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It is shown how to compute the instability rates for the double-periodic solutions to the
cubic NLS (nonlinear Schrödinger) equation by using the Lax linear equations. The wave
function modulus of the double-periodic solutions is periodic both in space and time
coordinates; such solutions generalize the standing waves which have the time-
independent and space-periodic wave function modulus. Similar to other waves in the
NLS equation, the double-periodic solutions are spectrally unstable and this instability is
related to the bands of the Lax spectrum outside the imaginary axis. A simple numerical
method is used to compute the unstable spectrum and to compare the instability rates of
the double-periodic solutions with those of the standing periodic waves.
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1 INTRODUCTION

Peregrine breather is a rogue wave arising on the background of the constant-amplitude wave due to
its modulational instability [1, 2]. The focusing cubic NLS (nonlinear Schrödinger) equation is the
canonical model which describes both the modulational instability and the formation of rogue waves.
Formation of rogue waves on the constant-amplitude background have been modeled from different
initial data such as local condensates [3], multi-soliton gases [4–6], and periodic perturbations [7, 8].
Rogue waves have been experimentally observed both in hydrodynamical and optical laboratories [9]
(see recent reviews in [10, 11]).

Mathematical theory of rogue waves on the constant-amplitude background has seen many recent
developments. universal behavior of the modulationally unstable constant-amplitude background was
studied asymptotically in [12, 13]. The finite-gap method was employed to relate the unstable modes on
the constant-amplitude background with the occurrence of rogue waves [14, 15]. Rogue waves of infinite
order were constructed in [16] based on recent developments in the inverse scatteringmethod [17]. Rogue
waves of the soliton superposition were studied asymptotically in the limit of many solitons [18, 19].

At the same time, rogue waves were also investigated on the background of standing periodic
waves expressed by the Jacobian elliptic functions. Such exact solutions to the NLS equation were
constructed first in [20] (see also early numerical work in [21] and the recent generalization in [22]).
It was confirmed in [23] that these rogue waves arise due to the modulational instability of the
standing periodic waves [24] (see also [25, 26]). Instability of the periodic standing waves can be
characterized by the separation of variables in the Lax system of linear equations [27] (see also [28,
29]), compatibility of which gives the NLS equation. Instability and rogue waves on the background
of standing periodic waves have been experimentally observed in [30].

Themain goal of this paper is to compute the instability rates for the double-periodic solutions to the NLS
equation, for which the wave function modulus is periodic with respect to both space and time coordinates.
In particular, we consider two families of double-periodic solutions expressed as rational functions of
the Jacobian elliptic functions which were constructed in the pioneering work [31]. These solutions
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represent perturbations of the Akhmediev breathers and describe
generation of either phase-repeated or phase-alternating wave
patterns [32, 33]. Rogue waves on the background of the double-
periodic solutions were studied in [34] (see also numerical work
in [35, 36]). Experimental observation of the double-periodic
solutions in optical fibers was reported in [37].

The double-periodic solutions constructed in [31] are
particular cases of the quasi-periodic solutions of the NLS
equation given by the Riemann Theta functions of genus two
[38–40]. Rogue waves for general quasi-periodic solutions of any
genus were considered in [41–43].

Instability of the double-periodic solutions is studied using the
Floquet theory for the Lax system of linear equations both in space
and time coordinates. We compute the instability rates of the
double-periodic solutions and compare them with those for the
standing periodic waves. In order to provide a fair comparison, we
normalize the amplitude of all solutions to unity.As a main outcome
of this work, we show that the instability rates are larger for the
constant-amplitude waves and smaller for the double-periodic waves.

The article is organized as follows. The explicit solutions to the
NLS equation are reviewed in Section 2. Instability rates for the
standing periodic waves and the double-periodic solutions are
computed in Sections 3 and 4 respectively. Further directions are
discussed in Section 5.

2 EXPLICIT SOLUTIONS TO THE NLS
EQUATION

The nonlinear Schrödinger (NLS) equation is a fundamental
model for nonlinear wave dynamics [44, 45]. We take the NLS
equation in the standard form:

iψt +
1
2
ψxx +

∣∣∣∣ψ∣∣∣∣2ψ � 0. (2.1)

This model has several physical symmetries which are checked
directly:

• translation:

if ψ(x, t) is a solution, so is ψ(x + x0, t + t0), for every
(x0, t0) ∈ R × R,

(2.2)

• scaling:

if ψ(x, t) is a solution, so is αψ(αx, α2t), for every α ∈ R, (2.3)

• Lorentz transformation:

if ψ(x, t) is a solution, so is ψ(x + βt, t)e−iβx− i
2β

2t , for every β ∈ R.

