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Abstract
We review evolutionary models on quantum graphs expressed by linear and
nonlinear partial differential equations. Existence and stability of the stand-
ing waves trapped on quantum graphs are studied by using methods of the
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1. Introduction

The goal of this review is to introduce readers to the subject of standing waves on quantum
graphs described by nonlinear partial differential equations. The linear evolutionary models
and the spectral theory for quantum graphs are well covered by several monographs [16, 32, 63]
and many recent publications. The first review of the nonlinear evolutionary models was pub-
lished some time ago [101] and was complemented by the recent reviews [1, 11, 58] which
explained various technical aspects of mathematical analysis of the ground state on the quan-
tum graphs. Compared to these publications, we would like to present a general overview of
how the standing waves arise in the nonlinear models and how their existence and stability can
be analyzed with different analytical methods.

1.1. Main definitions

A metric quantum graphG is a connected network made up of edges, i.e. bounded or unbounded
segments joined together at their endpoints, named vertices. On this structure of edges and
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Figure 1. A graph with six bounded edges, three unbounded edges and five vertices.

Figure 2. A real function on the same graph as in figure 1.

vertices, we will give a distance, so that the graph becomes a metric space, which explains the
name of metric graph. Thus, a metric graph is a one dimensional structure (see figure 1), which
however should not be thought to be embedded in the plane as the angles between edges do
not play any role in the theory.

We indicate the set of edges of the graph with E = {e j} and the set of vertices of the
graph with V = {vk}. We will assume with the exception of the concluding section that the
cardinalities |E| of E and |V| of V are finite.

Any vertex is a finite endpoint of a finite number of edges. This number is called the degree
of the vertex and is denoted by dv . With the symbol e ≺ v we mean that edge e is ingoing to v or
outgoing from v according to the edge orientation, and Ev = {e : e ≺ v} is the set of all edges
ingoing to or outgoing from v. The special situation with dv = 1 gives the pendant vertex v,
while vertices v with dv = 2 can often be treated as the dummy vertices (interior points) with
two edges adjacent to v concatenated together.

An edge e ∈ E has a length łe that can be finite or infinite. The coordinate system on the
metric graph is largely arbitrary. When the length łe is finite, the edge e ∈ E can be identified
with a different choice for an interval Ie. For example, [0, łe] or [−łe/2,+łe/2] are both useful
identifications for the edge e ∈ E. When the length łe is infinite, the edge can be identified with
any half-line Ie = [a,∞), where a ∈ R is at our disposal.

A choice of the edge orientation is conventional and all choices are equivalent. A graph is
undirected if no choice of orientation is made and directed in the opposite case. We always
consider directed graphs.

A point x on the graph can be identified by giving the edge e and the coordinate x on the
edge: x = (e, x). Having identified edges with given intervals and chosen coordinates on these
intervals, the length of a path on the graph has a well defined meaning. If x , y ∈ G, the distance
d(x, y) is the infimum of the length of the paths connecting the two points. This makes (G, d)
a metric space. The metric graph G is compact if and only if le < ∞ for all e ∈ E.

1.2. Functions and functional spaces

A function on the metric graph is defined component-wise, giving its value on any edge (see
figure 2). To assign Ψ on G means to assign its edge components {ψe}e∈E with ψe : Ie → C.
Equivalently, if x = (e, x) we set Ψ(x) = ψe(x).

Since a generic metric graph G is identified with families of points and intervals, a natural
choice for a metric space on G is the Lebesgue spaces on the given intervals. In particular, if
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a function Ψ : G → C is integrable, then every component ψe of Ψ on the edge e is integrable
on Ie and ∫

G
Ψ :=

∑
e∈E

∫
Ie

ψe(x)dx.

The space of the p-integrable functions Lp(G), where 1 � p � ∞, is the set of the functions
Ψ : G → C such that ψe ∈ Lp(Ie) for every e ∈ E. Moreover, the norm in Lp(G) is defined by

‖Ψ‖Lp(G) =

(∑
e∈E

‖ψe‖p
Lp(Ie)

) 1
p

, 1 � p < ∞

and

‖Ψ‖L∞(G) = max
e∈E

‖ψe‖L∞(Ie), p = ∞.

These Lebesgue spaces are all Banach spaces (complete normed vector spaces) and they retain
the classical properties of these spaces. In particular, L2(G) is a Hilbert space and we will denote
by 〈·, ·〉 its inner product

〈Ψ1,Ψ2〉 =
∫
G
Ψ1Ψ2,

such that ‖Ψ‖L2(G) =
√
〈Ψ,Ψ〉.

