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Abstract. We are interested in the dynamics of interfaces, or zeros, of shock waves in
general scalar viscous conservation laws with a locally Lipschitz continuous flux function,
such as the modular Burgers’ equation. We prove that all interfaces coalesce within finite
time, leaving behind either a single interface or no interface at all. Our proof relies on
mass and energy estimates, regularization of the flux function, and an application of the
Sturm theorems on the number of zeros of solutions of parabolic problems. Our analysis
yields an explicit upper bound on the time of extinction in terms of the initial condition
and the flux function. Moreover, in the case of a smooth flux function, we characterize the
generic bifurcations arising at a coalescence event with and without the presence of odd
symmetry. We identify associated scaling laws describing the local interface dynamics
near collision. Finally, we present an extension of these results to the case of anti-shock
waves converging to asymptotic limits of opposite signs. Our analysis is corroborated by
numerical simulations in the modular Burgers’ equation and its regularizations.

1. Introduction4

We consider shock and anti-shock waves with multiple interfaces in the scalar viscous
conservation law

ut = uxx + f(u)x, t ≥ 0, x ∈ R, u(t, x) ∈ R, (1.1)

where f : R → R is a locally Lipschitz continuous flux function. A classical example is5

the viscous Burgers’ equation with f(u) = u2. Our regularity assumption on f allows for6

nonsmooth choices such as f(u) = |u|, yielding the modular Burgers’ equation which has7

been used to model inelastic dynamics of particles with piecewise interaction potentials [7,8

16] and whose behavior has been studied analytically and numerically in [9, 13, 15].9

Shock waves are solutions of (1.1) with initial data u0(x) converging to nonzero as-
ymptotic limits φ± as x → ±∞, which satisfy φ+ 6= φ− and obey the Gel’fand-Oleinik
entropy condition

f(φmin)− f(z)

z − φmin

>
f(φ−)− f(φ+)

φ+ − φ−
, z ∈ (φmin, φmax), (1.2)

where we denote φmin = min{φ−, φ+} and φmax = max{φ−, φ+}. On the other hand, anti-10

shock waves are solutions of (1.1) with initial data u0(x) converging to nonzero asymptotic11

limits φ±, which satisfy φ+ 6= φ− and do not fulfill the entropy condition (1.2).12
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The Gel’fand-Oleinik entropy condition (1.2) is consistent with the existence of travel-
ing shock waves, which are solutions of (1.1) of the form u(t, x) = φ(x− ct), where c ∈ R
denotes the propagation speed and the profile φ : R→ R solves the scalar problem

0 = φξ + c (φ− φ−) + f(φ)− f(φ−).

Here, the profile φ(ξ) converges to the asymptotic limits φ± as ξ → ±∞ and the speed is
given by the Rankine-Hugoniot condition

c =
f(φ−)− f(φ+)

φ+ − φ−
. (1.3)

The traveling shock-wave solution u(t, x) = φ(x − ct) defined for φ− 6= φ+ exists if and13

only if the entropy condition (1.2) is fulfilled.14

Traveling shock waves form an important class of asymptotic solutions of (1.1) in15

the sense that they serve as global attractors for shock waves. More precisely, for twice16

continuously differentiable flux functions f , it has been proven in [4, 8] that any shock-17

wave solution of the viscous conservation law (1.1) converges as t → ∞ in both L1- and18

L∞-norm to a traveling shock wave, which necessarily possesses the same asymptotic19

limits φ± at ±∞.20

We are interested in the temporal dynamics of zeros, so-called interfaces, for shock-21

and anti-shock wave solutions of the viscous conservation law (1.1). In our analysis we22

distinguish between three classes of initial data u0, where both φ+ and φ− are nonzero:23

• Class I: u0(x) converges to asymptotic limits φ± of opposite signs as x → ±∞,24

which obey the Gel’fand-Oleinik entropy condition (1.2);25

• Class II: u0(x) converges to asymptotic limits φ± of the same sign as x→ ±∞;26

• Class III: u0(x) converges to asymptotic limits φ± of opposite signs as x→ ±∞,27

which do not satisfy the entropy condition (1.2).28

We note that solutions of (1.1) with initial data of the class I are shock waves, whereas29

solutions of (1.1) with initial data of class III are anti-shock waves. Although solutions30

of (1.1) with initial data of class II can be either shock or anti-shock waves, it is not31

necessary to distinguish between them in our analysis.32

In addition to the above assumptions, we require that our initial datum u0 is uniformly33

continuous and bounded, and that u0 − φ± is L1-integrable on R±. Then, by the com-34

parison principle and standard parabolic regularity theory [10], the solution of (1.1) with35

initial condition u0 stays bounded and is continuously differentiable for all positive times,36

while maintaining its asymptotic limits φ± at ±∞. Nevertheless, if the flux function f37

is not continuously differentiable, as in the case of the modular Burgers’ equation, the38

second derivative of the solution of (1.1) may be discontinuous [9].39

The classical Sturm Theorems yield that in parabolic semilinear equations the number40

of zeros of solutions is nonincreasing over time. Moreover, if at some time t0 the solution41

has an (isolated) multiple zero x0, then, in a sufficiently small neighborhood of x0, the42
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number of zeros strictly decreases when t passes through t0. We refer to [5] for a survey43

on Sturm’s Theorems and their applications.44

In this paper we study finite-time coalescence of interfaces. In preliminary work [13]45

we showed that the evolution of odd shock waves with three symmetric interfaces in46

the modular Burgers’ equation leads to a finite-time coalescence of these interfaces to a47

single interface and we conjectured a scaling law for the local interface dynamics near the48

collision event based on data fitting. In this work we extend these results to general viscous49

conservation laws of the form (1.1) and establish finite-time coalescence of interfaces for all50

solutions with initial data of class I or II and thus, of all shock-wave solutions. Moreover,51

we show that in the specific case of the modular Burgers’ equation, solutions with initial52

data of class III, i.e. anti-shock waves, can also exhibit finite-time coalescence of interfaces.53

For solutions of (1.1) with initial data of class I, we establish that all interfaces must co-54

alesce to a single interface within finite time. The argument generalizes the idea from [13]55

and relies on a differential inequalities for the masses of u(t, x) − φ+ and u(t, x) − φ−56

measured with respect to the position of the interface, in combination with smooth ap-57

proximation of the flux function and an application of the Sturm Theorem from [1]. Our58

analysis yields an explicit upper bound on the time at which all interfaces have collapsed59

to a single interface. We emphasize that although the results in [4, 8] imply that solutions60

with initial data of class I converge in L1- and L∞-norms to a traveling shock wave, which61

must necessarily be strictly monotone and thus, has precisely a single interface, this is not62

sufficient to conclude finite-time coalescence to a single interface because interfaces of the63

solution might accumulate close to the interface of the associated traveling shock wave.64

Initial data u0 of class II can always be bounded from above or below by a smooth65

function ũ0, which satisfies ũ0(x) → ũ∞ as x → ±∞, where ũ∞ 6= 0 has the same sign66

as φ±. For twice continuously differentiable flux functions f , the finite-time extinction of67

all interfaces of the solution ũ(t, ·) of (1.1) with initial condition ũ0 follows by evoking68

the result from [4] that ũ(t, ·) converges in L∞-norm to the constant state ũ∞ as t→∞.69

Consequently, the comparison principle yields the finite-time extinction of interfaces of70

the solution u(t, ·) of (1.1) with initial condition u0. Yet, the result in [4] does not provide71

an explicit upper bound on the extinction time and does not readily apply to the current72

setting of locally Lipschitz continuous flux functions. To extend the conclusion to our73

setting, we apply a softer argument based on energy estimates, smooth approximation of74

the flux function, conservation of mass and the Gagliardo-Nirenberg inequality to yield75

an explicit upper bound on the time at which all interfaces of ũ(t, ·), and thus, also of76

u(t, ·), have gone extinct, cf. Remark 3.6.77

Whether solutions of (1.1) with initial data of class III do exhibit finite-time coales-78

cence of interfaces to a single interface is currently an open problem. Since the entropy79

condition (1.2) is not fulfilled, there exists no traveling shock to which u(t, ·) can converge80

in norm as t → ∞. To shed some light on this open question, we consider anti-shock81

waves with initial data of class III in the modular Burgers’ equation with flux function82

f(u) = |u|. Our analysis indicates that, although all interfaces coalesce to a single inter-83

face in this case, the anti-shock wave converges locally uniformly to 0 as t→∞ suggesting84
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that obtaining a result in general might be subtle or even false. Colloquially speaking,85

since the solution profile can converge to 0 uniformly, locally near interfaces, diffusion86

might be too weak to enforce coalescence of interfaces. In fact, recent results [6] imply87

that the ω-limit set (in the locally uniform topology induced by L∞loc(R)) of bounded88

solutions of scalar viscous conservation laws (1.1) can be complicated in the sense that89

it can contain a solution that is neither a traveling shock nor a constant, underlining a90

fundamental difference between shock waves and general bounded solutions of (1.1).91

In addition to establishing finite-time coalescence of interfaces of shock and anti-shock92

waves, we study the interface dynamics about a coalescence event in the case of a smooth93

flux function f . If a coalescence event occurs for a solution u(t, x) of (1.1) at some time94

t = t0 and point x = ξ0, it must hold that ux(t0, ξ0) = 0 and it follows from one of the95

classical Sturm Theorems [1] that there exist δ > 0 and a neighborhood U ⊂ R of ξ096

such that for t ∈ (t0 − δ, t0), there are at least two interfaces in U and for t ∈ (t0, t0 + δ),97

there is at most one interface in U . Without the presence of additional symmetries, one98

generically has uxx(t0, ξ0) 6= 0. We show that in this situation a fold bifurcation occurs.99

That is, there are precisely two interfaces ξ1(t) < ξ2(t) in U for t ∈ (t0 − δ, t0) and no100

interfaces in U for t ∈ (t0, t0 + δ). Moreover, we obtain the scaling law101

ξ1,2(t)− ξ0 ∼ ±
√

2(t0 − t) as t→ t−0 . (1.4)102

In the case of an odd reflection symmetry, we generically have uxx(t0, ξ0) = 0 and103

uxxx(t0, ξ0) 6= 0. This leads to a pitchfork bifurcation, for which there are precisely three104

interfaces ξ1(t) < ξ(t) < ξ2(t) in U for t ∈ (t0−δ, t0) and exactly one interface ξ(t) remains105

in U for t ∈ (t0, t0 + δ). We also identify the associated scaling laws106

ξ1,2(t)− ξ0 ∼ ±
√

6(t0 − t) as t→ t−0 (1.5)107

and108

ξ(t)− ξ0 ∼ α(t0 − t) as t→ t0 (1.6)109

for some α ∈ R. We show that the conditions for a pitchfork bifurcation are satisfied in110

the classical Burgers’ equation with flux function f(u) = u2 for odd shock waves with111

a single zero on (0,∞). We note that the above results yield that the lower and upper112

bounds in the Sturm Theorem [1, Theorem B] on the number of interfaces before and113

after a coalescence event are sharp.114

Finally, we corroborate our results with numerical simulations of the modular Burg-115

ers’ equation. Our numerical approximations rely on a regularization of the modular116

nonlinearity and employ an elementary finite-difference scheme. These numerical approx-117

imations are different from those used in [13], where the modular Burgers’ equation was118

solved on a partition of a real line complemented with additional boundary conditions at119

the interfaces. We study odd shock and anti-shock waves and observe finite-time coales-120

cence of interfaces through a pitchfork bifurcation. In addition, the numerics confirms121

the same scaling law (1.5) for the interface extinction.122

The derivation of scaling laws describing the interface dynamics near coalescence has123

been addressed in other contexts as well and appeared to be challenging. In [2] a linear124

inhomogeneous heat equation was considered as a simple model for oxygen diffusion. It125
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was suggested that the oxygen front (the interface) collapses according to the scaling law126

(t0−t)1/2. However, a more recent study in [12] based on new numerical algorithms for the127

time-dependent Stefan problem showed that the scaling law (t0− t)1/2 is not accurate due128

to an additional singularity as t → t−0 . Other interface models were studied in [18, 19]129

by means of matched asymptotic expansions in the context of a KPP equation with a130

discontinuous cut-off in the reaction function.131

We conjecture that the scaling laws (1.4), (1.5), and (1.6) proven for smooth flux132

functions remain true for locally Lipschitz continuous flux functions such as the modular133

Burgers’ equation. However, this question remains open for future research.134

This paper is organized as follows. In Section 2 we state well-posedness and approxi-135

mation results for solutions of the viscous conservation law (1.1). Section 3 is devoted to136

the analysis of finite-time coalescence of interfaces for solutions with initial data of class137

I, II, and III. In Section 4 we analyze the fold and pitchfork bifurcations describing the138

interface dynamics near coalescence events and derive associated scaling laws. Section 5139

presents numerical simulations illustrating the pitchfork bifurcation for both shock and140

anti-shock waves in a regularized version of the modular Burgers’ equation. Appendix A141

contains the proofs of the well-posedness and approximation results of Section 2.142

Acknowledgements. J. Lin was supported by Stewart Research Scholarship of Mc-143

Master University. D. E. Pelinovsky acknowledges the funding of this study provided by144

the grant No. FSWE-2023-0004 and grant No. NSH-70.2022.1.5.145

2. Global well-posedness and approximation146

In this section we establish global well-posedness of uniformly continuous and bounded
solutions of the viscous conservation law (1.1). We first consider smooth flux functions
f before studying the general case of a locally Lipschitz continuous flux function. We
show that by locally approximating the flux function f by a smooth function f̃ , one can
approximate solutions u(t, ·) of (1.1) on any finite time interval by a solution ũ(t, ·) of the
regularized problem

ũt = ũxx + f̃(ũ)x. (2.1)

Proofs of all results formulated in this section can be found in Appendix A.147

For smooth flux functions f ∈ C∞(R) local existence and uniqueness of classical148

solutions of (1.1) follow readily by standard regularity theory for parabolic semilinear149

equations [10]. The fact that (1.1) obeys a comparison principle [14, 17] then yields150

global well-posedness. All in all, we establish the following result.151

Lemma 2.1. Let f ∈ C∞(R) and u0 ∈ C1
ub(R). Let M0 = sup{u0(x) : x ∈ R} and

m0 = inf{u0(x) : x ∈ R}. There exists a unique smooth global classical solution

u ∈ C
(
[0,∞), C1

ub(R)
)
∩ C

(
(0,∞), C2

ub(R)
)
∩ C1

(
(0,∞), Cub(R)