(2.4)

In what follows, we use the scaling symmetry Eq. 2.3 to normalize
the amplitude of periodic and double-periodic solutions to unity
and the Lorentz symmetry Eq. 2.4 to set the wave speed to zero.

We also neglect the translational parameters (x0, t0) due to the
symmetry Eq. 2.2.

A solution ψ(x, t) : R × R→C to the NLS Eq. 2.1 is a
compatibility condition of the Lax system of linear equations
on φ(x, t) : R × R→C2:

φx � U(λ,ψ)φ, U(λ,ψ) � ( λ ψ
−ψ −λ) (2.5)

and

φt � V(λ,ψ)φ,V(λ,ψ) � i
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 + 1
2

∣∣∣∣ψ∣∣∣∣2 1
2
ψx + λψ

1
2
ψx − λψ −λ2 − 1

2

∣∣∣∣ψ∣∣∣∣2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2.6)

where ψ is the conjugate of ψ and λ ∈ C is a spectral parameter.
The algebraic method developed in [34] allows us to

construct the stationary (Lax–Novikov) equations which
admit a large class of bounded periodic and quasi-periodic
solutions to the NLS Eq. 2.1. The simplest first-order
Lax–Novikov equation is given by

du
dx

+ 2icu � 0, (2.7)

where c is arbitrary real parameter. A general solution of this
equation is given by u(x) � Ae−2icx , where A is the integration
constant. This solution determines the constant-amplitude waves
of the NLS Eq. 2.1 in the form:

ψ(x, t) � Ae−2ic(x+ct)+iA
2t , (2.8)

where A> 0 is the constant amplitude and translations in (x, t)
are neglected due to the translational symmetry Eq. 2.2. Without
loss of generality, c can be set to 0 due to the Lorentz
transformation. Indeed, transformation Eq. 2.4 with β � −c
transforms Eq. 2.8 to the equivalent form ψ(x, t) � Ae−icx− i

2c
2t+iA2t ,

which is obtained from ψ(x, t) � Ae−iA2t due to transformation
Eq. 2.4 with β � c. By the scaling transformation Eq. 2.3 with
α � A−1, the amplitude A can be set to unity, which yields the
normalized solution ψ(x, t) � eit .

The second-order Lax–Novikov equation is given by

d2u
dx2

+ 2|u|2u + 2ic
du
dx

− 4bu � 0, (2.9)

where (c, b) are arbitrary real parameters. Solutions u to the
second-order Eq. 2.9 determines the standing traveling waves of
the NLS Eq. 2.1 in the form:

ψ(x, t) � u(x + ct)e2ibt . (2.10)

Without loss of generality, we set c � 0 due to the Lorentz
transformation Eq. 2.4 with β � −c. Waves with the trivial
phase are of particular interest [20, 27]. There are two families
of such standing periodic waves given by the Jacobian elliptic
functions in the form:
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ψ(x, t) � dn(x; k)ei(1−k2/2)t (2.11)

and

ψ(x, t) � kcn(x; k)e,i(k2−1/2)t, (2.12)

where the parameter k ∈ (0, 1) is the elliptic modulus. The
solutions Eqs. 2.11, 2.12 are defined up to the scaling
transformation Eq. 2.3 and translations Eq. 2.2. The
amplitude (maximal value of

∣∣∣∣ψ∣∣∣∣) is set to unity for Eq. 2.11
and to k for Eq. 2.12. In order to normalize the amplitude to unity
for the cnoidal wave Eq. 2.12, we can use the scaling
transformation Eq. 2.3 with α � k−1.