We denote by C(G) the set of continuous functions on G. This means in particular that the
functions in C(G) are well defined at the vertices of G, where their values coincide with the
limits of the functions defined on the adjacent edges. It is not especially useful to define spaces
Ck(G) of the k-times continuously differentiable functions because if the functions are contin-
uous across the vertices of G, their derivatives are generally discontinuous. Instead, Sobolev
spaces of weekly differentiable functions that are square integrable with their derivatives play
a more important role. The first Sobolev space is especially important:

H1(G) :=
{
Ψ ∈ L2(G) : ψe ∈ H1(Ie), ∀ e ∈ E

}
endowed with the norm

‖Ψ‖H1(G) =

√∑
e∈E

‖ψe‖2
H1(Ie)

.

In order to incorporate the continuity condition at the vertices, we also use

H1
C(G) :=H1(G) ∩ C(G).

Continuity in the interior of edges of the graph is guaranteed by the one-dimensional Sobolev
embedding of H1(Ie) into C(Ie) ∩ L∞(Ie) expressed by the Sobolev inequality

‖Ψ‖L∞(G) � C∞‖Ψ‖H1(G) ∀Ψ ∈ H1(G). (1.1)

Analogously we introduce the Sobolev spaces of higher regularity for k ∈ N:

Hk(G) :=
{
Ψ ∈ L2(G) : ψe ∈ Hk(Ie), ∀ e ∈ E

}
4
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equipped with the norm

‖Ψ‖Hk(G) =

√∑
e∈E

‖ψe‖2
Hk(Ie)

.

Properties of Sobolev spaces can often expressed by inequalities. The following proposition
gives the Gagliardo–Nirenberg inequality which relates the Lq(G) norm for q > 2 to the H1(G)
norm.

Proposition 1.1. Let G be connected and non-compact with finitely many edges. For every
2 � q � ∞ there exists a constant Cq > 0 that depends on q such that

‖Ψ‖Lq(G) � Cq‖Ψ‖
1
2+

1
q

L2(G)
‖Ψ′‖

1
2−

1
q

L2(G)
∀Ψ ∈ H1(G). (1.2)

Remark 1.2. Inequality (1.2) cannot hold for a compact graph (take a constant function as
a counterexample) and in that case it can be replaced by

‖Ψ‖Lq(G) � Cq‖Ψ‖
1
2+

1
q

L2(G)
‖Ψ‖

1
2−

1
q

H1(G)
∀Ψ ∈ H1(G) (1.3)

which is weaker than (1.2) but it holds for any metric graph, compact or non-compact. A
proof of inequality (1.2) is in [9], while the proof of (1.3) for compact graphs is in [97]. A
generalization of both inequalities is discussed in [45].

The kind of property expressed by an inequality such as ‖Ψ‖Y � c‖Ψ‖X for every Ψ ∈ X is
named in functional analysis as the continuous embedding of the space X into the space Y. It
implies that any convergent sequence of functions of X actually converges in the norm of Y as
well.

Another kind of embedding of the space X into the space Y is the compact embedding. This
means that a sequence of elements of X which is uniformly bounded in X admits a subse-
quence that converges in Y. In other words, if X is compactly embedded into Y, then for every
{Ψn}n∈N ⊂ X such that ‖Ψn‖X � C < ∞, there exists {Ψnk}k∈N ⊂ {Ψn}n∈N andΨ∞ ∈ X such
that

lim
k→∞

‖Ψnk −Ψ∞‖Y = 0.

For our purposes we only need to know that H1(G) is compactly embedded in Lp(G) for any
p if G is a compact metric graph, but that the compact embedding fails if the metric graph is
not compact. The compact embedding is very useful when searching the minima of functionals
in variational calculus. It is often easy to bound the H1(G) norm of a minimizing sequence of
functions. This does not provide a converging subsequence as in the finite dimensional setting,
but at least gives a converging subsequence in the weaker norm of Lp(G) which is often a
fundamental step in showing the convergence of a minimizing sequence to the minimum of
the given functional. On the other hand, when the compact embedding fails, e.g., in the case
of unbounded metric graphs, it is a much more difficult issue to manage the convergence of a
minimizing sequence, as we will see in section 4.