)
,
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of (1.1) with initial condition u(0, ·) = u0 such that m0 ≤ u(t, x) ≤ M0 for all t ≥ 0 and152

x ∈ R. Moreover, we have u ∈ C∞
(
(0,∞)× R,R

)
with ∂kt u(t, ·) ∈ C l

ub(R) for t ≥ 0 and153

k, l ∈ N0.154

Next, we establish global well-posedness of solutions of (1.1) for locally Lipschitz
continuous flux functions f . In this case, classical solutions in the sense of Lemma 2.1
cannot always be expected. For instance, the modular Burgers’ equation with flux function
f(u) = |u| admits for any φ± ∈ R with φ− < 0 < φ+ a traveling shock-wave solution
u(t, x) = φ(x− ct) converging to asymptotic limits φ± and propagating with speed

c =
φ+ + φ−
φ− − φ+

,

whose profile

φ(±ξ) = φ±
(
1− e−(1+c)ξ

)
, ξ ≥ 0,

does lie in C1
ub(R), but not in C2

ub(R). Therefore, we consider mild solutions of (1.1),
which solve the associated integral equation

u(t, ·) = e∂
2
xt u0 +

∫ t

0

∂x e∂
2
x(t−s) f(u(s, ·))ds, (2.2)

where u(0, ·) = u0 ∈ C1
ub(R) denotes the initial condition.155

Standard analytic semigroup theory in combination with the fact that f is locally156

Lipschitz continuous yields local existence and uniqueness of solutions of (2.2) in Cub(R).157

We note that it is important here to compose the derivative in (2.2) with the semigroup158

e∂
2
x(t−s), rather than applying it to the flux function f , since f ′ is not necessarily locally159

Lipschitz continuous. Global well-posedness follows by approximating the solution u(t, ·)160

of (2.2) by the global classical solution ũ(t, ·) of the regularized problem (2.1), where161

f̃ ∈ C∞(R) is a smooth local approximation of f . This leads to the following result.162

Lemma 2.2. Let f : R → R be locally Lipschitz continuous and u0 ∈ C1
ub(R). Let

M0 = sup{u0(x) : x ∈ R} and m0 = inf{u0(x) : x ∈ R}. There exists a unique global
solution u ∈ C([0,∞), Cub(R)) of (2.2) such that m0 ≤ u(t, x) ≤ M0 for all t ≥ 0 and
x ∈ R. Moreover, there exist constants δ0, C0 > 0 such that for each δ ∈ (0, δ0) and

f̃ ∈ C∞(R) satisfying

sup
{∣∣f(v)− f̃(v)

∣∣ : v ∈ [m0,M0]
}
< δ,

the global classical solution

ũ ∈ C
(
[0,∞), C1

ub(R)
)
∩ C

(
(0,∞), C2

ub(R)
)
∩ C1

(
(0,∞), Cub(R)

)
, (2.3)

of the regularized equation (2.1) with ũ(0, ·) = u0, established in Lemma 2.1, obeys the
estimates

m0 ≤ ũ(t, x) ≤M0, ‖u(t, ·)− ũ(t, ·)‖∞ ≤ C0δ
√
t, (2.4)

for all t ≥ 0 and x ∈ R.163



EXTINCTION OF MULTIPLE SHOCKS 7

Next, we approximate mild solutions of (1.1) by solutions of the regularized equa-164

tion (2.1) in C1
ub-norm rather than in Cub-norm. The approximation in C1

ub-norm will165

be used in the upcoming analysis to conclude that a single interface of the approximate166

solution also yields a single interface of the original solution.167

Lemma 2.3. Let f : R→ R be locally Lipschitz continuous. Let u ∈ C
(
[0,∞), C1

ub(R)
)

be
a global solution of (2.2) with initial condition u(0) = u0 ∈ C1

ub(R). Set M0 = sup{u0(x) :
x ∈ R} and m0 = inf{u0(x) : x ∈ R}. Let R, τ, ε > 0. There exists δ0 > 0 such that for

each δ ∈ (0, δ0) and f̃ ∈ C∞(R) satisfying

sup
{∣∣f(v)− f̃(v)

∣∣ : v ∈ [m0,M0]
}
< δ, sup

{∣∣f̃ ′(v)
∣∣ : v ∈ [m0,M0]

}
≤ R,

the global classical solution (2.3) of the regularized equation (2.1) with initial condition
ũ(0, ·) = u0, established in Lemma 2.1, obeys the estimates

m0 ≤ ũ(t, x) ≤M0 sup
0≤s≤τ

‖u(s, ·)− ũ(s, ·)‖W 1,∞ < ε, (2.5)

for x ∈ R and t ≥ 0.168

We emphasize that Lemma 2.3, in contrast to Lemma 2.2, is merely an approximation169

result and does not imply the existence of a global mild solution in C1
ub(R). This suffices170

for our purposes because we only apply Lemma 2.3 to establish finite-time coalescence171

of interfaces for solutions of (1.1) with initial data of class I, for which global existence172

of a mild solution in C1
ub(R) follows from a separate well-posedness result, which we will173

formulate next.174

In case of initial data of class I the entropy condition (1.2) yields the existence of175

a traveling shock wave with the same limits at ±∞. We require that the difference176

between the initial condition and the traveling shock wave is L1-integrable and show177

that this integrability is maintained over time, which will be important for the mass and178

energy estimates in the upcoming proofs establishing finite-time coalescence of interfaces179

in §3. Moreover, by integrating the viscous conservation law (1.1) we obtain global well-180

posedness of mild solutions in C1
ub(R) rather than in Cub(R).181

Lemma 2.4. Let f : R→ R be locally Lipschitz continuous and let u0 ∈ C1
ub(R). Suppose

that there exist c, C ∈ R and a solution φ ∈ C1
ub(R) of the profile equation

0 = φξ + cφ+ f(φ) + C.

Suppose u0−φ is L1-integrable. Then, there exists a unique solution u ∈ C
(
[0,∞), C1

ub(R)
)

182

of (2.2) such that u(t, ·)− φ is L1-integrable for all t ≥ 0.183

3. Finite-time coalescence of interfaces184

Here we establish finite-time coalescence of interfaces for solutions u(t, ·) of (1.1) with185

initial data u(0, ·) = u0 ∈ C1
ub(R) of class I or II. We emphasize that solutions with such186

initial data include all shock waves. On the other hand, anti-shock waves converging to187

asymptotic limits of opposite signs are not included. We study finite-time coalescence of188
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interfaces of this type of anti-shock waves at the end of this section in the specific setting189

of the modular Burgers’ equation.190

3.1. Solutions with initial data of class I. Observing that solutions u(t, x) of (1.1)191

with initial data u(0, ·) = u0 ∈ C1
ub(R) of type I maintain their asymptotic limits φ± as192

x → ±∞ for every t > 0 by Lemma 2.4, it readily follows that the solution possesses at193

least one interface for all t ≥ 0 since φ+ and φ− have opposite signs. We establish that194

all interfaces coalesce to a single one within finite time in this case.195

Theorem 3.1. Let f : R→ R be locally Lipschitz continuous and u0 ∈ C1
ub(R). Suppose196

u0(x) converges to asymptotic limits φ± as x → ±∞ such that φ+ and φ− have opposite197

signs and the Gel’fand-Oleinik entropy condition (1.2) holds. Moreover, assume that198

u0 − φ± is L1-integrable on R± and we have u0(x) ∈ [min{φ−, φ+},max{φ−, φ+}] for all199

x ∈ R. Let u ∈ C
(
[0,∞), C1

ub(R)
)

be the global mild solution of (1.1), established in200

Lemma 2.4. Then, there exists a time T > 0 such that for all t > T the solution u(t, ·)201

possesses precisely one zero.202

The proof of Theorem 3.1 is based on ideas developed in [13], where it is shown that203

the interfaces of odd shock waves in the modular Burgers’ equation coalesce to a single204

one within finite time. The analysis in [13] relies on a differential inequality for the mass205

measured with respect to the fixed interface at 0. Indeed, due to odd symmetry, 0 is206

necessarily an interface of the shock wave for all time and must be the middle interface.207

In the general setting considered here, without the presence of an odd symmetry,
interfaces are a priori not fixed, which suggests mass functions of the form

M1(t) =

∫ ξ2(t)

−∞
(u(t, x)− φ−) dx, M2(t) =

∫ ∞
ξ2(t)

(φ+ − u(t, x)) dx, (3.1)

where ξ2(t) is an interface of u(t, ·), which now depends on time. As in [13] we aim to show208

that the assumption that ξ2(t) is an interface lying strictly in between two other interfaces209

ξ1(t), ξ3(t) leads to a contradiction with certain inequalities obeyed by the mass functions210

M1(t) andM2(t). This then yields an explicit time T > 0 such that ξ1(t) < ξ2(t) < ξ3(t)211

cannot hold for t > T .212

To derive the desired inequalities forM1(t) andM2(t), a standard strategy is to differ-213

entiate with respect to time (using the Leibniz’ integral rule) and use the equation (1.1) to214

express temporal derivatives of u(t, x). Yet, as mentioned in §2, it cannot be expected in215

the case of a locally Lipschitz continuous flux function f that u(t, x) is a classical solution216

of (1.1), which is differentiable with respect to time and twice differentiable with respect217

to space. In addition, even if the flux function f were smooth, the interface ξ2(t), being218

a root of the C1-function u(t, x), is not necessarily differentiable. In fact, the upcoming219

analysis in §4 shows that ξ2(t) may fail to be differentiable if two interfaces collide.220

To address the first challenge we approximate the solution u(t, x) of (1.1) by a classical221

solution ũ(t, x) of the regularized problem (2.1), where f̃ is a smooth approximation of f222

and ũ(t, ·) has the same initial condition as u(t, ·). We then aim to show that any three223
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interfaces ξ̃1(t) ≤ ξ̃2(t) ≤ ξ̃3(t) of ũ(t, ·) coalesce to a single interface within finite time.224

We address the second challenge by approximating ξ̃2(t) on a compact time interval by225

a sequence of smooth approximations ξ̃2,n(t). Thus, the mass functions (3.1) with u(t, x)226

replaced by ũ(t, x) and ξ2(t) by ξ̃2,n(t) are differentiable with respect to t and we can227

obtain the desired inequalities, which then yield that the interfaces ξ̃1(t), ξ̃2(t) and ξ̃3(t)228

of ũ(t, x) coalesce to a single interface before an explicit time T > 0, which is independent229

of the approximation function f̃ .230

The approximation of the flux f by a smooth function f̃ introduces an additional231

difficulty. Even with control on the norm ‖u(t, ·) − ũ(t, ·)‖W 1,∞ through Lemma 2.3, the232

fact that ũ(t, ·) possesses a single interface is not sufficient to conclude that u(t, ·) has a233

single interface because interfaces of u(t, ·) might accumulate close to the single interface234

of ũ(t, ·). We address this issue by bounding the derivative ∂xũ(t, ·) at the interface away235

from 0, precluding the accumulation of multiple interfaces of u(t, ·) close to the single236

interface of ũ(t, ·).237

We bound the derivative of ũ(t, ·) away from 0 by considering a traveling shock-wave238

solution ũtw(t, x) = ψ(x−ct) of (2.1), which propagates at some speed c ∈ R and connects239

asymptotic limits ψ± of opposite signs satisfying |ψ±| < |φ±|. Upon switching to a co-240

moving frame, we may without loss of generality assume that c = 0. We then show, with241

the same methods as before, that all interfaces of the difference v(t, ·) = ũ(t, ·)−ψ converge242

to a single interface within finite time, see Figure 3.1. This then yields the desired lower243

bound on ‖∂xũ(t, ·)‖L∞ . Using that ‖u(t, ·) − ũ(t, ·)‖W 1,∞ can be taken sufficiently small244

by taking a better approximation f̃ of f if necessary, we thus conclude that the solution245

u(t, ·) must have a single interface for t > T , since the same holds for the approximation246

ũ(t, ·).247

Before we proceed with the proof of Theorem 3.1, we first state the following tech-248

nical lemma, which establishes a suitable smooth approximation f̃ of the flux function249

f in (1.1). Naturally, we require that f̃ lies sufficiently close to f and its derivative is250

well-behaved. Moreover, we wish that the regularized problem (2.1) admits a traveling251

shock-wave solution connecting the asymptotic states φ±, but also a traveling shock wave252

with asymptotic limits ψ± of opposite signs lying in between φ− and φ+, see also Fig-253

ure 3.1. Without loss of generality, we can restrict to the case φ− < 0 < φ+ and we254

may assume f(φ+) = f(φ−) by replacing f(u) by f(u) + cu, where c is given by the255

Rankine-Hugoniot condition (1.3).256

Lemma 3.2. Let f be locally Lipschitz continuous and let φ± ∈ R with φ− < 0 < φ+.
Suppose that f(φ+) = f(φ−) and the Gel’fand-Oleinik entropy condition

f(z)− f(φ±) < 0, (3.2)

holds for all z ∈ (φ−, φ+). Then, for each κ ∈ (f(0), f(φ±)), there exists a constant257

R > 0 such that for all δ ∈ (0, κ− f(0)), there exist f̃ ∈ C∞(R) and ψ± ∈ (φ−, φ+) with258

ψ− < 0 < ψ+ such that the following assertions hold:259
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Figure 3.1. Left: the approximate shock-wave solution ũ(t, ·) of (2.1)
with asymptotic limits φ±, the traveling shock wave ψ with asymptotic
limits ψ± and the interfaces ξ̃1(t), ξ̃2(t) and ξ̃3(t) of the difference v(t, ·) =
ũ(t, ·) − ψ. In the proof of Theorem 3.1 we bound the shaded areas above
and below the graph of ũ(t, ·) from below by the orange subareas. Right: the

smooth approximation f̃ of the flux function f , established in Lemma 3.2.
One observes that the regularized problem (2.1) admits a standing shock-
wave solution connecting the asymptotic limits φ± and one connecting the
asymptotic states ψ±, where φ− < ψ− < 0 < ψ+ < φ+.

i) For all z ∈ (φ−, φ+) we have

f̃(φ+) = f̃(φ−), f̃ ′(φ±) 6= 0, f̃(z)− f̃(φ±) < 0. (3.3)

ii) For all z ∈ (ψ−, ψ+) it holds

f̃(ψ+) = κ = f̃(ψ−), f̃ ′(ψ±) 6= 0, f̃(z)− f̃(ψ±) < 0. (3.4)

iii) For all z ∈ [φ−, φ+] we have∣∣f(z)− f̃(z)
∣∣ < δ,

∣∣f̃ ′(z)
∣∣ < R. (3.5)

Proof. We first recall that, since f is locally Lipschitz continuous, Rademacher’s theo-
rem asserts that f is differentiable almost everywhere and its derivative f ′ is essentially
bounded on each bounded interval. We denote

R1 := sup{|f ′(u)| : u ∈ [φ−, φ+]}.