Due to the well-known expansion formulas

dn(x; k) � sech(x) + 1
4
(1 − k2)[sinh(x)cosh(x) + x]

× tanh(x)sech(x) +O((1 − k2)2),
cn(x; k) � sech(x) − 1

4
(1 − k2)[sinh(x)cosh(x) − x]

× tanh(x)sech(x) +O((1 − k2)2),
both the periodic waves Eqs. 2.11, 2.12 approaches the NLS
soliton ψ(x, t) � sech(x)eit/2 as k→ 1. In the other limit, the
dnoidal periodic wave Eq. 2.11 approaches the constant-
amplitude wave ψ(x, t) � eit as k→ 0, whereas the normalized
cnoidal periodic wave Eq. 2.12 approaches the harmonic wave
ψ(x, t) ∼ cos(x/k)e−it/(2k2) as k→ 0.

The third-order Lax–Novikov equation is given by

d3u
dx3

+ 6|u|2du
dx

+ 2ic(d2u
dx2

+ 2|u|2u) − 4b
du
dx

+ 8iau � 0, (2.13)

where (a, b, c) are arbitrary real parameters. Waves with a � c � 0
are again of particular interest [31]. After a transformation of
variables [34], such solutions can be written in the form:

ψ(x, t) � [Q(x, t) + iδ(t)]eiθ(t), (2.14)

where Q(x, t) : R ×R→R is periodic both in the space and
time coordinates and δ(t) : R→R has a double period in t
compared to Q(x, t). There are two particular families of the
double-periodic solutions Eq. 2.14, which can be written by
using the Jacobian elliptic functions (see Appendices A and B
in [34]):

ψ(x, t) � k
cn(t; k)cn( ����

1 + k
√

x; κ) + i
����
1 + k

√
sn(t; k)dn( ����

1 + k
√

x; κ)����
1 + k

√
dn( ����

1 + k
√

x; κ) − dn(t; k)cn( ����
1 + k

√
x; κ) eit ,

κ �
����
1 − k

√����
1 + k

√
(2.15)

and

ψ(x, t) � dn(t; k)cn( �
2

√
x; κ) + i

�������
k(1 + k)√

sn(t; k)����
1 + k

√ − �
k

√
cn(t; k)cn( �

2
√

x; κ) eikt ,

κ �
����
1 − k

√ �
2

√ ,

(2.16)

where k ∈ (0, 1) is the elliptic modulus. The solutions Eqs. 2.15,
2.16 are defined up to the scaling transformation Eq. 2.3 and the
translations Eq. 2.2. The amplitude (maximal value of |u|) is����
1 + k

√ + 1 for Eq. 2.15 and
����
1 + k

√ + �
k

√
for Eq. 2.16. In order

to normalize the amplitudes of the double-periodic waves to
unity, we can use the scaling transformation Eq. 2.3 with
α � ( ����

1 + k
√ + 1)− 1 and α � ( ����

1 + k
√ + �

k
√ )− 1 respectively.

The double-periodic solutions Eqs. 2.15, 2.16 can be written
in the form:

ψ(x, t) � ϕ(x, t)e2ibt , ϕ(x + L, t) � ϕ(x, t + T) � ϕ(x, t), (2.17)

where L> 0 and T > 0 are fundamental periods in space and time
coordinates, respectively, whereas 2b � 1 for Eq. 2.15 and 2b � k
for Eq. 2.16.

Figure 1 shows surface plots of
∣∣∣∣ψ∣∣∣∣ on the (x, t) plane

within the fundamental periods. The amplitudes of the double-
periodic waves on Figure 1 have been normalized to unity by the
scaling transformation Eq. 2.3. The solution Eq. 2.15 generates the
phase-repeated wave patterns, whereas the solution Eq. 2.16
generates the phase-alternating patterns [32–34, 36].

As k→ 1, both the double-periodic solutions Eqs. 2.15 and
2.16 approach to the same Akhmediev breather given by

ψ(x, t) � cos( �
2

√
x) + i

�
2

√
sinh(t)�

2
√

cosh(t) − cos( �
2

√
t) eit . (2.18)

As k→ 0, the solution Eq. 2.15 approaches the scaled NLS soliton

ψ(x, t) � 2sech(2x)e2it , (2.19)

whereas the solution Eq. 2.16 approaches the scaled cnoidal wave

ψ(x, t) � cn( �
2

√
x;

1�
2

√ ). (2.20)

These limits are useful to control accuracy of numerical
computations of the modulational instability rate for the
double-periodic solutions in comparison with the similar
numerical computations for the standing waves.

