )

CR sup\{ \| ux(s, \cdot )\| \infty : s\in [0, \tau ]\} \surd 
t - s

ds

\leq C
\Bigl( 
\| u0\| W 1,\infty +R| log(\delta )| + 2R

\surd 
\delta t sup\{ \| ux(s, \cdot )\| \infty : s\in [0, \tau ]\} 

\Bigr) 
for all t \in [0, \tau ]. Thus, setting \delta = 1

16C2R2 \mathrm{m}\mathrm{a}\mathrm{x}\{ 1,\tau \} \in (0,1) and taking suprema in the latter
inequality, we arrive at

sup\{ \| ux(s, \cdot )\| \infty : s\in [0, \tau ]\} \leq 2C
\bigl( 
\| u0\| W 1,\infty +R log

\bigl( 
16C2R2max\{ 1, \tau \} 

\bigr) \bigr) 
for all \tau \in [0, T ). We conclude that limsupt\rightarrow T - \| u(t, \cdot )\| W 1,\infty =\infty cannot occur, implying that
T =\infty and the classical solution is global.

Proof of Lemma 2.2. Recall that \partial 2x is a sectorial operator on C\mathrm{u}\mathrm{b}(\BbbR ) satisfying (A.1). In
addition, the flux function f : C\mathrm{u}\mathrm{b}(\BbbR )\rightarrow C\mathrm{u}\mathrm{b}(\BbbR ) is locally Lipschitz continuous. Hence, by a
standard fixed-point argument as in the proofs of [11, Theorem 7.1.2 and Proposition 7.2.1],
there exist a maximal time T \in (0,\infty ] and a unique solution u \in C([0, T ),C\mathrm{u}\mathrm{b}(\BbbR )) of (2.2).
Moreover, if T <\infty , then it holds that limsupt\rightarrow T - \| u(t, \cdot )\| \infty =\infty .

Let \~f \in C\infty (\BbbR ) be a function satisfying

sup
\Bigl\{ 
| f(v) - \~f(v)| : v \in [ - m0,M0]

\Bigr\} 
< \delta 

for some \delta > 0. By Lemma 2.1, there exists a unique global classical solution

\~u\in C([0,\infty ),C1
\mathrm{u}\mathrm{b}(\BbbR ))\cap C((0,\infty ),C2

\mathrm{u}\mathrm{b}(\BbbR ))\cap C1((0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR ))

of the integral equation

\~u(t, \cdot ) = e\partial 
2
xtu0 +

\int t

0
\partial xe

\partial 2
x(t - s) \~f(\~u(s, \cdot ))ds(A.3)

satisfying m0 \leq \~u(t, \cdot )\leq M0 for all t\geq 0. From (2.2) and (A.3), we obtain

u(t, \cdot ) - \~u(t, \cdot ) =
\int t

0
\partial xe

\partial 2
x(t - s)

\Bigl( 
f(u(s, \cdot )) - f(\~u(s, \cdot )) + f(\~u(s, \cdot )) - \~f(\~u(s, \cdot ))

\Bigr) 
ds(A.4)

for all t \in [0, T ). Denote by L > 0 the Lipschitz constant of f on [m0  - 1,M0 + 1]. Fix some
\tau \in [0, T ]. Taking norms in (A.4), we arrive at

\| u(t, \cdot ) - \~u(t, \cdot )\| \infty \leq C

\int t

0

L\| u(s, \cdot ) - \~u(s, \cdot )\| \infty + \delta \surd 
t - s

ds
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for any t \in [0, \tau ) with sup\{ \| u(s, \cdot ) - \~u(s, \cdot )\| \infty : s \in [0, t]\} \leq 1. Hence, Gr\"onwall's lemma [11,
Lemma 7.0.3] yields a constant C0 > 0, depending only on C, L, and \tau , such that

\| u(t, \cdot ) - \~u(t, \cdot )\| \infty \leq C0\delta (A.5)

for all t\in [0, \tau ) with sup\{ \| u(s, \cdot ) - \~u(s, \cdot )\| \infty : s\in [0, t]\} \leq 1. Take

0< \delta \leq 1

2C0
.

If

sup\{ \| u(s, \cdot ) - \~u(s, \cdot )\| \infty : s\in [0, \tau )\} > 1,

then, by continuity, there must exist t\in [0, \tau ) with

sup\{ \| u(s, \cdot ) - \~u(s, \cdot )\| \infty : s\in [0, t]\} = 1.

However, (A.5) then implies that

\| u(s, \cdot ) - \~u(s, \cdot )\| \infty \leq 1

2

for any s\in [0, t], which yields a contradiction. Hence, we have

sup\{ \| u(s, \cdot ) - \~u(s, \cdot )\| \infty : s\in [0, \tau )\} \leq 1,(A.6)

and (A.5) is satisfied for all t\in [0, \tau ), which proves the second estimate in (2.4).
Assuming that T <\infty and taking \tau = T in the previous estimates, we find that (A.6) and

m0 \leq \~u(t, \cdot ) \leq M0 for all t \geq 0 contradict limsupt\rightarrow T - \| u(t, \cdot )\| \infty = \infty . Therefore, we must
have T =\infty , and u(t, \cdot ) is global.