Take δ ∈ (0, κ − f(0)). Let Φ: R → R be a mollifier with ‖Φ‖1 = 1, Φ(x) > 0 for
x ∈ (φ−, φ+) and Φ(x) = 0 for x ∈ R \(φ−, φ+). Set Φη(x) = Φ(x/η)/η for η > 0. The
function g : R→ R given by g(x) = min{f(x) + δ

4
, f(φ−)} is locally Lipschitz continuous.

Moreover, it holds |g′(x)| ≤ |f ′(x)| for each x ∈ [φ−, φ+]. Since g is continuous, it can
be approximated by the sequence gη := Φη ∗ g of smooth functions. That is, there exists
η0 > 0 such that

|gη(u)− g(u)| < δ

4
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for all u ∈ [φ−, φ+] and η ∈ (0, η0). By construction we have gη(x) ≤ f(φ±) for all x ∈ R
and η > 0. In addition, since g is constant in a neighborhood of φ± and it holds g′η = Φη∗g′,
there exists η1 ∈ (0, η0) such that gη(φ±) = f(φ±) and |g′η(u)| ≤ ‖Φη‖1R1 = R1 for all
η ∈ (0, η1]. We conclude that g̃ = gη1 − δΦ/(4‖Φ‖∞) is a smooth function which satisfies
g̃(z) < g̃(φ±) = f(φ±) for z ∈ (φ−, φ+). Moreover, it holds

|g̃(u)− f(u)| ≤ |gη1(u)− g(u)|+ δ

4
+ |g(u)− f(u)| < 3δ

4
,

and

|g̃′(u)| ≤ R1 +
δ‖Φ′‖∞
4‖Φ‖∞

,

for u ∈ [φ−, φ+].260

Since we have g̃(0) < f(0)+δ < κ < f(φ±) = g̃(φ±), the open set g̃−1[{z ∈ R : z < κ}]
must contain an interval (ψ−, ψ+) with φ− < ψ− < 0 < ψ+ < φ+ and g̃(ψ+) = κ =
g̃(ψ−). Hence, it holds g̃(z) < g̃(ψ±) for z ∈ (ψ−, ψ+). Finally, set d = 1

2
min{φ+ −

ψ+, ψ+,−ψ−, ψ− − φ−} > 0 and let Ψ: R → R be an even, smooth cut-off function
such that Ψ(0) = 1, ‖Ψ‖∞ ≤ 1, Ψ(x) > 0 for all x ∈ (−d, d) and Ψ(x) = 0 for all
x ∈ R \(−d, d). Recalling the properties of the function g̃, we conclude that for any
κ±, λ± ∈ [0, δ/(4(φ+ − φ−))], the smooth function

f̃(x) = g̃(x)− κ−(x− φ−)Ψ(x− φ−)− λ−(x− ψ−)Ψ(x− ψ−) + λ+(x− ψ+)Ψ(x− ψ+)

+ κ+(x− φ+)Ψ(x− φ+),

satisfies (3.5), it holds

f̃(φ+) = f̃(φ−), f̃ ′(φ±) = g̃′(φ±)± κ±, f̃(z)− f̃(φ±) < 0,

for all z ∈ (φ−, φ+), and we have

f̃(ψ+) = κ = f̃(ψ−), f̃ ′(ψ±) = g̃′(ψ±)± λ±, f̃(z)− f̃(ψ±) < 0, (3.6)

for all z ∈ (ψ−, ψ+). Hence, choosing κ±, λ± ∈ [0, δ/(4(φ+ − φ−))] in such a way that261

f̃ ′(φ±), f̃ ′(ψ±) 6= 0, we find that f̃ satisfies (3.3), (3.4), and (3.5). �262

Having established a suitable approximation f̃ of the flux function f , we now provide263

the proof of Theorem 3.1 following the outline sketched above.264

Proof of Theorem 3.1. We consider the case φ− < 0 < φ+. The case φ+ < 0 < φ− is
handled analogously. Clearly, the zeros (including their multiplicities) of u(t, ·) are the
same as those of the translate u(t, · − ct) for any t ≥ 0. Thus, upon replacing f(u) by
f(u) + cu in (1.1), where c is given by (1.3), we may assume

f(φ+) = f(φ−),

so that (1.2) yields

f(z)− f(φ+) = f(z)− f(φ−) < 0,
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for all z ∈ (φ−, φ+). By continuity of f there exists η > 0 such that for all z ∈ [φ−, φ− +
η] ∪ [φ+ − η, φ+] it holds

f(z) >
f(φ±) + f(0)

2
. (3.7)

Note that since f(0) < f(φ±), we must have η < |φ±|. Since u0 is continuous and
converges to φ± 6= 0 as x→ ±∞, the function u0−φ+ + η possesses a largest root ξ+ and
u0 − φ− − η possesses a smallest root ξ−. We set

T =

max

{∫ ξ+

−∞
(u0(x)− φ−) dx,

∫ ∞
ξ−

(φ+ − u0(x)) dx

}
f(φ+)− f(0)

> 0. (3.8)

We argue by contradiction and assume that there exists τ > T such that u(τ, ·) has
at least two distinct zeros. Then, since u is continuously differentiable, there must exist
a zero x0 of u(τ, ·) with ux(τ, x0) ≤ 0. Fix κ > f(0) such that

(κ− f(0))τ < (f(φ−)− f(0)) (τ − T ) , κ <
f(0) + f(φ±)

2
. (3.9)

Denote by L > 0 the Lipschitz constant of f on [φ−, φ+] and let R > 0 be the constant
from Lemma 3.2 (which depends on κ). Fix ε > 0 such that

(L+ 2)ε < κ− f(0), (R + 1)ε < κ− f(0), ε < min{Mη,mη}. (3.10)

Finally, let δ0 > 0 be the constant from Lemma 2.3 (which depends on R, τ, ε > 0) and
take δ > 0 such that

δ < min{δ0, ε, κ− f(0)}, δ <
f(0) + f(φ±)

2
− κ,

δτ < (f(φ−)− f(0)) (τ − T )− (κ− f(0))τ,
(3.11)

which is possible by (3.9).265

By Lemma 3.2 there exist f̃ ∈ C∞(R) and ψ± ∈ (φ−, φ+) with ψ− < 0 < ψ+ satisfy-
ing (3.3), (3.4), and (3.5). Lemma 2.3 then yields a global classical solution (2.3) of (2.1)
with initial condition ũ(0, ·) = u0 satisfying (2.5). Then, it must hold

ũx(τ, x0) ≤ ε, |ũ(τ, x0)| ≤ ε. (3.12)

On the other hand, the mean value theorem implies

κ− f̃(0) = f̃(ψ±)− f̃(0) ≤ R|ψ±|.

Combining the latter with (3.5), and (3.10) yields

|ψ±| ≥
κ− f(0)− δ

R
≥ κ− f(0)− ε

R
> ε. (3.13)

On the other hand (3.4), (3.7), and (3.9) imply

φ− + η < ψ− < 0 < ψ+ < φ+ − η. (3.14)
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By (3.3) and (3.4) there exist heteroclinic solutions φ(x) and ψ(x) of the profile equa-
tions

0 = φξ + f̃(φ)− f̃(φ±), 0 = ψξ + f̃(ψ)− f̃(ψ±), (3.15)

respectively, converging exponentially to the asymptotic limits φ± and ψ±, respectively,266

as x → ±∞. Since u0 − φ± is L1-integrable on R±, so is u0 − φ. Therefore, Lemma 2.4267

yields that ũ(t, ·) − φ is L1-integrable for all t ≥ 0. We conclude that ũ(t, ·) − φ± is268

L1-integrable on R± for all t ≥ 0.269

Using (3.12) and (3.13), and the fact that ψ(x) is strictly monotone and converges to270

ψ± as x→ ±∞, there must exist a translate x1 ∈ R such that the point (x0, ũ(τ, x0)) lies271

on the graph of ψ(·−x1). Our aim is to show that the difference v(t, ·) = ũ(t, ·)−ψ(·−x1)272

has only a single zero at t = τ , which must lie at x0. This then leads to a contradiction273

with (3.9), (3.11), (3.10), and (3.12) by our choice of constants κ, ε and δ.274

Upon replacing the traveling shock wave ψ by its translate ψ(· − x1), we may without
loss of generality assume x1 = 0. We observe that

v ∈ C
(
[0,∞), C1

ub(R)
)
∩ C

(
(0,∞), C2

ub(R)
)
∩ C1

(
(0,∞), Cub(R)

)
, (3.16)

is a global classical solution of the equation

vt = vxx + f̃(v + ψ)x − f̃(ψ)x. (3.17)

We can apply the Sturm theorem, [1, Theorem B], upon recasting (3.17) as the linear
parabolic equation

vt = vxx + b(t, x)vx + a(t, x)v, (3.18)

with

b(t, x) = f̃ ′(v(t, x) + ψ(t, x)), a(t, x) = ψx(t, x)
f̃ ′(v(t, x) + ψ(x))− f̃ ′(ψ(x))

v(t, x)
,

where we note that a, b, bx, and bt are bounded on the strip R×[0, s] for any s > 0275

by (3.16), and the fact that f̃ and ψ and smooth. Applying [1, Theorem B] to (3.18)276

yields that, if it holds v(t0, ξ0) = 0 = vx(t0, ξ0) at some (t0, ξ0) ∈ (0,∞) × R, then there277

exist θ ∈ (0, t0) and a neighborhood U ⊂ R of ξ0 such that for t ∈ (t0 − θ, t0), there are278

at least two zeros of v(t, ·) in U and for t ∈ (t0, t0 + θ), there is at most one zero of v(t, ·)279

in U . Noting that v(t, x) is continuously differentiable with respect to x and t, this leads280

to two important observations. First, no new zeros of v(t, ·) can form dynamically over281

time. Second, multiple roots are isolated in R×(0,∞).282

Now assume by contradiction that for all t ∈ [0, τ ], there exist at least two zeros of283

v(t, ·). A consequence of the above two observations, the regularity of v(t, ·), and the fact284

that v(t, ·) converges to φ±−ψ± at ±∞ with φ−−ψ− < 0 < φ+−ψ+, is that there must285

be three functions ξ̃1,2,3 : [0, T ]→ R which depend continuously on time such that it holds286

ξ̃1(t) < ξ̃2(t) < ξ̃3(t), v(t, ξ̃i(t)) = 0 for i = 1, 2, 3, v(t, x) > 0 for all x ∈ (ξ̃1(t), ξ̃2(t)),287

v(t, x) < 0 for all x ∈ (ξ̃2(t), ξ̃3(t)), and vx(t, ξ̃2(t)) ≤ 0 for all t ∈ [0, T ]. We note that288

by (3.14), it must hold ξ− < ξ̃2(0) < ξ+.289
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Take a sequence {ξ̃2,n}n of smooth functions converging uniformly in C([0, τ ]) to ξ̃2 as
n→∞. Define the masses

M1,n(t) =

∫ ξ̃2,n(t)

−∞
(v(t, x)− φ− + ψ−)dx

=

∫ ξ̃2,n(t)

−∞
(ũ(t, x)− φ−)dx−

∫ ξ̃2,n(t)

−∞
(ψ(x)− ψ−)dx,

M1(t) =

∫ ξ̃2(t)

−∞
(v(t, x)− φ− + ψ−)dx =

∫ ξ̃2(t)

−∞
(ũ(t, x)− φ−)dx−

∫ ξ̃2(t)

−∞
(ψ(x)− ψ−)dx,

which are well-defined as ũ(t, ·) − φ− and ψ − ψ− are L1-integrable on R− for all t ≥ 0.
Applying the Leibniz’ rule, we find

M ′
1,n(s) = ξ̃′2,n(s)

(
v(s, ξ̃2,n(s))− φ− + ψ−

)
+

∫ ξ̃2,n(s)

−∞

(
vxx(s, x) + ∂x

(
f̃(v(s, x) + ψ(x))− f̃(ψ(x))

))
dx

= ∂s

(
ξ̃2,n(s)

(
v(s, ξ̃2,n(s))− φ− + ψ−

))
− ξ̃2,n(s)∂s

(
v(s, ξ̃2,n(s))

)
+ vx(s, ξ̃2,n(s))

+ f̃
(
v(s, ξ̃2,n(s)) + ψ(ξ̃2,n(s))

)
− f̃

(
ψ(ξ̃2,n(s))

)
− f̃(φ−) + f̃(ψ−),

for s ∈ (0, τ ]. Integrating the latter from 0 to t we obtain

M1,n(t) = M1,n(0) + ξ̃2,n(t)
(
v(t, ξ̃2,n(t))− φ− + ψ−

)
− ξ̃2,n(0)

(
v(0, ξ̃2,n(0))− φ− + ψ−

)
+

∫ t

0

(
ξ̃2,n(s)∂s

[
v(s, ξ̃2,n(s))

]
+ vx(s, ξ̃2,n(s))

)
ds+

(
f̃(ψ−)− f̃(φ−)

)
t

+

∫ t

0

(
f̃
(
v(s, ξ̃2,n(s)) + ψ(ξ̃2,n(s))

)
− f̃

(
ψ(ξ̃2,n(s))

))
ds,

for t ∈ (0, τ ]. Taking the limit n→∞, while recalling the regularity (3.16) of v(t, ·) and

the fact that vx(ξ̃2(s), s) ≤ 0 for all s ∈ [0, T ], we arrive at

M1(t) = M1(0)− (ξ̃2(t)− ξ̃2(0)) (φ− − ψ−) +

∫ t

0

vx(s, ξ̃2(s))ds+
(
f̃(ψ−)− f̃(φ−)

)
t

≤M1(0) + (ξ̃2(t)− ξ̃2(0))(ψ− − φ−) +
(
f̃(ψ−)− f̃(φ−)

)
t,

implying∫ ξ̃2(t)

−∞
(ũ(t, x)− φ−)dx ≤

∫ ξ̃2(0)

−∞
(u0(x)− φ−)dx+

∫ ξ̃2(t)

ξ̃2(0)

(ψ(x)− φ−) dx

+
(
f̃(ψ−)− f̃(φ−)

)
t,
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for t ∈ [0, τ ]. On the other hand, since ũ(t, ·) − φ− is nonnegative for all t ≥ 0 by (2.5),
it holds ∫ ξ̃2(t)

ξ̃1(t)

(ψ(x)− φ−) dx ≤
∫ ξ̃2(t)

−∞
(ũ(t, x)− φ−)dx, (3.19)

cf. Figure 3.1. Combining the latter two inequalities, while using ξ̃2(0) < ξ+, we obtain∫ ξ̃2(0)

ξ̃1(t)

(ψ(x)− φ−) dx ≤
∫ ξ̃2(0)

−∞
(u0(x)− φ−)dx+

(
f̃(ψ−)− f̃(φ−)

)
t

≤
∫ ξ+

−∞
(u0(x)− φ−)dx+ (f(0)− f(φ−)) t+ (κ− f(0)) t+ δt.