3 INSTABILITY OF STANDING WAVES

Here we review how to use the linear Eq. 2.5, 2.6 in order to
compute the instability rates for the standing periodic waves (Eq.
2.10) (see [23, 27]). Due to the separation of variables in Eq. 2.10,
one can write

φ1(x, t) � χ1(x + ct)eibt+tΩ, φ2(x, t) � χ2(x + ct)e−ibt+tΩ, (3.1)

where Ω ∈ C is another spectral parameter and χ � (χ1, χ2)T
satisfies the following spectral problems:

χx � ( λ u
−u −λ)χ, (3.2)

and
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Ωχ + c( λ u
−u −λ)χ � i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ2 + 1

2
|u|2 − b

1
2
du
dx

+ λu

1
2
du
dx

− λu −λ2 − 1
2
|u|2 + b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠χ.

(3.3)

We say that λ belongs to the Lax spectrum of the spectral problem Eq.
3.2 if χ ∈ L∞(R). Since u(x + L) � u(x) is periodic with the
fundamental period L> 0, Floquet’s Theorem guarantees that
bounded solutions of the linearEq. 3.2 can be represented in the form:

χ(x) � χ̂(x)eiθx, (3.4)

where χ̂(x + L) � χ̂(x) and θ ∈ [−π
L,

π
L]. When θ � 0 and θ � ± π

L,

the bounded solutions Eq. 3.4 are periodic and anti-periodic,
respectively.

Since the spectral problem Eq. (3.3) is a linear algebraic
system, it admits a nonzero solution if and only if the
determinant of the coefficient matrix is zero. The latter
condition yields the x-independent relation between Ω and λ
in the form Ω2 + P(λ) � 0, where P(λ) is given by

P(λ) � λ4 + 2icλ3 − (c2 + 2b)λ2 + 2i(a − bc)λ + b2 − 2ac + 2d,

(3.5)

with parameters a and d being the conserved quantities of the
second-order Eq. 2.9:∣∣∣∣∣∣∣dudx

∣∣∣∣∣∣∣2 + |u|4 − 4b|u|2 � 8d, (3.6)

and

i(du
dx

u − u
du
dx

) − 2c|u|2 � 4a. (3.7)

Polynomial P(λ) naturally occurs in the algebraic method [34].
For the standing waves of the trivial phase with a � c � 0, the
polynomial P(λ) can be written explicitly in the form:

P(λ) � λ4 − 1
2
(u2

1 + u2
2)λ2 + 1

16
(u2

1 − u2
2)2, (3.8)

where the turning points u1 and u2 parameterize b and d in the form:

{ 4b � u21 + u2
2,

8d � −u2
1u

2
2.

(3.9)

Roots of P(λ) are located at { ± λ1, ± λ2} given by

λ1 � u1 + u2

2
, λ2 � u1 − u2

2
, (3.10)

so that the polynomial P(λ) can be written in the factorized form:

P(λ) � (λ2 − λ21)(λ2 − λ22). (3.11)

By adding a perturbation v to the standing wave u in the form

ψ(x, t) � e2ibt[u(x + ct) + v(x + ct, t)] (3.12)

and dropping the quadratic terms in v, we obtain the linearized system
of equations which describe linear stability of the standing waves
(Eq. 2.10):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ivt − 2bv + icvx + 1

2
vxx + 2|u|2v + u2v � 0,

−ivt − 2bv − icvx + 1
2
vxx + 2|u|2v + u2v � 0.

(3.13)

The variables can be separated in the form:

v(x, t) � w1(x)etΛ, v(x, t) � w2(x)etΛ, (3.14)

where Λ is a spectral parameter and w � (w1,w2)T satisfies the
spectral stability problem

iΛσ3w +⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
2
z2x + 2|u|2 − 2b + iczx u2

u2 1
2
z2x + 2|u|2 − 2b − iczx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠w

� 0, (3.15)

where σ3 � diag(1,−1). Note that w1 and w2 are no longer
complex conjugate if Λ ∉ R.

