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1. Introduction

Among one-dimensional nonlinear Dirac equations, the Massive Thirring Model (MTM)
is particularly interesting because of its integrability via the inverse scattering transform
method [17, 20]. The nonlinear Dirac system arises as a relativistic extension of the nonlinear
Schrodinger equation and while they share common features, the Dirac system is more
difficult for analytical studies because the classical energy-based methods do not apply to
systems with sign-indefinite energy functionals.

We consider the Cauchy problem of the MTM system

i(ur + uy) +v+uly> =0,

i(ve = vy) + u+ vlul> =0,

subject to an initial condition (4, v)|t=0 = (up, Vo) in H*(R) for s > 0. Here the subscripts
denote partial derivatives.

The Cauchy problem for the MTM system (1.1) is known to be locally well-posed in H*(R)

for s > 0 and globally well-posed for s > % [28] (see earlier results in [11]). More pertinent to

our study is the global well-posedness in L2(R) proved in the recent works [6, 14]. The next
theorem summarizes the global well-posedness result for the scopes needed in our work.

(1.1)

Theorem 1.1 ([6, 14]). Let (up,v9) € L*(R). There exists a global solution (u,v) €
C(R; L*(R)) to the MTM system (1.1) such that the charge is conserved

lu, D117 + Ve D72 = lluoll72 + vl (1.2)
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for every t € R. Moreover, the solution is unique in a certain subspace of C(R; L*(R)) and
depends continuously on initial data (up, vo) € L*(R).

We are interested in orbital stability of Dirac solitons in the MTM system (1.1) given by
the explicit expressions

w.(x, 1) = i8~ 1 siny sech [ar(x + ct) — i%] e Blttex))

. . (1.3)
vi(x, 1) = —id siny sech [a(x + ct) + %] e Blttex)

where X is an arbitrary complex nonzero parameter that determines § = ||, y = 2Arg(}),
as well as

82 —6872 8246872 82462

Zm, OZZTSH)/, ﬂZTCOS)/.

Let us now state the main result of our work.

9

Theorem 1.2. Let (u,v) € C(R; L>(R)) be a solution of the MTM system (1.1) in Theorem 1.1
and Lo be a complex non-zero number. There exists a real positive € such that if the initial value
(ug, vo) € L*(R) satisfies

€ 1= lluo — uso (5 0) 2 4 [Ivo — va, (- 0) |2 =< €0, (1.4)
then for every t € R, there exists A € C such that
|A — o] < Ce (1.5)
and

inf_(lu-+ a0 — e w0l + IV +a.0 —e vl < Ce, (1.6)
a,ve
where the positive constant C is independent of € and t.

The proof of Theorem 1.2 relies on the auto-Bécklund transformation of the MTM system
(1.1) and perturbation analysis. Our approach follows the strategy used by Mizumachi and
Pelinovsky in [23] for proving L2-orbital stability of the NLS solitons. Their result was
extended by Contreras and Pelinovsky in [9] to multi-solitons of the NLS equation by using
a more general dressing transformation. Furthermore, the recent work [10] of Cuccagna
and Pelinovsky shows how an asymptotic stability of the NLS solitons can be deduced by
combining the auto-Backlund transformation and the nonlinear steepest descent method.

Similar ideas have been already applied to other completely integrable systems. We men-
tion for example the work [21] of Merle and Vega where they prove L2-stability and asymptotic
stability of the KdV solitons by using of the Miura transformation that relates the KdV
solitons to the kinks of the defocusing modified KdV equation. The work [22] of Mizumachi
and Pego makes use of a linearized Bicklund transformation to establish an asymptotic
stability of Toda lattice solitons. Hoffman and Wayne [13] formulated an abstract orbital
stability result for soliton solutions of integrable equations that can be achieved via Biacklund
transformations.

In addition to an increasing popularity of the integrability techniques to study nonlinear
stability of soliton solutions, we note that such techniques become particularly powerful
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for the MTM system (1.1). Compared to the NLS equation, proofs of global existence and
orbital stability of solitons in the nonlinear Dirac equations (including the MTM system)
are complicated by the fact that the quadratic part of the corresponding Hamiltonian is not
bounded from neither above nor below. Consequently, there exist two bands of continuous
spectrum of the linear Dirac operator for positive and negative energies, which extend to
positive and negative infinities. For this reason, proof of orbital stability of Dirac solitons poses
a serious difficulty to the application of standard energy arguments. There are, nevertheless,
many works that deal with spectral properties of Dirac operators linearized at Dirac solitons
[1,2,7,38, 12, 16]. Also, asymptotic stability of small solitary waves in the general nonlinear
Dirac equations has been considered [18, 19, 26] (see [3-5] for similar results in the space of
three dimensions).

Other than these works, not much is known about the orbital stability of Dirac solitons. The
recent work [27] of Pelinovsky and Shimabukuro incorporates the integrability of the MTM
system to obtain an additional conserved quantity that can serve as a Lyapunov functional
in the proof of H'-orbital stability of the MTM solitons. The results of [27] are restricted to
MTM solitons (1.3) with § = 1 and y near % In the present work, we use the auto-Béacklund
transformation to prove L?-orbital stability of the MTM solitons (1.3) for every § € R* and
y € (0, ) by a non-variational method.

Backlund transformations are used to generate solutions of a differential system, usually
depending on a parameter, from another solution of another differential system. When
this transformation relates two different solutions of the same system, it is called the auto-
Backlund transformation. These transformations, when they exist, can be used to link the
orbital stability of a certain class of solutions to that of another class of solutions [13]. In
particular, a stable neighborhood of the zero solution can be mapped to a stable neighborhood
of one-soliton solution, and vice versa. However, there is no systematic way to find such
transformations and, to the best of our knowledge, this is the first appearance of the auto-
Biacklund transformation for the MTM system (1.1) in the literature.

We note in passing that the associated Kaup-Newell spectral problem [17] has been exten-
sively studied and the auto-Backlund transformation of other related integrable equations
have been reported in the literature. In particular, the work [15] of Imai reports the Darboux
transformation of the derivative nonlinear Schrodinger equation and claims that the Darboux
transformation of the MTM system (1.1) can be obtained similarly, but no details are given.
Furthermore, the Coleman correspondence between the MTM system and the sine-Gordon
equation is studied through the inverse scattering transform [17, 24] and this may also yield
another derivation of the auto-Bécklund transformation for the MTM system (1.1) because
the auto-Bécklund transformation of the sine-Gordon equation is well known. For our
purposes, we derive the auto-Bécklund transformation of the MTM system (1.1) by using
Ricatti equations and symbolic computations.

The paper is organized as follows. Section 2 introduces the auto-Backlund transformation
for the MTM system (1.1) and uses it to recover the MTM solitons (1.3) from zero solutions.
We also list the Lorentz transformation for the MTM system (1.1) and outline the steps in
the proof of Theorem 1.2. Section 3 reports details of the transformation from perturbed
one-soliton solutions to small solutions at the initial time ¢t = 0. Section 4 describes the
transformation from small solutions to perturbed one-soliton solutions for all times t € R.
Section 5 completes the proof of Theorem 1.2.
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2. Backlund transformation for the MTM system

We begin by introducing the Lax pair and the auto-Backlund transformation of the MTM
system (1.1) in the laboratory coordinates. Then, we give the Lorentz transformation for the
MTM system (1.1) and outline the steps in the proof of Theorem 1.2.

The Lax pair of the MTM system (1.1) is defined in terms of the following two linear

operators:
_i' RN L (A i (0 u i 2 1
L= 4(|u| [v|®)os 5 (v 0) + R (u 0 + 1 A 2 03 (2.1)

i i (0 v i (0 u i 1
A=—=(lu]? o3 — — - — (224 =) os. 2.2
0l + oy — (V 0) = (u 0)+4<x +Az)og (2.2)

The formal compatibility condition 8t8x$ = axath for the system of linear equations

d¢p=Lo and 8 = Ad (2.3)

and

yields the MTM system (1.1).

Note that the solution (1, v) of the MTM system (1.1) appears as coeflicients of differential
equations in the linear system (2.3). The auto-Backlund transformation relates two solutions
of the MTM system (1.1) while preserving the linear system (2.3). Now let us state the auto-
Biacklund transformation.

Proposition 2.1. Let (u,v) be a C' solution of the MTM system (1.1) andq_b' = (¢1,¢2)" bea C?
nonzero solution of the linear system (2.3) associated with the potential (u,v) and the spectral
parameter A = 8¢'V/2. Then, the following transformation

e V2|1 2 + /2| gy | 2i6~ ' siny 1,
B R e N E P P L P (28

and
v P+ T R 2ibsiny g o5

e V2|12 + eV 2|l e V2|¢ |2 + eV /2|y
generates a new C! solution (u,v) of the MTM system (1.1). Furthermore, the transformation
: ' #
7212+ eI P T (eI + e P g

yields a new C? nonzero solution 1} = (Y1, ¥2)" of the linear system (2.3) associated with the
new potential (u,v) and the same spectral parameter A.