1.3. Laplace operator on metric graphs

We can now define the differential operators on metric graphs, an essential step to set up evolu-
tionary models expressed by differential equations. While there is no difficulty in transferring
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an operator defined on an interval to an operator defined on every edge of the metric graph, it is
clear that ambiguity arises as regards the matching conditions at vertices for the functions from
different edges connected to the same vertex. Such matching conditions are essential in defin-
ing the operator domain, and the choice may depend on physical properties of the modeling
problem.

Driven by applications of quantum graphs, the most frequently studied operators are given
in the following list:

• H = − d2

dx2 (Laplace operator);
• H = − d2

dx2 + V (Schrödinger operator);
• H = −

(
d
dx − iA

)2
+ V (magnetic Schrödinger operator).

The functions V and A are called respectively electric and magnetic potentials and they act
on the domain of H by multiplication. In what follows, we will not consider the magnetic
Schrödinger operator because it played only a very minor role until now (the only references
known to the authors in nonlinear problems are [44, 83]).

In regards to the Laplace or Schrödinger operators, the standard requirement is their self-
adjointness in Hilbert space L2(G). As it is well known, if H is self-adjoint, then the evolution
generated by the time-dependent Schrödinger equation i∂tΨ = HΨ is well defined and unitary,
according to the Stone theorem. This is also an important step to guarantee the well-posedness
of the nonlinear Schrödinger (NLS) equation, as we will see in section 2.

Let us consider the Laplace operator on a metric graph G denoted by ΔG . The self-
adjointness of ΔG expressed by the condition

〈Φ,ΔGΨ〉 − 〈ΔGΦ,Ψ〉 = 0

translates into constraints on the values of the functions Ψ, Φ and their derivatives at ver-
tices. Integrating by parts and taking into account the orientation of edges at vertices yield the
constraints in the form:∑

b j

(
φe j(b j)ψ

′
e j

(b j) − φ′
e j

(b j)ψe j(b j)
)

−
∑

a j

(
φe j(a j)ψ′

e j
(a j) − φ′

e j
(a j)ψe j(a j)

)
= 0,

where the edge e j is parameterized by [aj, bj] and the summation is taken over all possible aj

and b j. This constraint is not easily readable and does not specify a practical condition to check
if a given boundary condition is self-adjoint or not.

An explicit classification of self-adjoint boundary conditions is well known in various forms.
For separated boundary conditions at each vertex, the self-adjoint boundary conditions are
identified in theorem 1.4.4 of [32] which is reproduced here.

Proposition 1.3. For any vertex v, we assume that

AvF(v) + BvF′(v) = 0,

where Av and Bv are complex-valued dv × dv matrices,

F(v) := ( f1(v), . . . , fdv (v)), F′(v) := ( f ′1(v), . . . , f ′dv (v)),

and we have used the convention that the derivatives are taken in the outgoing direction from
the vertex v. The Laplacian ΔG is self-adjoint in L2(G) if
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(a) rank(Av , Bv) = dv;
(b) The matrix AvB∗

v is self-adjoint such that AvB∗
v = BvA∗

v;
(c) ψe ∈ H2(Ie) ∀ e ∈ G.

For every fixed choice of Av and Bv at v ∈ G, the conditions of proposition 1.3 define the
domain D(ΔG) of the unique self-adjoint operator ΔG in L2(G). If ΔG with the dense domain
D(ΔG) is self-adjoint in L2(G), then the evolution of the time-dependent Schrödinger equation

i
d
dt
Ψt = −ΔGΨt (1.4)

is well defined and the evolution operator U(t) = eitΔG can be extended to a unitary operator
in L2(G). From the physical point of view, the self-adjoint boundary conditions guarantee the
conservation of the probability current through the vertex. On the other hand, it is not easy
and is not fully understood how to select the most suitable boundary conditions in specific
physically relevant cases.

Let us now review the common examples of the self-adjoint boundary conditions. We say
that a function Ψ ∈ H2(G) satisfies the Neumann–Kirchhoff conditions at vertex v if⎧⎪⎪⎨⎪⎪⎩

Ψ is continuous at v (⇐⇒ ψe(v) = ψe′ (v), ∀ e, e′ ≺ v)

∑
e≺v

d
dxe

Ψ(v) = 0

(
⇐⇒

∑
e≺v

dψe

dxe
(v) = 0

)
.

(1.5)

Remark 1.4. We always assume that if the edge is outgoing from the vertex, then the deriva-
tive is taken with the positive sign, and if the edge is incoming to the vertex, then it is taken with
the negative sign. The second Neumann–Kirchhoff condition (1.5) is written more explicitly
as

∑
e≺v

dψe

dxe
(v) =

∑
e←v

ψ′
e(v) −

∑
e→v

ψ′
e(v) = 0,

so that the global outgoing derivative vanishes at every vertex.