We say that Λ belongs to the stability spectrum of the
spectral problem Eq. 3.15 if w ∈ L∞(R). If λ is in the Lax
spectrum of the spectral problem Eq. 3.2, then the bounded
squared eigenfunctions χ21 and χ

2
2 determine the bounded eigen

FIGURE 1 | Amplitude-normalized double-periodic waves Eq. 2.15 (left) and Eq. 2.16 (right) with k � 0.9.
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functions w1 and w2 of the spectral stability problem Eq. 3.15
and Ω determines eigenvalues Λ as follows:

w1 � χ21, w2 � −χ22, Λ � 2Ω. (3.16)

Validity of Eq. 3.16 can be checked directly from Eqs. 3.2, 3.3,
3.14, and 3.15. If Re(Λ)> 0 for λ in the Lax spectrum, the
periodic standing wave Eq. 2.10 is called spectrally unstable. It
is called modulationally unstable if the unstable spectrum with
Re(Λ)> 0 intersects the origin in the Λ-plane transversely to the
imaginary axis.

The importance of distinguishing between spectral and
modulational instability of the periodic standing waves appears
in the existence of rogue waves on their background. It was shown
in [46] that if the periodic standing waves are spectrally unstable
but modulationally stable, the rogue waves are not fully localized
and degenerate into propagating algebraic solitons. Similarly, it
was shown in [23] that if the unstable spectrum with Re(Λ)> 0
intersects the origin in the Λ-plane tangentially to the imaginary

axis, the corresponding rogue wave degenerates into a
propagating algebraic soliton.

Next, we compute the instability rates for the standing periodic
waves (2.10) of the trivial phase with a � c � 0. It follows from Eq.
3.11 with either real λ1, λ2 or complex-conjugate λ1 � λ2 that if
λ ∈ iR belongs to the Lax spectrum, then Λ ∈ iR belongs to the
stable spectrum. Thus, the spectral instability of the standing
periodic waves of the trivial phase is only related to the Lax
spectrum with λ ∉ iR.

For the dn-periodic wave Eq. 2.11 with u1 � 1 and
u2 �

�����
1 − k2

√
, the amplitude is already normalized to unity

and no scaling transformation is needed. Lax spectrum of the
spectral problem Eq. 3.2 is shown on Figure 2 (left) for k � 0.9. It
follows from Eq. 3.11 that P(λ)< 0 for λ ∈ (λ2, λ1) with
P(λ1,2) � 0, where λ1,2 are given by Eq. 3.10. The unstable
spectrum on the Λ-plane belongs to the finite segment on the
real line which touches the origin as is shown on Figure 2 (right),
hence the dn-periodic wave Eq. (2.11) is both spectrally and
modulationally unstable. It follows from Eq. 3.16 that

FIGURE 2 | Lax spectrum on the λ-plane (left) and stability spectrum on the Λ-plane (right) for the dn-periodic wave Eq. 2.11 with k � 0.9.

FIGURE 3 | The same as Figure 2 but for the amplitude-normalized cn-periodic wave with k � 0.85 (top) and k � 0.95 (bottom).
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max
λ ∈ [λ2 ,λ1]

Λ � max
λ ∈ [λ2 ,λ1]

2
���������������(λ21 − λ2)(λ2 − λ22)√

� (λ21 − λ22) � �����
1 − k2

√
.

Since the dn-periodic wave becomes the constant-amplitude
wave of unit amplitude if k � 0, it is clear that the maximal
instability rate is largest for the constant-amplitude wave with
k � 0, monotonically decreasing in k, and vanishes for the soliton
limit k � 1. As k→ 1, the horizontal band on Figure 2 (right)
shrinks to an eigenvalue at the origin.

For the cn-periodic wave Eq. 2.12 with u1 � k and
u2 � i

�����
1 − k2

√
, the amplitude is k. Hence, we use the scaling

transformation (2.3) with α � k−1 in order to normalize the
amplitude to unity. Lax spectrum of the spectral problem Eq.
3.2 for such an amplitude-normalized cn-periodic wave is

shown on left panels of Figure 3 for k � 0.85 (top) and k �
0.95 (bottom). The unstable spectrum on the Λ-plane is
obtained from the same expressions Λ � ± 2i

����
P(λ)√

when λ
traverses along the bands of the Lax spectrum outside iR. The
unstable spectrum resembles the figure-eight band as is shown
on the right panels of Figure 3. The figure-eight band starts and
ends at Ω � 0 for λ � λ1 and λ � λ2. Stability spectrum for both
examples is similar in spite of the differences in the Lax
spectrum. The only difference is that the figure-eight band
and the purely imaginary bands intersect for k � 0.85 (top)
and do not intersect for k � 0.95 (bottom). Thus, the cn-periodic
wave Eq. 2.12 is spectrally and modulationally unstable. As
k→ 1, the figure-eight band shrinks to an eigenvalue at the
origin.