Y1 = (2.6)

Proof. Setting I' = ¢1/¢> in the linear system (2.3) with Lax operators (2.1) and (2.2) yields
the Riccati equations

. i . o
0.1 = 2i(p3 — DT + Z(ul® = W)T + i(p2v — T = i(pa¥ — p18), o)

. i . o
oT = 2i(p3 + pDIT = Z(ul” + VT + ipav + Pl = i(pav + pri0),
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where p; = i and p, = % If we choose IV := %, u = M p1)f(T;u,01), and v :=
M(T; p2)f (T'; v, p2) with
kT2 + k 4ilm(k*)T
Mr,k = "), F, ,k == +—_,
(T';k) PINEE fT9,k) =q P

then the Riccati equations (2.7) remain invariant in variables I/, u, and v. This invariance
has been checked with Wolfram’s Mathematica. The transformation formulas above yield
representation (2.4) and (2.5). Note that if <$ = 0 at one point (xo, tp), then (5 = 0 for all
(x,1). If (1, v) is Cl in (x, 1), (}5 is C% in (x, ), and<$ 7+ 0, then (u,v) is C! for every x € R and
teR.

The validity of the transformation (2.6) has also been verified with Wolfram’s Mathematica.
Again, ifq_é is C% in (x, 1) andq_i # 0, then 17} is C? and 1; # 0 for everyx € Randt e R. O

Let us denote the transformations (2.4)-(2.5) by B, hence
B:uv,$,0) — (Wv),

where $isa corresponding vector of the linear system (2.3) associated with the potential (u, v)
and the spectral parameter A.

In the simplest example, the MTM soliton (1.3) is recovered by the transformations (2.4)
and (2.5) from the zero solution (1, v) = (0, 0), that is,

B:(0,0,¢,1) — (1, v2).
Indeed, a solution satisfying the linear system (2.3) with (u, v) = (0, 0) is given by

b1 (x, ) = ed BRI 08)
Ba(x, t) = e F WAL '
Substituting this expression into (2.4) and (2.5) yields (u,v) = (u,, vx) given by (1.3).
Another important example is a transformation from the MTM solitons (1.3) to the zero
solution. We shall only give the explicit expressions of this transformation for the case |A| =
8 = 1. By (2.6) and (2.8), we can find the vector w solving the linear system (2.3) with (uy, v;)
given by (1.3). When A = ¢’/2, the vector v is given by

Yi(x,t) = eaxsiny+3tcosy ‘sech (xsiny - zZ) ,

Ya(x, t) = e~ zxsiny—j3tcosy ‘sech (xsiny - z%)‘ .

(2.9)

We note that ¥ has exponential decay as [x| — 00 and, therefore, it is an eigenvector of the
spectral problem 9 W = L for the eigenvalue A = e//2. Substituting the eigenvector ¥ into
the transformation (2.4) and (2.5), we obtain the zero solution from the MTM soliton, that s,

B : (uy, vs, ¥, A) > (0,0).

When |X| = § = 1 for (u;,v,) given by (1.3), we realize that ¢ = 0 and hence the MTM
solitons (1.3) are stationary. Travelling MTM solitons with ¢ # 0 can be recovered from the
stationary MTM solitons with ¢ = 0 by the Lorentz transformation. Hence, without loss of
generality, we can choose g = /2 for a fixed o € (0,7) in Theorem 1.2. Let us state the
Lorentz transformation, which can be verified with the direct substitutions.
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Proposition 2.2. Let (u,v) be a solution of the MTM system (1.1) and letd_; be a solution of the
linear system (2.3) associated with (u,v) and A = ¢'/2. Then,
W (x, 1) = 8 tulkix + kot kit + ko), 82 +672 82— 572

, ki =——, ky:=———, (2.10)
V(x, 1) = Sv(kix + kat, kit + kox), 2 2

is a new solution of the MTM system (1.1), whereas
¢ (1) = Gkix + kot kat + ko), (2.11)

is a new solution of the linear system (2.3) associated with (u',v') and 1 = Se'v/2,

The stationary MTM solitons at t = 0 can be written by using the expressions

uy (x) = isinysech (xsiny — iZ>,
_ _ 245 (2.12)
vy (x) = —isSinysech (xsmy + i5>,

that depend on the parameter y € (0, ). The time oscillation, gauge translation, and space
translation can be included with the help of the transformation

{u(x, t) = eIV 4, (x + a),

o (2.13)
v(x, 1) = €910y (x + a),

where 6, a € R are two translational parameters of the stationary MTM solitons.

Let us now describe our method for the proof of Theorem 1.2. First we clarify some
notatlons (44, vy,,) denotes one-soliton solution given by (2.12) with a fixed yp € (0, ),
w)/o denotes the corresponding eigenvector given by (2.9) for t=0, whereas L(u,v, )
and A(u,v,A) denote the Lax operators L and A that contain (u,v) and a spectral
parameter A.

The main steps for the proof of Theorem 1.2 are the following. First, we fix an initial data
(19, vo) € H2(R) such that (ug, vo) is sufficiently close to (1, vy,) in L?-norm, according to
the bound (1.4).

Step 1: From a perturbed one-soliton solution to a small solution at t = 0. In this step, we
need to study the vector solution ¥ of the linear equation

3¥ = L(ug, vo, A)Y  at time ¢ = 0. (2.14)

In addition to proving the existence of an exponentially decaying solution v of the linear
equation (2.14) for an elgenvalue A, we need to prove that if (ug, vo) is close to (uy,, vy,) in
L?-norm, then 1// is close to 1/% in H'-norm and A is close to e0/2, Parameter A in bound
(1.5) is now determined by the eigenvalue of the linear equation (2.14).

The earlier example of obtaining the zero solution from the one-soliton solution gives
a good insight that the auto-Backlund transformation given by Proposition 2.1 produces a
function (pg, qo) att = 0,

B': (ug, vo, ¥, ) = (po, qo)» (2.15)
such that (pg, qo) is small in L?>-norm. Moreover, if (1o, vo) € H(R), then (po>q0) € H*R).

Step 2: Time evolution of the transformed solution. By the standard well-posedness theory
for Dirac equations [11, 25, 28], there exists a unique global solution (p,q) € C(R; H 2(R)) to
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the MTM system (1.1) such that (p,q)|;=0 = (po»>qo). Thanks to the L?-conservation (1.2),
the solution (p(:, t), q(-, t)) remains small in the L?>-norm for everyt € R.

Step 3: From a small solution to a perturbed one-soliton solution for all times t € R. In this
step, we are interested in the existence problem of the vector function ¢ that solves the linear
system

0 =L, g b, b = AP, q M) (2.16)

where (p,q) € C(R; H>(R)) is the unique global solution to the MTM system (1.1) starting
with the initial data (p, q)|;=0 = (po, go) in H>(R). Using the vector ¢§ and the auto-Backlund
transformation given by Proposition 2.1, we obtain a new solution (u,v) to the MTM
system (1.1),

B:(pq 1) — (). (2.17)

Moreover, if (p,q) € C(R; H?(R)), then (u,v) € C(R; H*(R)). Some translational parameter
a and @ arise as functions of time ¢ in the construction of the most general solution of the
linear equation 8xq_5 = L(p,q A)$ in the system (2.16). Bound (1.6) on the solution (u, v) is
found from the analysis of the auto-Backlund transformation (2.17).

To summarize, there are three key ingredients in our method: mapping of an L?-
neighborhood of the one-soliton solution to that of the zero solution at t = 0, the L*-
conservation of the MTM system, and mapping of an L?-neighborhood of the zero solution
to that of the one-soliton solution for every t € R. As a result, if the initial data is sufficiently
close to the one-soliton solution in L? according to the initial bound (1.4), then the solution
of the MTM system remains close to the one-soliton solution in L? for all times according to
the final bound (1.6). A schematic picture is as follows:

(Po,q0) —— (p,q)

Finally, we can remove the technical assumption that (ug, v9) € H 2(R) by an approxima-
tion argument in L?(R). This is possible because the MTM system (1.1) is globally well-posed
in L*(R) by Theorem 1.1, whereas the bounds (1.5) and (1.6) are found to be uniform for
the sequence of approximating solutions of the MTM system (1.1), the initial data of which
approximate (1o, vp) in L2(R).