Inserting t = τ in the latter, applying (3.11), and recalling (3.8), we arrive at∫ ξ̃2(0)

ξ̃1(t)

(ψ(x)− φ−) dx ≤ (f(0)− f(φ−)) (τ − T ) + (κ− f(0)) τ + δτ < 0.

yielding ξ̃2(0) ≤ ξ̃1(τ) < ξ̃2(τ), since we have ψ(x)− φ− ≥ ψ− − φ− > 0 for all x ∈ R.290

Similarly, we establish∫ ξ̃3(t)

ξ̃2(0)

(φ+ − ψ(x)) dx ≤
∫ ∞
ξ̃2(0)

(φ+ − u0(x))dx+
(
f̃(ψ+)− f̃(φ+)

)
t,

yielding ∫ ξ̃3(t)

ξ̃2(0)

(φ+ − ψ(x)) dx ≤ (f(0)− f(φ+)) (τ − T ) + (κ− f(0)) τ + δτ < 0,

and thus, ξ̃2(τ) < ξ̃3(τ) ≤ ξ̃2(0), which contradicts ξ̃2(0) < ξ̃2(τ). Hence, there must exist
a t ∈ [0, τ ] such that v(t, ·) has only a single zero. Recalling that the number of zeros is
non-increasing, we conclude that v(τ) has a single zero, which must be x0. Since v(t, ·)
converges to φ± − ψ± as x → ±∞ and we have φ− < ψ− < 0 < ψ+ < φ+, it must hold
ũx(τ, x0) − ψ′(x0) = vx(τ, x0) ≥ 0. On the other hand, using that ψ solves (3.15) and
0 = v(τ, x0) = ũ(τ, x0)− ψ(x0), while recalling (3.5) and (3.12), we infer

ε ≥ ũx(τ, x0) ≥ ψ′(x0) = −f̃(ψ(x0)) + f̃(ψ±) = −f̃(ũ(τ, x0)) + κ

= −f̃(ũ(τ, x0)) + f(ũ(τ, x0))− f(ũ(τ, x0)) + f(0) + κ− f(0)

≥ −δ − Lε+ κ− f(0).

Combining the latter with (3.11) yields

(L+ 2)ε ≥ κ− f(0),

which contradicts (3.10). We conclude that for each t > T , the function u(t, ·) possesses291

at most one zero. �292
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Remark 3.3. We note that the proof of Theorem 3.1 provides an explicit upper bound293

T , given by (3.8), on the time at which all interfaces of the solution u(t, ·) of (1.1) have294

collapsed to a single interface. The upper bound (3.8) only depends on the flux function295

f and the initial condition u0.296

Remark 3.4. We expect that it might be possible to lift the assumption that u0(x) ∈
[min{φ−, φ−},max{φ−, φ+}] for all x ∈ R in Theorem 3.1 by bounding u0(x) from below
by a smooth function u−(x) and from above by a smooth function u+(x) satisfying

lim
x→±∞

u−(x) = min{φ−, φ+} and lim
x→±∞

u+(x) = max{φ−, φ+}.

It has been established in [4] that the solutions ũ±(t, ·) of the regularized problem (2.1)297

with initial conditions ũ±(0, ·) = u± converge in L1- and L∞-norm to their asymptotic298

limits as t → ∞. So, by the comparison principle, the area of ũ(t, ·) under min{φ−, φ+}299

or above max{φ−, φ+} converges to 0 as t→∞. We expect that using similar techniques300

as in the proof of Theorem 3.5, one can obtain decay estimates on this area, which are301

independent of the approximation f̃ of the flux function f . One would then hope to find302

an explicit time T1 > 0, only depending on f and the initial condition u0, such that for303

t > T1 this area is so small that the estimate (3.19) is still valid and one can proceed as304

in the proof of Theorem 3.1. We decided to refrain from providing this exposition, since305

it merely introduces additional technicalities obscuring the main ideas of the proof.306

3.2. Solutions with initial data of class II. We prove the finite-time extinction of all307

interfaces of solutions with initial data of class II. That is, we consider a solution u(t, x)308

of (1.1) with initial condition u(0, x) = u0(x), which converges to nonzero asymptotic309

limits φ± as x→ ±∞ that have the same sign. By approximating the solution u(t, x) by a310

solution ũ(t, x) to the regularized problem (2.1) with smooth flux function f̃ and bounding311

the initial condition u0 from below or above, it suffices by the comparison principle of [14,312

17] to prove the statement for a solution ṽ(t, ·) of the regularized problem (2.1) which313

possesses the same non-zero asymptotic limit φ0 at ±∞, see Figure 3.2. We show that all314

interfaces of ṽ(t, ·) go extinct within finite time by deriving an energy inequality for the315

difference ṽ(t, ·) − φ0. The energy estimate relies on the Gagliardo-Nirenberg inequality316

and the conservation of mass.317

Theorem 3.5. Let f : R→ R be locally Lipschitz continuous and u0 ∈ C1
ub(R). Suppose318

that u0(x) converges to nonzero asymptotic limits φ± as x → ±∞ such that φ+ and319

φ− have the same sign. Let u ∈ C
(
[0,∞), Cub(R)

)
be the global mild solution of (1.1),320

established in Lemma 2.2. Then, there exists a time T > 0 such that for all t > T , the321

solution u(t, ·) possesses no zeros.322

Proof. Throughout the proof, C > 0 denotes the constant appearing in the Gagliardo-
Nirenberg interpolation inequality

‖g‖∞ ≤ C‖g′‖
2
3
2 ‖g‖

1
3
1 , (3.20)

which holds for all g ∈ L1(R) ∩H1(R).323
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We consider the case 0 < φ− ≤ φ+. The cases 0 < φ+ ≤ φ−, φ− ≤ φ+ < 0 and
φ+ ≤ φ− < 0 are handled analogously. Take any v0 ∈ C1

ub(R) such that v0 − 2
3
φ− is L1-

integrable, not identically zero, and nonpositive and it holds v0(x) ≤ u0(x) for all x ∈ R.
Set

T =
2φ3
−

9C3
∥∥v0 − 2

3
φ−
∥∥2
2

∥∥v0 − 2
3
φ−
∥∥
1

> 0. (3.21)

Let τ > T . By Lemma 2.2 there exists f̃ ∈ C∞(R) such that the global classical solu-
tion ũ(t, ·) of the regularized problem (2.1) with initial condition ũ(0, ·) = u0 satisfies (2.3)
and

‖u(τ, ·)− ũ(τ, ·)‖∞ < 1
3
φ−. (3.22)

Let

ṽ ∈ C
(
[0,∞), C1

ub(R)
)
∩ C

(
(0,∞), C2

ub(R)
)
∩ C1

(
(0,∞), Cub(R)

)
,

be the solution of (2.1) with initial condition ṽ(0, ·) = v0, cf. Lemma 2.1. By the compar-
ison principle, cf. [14, 17], it holds

ṽ(t, x) ≤ ũ(t, x), ṽ(t, x) ≤ 2
3
φ−, (3.23)

for all t ≥ 0 and x ∈ R. Our aim is to show that we have ṽ(τ, x) ≥ 1
3
φ− for all x ∈ R,324

which together with (3.22) and (3.23) yields the desired result that u(τ, ·) does not posses325

any zeros, cf. Figure 3.2.326

Figure 3.2. Left: the shock wave u(t, ·) and its approximation ũ(t, ·) from
the proof of Theorem 3.1 at time t = τ . The shock wave u(τ, ·) possesses
the asymptotic limits φ± at ±∞ and has an interface at x0. The translate
ψ(· − x1) of the traveling shock wave ψ, connecting the asymptotic states
ψ±, passes through the point (x0, ũ(τ, x0)). Right: the approximate solution
ũ(t, ·) connecting the asymptotic end states φ± and its subsolution ṽ(t, ·)
possessing the asymptotic limit 2

3
φ− at ±∞. In the proof of Theorem 3.5

we approximate the energy of ṽ(t, ·)− 2
3
φ− at a point t = τ from below by

(ξ2 − ξ1)19φ
2
−.
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We argue by contradiction and assume that there exist ξ1, ξ2 ∈ R with ξ1 < ξ2 such that
ṽ(τ, ξ1) = 1

3
φ− = ṽ(τ, ξ2). First, we observe that (τ, ξ1) is a root of z(t, x) = ṽ(t, x)− 1

3
φ−,

which satisfies the linear equation

zt = zxx + b(t, x)zx, (3.24)

where the spatial and temporal derivative of b(t, x) = f̃ ′(ṽ(t, x)) are bounded on the strip
R×[0, s] for any s > 0. Applying the Sturm Theorem [1, Theorem B] to (3.24) yields
that z(t, ·) must have a zero for all t ∈ [0, τ ]. That is, it holds∥∥ṽ(t, ·)− 2

3
φ−
∥∥
∞ ≥

1
3
φ−, (3.25)

for all t ∈ [0, τ ].327

Next, we observe that the mass

M(t) =

∫
R

(
ṽ(t, x)− 2

3
φ−
)

dx, t ≥ 0,

is conserved. Indeed, it holds

M ′(t) =

∫
R

(
ṽxx(t, x) + ∂x

(
f̃(ṽ(t, x))

))
dx = 0,

and thus, we have M(t) = M(0) for all t ≥ 0. Second, we establish an estimate for the
energy

E(t) =
∥∥ṽ(t, ·)− 2

3
φ−
∥∥2
2
.

We compute using integration by parts

E ′(t) = 2

∫
R

(
ṽ(t, x)− 2

3
φ−
) (
ṽxx(t, x) + ∂x

(
f̃(ṽ(t, x))

))
dx

= −2

∫
R
ṽx(t, x)

(
ṽx(t, x) + f̃(ṽ(t, x))

)
dx

= −2‖ṽx(t, ·)‖22,
for t ≥ 0. Therefore, using the Gagliardo-Nirenberg inequality (3.20), the bound (3.23)
and the fact that the (nonzero) mass M(t) is conserved, we obtain the energy estimate

E ′(t) ≤ − 2

C3|M(t)|
∥∥ṽ(t, ·)− 2

3
φ−
∥∥3
∞ = − 2

C3|M(0)|
∥∥ṽ(t, ·)− 2

3
φ−
∥∥3
∞ ,

for t ≥ 0. Integrating the latter from 0 to τ , while using (3.25) and τ > T , we obtain

(ξ2 − ξ1)
φ2
−

9
≤ E(τ) ≤ E(0)− 2

C3|M(0)|

∫ τ

0

∥∥ṽ(t, ·)− 2
3
φ−
∥∥3
∞ dt

≤ E(0)−
2φ3
−

9C3|M(0)|
τ = E(0)

(
1− τ

T

)
< 0,

which contradicts ξ1 < ξ2, see Figure 3.2. Therefore, ṽ(τ, ·) − 1
3
φ− can possess at most328

one single zero, which together with estimates (3.22) and (3.23) and the fact that ṽ(τ, x)329

converges to 2
3
φ− as x→ ±∞, implies that u(τ, ·) cannot have any zeros. �330
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Remark 3.6. Assume that the initial condition u0 in Theorem 3.5 possesses an interface
and it holds 0 < φ− ≤ φ+. By mollifying the compactly supported, nonpositive, nonzero
function u1(x) = min{2

3
φ−, u0(x)}−2

3
φ−, one readily finds a sequence {zn}n of nonpositive,

nonzero, smooth, and compactly supported functions such that zn converges in Lp(R) to u1
as n→∞ for p = 1, 2. Thus, wn = zn + 2

3
φ− is a smooth function such that wn − 2

3
φ− is

L1-integrable, not identically zero, and nonpositive such that wn(x) ≤ u0(x) for all n ∈ N.
Hence, wn satisfies the criteria for the function v0 in the proof of Theorem 3.5 for any
n ∈ N. That is, we find that the upper bound (3.21) on the time at which all interfaces of
the solution u(t, ·) have gone extinct, could be taken equal to

T =
2φ3
−

9C3‖u1‖22‖u1‖1
.