FIGURE 4 | Instability rate Re(Λ) versus the Floquet parameter θ for the amplitude-normalized dn-periodic (left) and cn-periodic (right) waves. The values of k in
the elliptic functions are given in the plots.

FIGURE 5 | Lax spectrum on the λ-plane (left) and stability spectrum on the Λ-plane (right) for the amplitude-normalized double-periodic wave Eq. 2.15 with
k � 0.85 (top) and k � 0.95 (bottom).
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Figure 4 compares the instability rates for different standing
waves of the same unit amplitude. Re(Λ) is plotted versus the

Floquet parameter θ in [0, πL] in Eq. 3.4. For the dn-periodic wave
(left), we confirm that the growth rate is maximal for the
constant-amplitude wave (k � 0) and is monotonically
decreasing as k is increased in (0, 1). For the cn-periodic wave
(right), the growth rate is also maximal in the limit k→ 0, for
which the amplitude-normalized cn-periodic wave is expanded as

u(x) � cn(k− 1x; k) ∼ 0.5eik
−1x + 0.5e−ik

−1x as k→ 0. (3.17)

Due to the scaling transformation Eq. 2.3 and the expansion Eq.
3.17, the maximal growth rate in the limit k→ 0 is 0.25 instead of

1 and the Floquet parameter θ, for which it is attained, diverges to
infinity as k→ 0. As k increases in (0, 1), the growth rate becomes
smaller and the Floquet parameter θ for which Re(Λ)> 0 moves
toward the origin. The end point of the unstable band reaches
θ � 0, when the bands of the Lax spectrum outside iR do not
intersect iR like on Figure 3 (bottom).

4 INSTABILITY OF DOUBLE-PERIODIC
WAVES

Here we describe the main result on how to compute the
instability rates for the double-periodic waves by using the
linear Eqs. 2.5, 2.6. We write the solutions Eqs. 2.15, 2.16 in

FIGURE 6 | The same as Figure 5 but for the amplitude-normalized double-periodic wave (2.16) with k � 0.3 (top), k � 0.6 (middle), and k � 0.9 (bottom).
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the form Eq. 2.17. We represent solution φ to the linear Eqs. 2.5,
2.6 in the form:

φ1(x, t) � χ1(x, t)eibt+xμ+tΩ, φ2(x, t) � χ2(x, t)e−ibt+xμ+tΩ, (4.1)

where μ,Ω ∈ C are spectral parameters and χ � (χ1, χ2)T satisfies
the following spectral problems:

χx + μχ � ( λ ϕ
−ϕ −λ)χ, (4.2)

and

χt + Ωχ � i
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 + 1
2

∣∣∣∣ϕ∣∣∣∣2 − b
1
2
dϕ
dx

+ λϕ

1
2
dϕ
dx

− λϕ −λ2 − 1
2

∣∣∣∣ϕ∣∣∣∣2 + b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠χ. (4.3)

Parameters μ,Ω ∈ C are independent of (x, t). This follows from
the same compatibility of the linear Lax Eqs. 2.5, 2.6 if ψ(x, t) in
Eq. 2.17 satisfies the NLS Eq. 2.1.

By Floquet theorem, spectral parameters μ,Ω ∈ C are
determined from the periodicity conditions χ(x + L, t) �
χ(x, t + T) � χ(x, t) in terms of the spectral parameter λ. We
distinguish between the space coordinate x and the time
coordinate t in order to consider stability of the double-
periodic waves Eq. 2.17 in the time evolution of the NLS
Eq. 2.1.

The Lax spectrum is defined by the condition that λ belongs to
an admissible set for which the solution Eq. 4.1 is bounded in x.

Hence μ � iθ with real θ in [−π
L,

π
L] and λ is computed from the

spectral problem Eq. 4.2with χ(x + L, t) � χ(x, t) for every t ∈ R.
With λ defined in the Lax spectrum, the spectral problem Eq.