We note that the solution (p, q) to the MTM system (1.1) in a L?-neighborhood of the
zero solution could contain some L2-small MTM solitons, which are related to the discrete
spectrum of the spectral problem (2.14). Sufficient conditions for the absence of the discrete
spectrum were derived in [25], and the L? smallness of the initial data is not generally
sufficient for excluding eigenvalues of the discrete spectrum. If the small solitons occur in the
Cauchy problem associated with the MTM system (1.1), asymptotic decay of solutions (u, v)
to the MTM solitons given by (1.3) cannot be proved, in other words, (p, g) do not decay to
(0,0) in L*°-norm as t — oo. Therefore, a more restrictive hypothesis on the initial data is
generally needed to establish asymptotic stability of MTM solitons. See [10] for restrictions
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on initial data of the cubic NLS equation required in the proof of asymptotic stability of NLS
solitons.

We also note that modulation equations for parameters a and 6 in Theorem 1.2 are
not included in our method. This can be viewed as an advantage of the auto-Béicklund
transformation, which does not rely on the global control of the dynamics of a and 6 by means
of the modulation equations. Values of a and 0 are related to arbitrary constants that appear
in the construction of ¢ as a solution of the linear equation W = L(p,q, 1) in the system
(2.16). These values are eliminated in the infimum norm stated in the orbital stability result
(1.6) in Theorem 1.2.

3. From a perturbed one-soliton solution to a small solution

Here we use the auto-Bicklund transformation given by Proposition 2.1 to transform a L*-
neighborhood of the one-soliton solution to that of the zero solution at t = 0. Let (ug, v9) €
L?*(R) be the initial data of the MTM system (1.1) satisfying bound (1.4) for Ay = /2 Let
¥ bea decaying eigenfunction of the spectral problem

33&} = L(“O’VO))")K_”: (31)

for an eigenvalue A. First, we show that under the condition (1.4), an eigenvector 1} always
exists and A is close to Ag. Then, we write A = 8¢’’/2 and define

ey |* 4 e 2|y 28~ sSny Yy,
eV 2P |2 + eV 2 Y2 el 2y |2 4 eV 2|y |2

Po = —up (3.2)

and

eV 2|y |2 4 eV /2|y |2 2i8siny ynyn
eV 2y 2+ eV 2 [yal2 eV 2| 4 eV 2yn|2

q() = =1 (3.3)

We intend to show that (pg, go) is small in L? norm.
When (19, vo) = (), vy, ), the spectral problem (3.1) has exactly one decaying eigenvector

v given by
Y1 (x) = xS

L
Yo (x) = e 275070

sech (xsin Yo — i@)‘ ,
sech (xsin Yo — 2@)) ) (3.4)

which corresponds to the eigenvalue A = Ao = ¢/70/2, The other linearly independent solution
& of the spectral problem (3.1) with A = A is given by

>

£1(x) = 2SN (2580 _ xgin(2yy)) ‘sech (xsin Yo — i?)

. . (3.5)
£ (x) = _e—%xsny()(ez)csnyo + 2C0syy + xSiN(2yp)) ‘sech (xsin Yo — i%)‘ .

This solution grows exponentially as |x| — oo. Therefore, dimker (0x — L(uy,, vyg> Ao)) = L.
For clarity, we denote the decaying elgenvector (3.4) by 1//7,0

When (uo, vp) is close to (uy,, vy,) in L?-norm, we would like to construct a decaying
solution ¥ of the spectral problem (3.1), which is close to the eigenvector 1//y0 This is achieved
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in Lemma 3.1 below. To simplify analysis, we introduce a unitary transformation in the linear
equation (3.1),

il f (_) -

Y= |:O 7 o, (3.6)
where f(x) = et Jo (moP=1nP)dx ig well defined for any (ug,vo) € L?(R). Then, the linear
equation (3.1) becomes

O = M(up, vo, )b, (3.7)
where

i 2 _ 2 — o=l _ 5 1\F2
M(u(), VO,)\.) = Z [ A A 2(1,{0)\, VO}")f :| ‘

2(uph ! — wor)f? A2 — A2
The following lemma gives the main result of the perturbation theory. Below, A < B means

that there exists a positive e-independent constant C such that A < CB for all sufficiently
small €.

Lemma 3.1. For a fixed Lo = /2 with vy € (0,7), there exists a real positive € such that if

lluo — upyllzz + llvo = v llz2 < €, (3.8)

then there exists an eigenvector v € H'(R; C?) of the spectral problem (3.1) for an eigenvalue
A € C such that

A= dol + 1Y — Yyl S Nluo — uyglizz + llvo — vy ll 2. (3.9)

Proof. We divide the proof into four steps that accomplish the method of Lyapunov-Schmidt
reductions. Step 1 is a set-up for the perturbation theory under the condition (3.8). Step 2 splits
the problem into two parts by appropriate projections. In Step 3, we solve the first part of the
problem by using the implicit function theorem. In Step 4, we solve the residual equation that
determines uniquely A € C and Y € H'(R; C?) satisfying bound (3.9).

Step 1. Set ug = u,, + us and vy = v, + v, where (u,, vs) € L?*(R) are remainder terms,
which are O(¢) small in L2 norm, according to the bound (3.8). We expand 1/A? and 1/
around A¢ in Taylor series. Using the fact |u,,| = [|v),[, we also expand uof? and vof? in
Taylor series, e.g.

irx 1
uof? = uged o o=l gy (1 +e+ e+ 0@3)) - G10
where
* i * 2 2
g i / Re (i, — viv) dv + > / (Iusl? = Ivel)dx.
0 0

Note that g is well defined for (us, vs) € L*(R). From these expansions, the linear equation
(3.7) becomes

(3 — My)p = AM, (3.11)
where
— _ 1 —sin Y0 i(e_iVO/zayo _ ei}/o/ZT/VO)
M}/O = M(”VO: V]/oy)\O) = 5 [i(e_iyo/zuyo _ eiVO/zyyo) an Y
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and the perturbation term AM applied to any ¢ € H'(R) satisfies the inequality
IAM@lir2 S (1A = Aol + lluslizz + Ivsllz2) 1@l s (3.12)

thanks to the embedding of H'(R) in L>(R) N L?(R). Note that the bound (3.12) cannot
be derived in the context of the spectral problem (3.1) without the unitary transformation
(3.6), which removes the term A—i(lul2 — |v|*)o3 from the operator L in (2.1). This explains a
posteriori why we are using the technical transformation (3.6).

We will later need the explicit computation of the leading order part in the perturbation
term AM with respect to (A — Ap), that is,

(Ro+20%)  —(yyhg” + V)

i
AM = —(h — A i _
5 0) [—(uyoxo 24, —(ot2)

} + OO — 20, lusllz2s Vsl z2)-
(3.13)

Step 2. We aim to construct an appropriate projection operator by which we split the linear
equation (3.11) into two parts. Recall that dim ker (dy — M,,)) = 1andlet ¢,,, € ker(dx—M,,)
and 1,,, € ker(d, + Mj)). These null vectors can be obtained explicitly:

L
N eEXSﬂ)/O . VO
¢y0(x)—|: :|)sech<xsm Yo — 1?)

1.
efixsmyo

1

- e 2%8N70 : Y0
s Ny () = |: %xsmyo:| )sech(xsmyo — z?>‘ .

—e

We note that (ﬁyo,q;yo)Lz = 0 but (a3ﬁy0,q;y0)Lz # 0, where o3 = [§ % ]. Also note that
by, = Yy, given by (3.4) because |uy, | = |vy, .
Let us make the following decomposition:

= by, + s (3.14)
where ¢; is defined uniquely from the normalization condition (037, é) 12 = (0377 (EVO V2,
which yields the orthogonality condition (037, ¢s) ;2 = 0. Then we introduce the projection
operator Py, : L*(R;C?) — L2(R;C*) N spaln{cr3ﬁy0}L defined by

2 (o3l -
Py = — —— 1V
(03 Nyo> ¢}/o >L2

Note that P, ¢s = ¢ and Py (?)VO = 0.
From equations (3.11) and (3.14), we define the operator equation

F((l_;sa Us, Vs, A) 1= (0x — Myg)(zs - AM(‘Z)/O + ‘55) =0. (3.15)
Clearly, since dimker(dx — M,,) = 1 # 0, the Fréchet derivative D@F(Q 0,0,A0) = 0x—M,,

has no bounded inverse. Let ﬁyo = 03P,,03 and notice that
ﬁyo :L2(R;C?) — L2*(R;C3H) N span{ﬁyO}J‘.