We stress that T only depends on the initial condition u0 of the solution u(t, ·) and the331

positive constant C from the Gagliardo-Nirenberg inequality (3.20).332

3.3. Solutions with initial data of class III. In Theorem 3.1, we proved finite-time333

coalescence of interfaces for shock waves converging to asymptotic limits of opposite signs.334

This prompts the question of whether anti-shock waves converging to asymptotic limits of335

opposite signs also exhibit finite-time coalescence of interfaces. One readily observes that336

the proof of Theorem 3.1 strongly relies on the Gel’fand-Oleinik entropy inequality (1.2) to337

bound the mass. It cannot be expected that the same strategy applies to the case of anti-338

shock waves that violate (1.2). Therefore, the question of whether finite-time coalescence339

of interfaces can be established for solutions with initial data of class III remains open.340

Nevertheless, we can study the interface dynamics of solutions with initial data of class341

III in the framework of the modular Burgers’ equation342

ut = uxx + |u|x, (3.26)343

which corresponds to the scalar viscous conservation law (1.1) with the modular flux func-344

tion f(u) = |u|. Our upcoming analysis establishes finite-time coalescence of interfaces345

for anti-shock waves converging to asymptotic limits ∓φ∗ as x → ±∞ with φ∗ > 0. We346

make the following assumption on the regularity of solutions to the modular Burgers’347

equation (3.26).348

Assumption 3.7. For every u0 ∈ C1
ub(R) converging to nonzero asymptotic limits u± at349

±∞, the global mild solution u ∈ C([0,∞), Cub(R)) of (3.26), established in Lemma 2.2,350

with initial condition u(0, ·) = u0 satisfies u ∈ C1((0,∞) × R,R) such that u(t, ·), t ≥ 0351

is piecewise C2 with the finite jump condition352

uxx(t, ξ(t)
+)− uxx(t, ξ(t)−) = −2|ux(t, ξ(t))|, (3.27)353

across any interface x = ξ(t) ∈ R.354

Assumption 3.7 was proven in [9] for the class of solutions to (3.26) with a single355

interface in a local neighborhood of a traveling shock wave. In a more general setting, the356

validity of Assumption 3.7 is an open question.357
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We expect that Assumption 3.7 can be proven in a general case by using approximation358

by solutions of the regularized equation as in Theorems 3.1 and 3.5. However, since our359

main goal is to illustrate the finite-time coalescence of interfaces of solutions of (1.1) with360

initial data of class III rather than proving a general well-posedness result for piecewise361

smooth flux functions, we refrain from doing so.362

The following lemma establishes that the odd parity of initial data is preserved in the363

time evolution of the modular Burgers’ equation (3.26).364

Lemma 3.8. Let u0 ∈ C1
ub(R) satisfy u0(−x) = −u0(x) for every x ∈ R. Then, the mild365

solution u ∈ C([0,∞), Cub(R)) of (3.26), established in Lemma 2.2, satisfies u(t,−x) =366

−u(t, x) for every t ≥ 0 and x ∈ R.367

Proof. First, observe that, if z ∈ Cub(R) is odd, then

e∂
2
xt z =

∫
R

e−
y2

4t

√
4πt

z(x− y)dy

is also odd, which follows by the substitution y 7→ −y. Now the mild solution u(t, ·)
of (3.26) is given by

u(t, ·) = e∂
2
xt u0 + ∂x

∫ t

0

e∂
2
x(t−s) |u(s, ·)| ds,

for t ≥ 0. Since u0 is odd, so is e∂
2
xt u0. Hence, using again the substitution y 7→ y, we

obtain

u(t, ·) + u(t,− ·) = ∂x

∫ t

0

e∂
2
x(t−s) (|u(s, ·)| − |u(s,− ·)|) ds,

for t ≥ 0. Taking norms in the latter and recalling the well-known fact that there exists
a constant C > 0 such that ∥∥∂xe∂2xtv∥∥L∞ ≤ Ct−1/2‖v‖L∞

for t > 0 and v ∈ L∞(R), yields

‖u(t, ·) + u(t,− ·)‖L∞ ≤ C

∫ t

0

1√
t− s

‖|u(s, ·)| − |u(s,− ·)|‖L∞ds

≤ C

∫ t

0

1√
t− s

‖u(s, ·) + u(s,− ·)‖L∞ds,

for t ≥ 0. Therefore, Grönwall’s inequality, cf. [10, Lemma 7.0.3], implies that

‖u(t, ·) + u(t,− ·)‖L∞ = 0

for all t ≥ 0, which finishes the proof. �368

The main result of this section is the following theorem.369
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Theorem 3.9. Suppose Assumption 3.7 holds. Take φ∗ > 0 and x0,1 ∈ R with 0 <
x1 − x0 < 1

6
. Let φ : R→ R be the odd function given by

φ(x) = φ∗(e
−x−1),

for x ≥ 0. Consider u0 ∈ C1
ub(R) satisfying

φ(x− x0) ≤ u0(x) ≤ φ(x− x1), (3.28)

for all x ∈ R. Let u ∈ C([0,∞), Cub(R)) be the mild solution of (3.26) established in370

Lemma 2.2. Then, u(t, ·) cannot posses two consecutive simple zeros ξ1(t), ξ2(t) that exist371

for all t ≥ 0.372

Proof. Our analysis relies on comparison with an explicit reference solution uref(t, x)
of (3.26) with odd initial condition uref(0, ·) = φ ∈ C1

ub(R). By Lemma 3.8, the solu-
tion uref ∈ C([0,∞), Cub(R)) is spatially odd. It satisfies the following diffusion-advection
boundary-value problem:  ut = uxx − ux, t > 0, x > 0,

u(t, 0) = 0, t ≥ 0,
u(0, x) = φ(x), x ≥ 0,

whose solution is explicitly given by

uref(t, x) =

∫ ∞
0

G(t, x, y)φ(y)dy,

for t ≥ 0 and x ∈ R, where G(t, x, y) is the Green’s function used in [9]:

G(t, x, y) =
1√
4πt

(
e−

(x−y−t)2
4t − e−y e−

(x+y−t)2
4t

)
.

Evaluating the integral we find

uref(t, x) =
φ∗
2

(
ex erfc

(
t+ x

2
√
t

)
− erfc

(
t− x
2
√
t

)
− e2t−x

(
erfc

(
x− 3t

2
√
t

)
+ e3x erfc

(
3t+ x

2
√
t

)
− 2

))
,

for t ≥ 0 and x ∈ R.373

By the comparison principle, cf. [3, Corollary 3.1], and (3.28) it holds

u−(t, x) ≤ u(t, x) ≤ u+(t, x)

for x ∈ R and t ≥ 0, where u−(t, x) = uref(t, x − x0) and u+(t, x) = uref(t, x − x1) are374

translates of the reference solution uref(t, x) of (3.26), see Figure 3.3. Note that u−(t, ·)375

and u+(t, ·) possess an odd symmetry with respect to the points x = x0 and x = x1,376

respectively. In particular, it holds u−(t, x0) = 0 = u+(t, x1).377

We argue by contradiction and assume that u(t, x) possesses zeros ξ1(t), ξ2(t), ξ3(t) for378

all t ≥ 0 such that ξ1(t) < ξ2(t) < ξ3(t), u(t, x) < 0 for x ∈ (ξ1(t), ξ2(t)), u(t, x) > 0 for all379

x ∈ (ξ2(t), ξ3(t)), and ux(t, ξ2(t)) > 0 for all t ≥ 0. Since u±(t, ·) are monotone, it holds380



22 JEANNE LIN, DMITRY E. PELINOVSKY, AND BJÖRN DE RIJK

ξi(t) ∈ (x0, x1) for all t ≥ 0 and i = 1, 2, 3, see Figure 3.3. By translational invariance, we381

may assume without loss of generality that x0 = 0.382

As in the proof of Theorem 3.1, we derive differential inequalities for the masses

M1(t) =

∫ ξ2(t)

−∞
(φ∗ − u(t, x))dx, M2(t) =

∫ ∞
ξ2(t)

(u(t, x) + φ∗)dx.

However, in contrast to the proof of Theorem 3.1, we cannot employ the Gel’fand-Oleinik383

entropy inequality to bound M1(t) and M2(t). Instead, we use explicit expressions of the384

reference solutions u±(t, ·) to bound M1(0) and M2(0) from above and M1(t) and M2(t)385

from below.386

Recalling ux(ξ2(t), 0) > 0, the implicit function theorem implies that ξ2(t) is differen-
tiable with respect to t. We apply Leibniz’ rule to compute

M ′
2(t) = −ξ′2(t)φ∗ +

∫ ∞
ξ2(t)

(uxx(t, x) + |u|x(t, x))dx

= −ξ′2(t)φ∗ + φ∗ − ux(t, ξ2(t))
< φ∗ (1− ξ′2(t)) .

Integrating this inequality we arrive at

M2(t) ≤M2(0) + φ∗t− (ξ2(t)− ξ2(0))φ∗.

On the other hand, since u(t, ·)−φ∗ and u(t, ·)−u−(t, ·) are nonnegative by the comparison
principle, it holds

(ξ3(t)− ξ2(t))φ∗ +

∫ ∞
x1

(u−(t, x) + φ∗) dx ≤M2(t),

see also Figure 3.3. Finally, since u+(0, ·)− u(0, ·) is nonnegative, we arrive at

M2(0) ≤ 2x1φ∗ +

∫ ∞
x1

(u+(0, x) + φ∗)dx = 2x1φ∗ +

∫ ∞
0

(φ(x) + φ∗) dx = φ∗(2x1 + 1).

We compute

F (t) :=

∫ ∞
x1

(
u−(t, x)

φ∗
+ 1

)
dx− t

=
1

4

(
−(2t+ 3)erf

(
x1 − t
2
√
t

)
+ 2x1erfc

(
t− x1
2
√
t

)
− 2 e2t−x1 erfc

(
x1 − 3t

2
√
t

)
− 2 ex1 erfc

(
x1 + t

2
√
t

)
+ e2(x1+t) erfc

(
x1 + 3t

2
√
t

)
+ 4 e2t−x1

+
4
√
t√
π

e−
(x1−t)

2

4t −4x1 − 2t+ 3

)
,

and obtain

lim
t→∞

F (t) =
3

2
− x1.
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All in all, we have established

φ∗ (ξ3(t)− ξ2(t) + F (t) + t) ≤M2(t) ≤ φ∗ (2x1 + 1 + t− (ξ2(t)− ξ2(0))) ,

yielding

ξ3(t)− ξ2(0) ≤ 2x1 + 1− F (t)→ 3x1 −
1

2
as t→∞.

Consequently, as x1 <
1
6

there exists t2 > 0 such that ξ2(t) < ξ3(t) ≤ ξ2(0) for all t ≥ t2.387

Similarly, by bounding the integral M1(t), one finds t1 > 0 such that ξ2(0) ≤ ξ1(t) <388

ξ2(t) for all t ≥ t1, which contradicts the fact that ξ2(t) < ξ2(0) for all t ≥ t2. Hence, the389

interfaces ξ1(t), ξ2(t) and ξ3(t) must coalesce within finite time. �390

Figure 3.3. The anti-shock wave u(t, ·) connecting the asymptotic end
states ∓φ∗ at ±∞, the odd subsolution u−(t, ·) with zero x0, the odd su-
persolution u+(t, ·) with zero x1 and the interfaces ξ1(t), ξ2(t) and ξ3(t) of
u(t, ·) (we suppressed the t-dependency of the interfaces). We bound the
shaded area below the graph of u(t, ·) from below by the orange subareas.

4. Dynamics near a coalescence event for smooth flux functions391

Let us consider the initial-value problem for the viscous conservation law:392 {
ut = uxx + f ′(u)ux, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R, (4.1)393

where f ∈ C∞(R) satisfies f ′(0) = 0. We assume that the initial condition u0 ∈ C∞(R)394

is bounded and has bounded derivatives.395

From the well-posedness of the viscous conservation law in the class of smooth data,396

cf. Lemma 2.1, we know that there exists a smooth solution u ∈ C∞((0,∞) × R,R) to397

the initial-value problem (4.1). A zero x = ξ(t) of u(t, ·) on R is a C1-function of t as long398

as ux(t, ξ(t)) 6= 0 by the implicit function theorem.399
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Here we classify the first two bifurcations for which the function t→ ξ(t) exists for t400

in some interval [0, t0] with t0 > 0 such that u(t, ξ(t)) = 0 for t ∈ [0, t0] and ux(t, ξ(t)) 6= 0401

for t ∈ [0, t0) but may fail to exist for t > t0 because we have ux(t0, ξ0) = 0 at ξ0 = ξ(t0).402

4.1. Fold bifurcation. The main result is given by the following proposition.403

Proposition 4.1. Assume that there exists (t0, ξ0) ∈ (0,∞)× R such that

ux(t0, ξ0) = 0 and uxx(t0, ξ0) 6= 0.

Then, there exist two roots of u(t, ·) near ξ0 for t < t0 near t0, denoted by ξ1,2(t), such404

that405

ξ1,2(t)− ξ0 = ±
√

2(t0 − t) +O(t0 − t) as t→ t−0 (4.2)406

and407

ux(t, ξ1,2(t)) = ±
√

2(t0 − t)uxx(t0, ξ0) +O(t0 − t) as t→ t−0 . (4.3)408

No roots of u(t, ·) near ξ0 exist for t > t0 near t0.409

Proof. By using the equation of motion in (4.1), we have

ut(t0, ξ0) = uxx(t0, ξ0) 6= 0.

Moreover, using Taylor expansions for smooth solutions, we obtain for any root ξ(t) of
u(t, ·) near ξ0:

0 = u(t, ξ(t))

= u(t0, ξ0)︸ ︷︷ ︸
=0

+(t− t0)ut(t0, ξ0)︸ ︷︷ ︸
6=0

+(ξ(t)− ξ0)ux(t0, ξ0)︸ ︷︷ ︸
=0

+
1

2
(t− t0)2utt(t0, ξ0) + (t− t0)(ξ(t)− ξ0)utx(t0, ξ0) +

1

2
(ξ(t)− ξ0)2 uxx(t0, ξ0)︸ ︷︷ ︸

6=0

+O(3).