4.3 can be solved for the spectral parameter Ω under the
condition that χ(x, t + T) � χ(x, t) for every x ∈ R. The
corresponding solution to the linear system Eqs. 4.2, 4.3
generates the solution v(x, t) of the linearized system Eq. 3.13
with u ≡ ϕ and c � 0 by means of the transformation formulas
Eqs. 3.14, 3.16. Spectral parameter Ω is uniquely defined in the

fundamental strip Im(Ω) ∈ [−π
T,

π
T], while Re(Ω) determines the

instability rate Re(Λ) by Λ � 2Ω.
If Re(Λ)> 0 for λ in the Lax spectrum, the double-periodic

wave (2.17) is called spectrally unstable. The amplitude-normalized

double-periodic waves are taken by using the scaling
transformation (2.3). We observe again that the unstable
spectrum with Re(Λ)> 0 is related with λ in the Lax spectrum
outside the imaginary axis.

For the amplitude-normalized double-periodic wave Eq.
2.15 with k � 0.85 (top) and k � 0.95 (bottom), Figure 5
shows the Lax spectrum of the spectral problem Eq. 4.2 with

μ � iθ and θ ∈ [−π
L,

π
L] on the λ-plane (left) and the stability

spectrum on the Λ-plane (right). The unstable spectrum is
located at the boundary Im(Λ) � ± 2π

T of the strip for every
k ∈ (0, 1). The double-periodic wave Eq. 2.15 is spectrally
unstable.

Figure 6 shows the same as Figure 5 but for the amplitude-
normalized double-periodic wave Eq. 2.16 with k � 0.3 (top),
k � 0.6 (middle), and k � 0.9 (bottom). The Lax spectrum on the
λ-plane has three bands, two of which are connected either
across the imaginary axis (top) or across the real axis (middle
and bottom), the third band is located on the real axis. The
unstable spectrum on theΛ-plane includes the figure-eight band
and bands located near the boundary Im(Λ) � ± 2π

T . As k→ 1,
the figure-eight band becomes very thin and the stability
spectrum looks similar to the one on Figure 5 because both
the double-periodic solutions approach the Akhmediev breather
Eq. 2.18.

Figure 7 compares the instability rates for different double-
periodic waves of the same unit amplitude. Re(Λ) is plotted

versus the Floquet parameter θ in [0, πL], where μ � iθ is defined
in Eq. 4.2.

For the amplitude-normalized double-periodic wave Eq. 2.15
(left), the instability rate is maximal as k→ 1, that is, at the
Akhmediev breather Eq. 2.18. The unstable band starts with the
same cut-off value of θ and extends all the way to θ � π

L. When
k→ 0, the instability rates quickly decrease as the double-periodic
wave approaches the NLS soliton Eq. 2.19.

For the amplitude-normalized double-periodic wave Eq. 2.16
(right), the instability rate is large in the limit k→ 0, when the
double-periodic wave is close to the particular cn-periodic wave
Eq. 2.20. Then, the rates decrease when k is increased, however,
the rates increase again and reach the maximal values as k→ 1
when the double-periodic wave approaches the Akhmediev
breather Eq. 2.18.

FIGURE 7 | Instability rate Re(Λ) versus the Floquet parameter θ for the amplitude-normalized double-periodic wave Eq. 2.15 (left) and the double-periodic wave
Eq. 2.16 (right). The values of k are given in the plots.
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5 CONCLUSION

We have computed the instability rates for the double-periodic
waves of the NLS equation. By using the Lax pair of linear
equations, we obtain the Lax spectrum with the Floquet theory
in the spatial coordinate at fixed t and the stability spectrum with
the Floquet theory in the temporal coordinate at fixed x. This
separation of variables is computationally simpler than solving
the full two-dimensional system of linearized NLS equations on
the double-periodic solutions.

As the main outcome of the method, we have shown instability
of the double-periodic solutions and have computed their
instability rates, which are generally smaller compared to those
for the standing periodic waves.

The concept can be extended to other double-periodic
solutions of the NLS equation which satisfy the higher-order
Lax–Novikov equations. Unfortunately, the other double-periodic

solutions are only available in Riemann theta functions of
genus d ≥ 2, and for practical computations, one needs to
construct such double-periodic solutions numerically,
similarly to what was done in [41]. This task is opened for
further work.
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