We decompose equation (3.15) by the projection ﬁyo into two equations

G(s» sy Ves 1) := Py Fgbis ths, Vo ) = 0, (3.16)
H (s, us, vs, ) := (I — Py )F(s, ts, 5, 1) = 0. (3.17)
Step 3. First, we note that since dimker(dy — M,,) = dimker(d, + M;‘jo) =

1 < oo, then 9y — M,, is a Fredholm operator of index zero. Observe that Range(G)
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=L2(R;C*)N span{7jy, 1, where Ty, € ker{ox —}—M;‘jo }. By the Fredholm alternative theorem,
DqgsG(a, 0,0,Ap) = ﬁVODq;SF(a, 0,0,10) = /ﬁ)/o (0x — M,,)Py, has a bounded inverse operator
given by
135 . 12/m. 2 > 4L 1. 2 - 1
Py (0x — M)~ Py, : L°(R; C*) Nspan{n,,}— — H (R;C°) Nspan{o3n,,}—.  (3.18)
Next we claim that for some (us,v;) € L*(R) and 1 € C, there exists a unique q;* IS

H'(R; C?) such that G((Z*, Us, Vs, 1) = 0. This can be done by the implicit function theorem.
The function

G: H'(R;C?) x L*(R;C) x L*(R;C) x C — L*(R;C?) N span(iiy, )~

is C! in us, v (and their complex conjugates), A, and q_gs. We also find that G((), 0,0,A9) =0
and the derivative D tﬁsG(O’ 0,0, As) is invertible with the bounded inverse (3.18). For some
€, p > 0,let

Ue = {(us v 1) € I2(R) x L*(R) x €1 Jlugllp2 + [[vsllg2 + % — 2ol < €}
and
V, = {§: € H'(R; C*) Nspan{osiiy =+ lIgelln < o).
Then, by the implicit function theorem, for sufficiently small €,p > 0, and for each
(us, vs, A) € Uk, there exists a unique ¢ € V), such that G(¢x, us, vs, 1) = 0.
A unique element ¢, depends implicitly on (us, vs, 1), that is, we can write ¢, :=
@« (us, vs, ). From equations (3.15) and (3.16), we have
(I — Py (3 — Myy) "' Py AM)s = Py, (85 — Myy) "' Py AMgby, (3.19)
and from boundedness of the inverse operator given by (3.18) and inequality (3.12), we obtain
Il S 1Py (3 — M)~ Py AMGyy i1 S 1AM, 12
S A = Aol + llusllz2 + lvsllz2, (3.20)
if (ug, vs, A) € Ue.

Step 4. Lastly we address the bifurcation equation (3.17) to determine A € C. From
equations (3.15) and (3.17), the bifurcation equation can be written explicitly as

(s, vy 2) 2= (Tl AM(Byy + ety v, 1)) 2 = 0, (3.21)

where éik (us, vs, 1) is uniquely expressed from (3.19) if (us, vs, 1) € Ue. It follows from (3.12)
and (3.20) that 1(0,0, A9) = 0.
By using the explicit expression (3.13), we check that s := 9,1(0,0, ) # 0, where

i [(Ao+ko‘3) —(ﬁyokaz+9yo>]~
Yo>

S = — n _ —
2(” _(uyo)\«oz +Vy0) _(}\’0 +)“0 3) ¢VO>L2

. 2 4
= ie”"’/z/ (2 C0Syy ‘sech (xsin Yo — i%)‘ + s’y ‘sech (xsin Yo — i%)‘ ) dx
R

1 + cosy, cosh(2x Sin )

= 4ie~ /2 ‘ x
r (cosh(2xsinyy) + cosyy)?

4je—ir0/2

sinyp
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As a result, equation (3.21) can be used to uniquely determine the spectral parameter A
if (us,v5,1) € Ue. From inequalities (3.12) and (3.20), we obtain that this A satisfies the
bound

A= 2ol S lluslzz + llvsll 2. (3.22)
With inequalities (3.20) and (3.22), the proof of Lemma 3.1 is complete. O

Remark 1. A spectral parameter A in Lemma 3.1 may not be on the unit circle |[A| = 1 even
if 1o = €70/2 is on the unit circle. In what follows, we develop the theory when A occurs on
the unit circle, hence we write & = /2 for some y € (0, 7). All results obtained below can
be generalized to the case of |A| # 1 by using the Lorentz transformation in Proposition 2.2.

In Lemma 3.4 below, we will show that a solution <$ determined in the proof of Lemma
3.1 can be written explicitly as the perturbed solution around qu in suitable function
spaces. Then, in Lemma 3.6 below, we will use this representation and the auto-Backlund
transformation (3.2) and (3.3) to show that (po, qo) is small in L? norm.

To develop this analysis, we first prove several technical results. Let (u,v) = (u,,v)),
A = €7/2 and consider the linear inhomogeneous equation

(0x — My)w =1, (3.23)
where
Y —siny ie™/2u, — ev/29,)
) i(e_i”/zuy — eiy/zv,,) siny ’

We i{ltroduce Banach spaces X = X; x X; and Y = Y; x Y; such that for w = (wy, wz)! € X
and f = (f1,/2)' € Y, we have

Iwllx == lwillx, + Iw2llxs  Iflly = Ally, + [2llv,
where
— i —%siny : Y
|willx, ;= inf vie 2 cosh(xsiny —i—
w1=v1+u; 2 L
+Hu1e§5'””’cosh(xsiny—iz>‘ ,
2/ 2nLge
bl i= i ([rae? S0 foosh (xsimy — 12|
wr=vy+uy 2 L
+ Huze_%gny ‘COSh (xsiny - 11)‘
2/ 1l2nrge
and
Iflly, := inf (nggﬁny ‘cosh (xsiny — iz>‘
fi=g1+m 2 L2

+ the‘%s‘“V ‘cosh (xsiny - z%)‘

bl
L,%m})
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. _Xg . N
= inf H e 29NV ‘cosh (xsm — 1—)’
12211y, f2:g2+h2< J o) v =i

L2
ﬂsiny . y
+ thez ‘cosh (xsmy—zz))

L}cﬂL}{>

It is obvious that X and Y are continuously embedded into L?(R). We shall estimate the
bound of the operator P, (3, — M, )’1/15,, : Y — X, where projection operators P, and /I;y are
defined in the proof of Lemma 3.1. First, we will obtain an explicit golution we H([R;C>H N
span{aﬁ;y}J— for the linear inhomogeneous equation (3.23) when f € L*(R; C?) N ker(dy +
M;)L. Then, we will prove that the mapping Y > j_f) > w € X is bounded. These goals are
achieved in the next two lemmas.

Lemma 3.2. For anyf = (fi.f)! € L*(R;C?) N span{ij, } T, there exists a unique solution
w € HY(R; C?) N span{o3 ﬁy}J- of the inhomogeneous equation (3.23) that can be written as

- 1 i d 4 1 - x N -
W) = 16y () [k(f) FWo(x) + W+(x)] + 5@ / i, ) - Fo)dy, (3.24)
where

X . .
W_(x) = / e—%ysny(eZySm)/ +2cosy +ysin(2y)) ‘sech (ysiny — ig)‘fl()/)dy,
—00

oo . .
Woi(x) = / e‘%ys‘”y(—l + ez)’s'”yysin(Zy)) ‘sech (ysiny — 1%) ‘fz(y)dy,
X
and k(f) is a continuous linear functional on L*(R; C?).

Proof. Since 0y — M, : H L(R;C?) — L*(R;C?) is a Fredholm operator of index zero
and ker(d, + M;’j) = span{7, }, the inhomogeneous equation (3.23) has a solution in
HY(R;C?) if and only iff € L*(R; C?) N span{ ﬁy}J—. For uniqueness, we add the constraint
w € span{osij, ).

Recall that U = [q%,,%,,] is a fundamental matrix of the homogeneous equation (3, —
M,)U = 0 and 7j, is a decaying solution of (3; + M;)ij = 0. All functions are known

explicitly as
N e%xsiny . ef%xsiny
By = | 7)o, | Q00 = Q)

_e%xsiny
and
£ (v — le%_"s"”y(e_—z"s"”y — xsin2y)) 0
v —e 2¥9NY (e2¥SNY 1 2 cosy + xSin(2y)) ’
where

Qx) :== ‘sech (xsiny — zg)‘ .

From variation of parameters, we have the explicit representation (3.24), where k(f) is the
constant of integration and the other constant is set to zero to ensure that w € H'(R; C?). 1t
remains to prove that every term in the explicit expression (3.24) belongs to L?(R; C?).
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Since |<Z>y ® < =597 and Q)| < e~ HISNY for all x € R, we have
IW-y .2

S 6_%""3””[ e~ 2SNV (SNY 4 g cosy + ysSin2y) QA (1) dy
—0oQ

I3

+
I3

X X
5“/e””“”mwwf f“WW/ fU@W@Hmmw@M
—00 —00

12
Sz

and

Wity ll2 S

. w . .
e—%xlsmy/ e‘gys'””(—l+ezys'”’”ysin(2y))Q(y)f2(y)dyH 2
pe LX

s 0
< P lesm)// e z|y|9”y|y|[fz()’)|d)’H
X

+

1%

> Lx—y)sin
/ e2 A |f () |dy
X

1

S Il

where notation |[f(x)||L§ is used in place of ||f(-) || 2. Since} e 2(R;C*) n span{ﬁy}L, then

f mw?wwz—/ iy ) - FO)dy.