It follows from the Newton’s polygon in Figure 4.1 that this expansion defines two roots
for ξ(t), denoted by ξ1,2(t), which are given by the expansion

ξ1,2(t)− ξ0 = ±

√
2ut(t0, ξ0)

uxx(t0, ξ0)
(t0 − t) +O(t0 − t)

= ±
√

2(t0 − t) +O(t0 − t),

which exist for t < t0 near t0, coalesce at t = t0 and disappear for t > t0. We also obtain

ux(t, ξ1,2(t)) = ux(t0, ξ0)︸ ︷︷ ︸
=0

+(t− t0)utx(t0, ξ0) + (ξ1,2(t)− ξ0)uxx(t0, ξ0)︸ ︷︷ ︸
6=0

+O(2)

= ±
√

2(t0 − t)uxx(t0, ξ0) +O(t0 − t).

Both expansions prove the validity of (4.2) and (4.3). �410



EXTINCTION OF MULTIPLE SHOCKS 25

4.2. Pitchfork bifurcation. The main result is given by the following proposition.411

Proposition 4.2. Assume that there exists (t0, ξ0) ∈ (0,∞)× R such that

ux(t0, ξ0) = 0, uxx(t0, ξ0) = 0, and uxxx(t0, ξ0) 6= 0.

Then, there exist three roots of u(t, ·) near ξ0 for t < t0 near t0 and one root near ξ0 for412

t > t0 near t0. Two roots, denoted by ξ1,2(t), are not continued for t > t0 and satisfy413

ξ1,2(t)− ξ0 = ±
√

6(t0 − t) +O(t0 − t) as t→ t−0 , (4.4)414

whereas the third root, denoted by ξ(t), is continued for t > t0 and satisfies415

ξ(t)− ξ0 =
utt(t0, ξ0)

2uxxx(t0, ξ0)
(t0 − t) +O((t0 − t)2) as t→ t0. (4.5)416

We also have417

ux(t, ξ1,2(t)) = 2uxxx(t0, ξ0)(t0 − t) +O((t0 − t)3/2) as t→ t−0 (4.6)418

and419

ux(t, ξ(t)) = uxxx(t0, ξ0)(t− t0) +O((t0 − t)2) as t→ t0. (4.7)420

Remark 4.3. The scaling laws (4.4) and (4.6) were conjectured in [13] based on numerical421

simulations of spatially odd solutions of the modular Burgers’ equation. Proposition 4.2422

shows that this behavior holds for every scalar viscous conservation law (1.1) with smooth423

nonlinearity and smooth initial data.424

Remark 4.4. The asymptotic expansions (4.4) and (4.6) imply425

uxx(t, ξ1,2(t)) = ±uxxx(t0, ξ0)
√

6(t0 − t) +O(t0 − t) as t→ t−0 , (4.8)426

which was also conjectured in [13]. Indeed, if we differentiate u(t, ξ(t)) = 0 with the chain
rule for the smooth solutions u ∈ C∞((0,∞) × R,R) for t ∈ (0, t0), while assuming that
ux(t, ξ(t)) 6= 0, ξ(t) of u(t, ·), then we obtain from (4.1) with f ′(0) = 0:

ut(t, ξ(t)) + ξ′(t)ux(t, ξ(t)) = 0 ⇒ uxx(t, ξ(t)) = −ξ′(t)ux(t, ξ(t)),

for t ∈ (0, t0). Hence, (4.4) and (4.6) imply (4.8). Similarly, we can derive from (4.5)427

and (4.7):428

uxx(t, ξ(t)) =
1

2
utt(t0, ξ0)(t− t0) +O((t0 − t)2) as t→ t0, (4.9)429

for the third root ξ(t) which exists for all t near t0.430

Remark 4.5. It follows from (4.4) and (4.5) that the three interfaces satisfy the natural
ordering for the pitchfork bifurcation

ξ1(t) < ξ(t) < ξ2(t),

for t < t0 near t0. It follows from (4.6) and (4.7) that the sign of the first partial derivative431

of u(t, x) in x at x = ξ(t) is opposite to the one at x = ξ1,2(t) for t < t0 near t0.432
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Remark 4.6. If u0(−x) = −u0(x) and f ′(−z) = −f ′(z) for z ∈ R in (4.1), then
u(t,−x) = −u(t, x) for every t > 0 and x ∈ R. In this case of odd symmetry, if the
assumptions of Proposition 4.2 are satisfied and ξ0 = 0, then ξ(t) = 0 for all t ≥ 0.
Consequently, we have

u(t, 0) = uxx(t, 0) = 0,

for all t ≥ 0.433

Proof of Proposition 4.2. By using the equation of motion in (4.1), we have

ut(t0, ξ0) = 0 and utx(t0, ξ0) = uxxx(t0, ξ0) 6= 0.

Moreover, using Taylor expansions for smooth solutions, we obtain for any root ξ(t) of
u(t, ·) near ξ0:

0 = u(t, ξ(t))

= u(t0, ξ0)︸ ︷︷ ︸
=0

+(t− t0)ut(t0, ξ0)︸ ︷︷ ︸
=0

+(ξ(t)− ξ0)ux(t0, ξ0)︸ ︷︷ ︸
=0

+
1

2
(t− t0)2utt(t0, ξ0) + (t− t0)(ξ(t)− ξ0)utx(t0, ξ0)︸ ︷︷ ︸

6=0

+
1

2
(ξ(t)− ξ0)2 uxx(t0, ξ0)︸ ︷︷ ︸

=0

+
1

6
(t− t0)3uttt(t0, ξ0) +

1

2
(t− t0)2(ξ(t)− ξ0)uttx(t0, ξ0)

+
1

2
(t− t0)(ξ(t)− ξ0)2utxx(t0, ξ0) +

1

6
(ξ(t)− ξ0)3 uxxx(t0, ξ0)︸ ︷︷ ︸

6=0

+O(4).

It follows from the Newton’s polygon in Figure 4.1 that this expansion defines two sets434

of roots. One set appears at the balance of (t− t0)(ξ(t)− ξ0) and (ξ(t)− ξ0)3 terms and435

the other set appears at the balance between (t− t0)2 and (t− t0)(ξ(t)− ξ0) terms.436

The former set is represented by two roots denoted as ξ1,2(t) which satisfy the expan-
sion

ξ1,2(t)− ξ0 = ±

√
6utx(t0, ξ0)

uxxx(t0, ξ0)
(t0 − t) +O(t0 − t)

= ±
√

6(t0 − t) +O(t0 − t).
The two roots exist for t < t0 near t0, coealesce at t = t0 and disappear for t > t0. We
also obtain

ux(t, ξ1,2(t)) = ux(t0, ξ0)︸ ︷︷ ︸
=0

+(t− t0)utx(t0, ξ0)︸ ︷︷ ︸
6=0

+(ξ1,2(t)− ξ0)uxx(t0, ξ0)︸ ︷︷ ︸
=0

+
1

2
(t− t0)2uttx(t0, ξ0) + (t− t0)(ξ1,2(t)− ξ0)utxx(t0, ξ0)

+
1

2
(ξ1,2(t)− ξ0)2 uxxx(t0, ξ0)︸ ︷︷ ︸

6=0

+O(3),
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which implies

ux(t, ξ1,2(t)) = 2uxxx(t0, ξ0)(t0 − t) +O((t0 − t)3/2) as t→ t−0 .

These expansions prove the validity of (4.4) and (4.6).437

The latter set is represented by one root denoted by ξ(t) which satisfies the expansion

ξ(t)− ξ0 =
utt(t0, ξ0)

2utx(t0, ξ0)
(t0 − t) +O((t0 − t)2)

=
utt(t0, ξ0)

2uxxx(t0, ξ0)
(t0 − t) +O((t0 − t)2).

The root ξ(t) persists for all t near t0. We also obtain

ux(t, ξ(t)) = ux(t0, ξ0)︸ ︷︷ ︸
=0

+(t− t0)utx(t0, ξ0)︸ ︷︷ ︸
6=0

+(ξ(t)− ξ0)uxx(t0, ξ0)︸ ︷︷ ︸
=0

+
1

2
(t− t0)2uttx(t0, ξ0) + (t− t0)(ξ(t)− ξ0)utxx(t0, ξ0)

+
1

2
(ξ(t)− ξ0)2 uxxx(t0, ξ0)︸ ︷︷ ︸

6=0

+O(3),

which implies

ux(t, ξ(t)) = uxxx(t0, ξ0)(t− t0) +O((t0 − t)2) as t→ t0.

These expansions prove the validity of (4.5) and (4.6). �438
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Figure 4.1. Newton’s polygons used in the proofs of Proposition 4.1 (left)
and Proposition 4.2 (right).
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4.3. Bifurcations of higher order. By continuing the analysis from the previous two439

subsections, one can characterize coalescence of roots of u(t, ·) in the non-generic case when440

there exists an integer m ≥ 4 and (t0, ξ0) ∈ (0,∞) × R such that all partial derivatives441

of u(t, x) in x at (t0, ξ0) are zero up to the m-th order and the m-th partial derivative of442

u(t, x) in x at (t0, ξ0) is nonzero.443

4.4. Viscous Burgers’ equation with quadratic nonlinearity. We give a precise444

description of a class of solutions to the viscous Burgers’ equation whose zeros undergo445

a pitchfork bifurcation. Thus, we take f(u) = u2 in (4.1) and consider the initial value446

problem for the Burgers’ equation447 {
ut = uxx + 2uux, t > 0,
u(0, x) = u0(x), x ∈ R . (4.10)448

As is well-known, (4.10) can be solved explicitly using the Cole-Hopf transformation (see449

Section 3.6 in [11]). We will use the decomposition near the stationary shock-wave solution450

φ(x) = tanh(x) of (4.10) to show that the pitchfork bifurcation of Proposition 4.2 does451

happen within finite time for all solutions of (4.10) with spatially odd initial data u0452

having a single zero on (0,∞). The main result is given by the following proposition.453

Proposition 4.7. Let u0 ∈ C∞(R) satisfy454

• u0 ∓ 1, u′0 and u′′0 are L2-integrable on R±,455

• u0(−x) = −u0(x) for x ∈ R,456

• for some x0 ∈ R+, we have u0(x) < 0 for x ∈ (0, x0) and u0(x) > 0 for x ∈ (x0,∞).457

Then, there exist a time t0 ∈ (0,∞) and ξ ∈ C∞((0, t0),R+) such that the solution458

u ∈ C∞((0,∞)× R,R) to the initial-value problem (4.10) satisfies:459

(i) limx→±∞ u(t, x) = ±1 for t ≥ 0,460

(ii) u(t,−x) = −u(t, x) for t ≥ 0 and x ∈ R,461

(iii) u(t, x) < 0 for x ∈ (0, ξ(t)) and u(t, x) > 0 for x ∈ (ξ(t),∞) if t ∈ [0, t0),462

(iv) u(t, x) > 0 for x ∈ (0,∞) if t ≥ t0.463

Moreover, we have ux(t0, 0) = 0, uxx(t0, 0) = 0, and uxxx(t0, 0) > 0.464

Remark 4.8. For u ∈ C∞((0,∞)×R,R) and ξ ∈ C∞((0, t0),R+) in Proposition 4.7 we465

obtain the identities (4.4), (4.5), (4.6) and (4.7), since the assumptions of Proposition 4.2466

are satisfied.467

Proof of Proposition 4.7. We use the decomposition of u at the stationary shock-wave468

solution x 7→ tanh(x) of 0 = 2uux + uxx and write469

u(t, x) = tanh(x) + v(t, x). (4.11)470

The perturbation v (which is not necessarily small) satisfies471

vt = vxx + 2vvx + 2(tanh(x)v)x. (4.12)472
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This nonlinear equation can be linearized with the Cole-Hopf transformation473

v(t, x) = ∂x logψ(t, x). (4.13)474

By substituting (4.13) into (4.12), we obtain the following linear advection-diffusion equa-475

tion476

ψt = ψxx + 2 tanh(x)ψx. (4.14)477

We are looking for a solution of (4.14) which is bounded away from zero by a positive478

constant. Without loss of generality, this constant can be normalized to unity, so that we479

can look for a solution of the form480

ψ(t, x) = 1 + ψ̂(t, x), ψ̂(t, ·) ∈ H2(R), t ∈ R+. (4.15)481

To obtain the exact solution of (4.14), we write482

ψ̂(t, x) = sech(x)χ(t, x) (4.16)483

and obtain the linear diffusion equation with constant dissipation for χ:484

χt = χxx − χ. (4.17)485

The solutions of this linear equation are given by486

χ(t, x) =
e−t√
4πt

∫
R
χ0(y) e−

(x−y)2
4t dy, (4.18)487

where χ0 := χ(0, ·) denotes the initial condition. The associated solution of the Burgers’488

equation (4.14) is then obtained from (4.11), (4.13), (4.15), and (4.16) in the form:489

u(t, x) =
sinh(x) + χx(t, x)

cosh(x) + χ(t, x)
, (4.19)490

where χ(t, x) is given by (4.18).491

If χ0 ∈ C∞(R) satisfies 1 + χ′′0(0) < 0 and χ0(0) > 0, then

u′0(0) = (1 + χ′′0(0))/(1 + χ0(0)) < 0,

so that there exists a root x0 ∈ R+ of u0. The positive root x0 must be unique by the492

assumptions on u0. Thus, we find by (4.11), (4.13), (4.15) and (4.16) that the assumptions493

on u0 are in one-to-one correspondence with the class of even functions χ0 ∈ C∞(R) such494

that sech(·)χ0 ∈ H2(R) and495

• χ0(x) > 0 for all x ∈ R,496

• x 7→ cosh(x) + χ′′0(x) is monotonically increasing on R+ with 1 + χ′′0(0) < 0.497

Now take such χ0 ∈ C∞(R). Then, cosh(x) +χ0(x) > 0 for all x ∈ R and sinh(x) +χ′0(x)498

has a single root x0 ∈ (0,∞). Since χ0 is even, so is χ ∈ C∞((0,∞) × R,R), which499

implies that u(t, ·) ∈ C∞((0,∞)×R,R) is spatially odd, so that (ii) holds. Furthermore,500

sech(·)χ0 ∈ H2(R) ensures by (4.18) that sech(·)χ(t, ·) ∈ H2(R) for all t ≥ 0. Since501

ψ̂(t, ·) ∈ H2(R) for all t ≥ 0, we have from (4.11), (4.13), and (4.15) that limx→±∞ v(t, x) =502

0 and limx→±∞ u(t, x) = ±1, so that (i) holds.503
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It follows from the exact solution (4.18) that for every t ≥ 0, we have χ(t, x) > 0
for all x ∈ R and x 7→ cosh(x) + χxx(t, x) is monotonically increasing on (0,∞). Hence,
cosh(x) + χ(t, x) > 0 for all x ∈ R and sinh(x) + χx(t, x) has a single root ξ(t) ∈ (0,∞)
for t ∈ [0, t0) as long as 1 + χxx(t, 0) < 0. Since

χxx(t, 0) =
e−t√
4πt

∫
R
χ′′0(y) e−

y2

4t dy

and sech(·)χ0 ∈ H2(R), the mapping t 7→ χxx(t, 0) is monotonically increasing from a504

negative value χ′′0(0) < −1 towards 0 as t → +∞. Hence, there exists a unique time505

t0 ∈ R+ such that 1 + χxx(t, 0) crosses 0 at t = t0 and becomes positive for t > t0 so that506

(iii) and (iv) hold.507

Let us now show the non-degeneracy assumption at t = t0 for which ux(t0, 0) = 0. Since
the solution is smooth and spatially odd, we also have uxx(t0, 0) = 0. Since the mapping
t 7→ χxx(t, 0) is monotonically increasing and t 7→ χ(t, 0) is monotonically decreasing,
then t 7→ ux(t, 0) is monotonically increasing, where

ux(t, 0) =
1 + χxx(t, 0)

1 + χ(t, 0)
.