Since it holds that m0 \leq \~u(t, \cdot ) \leq M0 for all t \geq 0 and, in addition, \delta > 0 can be chosen
arbitrarily small in the previous estimates, it follows that m0 \leq u(t, \cdot ) \leq M0 for all t \geq 0 by
(A.5).

Proof of Lemma 2.3. First, Lemma 2.2 implies that m0 \leq u(t, \cdot ) \leq M0 for all t \geq 0.

Second, there exist by Lemma 2.2 constants \widetilde M, \~\delta 0 > 0 such that, if we take \delta \in (0, \~\delta 0), then
there exists a unique global classical solution (2.3) of (2.1) satisfying m0 \leq \~u(t, \cdot )\leq M0 for all

t\geq 0 and sups\in [0,\tau ] \| u(s, \cdot ) - \~u(s, \cdot )\| \infty \leq \widetilde M\delta . Thus, \~u(t, \cdot ) solves the mild formulation (A.3).
Subtracting (A.3) from (2.2) and differentiating, we obtain

ux(t, \cdot ) - \~ux(t, \cdot ) =
\int t(1 - \delta )

0
\partial 2xe

\partial 2
x(t - s) (f(u(s, \cdot )) - f(\~u(s, \cdot )))ds

+

\int t(1 - \delta )

0
\partial 2xe

\partial 2
x(t - s)

\Bigl( 
f(\~u(s, \cdot )) - \~f(\~u(s, \cdot ))

\Bigr) 
ds

+

\int t

t(1 - \delta )
\partial xe

\partial 2
x(t - s)

\Bigl( 
f \prime (u(s, \cdot )) - \~f \prime (\~u(s, \cdot ))

\Bigr) 
ux(s, \cdot )ds

+

\int t

t(1 - \delta )
\partial xe

\partial 2
x(t - s) \~f \prime (\~u(s, \cdot )) (ux(s, \cdot ) - \~ux(s, \cdot ))ds

(A.7)
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for all t \in [0, \tau ]. Denote by L > 0 the Lipschitz constant of f on [m0,M0], and set K =
sup\{ \| ux(s, \cdot )\| \infty : 0\leq s\leq \tau \} and R1 = sup\{ | f \prime (v)| : v \in [m0,M0]\} . Thus, taking norms in (A.7)
while using (A.1), we arrive at

\| ux(t, \cdot ) - \~ux(t, \cdot )\| \infty \leq C

\int t

t(1 - \delta )

K (R+R1)\surd 
t - s

ds+C

\int t

0

R\| ux(s, \cdot ) - \~ux(s, \cdot )\| \infty \surd 
t - s

ds

+ C

\int t(1 - \delta )

0

\delta 
\Bigl( 
1 +L\widetilde M\Bigr) 
t - s

ds

for all t \in [0, \tau ]. Hence, Gr\"onwall's lemma [11, Lemma 7.0.3] yields a constant M > 0,
independent of \delta and t, such that

\| ux(t, \cdot ) - \~ux(t, \cdot )\| \infty \leq M
\surd 
\delta 

for all t \in [0, \tau ]. Thus, taking \delta 0 <min\{ \~\delta 0, \varepsilon 2/(M2), \varepsilon /\widetilde M\} , we establish the second estimate
in (2.5).

Proof of Lemma 2.4. We switch to the co-moving frame \xi = x - ct, in which (1.1) reads

wt =w\xi \xi + cw\xi + f(w)\xi .(A.8)

If w(t, \cdot ) is a mild solution of (A.8) with initial condition w(0, \cdot ) = u0, then the difference
z =w - \phi is a mild solution of

zt = (z\xi + cz + f(z + \phi (\xi )) - f(\phi (\xi )))\xi (A.9)

and has initial condition z0 = u0  - \phi \in C1
\mathrm{u}\mathrm{b}(\BbbR )\cap L1(\BbbR ). The integrated version of (A.9) reads

vt = v\xi \xi + cv\xi + f (v\xi + \phi (\xi )) - f(\phi (\xi )),(A.10)

where the relevant solution has initial condition v0 \in C2
\mathrm{u}\mathrm{b}(\BbbR ) given by

v0(\xi ) =

\int \xi 

 - \infty 
z0(y)dy.

First, the nonlinearity N : C1
\mathrm{u}\mathrm{b}(\BbbR ) \rightarrow C\mathrm{u}\mathrm{b}(\BbbR ) given by N(v) = cv\xi + f(v\xi + \phi )  - f(\phi ) is

well-defined and locally Lipschitz continuous. Second, \partial 2\xi is a sectorial operator on C\mathrm{u}\mathrm{b}(\BbbR )
with dense domain C2

\mathrm{u}\mathrm{b}(\BbbR ). Third, C1
\mathrm{u}\mathrm{b}(\BbbR ) is an intermediate space of class J1/2 between

C\mathrm{u}\mathrm{b}(\BbbR ) and C2
\mathrm{u}\mathrm{b}(\BbbR ). Therefore, standard analytic semigroup theory (cf. [11, Theorem 7.1.2

and Propositions 7.1.10 and 7.2.1]) yields a maximal time T \in (0,\infty ] and a solution v \in 
C([0, T ),C2