Using this equality, we can estimate the last term in the explicit expression (3.24) as follows

%m/ 7y 0) - F0)dy

L

Se%””/ 7y ) Fo)dy
o0

_|_
L3

JNW/ mmiww”

3

_|_
I3

0© L
[ ety
X

X . N
SW‘JWWWWMW
—00 L)Zc

S Wfliz.
where U?I is the vector norm of the 2-vector j Since (0317,,,(5,,) 2 # 0, k(j’) is uniquely
determined from the orthogonality condition (037, w);2 = 0. Since all other terms in (3.24)
are in L2(R; C?), k(f) is bounded for all f € L?(R; C?). Therefore, k(f) is a continuous linear
functional on L*(R; C?). O]

Lemma 3.3. Let]? € Y N span{ij, }* and let w be a solution of the inhomogeneous equation
(3.23) in Lemma 3.2. Then there is a f-independent constant C > 0 such that |w|x < C||f|ly-

Proof. The solution w is given by the explicit formula (3.24). We assume now that]? belongs
to the exponentially weighted space Y and prove that w belongs to the exponentially weighted
space X.
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Since ||a$,, lx < 2|lallz~ for any a € L*°(R), k(f) is a continuous linear functional on
L*(R; C?), and Y is embedded into L?(R; C?), we have

kP lIx < KOS Il S IFlly-
The second term in (3.24) is estimated by

'x . .
IW_oyllx S Hf =28y (N7 1) cosy +ysin(2y))Q(y)f1(y)dyH
—00 L)oco
< inf H gmbxsiny ‘cosh xsiny —iL (
™ fi=gi+h ( & ( Y 2)
5)
< Ifllv,.
Similarly, the third term in (3.24) is estimated by || W+$y lx < I[]_")II Y,- The last term in (3.24)
is estimated as follows:

%/ iy ) - f)dy

Ly

+ the%xgny ‘cosh (xsiny - z%)‘

< Nj + Ny + N3 + Ny,
X

where

N, = e"‘s"‘y/ iy ) - f()dy

LeNL2

>
o0
LX

N, = xsin(ZV)/ ﬁy(y)-f‘(y)dy

>

1enI2

Mze“wf iy ) - f()dy

N4 = | (2cosy +xsin(2y))/ My () -f(y)dy
—00 Lg?o

R o Ixl - -
Since |7, (x)| S e 2 3" and ||e S'an||L)zc < Iflly forall x € R, we have

x . .
N < '/ e—(}’—X)SnVeél)/lan(lf” + |a)dy
—00

LeNL2
Lix|sin Lix|sin

< [le2MSM A + ez )l

S Iy

The other terms N;, N3, and Ny are estimated similarly. Altogether, these estimates justify the
bound || w||x < C||f||y for a f-independent positive constant C. O

Lemma 3.4. Under the condition (3.8), assume that A = €"/? is the eigenvalue of the
spectral problem (3.1) for the eigenvector ¥ € H'(R;C?) determined in Lemma 3.1. Then,
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the eigenvector can be written in the form (3.6) with

N lxsiny —Llxsiny
doo =2 1+ r11(x))1+_e 2 r12(x) ‘sech (xsiny _ iZ)" (3.25)
ez )1 (x) + e 29 (1 + 15 (x)) 2

where components rjj for 1 < i,j < 2 satisfy the bound

Irlliee + Iinzllizare + lIr2ill2are + lir2z2llize S lluo — uy llzz + llvo — vy llz2. - (3.26)

Proof. Recall the projection operators P, (L2(R;C?) — L2(R;C*) N span{o3ﬁy} and’ﬁ
L*(R;C?) — LZ(R CcHnN span{ny}L 1ntroduced in the proof of Lemma 3.1. The existence
of the eigenvector qb € H'(R; C?) of the spectral problem (3.7) for the elgenvalue A = elv/?
has been established in Lemma 3.1. Therefore, we are using operators P, and P to prove
additional properties of the eigenvector é.

Using the projection operator P,,, we decompose ¢ = <]3y + ¢, and rewrite the spectral
problem (3.7) in the form

(8 — M,)) §s = AM(¢y + ), (3.27)

where AM is the anti- diagonal matrix that contains the perturbation terms ug — Uy and Vo —

vy only Because ¢S e HY(R;C?) exists by Lemma 3.1, we realize that AM (¢y + qbs) =

PAM (qby + ¢5) which yields equivalently the constraint
(Giy» AM(By + b)) 12 = 0. (3.28)
Therefore, we write the perturbed equation (3.27) in the form
¢ =P, (0x — M) ' B, AM(S) + &) (3.29)

Note that the operator /15), applies to the sum of the two terms in the right-hand-side of (3.29)
thanks to (3.28) and cannot be applied to each term separately.
Since AM is anti-diagonal, for any ¢ = (¢1,¢2)" € X, we have

IAME lly = 1AM 128y, + 1(AM)2:1¢1 s
which is bounded as follows:
IAM) 12820y, S (luo — uyllzz + [Ivo — vy ll2) 1621lx, (3.30)
IAM)21411ly, S (o — 1y llz2 + 1o — vy llz2) 11 1, (3.31)
Bound (3.30) follows simply from

I(AM)126]ly, < ,Jnf (II(AM)l,zézﬁS"”VR(x)nL;+ II(AZT/I)l,ane_%Sm”R(x)HL%mL}()
2=S2 2

S IAM) 12l ,nf (||szef§”VR<x)||Lgo+||n2e—zdnyR(x>||LfnLg)
n2

2— 2+
= [(AM) 121121122 x,»
where R(x) = |cosh (xsiny — i ) |. Bound (3.31) is obtained similarly. Because q;y € X, the
bound || w|lx < ||f|ly in Lemma 3.3 and bounds (3.30) and (3.31) imply
1Py (3% — M)~ Py AM(¢y + do)llx S 1AMy + 69y
< (lluo — uy llp2 + llvo — vy llz2) (1 + llsllx).
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Since [lug — uy || 2 + [[vo — vy || 2 is sufficiently small, the component &5; in (3.29) satisfies the
bound

l@sllx < lluo — uy llzz + llvo — vy ll 2. (3.32)

This completes the proof of the bound (3.26) in the representation (3.25), because the bound
(3.32) on ¢ in Banach space X yields the bounds on the components r;; in the corresponding
spaces. O

Corollary 3.5. In addition to the assumptions of Lemma 3.4, assume that (ug,vo) € H™(R)
for an integer m > 0. Then, r; for 1 < i,j < 2 defined by (3.25) are C"-functions of x.

Proof. The statement is proved for m = 0 in Lemma 3.4, because rjj are bounded functions
according to the bound (3.26) and they are continuous functions since ¢ € H L(R; C?).
For m = 1, we differentiate the equation (3.27) with respect to x to get

(9 — My) 0 =7 + Reps + AMdygh, (3.33)

where 7 := 8x(A]T4cz>y) and R := 9,(M,) + 3c(AM). Recall that ¢, € X by Lemma 3.4. If
(40, v9) € H'(R), then 7 + Reps € Y according to the bounds

I7lly S lluo — ty I + llvo — vy s

IRGslly S (1 + lluo — uyllgn + llvo — vy llg) 1dslx-

From bootstrapping of solution of the linear equation (3.29), we have qu;S € H'(R). Then,
since 7 + R¢p; € Y, we have

7+ Res + AMd, s = P, (F + R + AMd, ;)
Therefore, we can write the derivative equation (3.33) in the form

3xbs = Py (8 — M) "' P (F + Rebs + AMo,by). (3.34)

Using bounds (3.30) and (3.31) and the smallness of |ug — uy |2 + [[vo — vy || 2, we obtain
19xslix S 17+ Réslly < oo, (3.35)

from which it follows that aquS € H'(R) N X, hence 0xrij € C(R) for 1 < i,j < 2. Note that
the bound (3.26) does not hold for d,r;; because ||ug — uy, || g1 + [|vo — vy || g1 may not be small.
For m > 2, we differentiate (3.27) m times and obtain the expression

(8 — M) 3" = T + AMB" s, (3.36)
where 7, := BQ“(A]’\V/Id;y) + [8,’:“,M,,N-i-qu\’\/JI]qz5 and we denote [dx, flg = 9x(fg) jfax(g).

We note that the term [9]", M, + AM]¢s does not contain the m-th derivative of ¢,. By an
induction similar to the case m = 1, we find that 7, € Y according to the bound

Fmlly < lluo — wy llam + 11vo — vy llmm.