Thus, utx(t0, 0) > 0 and the Burgers’ equation in (4.10) implies uxxx(t0, 0) > 0. �508
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Figure 4.2. An illustration of the exact solution to the Burgers’ equa-
tion (4.10) obtained by means of (4.18) and (4.19). The initial condition
for (4.18) is set as χ0(x) := cosh2(1)sech(x) so that the initial condition u0
for (4.10) has a positive zero at x = 1. The integration of the exact solution
in (4.18) was executed by using a numerical integration package. The root
ξ(t) of u(t, ·) on (0,∞) exists for t ∈ [0, t0), coalesces at 0 at t = t0 and
disappears for t > t0, where t0 ≈ 0.205. The solution u(t, x) approaches the
stationary shock wave x 7→ tanh(x) as t→∞, which is represented by the
dashed line.
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5. Numerical simulations in the modular Burgers’ equation509

Here we report on numerical simulations in the viscous Burgers’ equation with modular510

nonlinearity. The associated initial value problem reads511 {
ut = uxx + |u|x, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R . (5.1)512

Numerical computations in [13] implemented the finite-difference method for spatially513

odd solutions of (5.1), see Lemma 3.8, for which the initial-value problem (5.1) can be514

closed on the half-line [0,∞) subject to a Dirichlet boundary condition at x = 0. The515

jump condition (3.27) was used at x = 0 as well as at x = ±ξ(t). The three interfaces516

were transformed to time-independent grid points after a scaling transformation.517

We will confirm the scaling law (1.5) of the finite-time extinction of multiple interfaces518

in the initial-value problem (5.1). Compared to the previous numerical simulations in [13],519

we use a regularization for the modular nonlinearity, for which the finite-difference method520

can be implemented without any additional equations for the interface dynamics. The521

numerical data is extracted from zeros of the solution u(t, ·) on (0,∞) to determine the522

power of the scaling law of the interface coalescence.523

5.1. Regularization. The modular Burgers’ equation can be rewritten as524

ut = uxx + sgn(u)ux, (5.2)525

where sgn(u) has a jump discontinuity at u = 0. To smoothen out the jump, we define
the following smooth nonlinearity for ε > 0,

f ′ε(u) :=
u√

ε2 + u2
.

We have f ′ε(u)→ sgn(u) as ε→ 0 for all u ∈ R, i.e. f ′ε(u) converges pointwise to sgn(u).526

This yields the regularized equation527

ut = uxx +
u√

ε2 + u2
ux. (5.3)528

We consider initial data u(0, x) = u0(x) for shock and anti-shock waves with the boundary529

condition u0(x)→ u± as x→ ±∞, where u± have opposite signs. The case of u− < 0 <530

u+ includes a monotone, steadily traveling shock wave, to which the evolution of small531

exponentially decaying perturbations converges [9]. The anti-shock case of u− > 0 > u+532

does not admit any steadily traveling shock-wave solutions.533

For the simulation of shock-wave solutions with the normalized asymptotic limits534

u± = ±1, we take the following initial condition:535

u0(x) = tanh(x)
(

1− eα(1−x
2)
)
, (5.4)536

where α > 0 is a free parameter. The parameter α > 0 can be used to construct slopes537

of the initial data at x = 1. For the simulation of anti-shock wave solutions with the538
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normalized asymptotic limits u± = ∓1, we take the negative version of (5.4), that is,539

u0(x) = − tanh(x)
(

1− eα(1−x
2)
)
. (5.5)540

Both in (5.4) and (5.5), the convergence of u0(x)→ u± as x→ ±∞ is exponentially fast.541

5.2. Finite-difference method. We rewrite the regularized Burgers’ equation (5.3) in542

the equivalent form,543

ut = uxx + fε(u)x, (5.6)544

with fε(u) =
√
ε2 + u2ε − ε.545

We will use the Crank-Nicolson method based on the trapezoidal rule to set up our546

numerical simulations for the equation (5.6). For the numerical discretization, we first547

define the spatial domain [0, L] partitioned into (N + 1) grid points with spatial step h548

and the time domain [0, T ] partitioned into M grid points with time step τ . We let xn549

for 0 ≤ n ≤ N be the spatial grid point and tm for 0 ≤ m ≤ M be the temporal grid550

point. We impose a Dirichlet condition at x = 0 which yields um0 = 0 and a Neumann551

condition at x = L. By using the virtual grid point xN+1 > L, the Neumann condition552

reads umN+1 = umN−1.553

The Crank-Nicolson method is based on the discretization rule,

um+1 = um +
τ

2h2
[
umn+1 − 2umn + umn−1 + um+1

n+1 − 2um+1
n + um+1

n−1
]

+
τ

4h

[
fε(u

m
n+1)− fε(umn−1) + fε(u

m+1
n+1 )− fε(um+1

n−1 )
]
.

We need to solve N equations for N unknowns {um+1
n }Nn=1 at each 0 ≤ m ≤M−1. Hence,

we rearrange the discretization scheme to get the unknown variables on the left and the
known variables on the right as

um+1
n +

τ

h2
um+1
n − τ

2h2
(
um+1
n+1 + um+1

n−1
)
− τ

4h

[
fε(u

m+1
n+1 )− fε(um+1

n−1 )
]

=

umn +
τ

2h2
(
umn+1 + umn−1

)
− τ

h2
umn +

τ

4h

[
fε(u

m
n+1)− fε(umn−1)

]
.

(5.7)

To simplify the expression, we use a predictor-corrector method (also known as Heun’s554

method). The idea is to use the solution at an initial point, um, and to calculate an initial555

guess value of the next point (u∗)m+1. Heun’s method then improves this initial guess556

value using the trapezoidal rule to determine a better estimate of the next term um+1.557

To represent the predictor-corrector method, we introduce two matrices:

A± =



1± τ
h2
∓ τ

2h2
0 · · · 0

∓ τ
2h2

1± τ
h2
∓ τ

2h2
· · · ...

... ∓ τ
2h2

. . . . . .
...

...
. . . . . . . . .

...
... ∓ τ

2h2
1± τ

h2
∓ τ

2h2

0 0 · · · ∓ τ
h2

1± τ
h2


,



EXTINCTION OF MULTIPLE SHOCKS 33

where the elements of A± at the (N,N − 1) entry are doubled due to the Neumann
condition umN+1 = umN−1. We also represent the regularized terms in matrix vector notion,

b(um) =



fε(u
m
2 )

fε(u
m
3 )− fε(um1 )

fε(u
m
4 )− fε(um2 )

...
fε(u

m
N)− fε(umN−2)

0

 ,

where we note that fε(0) = 0 by construction of fε and the Dirichlet condition, and558

fε(u
m
N+1)− fε(umN−1) = 0 by the Neumann condition umN+1 = umN−1. The correction step is559

computed from (5.7) by Euler’s method as560

(u∗)m+1 = A−1+

(
A−u

m +
τ

2h
b(um)

)
. (5.8)561

The prediction step is computed from (5.7) by Heun’s method as562

um+1 = A−1+

(
A−u

m +
τ

4h
b(um) +

τ

4h
b((u∗)m+1)

)
. (5.9)563

We now extract the interface position ξ(tm) from um at t = tm by finding the two adjacent
grid points xn and xn+1, where un and un+1 are of opposite signs. By the straight line
interpolation between (xn, un) and (xn+1, un+1), we obtain

u(x) =

(
un+1 − un
xn+1 − xn

)
(x− xn) + un.

The value of ξ(tm) is obtained by finding the root of u as564

ξ(tm) =
unxn+1 − un+1xn

un − un+1

. (5.10)565

5.3. Numerical simulations for shock waves. We have performed iterations on the566

domain [0, L] discretized with the grid size h = 0.01. The time step was chosen to be567

τ = 0.0005. Moreover, we took ε = 10−16.568

Figure 5.1 depicts the outcome of numerical simulations of the regularized approxi-569

mation (5.6) of the modular Burgers’ equation (5.2) for the initial condition (5.4) with570

α = 1 for which we take L = 5. It is observed that ξ(t) indeed goes to 0 in finite time571

after which numerical computations can be continued. Yet, we stop them since we are572

only interested in the dynamics up to coalescence.573

We have also performed numerical simulations for the initial condition (5.4) with α = 4574

shown in Figure 5.2. For these simulations, we have taken L = 10 to avoid the boundary575

effects from the Neumann boundary condition at x = L. With smaller values of L, the576

solution decays below 1 at x = L before the interface reaches 0. Although the initial577

condition u0 has larger negative parts on [0, 1], we observe that ξ(t) still goes to 0 in a578

finite time. Compared to Figure 5.1, ξ(t) is non-monotone as it first expands before it579

converges to 0.580
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Figure 5.1. Evolution of (5.6) for the initial data (5.4) with α = 1. Left:
u(t, x) versus x for times t = 0, t = 0.126, and t = 0.2535. Right: evolution
of ξ(t) versus t.
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Figure 5.2. The same as in Figure 5.1 but with α = 4 and for times t = 0,
t = 0.692, and t = 1.3285.

To confirm the scaling law (1.5) of the interface coalescence, we use linear regression581

in the log-log variable to approximate the associated power. That is, we consider582

log ξ(t) versus c1 log (t0 − t) + c2, (5.11)583

where the coefficient c1 represents the power of the scaling law. Note that the regres-584

sion (5.11) depends on the unknown time t0 of the interface coalescence. Thus, we first585

conduct computations for t0 defined on a numerical grid and obtain the best fit by mini-586

mizing the approximation error.587
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Figure 5.3. Left: power of the linear regression for Figure 5.1. Right:
approximation error versus t0.
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Figure 5.4. The same as in Figure 5.3 but for the data in Figure 5.2.

The outcomes of these computations are depicted in Figures 5.3 and 5.4 for the ap-588

proximations shown in Figures 5.1 and 5.2. The left panel shows the power versus t0 and589

the right panel shows the corresponding approximation error versus t0. The minimal error590

for α = 1 is attained at t0 = 0.2538 and this value of t0 corresponds to c1 = 0.5068. The591

minimal error for α = 4 is attained at t0 = 1.3853 and this value of t0 corresponds to592

c1 = 0.5127. In both cases, the power is close to the claimed value of 0.5. We note that593

the time t0 of extinction is larger for α = 4 than for α = 1.594

5.4. Numerical simulations for anti-shock waves. We have also simulated (5.6) for595

the anti-shock wave initial condition (5.5). Figures 5.5 and 5.6 depict the outcomes of596

numerical simulations for α = 1 and α = 4 respectively. For α = 1, the interface position597
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ξ(t) goes to 0 monotonically, similar to the computations in Figure 5.1. For α = 4, ξ(t)598

first expands and then reduces towards 0, similar to Figure 5.2.599
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Figure 5.5. Evolution of (5.6) for the initial data (5.5) with α = 1. Left:
u(t, x) versus x for times t = 0, t = 0.1635, and t = 0.328. Right: evolution
of ξ(t) versus t.
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Figure 5.6. Tne same as in Figure 5.5 but with α = 4 and for times t = 0,
t = 0.7225, and t = 1.4455.

Figures 5.7 and 5.8 show the approximate power of the scaling law and the approxi-600

mation error versus t0 for the simulations shown in Figures 5.5 and 5.6. The minimum601

error for α = 1 is attained at t0 = 0.3284 and this value of t0 corresponds to the power602

c1 = 0.4846. The minimum error for α = 4 is attained at t0 = 1.4459 and this value603

of t0 corresponds to c1 = 0.4884. In both cases, the power is close to 0.5 and thus, the604

scaling law (1.5) is shown numerically to hold for anti-shock wave solutions considered605

here. However, the finite time of extinction is slightly larger for the anti-shock waves606

compared to that of the shock waves both for α = 1 and α = 4.607
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Figure 5.7. Left: power of the linear regression for Figure 5.5. Right:
approximation error versus t0.
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Figure 5.8. The same as in Figure 5.7 but for the data in Figure 5.6.