A generalization of the Neumann–Kirchhoff conditions (1.5) is given by the so called δ-type
conditions [4–6, 19], for which the function Ψ ∈ H2(G) at vertex v satisfies

⎧⎪⎨⎪⎩
ψe(v) = ψe′ (v), ∀ e, e′ ≺ v,∑
e≺v

d
dxe

ψe(v) = αvψe′ (v),
(1.6)

where the number αv ∈ C is called the strength of the vertex. When the degree of a vertex v is
dv = 2, these conditions correspond to the well-known δ-interactions in quantum mechanics.
If αv = 0 we recover the Neumann–Kirchhoff conditions (1.5).

There exist boundary conditions such that the function in the operator domain is not con-
tinuous. A first example is given by the δ′-type conditions [21, 75], for which Ψ ∈ H2(G) at
vertex v satisfies

7
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⎧⎪⎪⎨⎪⎪⎩
d

dxe
ψe(v) =

d
dxe′

ψe′ (v), ∀ e, e′ ≺ v,∑
e≺v

ψe(v) = βv
d

dxe
ψe(v).

(1.7)

Another example is given by the ‘generalized Kirchhoff conditions’ [87, 89, 112, 117,
127, 128], for which Ψ ∈ H2(G) at vertex v satisfies⎧⎪⎨⎪⎩

αeψe(v) = αe′ψe′ (v), ∀ e, e′ ≺ v,∑
e≺v

1
αe

dψe

dxe
(v) = 0,

(1.8)

where the set of positive constants {αe}e∈E is given.
Each boundary condition is associated with the conserved energy in the evolution of the

linear Schrödinger equation (1.4). Recall that if a self-adjoint operator A in L2(G) is bounded
from below, then there exists a quadratic form given by the map ψ �→ 〈ψ, Aψ〉, defined on
the dense domain E(A) ⊂ L2(G). This quadratic form is also bounded from below, and there
exists a � 0 such that 〈ψ, (A + a)ψ〉 is positive. As a result, 〈ψ,ψ〉A := 〈ψ, (A + a)ψ〉 is a scalar
product on E(A). The completion of E(A) in the norm induced by 〈·, ·〉A is a Hilbert space
which is by definition the form domain of the given operator A that we continue to indicate as
E(A) with abuse of notation. The quadratic form E(ψ) := 〈ψ, Aψ〉 is called energy and the form
domain E(A) is called the energy space. The explicit expression of the energy E(ψ) is obtained
through integration by parts. Specifically for the Laplacian ΔG , we have

• Neumann–Kirchhoff conditions:

E(Ψ) = ‖Ψ′‖2
L2(G), E(−ΔG) = H1

C(G), (1.9)

• δ-type conditions:

E(Ψ) = ‖Ψ′‖2
L2(G) +

∑
v∈V

α(v)|Ψ(v)|2, E(−ΔG) = H1
C(G), (1.10)

• δ′-type conditions (consider for simplicity a single vertex)

E(Ψ) = ‖Ψ′‖2
L2(G) +

1
β

∣∣∣∣∣∑
e≺v

ψe(v)

∣∣∣∣∣
2

, E(−ΔG) = H1(G), (1.11)

• Generalized Kirchhoff conditions:

E(Ψ) = ‖Ψ′‖2
L2(G),

E(−ΔG) = {Ψ ∈ H1(Ψ) : αeψe(v) = αe′ψe′ (v), ∀ e, e′ ≺ v}.
(1.12)

Different boundary conditions can be posed at different vertices, with the corresponding
changes in the definitions of the operator domain D(ΔG) and the energy space E(−ΔG).

1.4. Other differential operators

Other differential operators can be defined on a metric graph. Many examples such as the Dirac
operator and the Airy operator have been considered in the literature due to their importance
for physical applications, as we discuss in section 7.

8
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As a case study, we consider here the Airy operator

A :=α
∂3u
∂x3

+ β
∂u
∂x

, (1.13)

whereα ∈ R\{0} and β ∈ R are certain physical constants. This third-order differential opera-
tor defines the linear part of the Korteweg–de Vries (KdV) equation, which is the most studied
dispersive equation after the NLS equation. The KdV equation describes the unidirectional
propagation in shallow water channels and more generally dynamics of long waves in weakly
dispersive systems. The linear KdV equation is ∂tu = Au can be considered on a metric graph
G with the obvious motivation to understand propagation of shallow water waves in branching
channels.