Hence if (ug, vg) € H™(R), then 8;”(;5 e H'(R)NX, hence y'rij € CR)forl <i,j<2. [
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Lemma 3.6. Under the condition (3.8), assume that 1 = ¢'/? is the eigenvalue of the spectral
problem (3.1) for the eigenvector v € H'(R; C?) determined in Lemma 3.1 and define

e 2|y |2 4 €V 2|y 2isiny 1y

= — - - - - , 3.37
L N 2 I PR ZE A s e AT 337
eV 2y |2 + e Y2y 2isiny ¥y,
90 = V0 T 2 oy 2 12 o 2\ 2 oy 2L 2 (3.38)
e~V Y |2 eV 2 Y2 e V2| |2 4 eV 2|y
Then, (po, qo) € L*(R) satisfy the bound
pollzz + llqollz S o — uy llz2 + llve — vy 2. (3.39)
If, in addition, (up, vo) € H™(R) for an integer m > 1, then (py, q0) € H™(R).
Proof. Let us rewrite equation (3.37) as
2isinyy
PpoS = —uo + Vv (3.40)

e 2y |2 4 eV 2|y |
where S is a module-one factor given by

Ry 2 e 2y
T R Ry

We use the representation (3.6) and (3.25) for the eigenvector 1} Substituting 1/7 into the
second term of (3.40), we obtain

2isiny Yy 212 5iny [1 4 €1 + €265 4 e3¢7%517 ]

e—iy/2|w1|2+eiy/2|w2|2 - exsiny—iy/Z(l+€4)+e—xsiny+iy/2(1+€5)+66

= if* sinysech (xsiny —il) [1+ Oeil + les] + les| + les] + Olleal + lea],

i (X 2 2
where f(x) = et Jo (P’ =volMdx 414 we have defined
€1 1= 111 + rop + 112 + 112121,
€ 1= 121 + 11121,
€3 1= 13 + 12122,
- 2, 2
€4 :=ry + 1+ rul” + el
- 2, i 2
€5 =1 + 1 + |[ra|” + e V|2l
€6 := 2¢"V/?Re(r1z + F11r12) + 2€7*Re(r21 + ra1722).
Bound (3.26) in Lemma 3.4 implies that
llerllizoe+ll€2ll o2 Fll€sl poonrz+1l€aliLoo+- €5l Lo tll€sll poonrz S Nluo—uy 2 +1vo—vy |l 2.
Since uy, (x) = isinysech (xsiny — z%) and |[f(x)| = 1 for all x € R, we obtain
2isiny Y1y
e~ 2|y |2 + eV 12|y |?

—fzuy

S lluo — uy llz2 + llvo — vy ll2.
12
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Applying the triangle inequality to the representation (3.40), we obtain

21'9”)/1/_/1% 72
. . —f uy,
e~ V2|1 |2 + eV /2|y, |2

Ipollzz = llpoSllzz < lluo = Fu Iz + H 2
L

72
S lluo — f7uy lizz + lluo — uy llzz + llvo — vy 2.
Using the Taylor series expansion (3.10) and the triangle inequality, we obtain
72 72
lluo — fPuy N2 < lluo — uy llp2 + lluy 211 = 7Nl
S lluo = uyll2 +livo = vy llzz,

which finally yields the bound (3.39) for ||po||;2. The bound (3.39) for ||qo||;2 is obtained in
exactly the same way.

Now if (19, v9) € H™(R) for an integer m > 1, we can differentiate equation (3.40) in x m
times and use Corollary 3.5 to conclude that (pg, go) € H™(R). O

4. From a small solution to a perturbed one-soliton solution

Here we use the auto-Bicklund transformation given by Proposition 2.1 to transform a
sufficiently smooth solution of the MTM system (1.1) in a L?-neighborhood of the zero
solution to the one in a L?-neighborhood of the one-soliton solution.

Let (po,q0) € H?(R) be the initial data for the MTM system (1.1), which is sufficiently
small in L2 norm. Let ¢ be a solution of the linear equation

3,6 = L(po, 40, )¢ (4.1)

with A = ¢//2. Two linearly independent solutions of the linear equation (4.1) are constructed
in Lemma 4.1 below.

Now, let (p, q) € C(R; H(R)) be the unique global solution to the MTM system (1.1) such
that (p, q)|t=0 = (po> o). This solution exists in H?(R) by the global well-posedness theory
for Dirac equations [11, 25, 28]. The time evolution of the vector function qu in t for every
x € Ris defined by the linear equation

9 = AP, g M) (4.2)

for the same A = ¢”/2. Lemma 4.2 characterizes two linearly independent solutions of the
linear equation (4.2) for every t € R.

Lastly, Lemma 4.3 constructs a new solution (u,v) € C(R; H?*(R)) to the MTM system
(1.1)ina Lz—neighborhood of the one-soliton solution from the auto-Backlund transforma-
tion involving (p, q) and ¢ for every t € R.

Let us introduce the following unitary matrices

M, = [ml 0 } and M, = [ﬁ“ 0 } (4.3)

0 1’7’11 0 my
i [x 2_ 2 i (oo 2_ 2 . .
where 1, (x) := ei JZooUpol*~1901)ds 51y q my(x) := et Jx (Pol*=101)ds ‘We malke substitution

B = |20 and faco = e [10]
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into the linear equation (4.1) with A = ¢”/2 and obtain two boundary value problems:

iy P S
9 = 5(6 /25y — €7/2q0) iy,

. (4.5)
i ; .
@h = S 2po — " Pgoymipr +siny g,
and
. i - -
X1 =—snyyxi+-(e V/2py — ely/zqo)m§X2>
P 2 (4.6)
X5 = E(e_ly/zpo — &7 qo)m3 x1,
subject to the boundary conditions
limys oo 1(x) =1, limy s exsinyxl(x) =0,
) . an i (4.7)
lim, s o0 e_xsny(PZ(x) =0, limy 00 x2(x) = 1.

The following lemma characterizes solutions of the boundary value problems (4.5), (4.6), and
(4.7) if (po, qo) is small in the L?*-norm.

Lemma 4.1. There exists a real positive § such that if ||poll;2 + l|qollz2 < &, then the boundary
value problems (4.5), (4.6), and (4.7) have unique solutions in the class

(p1,92) € L°(R) x (L*(R) NL®(R)), and (x1,x2) € (L*(R) N L®(R)) x L(R),
satisfying bounds
lor — 1z + llg2liznze < lpollzz + llqollz2 (4.8)

and

I x1llz2azee + lx2 = izee S llpollzz + liqoll 2. (4.9)
Proof. The boundary value problem (4.5) and (4.7) can be written in the integral form

P1(x) = T1 (o1, 02) (%) = 1+ 4 [*__[e77/2po(y) — /20 (y)] 3 ()2 () dy,

02(0) = o1, 92) (x) i= = [ XS [ 2o (y) — €20 ()] mi ()i (y)dy.
(4.10)
We introduce a Banach space Z := L®(R) x (L*(R) N L (R)) equipped with the norm

lallz == llurlle + lluzll ooy

and show that T = (T}, T2)! : Z — Z is a contraction mapping. Using the Schwartz
inequality, the Younge inequality, and the triangle inequality, we obtain for any ¢, ¢ € Z,

I T1 (@1, 92) — T1 (@1, @2) |12

5 / [e772hoy) = 72200 i 1) (929) = 2 dly

=

(Ipollzz + lgollz2) iz — @2l



Downloaded by [McMaster University] at 07:12 04 March 2016

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 247

and

I T2 (@1, 92) — T2 (@1, 92) 1012

iy /2

1 : i ~
< 1™ e nze o le™%po — e a0l lor — Gl

1 ~
< any —— (llpollzz + llgoliz2) ller — @1 lizoe.

If lpollz2 + llqollzz < 8 is sufficiently small such that § < siny for a fixed y € (0,7), then
= (T, T2)" is a contraction mapping on Z. To prove the inequality (4.8), we have

llor = Iz + @2l 2z < 1T(1,02) — T(0,0)|12
ipollz2 + llqollz2
< POIE TN (1 4 Yy — Ll + gallpni)-

siny
Since ||pollzz + llgollz2 < 8 < Siny, the above estimates yields the inequality (4.8). Repeating
similar estimates for the boundary-value problem (4.6) and (4.7), we can prove that (x1, x2) €

(L*(R) N L®(R)) x L*°(R) and the inequality (4.9) holds. O

Let us now define the time evolution of the vector functions ¢; and ¢, in ¢ for everyx € R,
according to the linear equation (4.2), where A = ¢”’/?and (p, ) € C(R; H?(R)) is the unique
solution of the MTM system (1.1) such that (p, q)|;=0 = (po> q0). We also consider the initial
data for ¢ and ¢ at £ = 0 given by the two linearly independent solutions (4.4) of the linear
equation (4.1). The linear equation (4.2) for J)l,z with A = €7/ take the form

R _i(|p? 2y 4 i _iemir/25 4 eiv/25) 7 -
2= [ Ll—(g)('e‘j;/lgz'a ltff/g;s ' £(|§|(Ze+ |q|§>+—eé co?y} o e
We set
G151 = 2 My (5, DF(x5, 1),  ha(x,1) = €25 My(x, X (3, 1), (4.12)
where M (x, t) and M, (x, t) are given by (4.3) with
my(x, ) = ei’fi‘oo<|p<s,t>|2—|q<s,t>\2>ds, Mo (x, ) 1= et S UpGsDP g0 s (4.13)

The following lemma characterizes vector functions ¢ and x.