Appendix A. Proofs of well-posedness and approximation results608

Here we provide proofs of the well-posedness and approximation results stated in §2.609

Local well-posedness of the scalar viscous conservation law (1.1), as well as approximation610

by solutions of the regularized equation (2.1), follows from standard theory for semilin-611

ear parabolic equations, cf. [10], whereas global well-posedness relies on the comparison612

principle, cf. [14, 17].613

Proof of Lemma 2.1. First, it is well-known that ∂2x is a sectorial operator on Cub(R) with
domain C2

ub(R) and there exists a constant C > 0 such that

‖∂mx e∂
2
xt u‖∞ ≤ Ct−

m
2 ‖u‖∞, (A.1)
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for m = 0, 1, 2, t > 0 and u ∈ Cub(R). Second, the map N : C1
ub(R) → Cub(R) given

by N(u) = f ′(u)ux is locally Lipschitz continuous since f is smooth. Third, C1
ub(R) is

an intermediate space of class J1/2 between Cub(R) and C2
ub(R). Hence, it follows from

standard analytic semigroup theory, cf. [10], that there exist a maximal time T ∈ (0,∞]
and a unique classical solution

u ∈ C
(
[0, T ), C1

ub(R)
)
∩ C

(
(0, T ), C2

ub(R)
)
∩ C1

(
(0, T ), Cub(R)

)
,

of (1.1) with initial condition u(0, ·) = u0 ∈ C1
ub(R). Moreover, if we have T <∞, then it614

holds lim supt→T− ‖u(t, ·)‖W 1,∞ =∞. A standard bootstrapping argument, using the fact615

that f ∈ C∞(R), then yields ∂kt u(t, ·) ∈ C l
ub(R) for any k, l ∈ N0 and t ∈ [0, T ) implying616

u ∈ C∞
(
(0, T )× R,R

)
.617

It is well-known [14, 17] that the scalar conservation law (1.1) obeys a comparison
principle yielding m0 ≤ u(t, ·) ≤M0 for all t ∈ [0, T ) upon comparison with the constant
solutions u ≡ m0 and u ≡ M0 of (1.1). Differentiating the mild formulation of (1.1), we
obtain

ux(t, ·) = e∂
2
xt u′0 +

∫ t(1−δ)

0

∂2x e∂
2
x(t−s) f(u(s, ·))ds

+

∫ t

t(1−δ)
∂x e∂

2
x(t−s) f ′(u(s, ·))ux(s, ·)ds, (A.2)

for t ∈ [0, T ), where δ ∈ (0, 1) will be fixed a posteriori. Let R ≥ 1 be such that

sup{|f(v)|+ |f ′(v)| : v ∈ [m0,M0]} ≤ R.

Fix some τ ∈ [0, T ). Taking norms in (A.2), while using (A.1) and the fact that m0 ≤
u(t, ·) ≤M0, we establish

‖ux(t, ·)‖∞ ≤ C‖u0‖W 1,∞ +

∫ t(1−δ)

0

CR

t− s
ds+

∫ t

t(1−δ)

CR sup{‖ux(s, ·)‖∞ : s ∈ [0, τ ]}√
t− s

ds

≤ C
(
‖u0‖W 1,∞ +R| log(δ)|+ 2R

√
δt sup{‖ux(s, ·)‖∞ : s ∈ [0, τ ]}

)
for all t ∈ [0, τ ]. Thus, setting δ = 1

16C2R2 max{1,τ} ∈ (0, 1) and taking suprema in the latter

inequality, we arrive at

sup{‖ux(s, ·)‖∞ : s ∈ [0, τ ]} ≤ 2C
(
‖u0‖W 1,∞ +R log

(
16C2R2 max{1, τ}

))
,

for all τ ∈ [0, T ). We conclude that lim supt→T− ‖u(t, ·)‖W 1,∞ =∞ cannot occur, implying618

that T =∞ and the classical solution is global. �619

Proof of Lemma 2.2. Recall that ∂2x is a sectorial operator on Cub(R) satisfying (A.1). In620

addition, the flux function f : Cub(R) → Cub(R) is locally Lipschitz continuous. Hence,621

by a standard fixed point argument as in the proofs of [10, Theorem 7.1.2 and Proposi-622

tion 7.2.1] there exist a maximal time T ∈ (0,∞] and a unique solution u ∈ C
(
[0, T ), Cub(R)

)
623

of (2.2). Moreover, if T <∞, then it holds lim supt→T− ‖u(t, ·)‖∞ =∞.624
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Let f̃ ∈ C∞(R) be a function satisfying

sup
{∣∣f(v)− f̃(v)

∣∣ : v ∈ [−m0,M0]
}
< δ,

for some δ > 0. By Lemma 2.1 there exists a unique global classical solution

ũ ∈ C
(
[0,∞), C1

ub(R)
)
∩ C

(
(0,∞), C2

ub(R)
)
∩ C1

(
(0,∞), Cub(R)

)
of the integral equation

ũ(t, ·) = e∂
2
xt u0 +

∫ t

0

∂x e∂
2
x(t−s) f̃(ũ(s, ·))ds. (A.3)

satisfying m0 ≤ ũ(t, ·) ≤M0 for all t ≥ 0. From (2.2) and (A.3), we obtain

u(t, ·)− ũ(t, ·) =

∫ t

0

∂x e∂
2
x(t−s)

(
f(u(s, ·))− f(ũ(s, ·)) + f(ũ(s, ·))− f̃(ũ(s, ·))

)
ds, (A.4)

for all t ∈ [0, T ). Denote by L > 0 the Lipschitz constant of f on [m0−1,M0 +1]. Taking
norms in (A.4) we arrive at

‖u(t, ·)− ũ(t, ·)‖∞ ≤ C

∫ t

0

L‖u(s, ·)− ũ(s, ·)‖∞ + δ√
t− s

ds,

for any t ∈ [0, T ) with sup{‖u(s, ·) − ũ(s, ·)‖∞ : s ∈ [0, t]} ≤ 1. Hence, Grönwall’s
Lemma [10, Lemma 7.0.3] yields a constant M > 0, depending only on C and L, such
that

‖u(t, ·)− ũ(t, ·)‖∞ ≤Mδ
√
t, (A.5)

for all t ∈ [0, T ) with sup{‖u(s, ·)− ũ(s, ·)‖∞ : s ∈ [0, t]} ≤ 1.625

We argue by contradiction and assume T <∞. Take

0 < δ ≤ 1

2M
√
T
.

If
sup{‖u(s, ·)− ũ(s, ·)‖∞ : s ∈ [0, T )} > 1,

then by continuity, there must exist t ∈ [0, T ) with

sup{‖u(s, ·)− ũ(s, ·)‖∞ : s ∈ [0, t]} = 1.

However, (A.5) then implies

‖u(s, ·)− ũ(s, ·)‖∞ <
1

2

for any s ∈ [0, t], which yields a contradiction. Hence, we have

sup{‖u(s, ·)− ũ(s, ·)‖∞ : s ∈ [0, T )} ≤ 1

and (A.5) is satisfied for all t ∈ [0, T ). So, we must have T =∞ and u(t, ·) is global.626

Since it holds m0 ≤ ũ(t, ·) ≤ M0 for all t ≥ 0 and, in addition, δ > 0 can be chosen627

arbitrarily small, it follows m0 ≤ u(t, ·) ≤M0 for all t ≥ 0 by (A.5), which concludes the628

proof of (2.4). �629
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Proof of Lemma 2.3. First, Lemma 2.2 implies that m0 ≤ u(t, ·) ≤M0 for all t ≥ 0. Sec-

ond, there exists by Lemma 2.2 constants M̃, δ̃0 > 0 such that if we take δ ∈ (0, δ̃0), then
there exists a unique global classical solution (2.3) of (2.1) satisfying m0 ≤ ũ(t, ·) ≤ M0

and ‖u(t, ·) − ũ(t, ·)‖∞ ≤ M̃δ
√
t for all t ≥ 0. Thus, ũ(t, ·) solves the mild formula-

tion (A.3). Subtracting (A.3) from (2.2) and differentiating we obtain

ux(t, ·)− ũx(t, ·) =

∫ t(1−δ)

0

∂2x e∂
2
x(t−s) (f(u(s, ·))− f(ũ(s, ·))) ds

+

∫ t(1−δ)

0

∂2x e∂
2
x(t−s)

(
f(ũ(s, ·))− f̃(ũ(s, ·))

)
ds

+

∫ t

t(1−δ)
∂x e∂

2
x(t−s)

(
f ′(u(s, ·))− f̃ ′(ũ(s, ·))

)
ux(s, ·)ds

+

∫ t

t(1−δ)
∂x e∂

2
x(t−s) f̃ ′(ũ(s, ·)) (ux(s, ·)− ũx(s, ·)) ds,

(A.6)

for all t ≥ 0. Denote by L > 0 the Lipschitz constant of f on [m0,M0], and set K =
sup{‖ux(s, ·)‖∞ : 0 ≤ s ≤ τ} and R1 = sup{|f ′(v)| : v ∈ [m0,M0]}. Thus, taking norms
in (A.6), while using (A.1), we arrive at

‖ux(t, ·)− ũx(t, ·)‖∞ ≤ C

∫ t

t(1−δ)

K (R +R1)√
t− s

ds+ C

∫ t

0

R‖ux(s, ·)− ũx(s, ·)‖∞√
t− s

ds

+ C

∫ t(1−δ)

0

δ
(

1 + LM̃
√
t
)

t− s
ds,

for all t ∈ [0, τ ]. Hence, Grönwall’s Lemma [10, Lemma 7.0.3] yields a constant M > 0,
independent of δ, such that

‖ux(t, ·)− ũx(t, ·)‖∞ ≤M
√
δt,

for all t ≥ 0. Thus, taking δ0 < min{δ̃0, ε2/(M2τ), ε/(M̃
√
τ)} we establish (2.5). �630

Proof of Lemma 2.4. We switch to the co-moving frame ξ = x−ct, in which equation (1.1)
reads

wt = wξξ + cwξ + f(w)ξ. (A.7)

If w(t, ·) is a mild solution of (A.7) with initial condition w(0, ·) = u0, then the difference
z = w − φ is a mild solution of

zt = (zξ + cz + f(z + φ(ξ))− f(φ(ξ)))ξ (A.8)

and has initial condition z0 = u0 − φ ∈ C1
ub(R) ∩ L1(R). The integrated version of

equation (A.8) reads

vt = vξξ + cvξ + f (vξ + φ(ξ))− f(φ(ξ)), (A.9)
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where the relevant solution has initial condition v0 ∈ C2
ub(R) given by

v0(ξ) =

∫ ξ

−∞
z0(y)dy.

First, the nonlinearity N : C1
ub(R) → Cub(R) given by N(v) = cvξ + f(vξ + φ) − f(φ)

is well-defined and locally Lipschitz continuous. Second, ∂2ξ is a sectorial operator on

Cub(R) with dense domain C2
ub(R). Third, C1

ub(R) is an intermediate space of class J1/2
between Cub(R) and C2

ub(R). Therefore, standard analytic semigroup theory, cf. [10,
Theorem 7.1.2 and Propositions 7.1.10 and 7.2.1], yields a maximal time T ∈ (0,∞] and
a solution v ∈ C

(
[0, T ), C2

ub(R)
)

of

v(t, ·) = e∂
2
ξ t v0 +

∫ t

0

e∂
2
ξ (t−s) (cvξ(s, ·) + f(vξ(s, ·) + φ)− f(φ)) ds. (A.10)

Moreover, if T < ∞, then we must have lim supt→T− ‖v(t, ·)‖W 1,∞ = ∞. Differentiat-
ing (A.10) with respect to ξ and setting z = vξ, we obtain

z(t, ·) = e∂
2
ξ t z0 +

∫ t

0

∂ξ e∂
2
ξ (t−s) (cz(s, ·) + f(z(s, ·) + φ)− f(φ)) ds. (A.11)

Hence, z ∈ C
(
[0, T ), C1

ub(R)
)

is a mild solution of (A.8) with initial condition z0. Thus,
we have

vξ(t, ξ) = z(t, ξ) = w(t, ξ)− φ = u(t, ξ + ct)− φ(ξ),

where u ∈ C
(
[0,∞), Cub(R)

)
is the global mild solution of (A.7), established in Lemma 2.2,

satisfying ‖u(t, ·)‖∞ ≤ ‖u0‖∞ for t ≥ 0. So, it holds

‖vξ(t, ·)‖∞ = ‖z(t, ·)‖∞ ≤ ‖u0‖∞ + ‖φ‖∞
for all t ≥ 0. Taking norms in (A.10) and using (A.1) we arrive at

‖v(t, ·)‖∞ ≤ C

(
‖v0‖∞ + t sup

0≤s≤t
‖cz(s, ·) + f(z(s, ·) + φ)− f(φ)‖∞

)
. (A.12)

Clearly, the right-hand side of (A.12) does not blow up as t→ T− yielding T =∞. Thus,631

we have obtained a global solution u ∈ C
(
[0,∞), C1

ub(R)
)

of (2.2).632

Finally, we establish L1-integrability of u(t, ·)−φ for all t ≥ 0. Since φ is bounded and
f is locally Lipschitz continuous, we observe that the nonlinearity G : L1(R) ∩ Cub(R)→
L1(R)∩Cub(R) given by G(z) = cz+ f(z+φ)− f(φ) is well-defined and locally Lipschitz
continuous. On the other hand, ∂2ξ is a sectorial operator on Cub(R) ∩ L1(R) and there
exists a constant C > 0 such that

‖∂mξ e∂
2
ξ t g‖p ≤ Ct−

m
2 ‖g‖p, (A.13)

for p = 1,∞, m = 0, 1, and g ∈ Lp(R). Hence, by a standard fixed point argument as
in the proofs of [10, Theorem 7.1.2 and Proposition 7.2.1], there exist a maximal time
τ ∈ (0,∞] and a unique solution z ∈ C

(
[0, τ), Cub(R) ∩ L1(R)

)
of (A.11) such that, if

τ < ∞, we have lim supt→τ− ‖z(t, ·)‖L1∩L∞ = ∞. Let L > 0 be the Lipschitz constant of
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f on [−‖u0‖− ‖φ‖∞, ‖u0‖∞+ ‖φ‖∞]. Taking norms in (A.11) and using (A.13) we arrive
at

‖z(t, ·)‖1 ≤ C

(
‖z0‖1 +

∫ t

0

(|c|+ L)‖z(s, ·)‖1√
t− s

ds

)
,

for t ∈ [0, τ). Hence, Grönwall’s Lemma [10, Lemma 7.0.3] yields a constant M > 0,
depending only on C, |c|, and L, such that

‖z(t, ·)‖1 ≤M‖z0‖1,

for all t ∈ [0, τ). Combining the latter with ‖z(t, ·)‖∞ ≤ ‖u0‖∞ + ‖φ‖∞ for all t ∈ [0, τ)633

yields τ =∞. We conclude that z(t, ·) = w(t, ·)− φ = u(t, ·+ ct)− φ, and thus u(t, ·)− φ634

itself, is L1-integrable for all t ≥ 0. �635
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