\mathrm{u}\mathrm{b}(\BbbR )) of

v(t, \cdot ) = e\partial 
2
\xi tv0 +

\int t

0
e\partial 

2
\xi (t - s) (cv\xi (s, \cdot ) + f(v\xi (s, \cdot ) + \phi ) - f(\phi ))ds.(A.11)

Moreover, if T <\infty , then we must have limsupt\rightarrow T - \| v(t, \cdot )\| W 1,\infty =\infty . Differentiating (A.11)
with respect to \xi and setting z = v\xi , we obtain

z(t, \cdot ) = e\partial 
2
\xi tz0 +

\int t

0
\partial \xi e

\partial 2
\xi (t - s) (cz(s, \cdot ) + f(z(s, \cdot ) + \phi ) - f(\phi ))ds.(A.12)
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Hence, z \in C([0, T ),C1
\mathrm{u}\mathrm{b}(\BbbR )) is a mild solution of (A.9) with initial condition z0. Thus, we have

v\xi (t, \xi ) = z(t, \xi ) =w(t, \xi ) - \phi = u(t, \xi + ct) - \phi (\xi ),

where u \in C([0,\infty ),C\mathrm{u}\mathrm{b}(\BbbR )) is the global mild solution of (A.8), established in Lemma 2.2,
satisfying \| u(t, \cdot )\| \infty \leq \| u0\| \infty for t\geq 0. So, it holds that

\| v\xi (t, \cdot )\| \infty = \| z(t, \cdot )\| \infty \leq \| u0\| \infty + \| \phi \| \infty 

for all t\geq 0. Taking norms in (A.11) and using (A.1), we arrive at

\| v(t, \cdot )\| \infty \leq C

\biggl( 
\| v0\| \infty + t sup

0\leq s\leq t
\| cz(s, \cdot ) + f(z(s, \cdot ) + \phi ) - f(\phi )\| \infty 

\biggr) 
.(A.13)

Clearly, the right-hand side of (A.13) does not blow up as t\rightarrow T - , yielding T =\infty . Thus, we
have obtained a global solution u\in C([0,\infty ),C1

\mathrm{u}\mathrm{b}(\BbbR )) of (2.2).
Finally, we establish L1-integrability of u(t, \cdot ) - \phi for all t \geq 0. Since \phi is bounded and

f is locally Lipschitz continuous, we observe that the nonlinearity G : L1(\BbbR ) \cap C\mathrm{u}\mathrm{b}(\BbbR ) \rightarrow 
L1(\BbbR ) \cap C\mathrm{u}\mathrm{b}(\BbbR ) given by G(z) = cz + f(z + \phi )  - f(\phi ) is well-defined and locally Lipschitz
continuous. On the other hand, \partial 2\xi is a sectorial operator on C\mathrm{u}\mathrm{b}(\BbbR )\cap L1(\BbbR ), and there exists
a constant C > 0 such that \bigm\| \bigm\| \bigm\| \partial m\xi e\partial 

2
\xi tg

\bigm\| \bigm\| \bigm\| 
p
\leq Ct - 

m

2 \| g\| p(A.14)

for p = 1,\infty , m = 0,1, and g \in Lp(\BbbR ). Hence, by a standard fixed-point argument as in the
proofs of [11, Theorem 7.1.2 and Proposition 7.2.1], there exist a maximal time \tau \in (0,\infty ]
and a unique solution z \in C([0, \tau ),C\mathrm{u}\mathrm{b}(\BbbR ) \cap L1(\BbbR )) of (A.12) such that, if \tau < \infty , we have
limsupt\rightarrow \tau  - \| z(t, \cdot )\| L1\cap L\infty =\infty . We argue by contradiction and assume that \tau <\infty . Let L> 0
be the Lipschitz constant of f on [ - \| u0\|  - \| \phi \| \infty ,\| u0\| \infty + \| \phi \| \infty ]. Taking norms in (A.12)
and using (A.14), we arrive at

\| z(t, \cdot )\| 1 \leq C

\biggl( 
\| z0\| 1 +

\int t

0

(| c| +L)\| z(s, \cdot )\| 1\surd 
t - s

ds

\biggr) 
for t\in [0, \tau ). Hence, Gr\"onwall's lemma [11, Lemma 7.0.3] yields a constant M > 0, depending
only on C, | c| , \tau , and L, such that

\| z(t, \cdot )\| 1 \leq M\| z0\| 1

for all t \in [0, \tau ). Combining the latter with \| z(t, \cdot )\| \infty \leq \| u0\| \infty + \| \phi \| \infty for all t \in [0, \tau ) yields
a contradiction with limsupt\rightarrow \tau  - \| z(t, \cdot )\| L1\cap L\infty = \infty . Therefore, we must have \tau = \infty . We
conclude that z(t, \cdot ) =w(t, \cdot ) - \phi = u(t, \cdot + ct) - \phi , and thus, u(t, \cdot ) - \phi itself, is L1-integrable
for all t\geq 0.
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