Lemma 4.2. Let (pg, qo) € H?(R) and assume that there exists a sufficiently small § such that
lpolliz+llqolliz < 6. Let(p,q) € C(R HZ(R)) be the unique solution of the MTM system (1.1)
such that (p, q)|1=0 = (po» qo)- Let ¢1 and (]52 be solutions (_)fthe lmear equation (4.11) starting
with the initial data given by (4.4). Then, for every t € R, ¢ and b, are given by (4.12), where

(@1, 92) (1) € L2R) x (LP(R)NLP(R))  and  (x1, x2) (1) € (L2 (R)NLZ(R)) x L (R)

satisfy the differential equations

- 0 L™ 2p — e 2gym? .
=|. . . 2 . 1 4.14
059 [%(6_”’/ p—e"Pqym siny Y (19
and
- —Sin)/ i(efiy/ZI‘)_eiy/Zé)mZ .
X =1, _ . _, 2 2 x, 4.15
R I 0 * I
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subject to the boundary values

My o0 @1 (3, 1) = 219057, liMy—s 00 €517 x1(x, ) = 0, (4.16)
lim e xsmy(pz(x’ t) =0, My o0 x2(x,8) = €™ Ztcosy- '
Furthermore, for every t € R, these functions satisfy the bounds
g1 (> 8) — 2"V |lpoe + [l92 (5 Dll 2z S Npolize + lqoll2 (4.17)
and
1G> Oll2azee + Ix2 (o) — €72 [0 < ipollz2 + llqoll - (4.18)

Proof. By Sobolev embedding of H?(R) into C!(R), the x-derivatives of solutions (p,q) €
C(R; H*(R)) are continuous and bounded functions of x for every ¢ € R. Moreover, boot-
strapping arguments for the MTM system (1.1) show that the same solution (p,q) exists
in C1(R; H'(R)). Therefore, the t-derivatives of solutions (p,q) are also continuous and
bounded functions of x for every t € R. Thus, the technical assumption (pg,qo) € H?*(R)
simplifies working with the system of Lax equations (4.1) and (4.2). In particular, we shall
prove that ¢ satisfies the differential equation (4.14) for every teR if gZ;l satisfies the
differential equation (4.11) for every x € R and the representation (4.12) is used.

By Lemma 4.1, ¢ is a bounded function of x for t = 0 and by bootstrapping arguments,
¢ € C(R) for t = 0. We now claim that the differential equation (4.11) preserves this property
for every ¢t € R. From the differential equation (4.11) and the representation (4.12), we obtain

ool + g2 = 80 (L) [@= Dildies + @ = pmieid]

< (Ipl + 1gh(e1* + 1¢21%).

By Gronwall’s inequality, for any T > 0, we obtain
o1 ) + o2 O < e (|1 (6, 0) 2 + |92(x,0)[) x€R, te[-T,T], (4.19)
where

ar:= sup_sup(Ip(x 0|+ Iq(x,Dl).
te[—T,T] xeR
Since the exponential factor remains bounded for any finite time T > 0, then it follows that
@(-, 1) € L®°(R) for every t € R. Bootstrapping then yields ¢ (-, t) € C(R) for every t € R.

Since coeflicients of the linear system (4.11) are continuous functions of (x, t), we have
9:¢0(-,t) € C(R) for every t € R. Now, if (p,q) are C! functions of x and ¢, then a similar
method shows that 8,@, 3;0x$, 32¢ € C(R) for every t € R.

We shall now establish the validity of the dlfferentlal equation (4.14). For ¢1 in (4.12), we
write this equation in the abstract form qubl = L¢,. We also write the differential equation
(4.11) for qbl in the abstract form 8t¢1 A¢1 To establish (4.14) for every t € R, we construct
the residual functlon F:= 8X¢1 L¢1 This function is zero for every x € R and t = 0. We
shall prove that F is zero for everyx € Randt e R.

The compatibility condition dyA — 9;L + [A, L] = 0 is satisfied for everyx € Rand t € R,
if (p,q) is a C! solution of the MTM system (1.1). After differentiating F with respect to t,
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we obtain
OF = 8:dx1 — (B L)1 — Ldyby

= 0x(A¢1) — (3:L)p1 — LA¢,

= (0xA — ;L + [A,L]))¢1 + AF

= AF.
Let F = (F1, F»)*. From the linear evolution Btf: = AF, we again obtain

(F+ IR = sin(3) [@— PFiF+ (@ — )R F]
< (pl + gD (F11* + |F2 ),
which yields with Gronwall’s inequality for any T > 0
IFi(x O + [F2(e D < (P16 0) ) + [F2(5,0)]%), x€R, te[-T,T]

with the same definition of @7. Since F (x,0) = 0, then the above inequality yields F (x,t) =0
for every x € Rand t € [—T, T]. Hence, ¢ satisfies the differential equation (4.14).

We have shown that ¢ (-, t) € L®(R) for every t € R. We now show that ¢, (-, ) € L*(R)
for every ¢ € R. It follows from the differential equation (4.11) and the representation (4.12)
that

a(lp2l®) < (Ipl + 19D |@192]
< lo2? + (pl + g1l .

Using Gronwall’s inequality and the previous bound (4.19), we have for any T > 0
T T
()’ <e [wz(x, 0 + / P9l + 1400 91 1 (s s>|2ds]

T
< elga(x, 0)? + eI o) T f T(|p<x,s>|2 +19(5 91 (1 (x, 02 + lg2(x, 0)[?) ds,
where x € Rand t € [T, T]. Therefore, we have

lp2(> D112 < elllpa( 0) 112

T
+ DT (o1 (,0) 1200 + 92 0) 1) [ T(np(-,s)uiz + [1gC, ) |1%,)ds.

Since the right-hand side of this inequality remains bounded for any finite time T > 0, then
it follows that ¢, (-, t) € L*(R) for every t € R.

It remains to prove the boundary values for ¢;(x, ) as x — =00 in (4.16). The second
boundary condition

lim e‘xgnygoz(x, H=0
X—> 00

follows from the fact that ¢, (-,t) € L*°(R) for every t € R. To prove the first boundary
condition, we use Duhamel’s formula to write the differential equation (4.11) in the integral
form:

. t .
d1(x, ) = €217 O b, (x,0) + / 27973V A (x, 5) by (x, 5)ds,
0
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where

Ai(x,t) == [ _Ti(|P|2 + 191%) —%(e*iV/ZI', + eiy/zé)i| |

—%(e_iy/zp + eiy/Zq) ‘-i(|p|2 + |q|2)

Using the representation (4.12), we have for t € R
,. 1
IM1§(x, t) — e2'% Y My §(x,0)| < / |A1(x, )M16(x, 5)|ds,
0

where [f| denotes the vector norm of the 2—Vector]‘. Since ¢(-, t) € L¥(R) x (L®(R)NL*(R))

for every t € Rand p(-,t),q(-,t) € H?*(R), we claim that

o |A1(x,s)M1¢(x,s)| is bounded by some s-independent constant for every x € R and
Is| < ¢l

o iMoo AL(x )Mi1@(x,5) = 6pointwise for every |s| < |t].

Then, the dominated convergence theorem gives

lim M, (x, )3(x, ) — €217V M (x,0)3(x,0)| = 0, ¢ € R.
X—>—00

Since ¢(x,0) — (1,0)! as x — —oo and M;(x,t) — I asx — —oo for every ¢ € R, the
above limit recovers the first boundary condition

. i
lim @ (x, t) = 21957,
X—>—0

The proof of the differential equation (4.15) and the boundary condition for x in (4.16)
is analogous. Finally, since the L? norm of solutions of the MTM system (1.1) is constant in
time t, according to (1.2), the proof of bounds (4.17) and (4.18) is analogous to the proof in
Lemma 4.1. O

Lemma 4.3. Let (po,qo0) € H 2(R) and assume that there exists a sufficiently small § such that
Ipollzz + llqollz < 8. Let (p,q) € C(R; H*(R)) be the unique solution to the MTM system
(1.1) such that (p, q)|1=0 = (po, qo). Using solutions ¢ and ¥ in Lemma 4.2, let us define

|:¢l (x’ t)

b2 (x a] = c1(He2 S My (x, G(x, 1) + c2()e2 S My (x, DX (%, 1), (4.20)

where 1 (t) := e @t9)/2 ¢ (1) := ¢~ (@ti)/2 are given in terms of the real coefficients a, 6, which
may depend on t. Then, the auto-Bdcklund transformation

_ TGP + e gl 2isiny ¢1¢2 ol
u:=-p /2] 4 (2 —iy/2( b 12 + /2] 4 |2 —iy/2(h-12 (4.21)
eviZlgr|c +e |pal® eV |pr]* + e |21
and
V)21 4 (12 1 —iy/2| 4 12 2isinvd
b qe |11° +e |2 iSNy¢gi¢; (422)

e RIpI R+ eV Rl e PRI + €7 2|y
generates a new solution (u,v) € C(R; H?*(R)) to the MTM system (1.1) satisfying the bound

H“("’ ) — ie= 97 §nsech (xsiny — ig - a> H Slpolle +llgollie (4.23)
LX
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and

Hv(x, t) + ie~ =Y ginysech (xsin v+ i% - a)

S ol llolle (424)
foreveryt e R.

Proof. Let us introduce ¥ = (1, )" by
5 . i
e 2|12 + e R TP e IR + e iyl

Y= (4.25)

The inequalities (4.17) and (4.18) imply that (u v) and w are bounded for every x € R and
t € R.If (p,q) are C! functlons of (x,t) and ¢ is a C? function of (x, t), then (u,v) are C!

functions of (x, t) and W isa C? function of (x, t). Proposition 2.1 states that W given by (4.25)
satisfies the evolution equations

WV =L, v, ¥, 09 = A(u,v, )V,

for A = €/2. As a result, the compatibility condition axaﬂ/? = atang for every x € R and
t € Ryyields the MTM system (1.1) for the functions (u, v).

We shall now prove inequality (4.23). The proof of inequality (4.24) is analogous. First, we
write (4.21) in the form of

2iSNyd1s e~ 21| + €72y |

R := — - =u - - .
Ty P e R PPN PR 7 P

(4.26)

Explicit substitutions of (4.20) into (4.26) yield

_ 2isiny (mymae™ @ x2 + Ry)
- eiy/2+a—xsiny|(pl|2+e—iy/2—a+xsiny|X2|2 —}—Rz’

where

—a+xsiny -

Ry = 2™ G0y 4 inymae® pr 5y + mie X1X2

and
R, = eiy/z—a-i-xsiny |X1 |2 + e—iy/Z-i—a—xSiny |(,02|2 + Zeiy/zRe[mll’H26i0(p1X1]
+ 2¢~ " 2Re[imymye® 0y 12).

By bounds (4.17) and (4.18) in Lemma 4.2, we have |¢; |, |x2| ~ 1 and |¢2|, |x1] ~ 0, so
that fora — xsiny <0,
2isin yr_rllmze_ieJr“_xSinV@l)(z

R= eiV/2+2(“*XSin)/)|(pl|2 + efiy/2|X2|2 + Ode2l + 1x1D (4.27)

and fora — xsiny > 0,

2isin yr‘rzlmze_ie_“+x5iny(ﬁ1x2
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Combining (4.27) and (4.28), we get

2isin ye—ie—itcos;/

R—— - - -
elv/2+a—xsiny + e—iv/2 _ g +xsiny

la—xs ;, cosy 005y
S e (o) — T2 | 4 o — e | Imy — 1]+ [my — 1) + |gal + |l

i x 2 2 i 002 |2 .
Since m; = et FrooUpPP=la)ds 5 q my = et Jx (P=1a1ds e obtain the bounds

lmiaC ) = iz < Ipli72 + liglizs

provided that ||p||;2 and ||q||;2 are sufficiently small. Then, by Lemma 4.2 and the L?
conservation law (1.2), the previous estimate yields

HR(x, t) — ie "0V gnysech (xSiny — ig — a)

S pollzz + ol (4:29)

Using the definition (4.26), the bound (4.29), and the triangle inequality, we obtain inequal-

ity (4.23).
Lastly, if (p,q) € C(R; H?*(R)), we can differentiate equations (4.27) and (4.28) in x twice
to show from (4.21) and (4.22) that (1, v) € C(R; H*(R)). O

5. Proof of theorem 1.2

Thanks to the Lorentz transformation given by Proposition 2.2, we may choose Ag = €70/2,
o € (0,7) in Theorem 1.2. For a given initial data (ug, vo) satisfying the inequality (1.4)
for sufficiently small €, we map a L?>-neighborhood of one-soliton solution to that of the zero
solution. To do so, we use Lemma 3.1 and obtain an eigenvector ¥ of the spectral problem
(3.1) for an eigenvalue A € C satisfying

) 2
I — €72 < lug — tyll 2 + Vo — vy llp2 =: €. (5.1)

We should note that the same Lorentz transformation cannot be used twice to consider the
cases of g = €7/? and A = ¢//? simultaneously; the assumption Aq = ¢/7/? implies that A
is not generally on the unit circle, and vice versa. Hence, if Ag = /7/2 is set, all formulas
in Section 3 below Remark 1 must in fact be generalized for a general A. However, this
generalization is straightforward thanks again to the existence of the Lorentz transformation
given by Proposition 2.2. In what follows, we then use the general MTM solitons (u;, v,) given
by (1.3).

By Lemma 3.6, the auto-Bécklund transformation (3.2) and (3.3) with 1/7 in Lemma 3.1
yields an initial data (pg, o) € L?(R) of the MTM system (1.1) satistying the estimate

Ipolizz + liqollz2 < Nl — w5 0)lIz2 + llvo — va (5 0) [l 2
S lluo — upllzz 4 llvo — vipllzz 4 s (5 0) — uyglizz + [1va(, 0) — vyqll 2

S llug — upllzz + llvo — vy llz2 =t €, (5.2)

where we have used the triangle inequality and the bound (5.1).
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Since the time evolution in Section 4 is well-defined if (po, q0) € H 2(R), let us first assume
that the initial data (g, vo) € L*(R) satisfying the inequality (1.4) also satisfies (19, vg) €
H?(R). Then, (pg,q0) € H*(R) by Lemma 3.6. Let (p,q) € CR; H?(R)) be the unique
solution of the MTM system (1.1) such that (p,q)|t=0 = (Po,qo)- Next we will map a L2-
neighborhood of the zero solution to that of one-soliton solution for all ¢ € R.

By Lemma 4.2, we construct a solution of the Lax equations

¢ =L(p,q 2 and 3¢ = A(p,q 1) (5.3)

for the same eigenvalue A as in (5.1). Let

i 1 1 1
ki) = 7 (AZ - ﬁ) k() = 7 (AZ + ﬁ)

The solution of the Lax system (5.3) is constructed in the form
$(x 1) = c1(OMi1(x, )eFI PG (x, 1) + 2 (Mo (x, e 1P g (x, 1), (5.4)

where unitary matrices M; and M are given in (4.3) with m; and m, given by (4.13), whereas
the vectors ¢ and x satisfy the estimates

g1 8) — €™ 2P 100 + 92, Dl 2z S pollzz + g0l (5.5)

and

131G Ol 2z + 2 ) — e ™ 2P e < ipollz + lgoll 2. (5.6)

The coefficients c; and ¢, of the linear superposition (5.4) can be parameterized by parameters
a and 6 as follows:

— olatif)/2 _ o atin))2,

1 %]

where parameters a and 6 may depend on the time variable # but not on the space variable x.
These parameters determine the spatial and gauge translations of the MTM solitons according
to the transformation (2.13).

By Lemma 4.3, the auto-Bécklund transformation generates a new solution (u, v) of the
MTM system (1.1) satisfying the bound for every t € R,

inf_(lu(-+a,1) - e ()l + v+ a0 — e v, Dl 2)
a,ve

S llpollzz + liqoll 2. (5.7)

Theorem 1.2 is proved if (ug, vo) € H?(R). To obtain the same result for (19, vo) € L*(R)
but (1o, vo) ¢ H?(R), we construct an approximating sequence (4o, Vo,n) € H*R) (n € N)
that converges as n — 00 to (1, vp) € L*(R) in the L?>-norm. For a sufficiently small € > 0,
we let

lto,n — tyyll2 + Vo — Vill2 <€, foreveryn e N.

Under this condition, for each (ug.,vo,) € H?(R), we obtain inequalities (5.1), (5.2),
and (5.7) independently of n. Therefore, there is a subsequence of solutions (u,,v,) €
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C(R; H*(R)) (n € N) of the MTM system (1.1) such that it converges as n — oo to a solution
(u,v) € C(R;L*(R)) of the MTM system (1.1) satisfying inequalities (1.5) and (1.6). The
proof of Theorem 1.2 is now complete.
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