A first relevant remark is that if we replace the second-order Schrödinger operator with the
third-order Airy operator, then the wave propagation becomes sensible to the direction. This
forces us to consider directed metric graphs. This fact is well-known already on the half-line or
on a finite interval [37]. Without loss of generality, we can chooseα < 0. Then, the initial-value
problem for the linear KdV equation ∂tu = Au is well-posed on (0,+∞) if a single boundary
condition is imposed at x = 0 and is well-posed on (−∞, 0) if two boundary conditions are
imposed at x = 0 [37]. More generally for a star graph, the number and type of boundary
conditions at the only vertex required for the well posedness of the linear KdV equation on the
star graph are classified in [98].

Note that the Airy operator A is formally antisymmetric, being a combination of odd deriva-
tives. A proper choice of the domain D(A) will make it skew-adjoint and not self-adjoint. This
is not an obstacle because the skew-adjoint operators A in ∂tu = Au generate unitary operators
due to the Stone theorem.

It was found in [98] that only on balanced metric graphs (i.e. star graphs with an equal
number of ingoing and outgoing edges) appropriate boundary conditions exist that make the
Airy operator skew-adjoint. The boundary conditions can be expressed requiring that a finite-
dimensional map from the vector space of the ingoing boundary values u(0−), u′(0−), u′′(0−)
to the vector space of the outgoing boundary values u(0+), u′(0+), u′′(0+) exists and has to be
unitary. Such conditions are completely different from the ones described in proposition 1.3
for ΔG .

If the initial-value problem for the linear KdV equation is well-posed on a balanced star
graph with the appropriate boundary conditions, then the time evolution is unitary and pre-
serves the squared L2-norm P(u) :=

∫
G|u|2 of the solution u, which in the context of fluid flow

is to be interpreted as the momentum. On the other hand, only a subset of the admitted boundary
conditions preserve the mass, which is represented by M(u) :=

∫
Gu.

If the star graph is unbalanced (representing, for example, the confluence of rivers or a
branching of the water channels), then the time evolution is not unitary and does not result
in the conservation of the momentum P(u). In this case, the time evolution of the linear KdV
equation is well-posed if and only if the Airy operator A is dissipative or equivalently if it
generates a contraction semigroup, instead of a unitary group. We recall that A is dissipative if
and only if

Re〈Au, u〉 � 0, for all u ∈ D(A).

Again, this translates into a condition on a finite-dimensional map relating the ingoing and
outgoing boundary values of u at the vertex, described explicitly in [98]. As in the conservative
case, only a proper subset of these boundary conditions preserve the mass.

9
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While these general and qualitative results appear suggestive and physically sensible, one
should also admit that it is unclear which boundary conditions allowed by the theory have to be
used in concrete problems. A reduction from more realistic, two- or three-dimensional models
to the problems on the one-dimensional metric graphs is a fundamental step in clarifying this
essential question [29, 53, 90, 110, 111, 122].

2. Nonlinear partial differential equations on metric graphs

Thanks to the possibility of defining operators on metric graphs, we can consider different
linear and nonlinear partial differential equations on metric graphs. Among these are the wave,
Klein–Gordon, Schrödinger, Dirac, and KdV equations, which are classical examples of the
dispersive wave equations of the form

∂tu(t) = Lu(t) + N(u), (2.1)

where L is a differential operator with constant coefficients and N is the nonlinear part. The
three examples addressed here are given by

∂tu(x, t) = ∂xu(x, t) − ∂3
x u(x, t) + u(x, t)∂xu(x, t) KdV equation

i∂tu(x, t) = −∂2
x u(x, t) ± |u(x, t)|2pu(x, t) NLS equation

∂2
t u(x, t) = ∂2

x u(x, t) − m2u(x, t) ± |u(x, t)|2pu(x, t) NLKG equation

whereas the Dirac equations can be found in section 7.

2.1. Linear dispersion

We briefly recall what dispersion means by considering the linear part of the general
equation (2.1) given by ∂tu(t) = Lu(t). If the linear equation is considered on the real line R,
we can search for the plane wave solutions, u(x, t) = ei(ξ0x−ω0t), or more generally for solutions
in the Fourier form,

u(x, t) =
∫
R

c(ξ)ei(ξx−ω(ξ)t) dξ,

where c(ξ) is the Fourier transform of the initial datum u(x, 0) = u0(x).
If L̂u(ξ, t) := − ip(ξ)û(ξ, t) under the Fourier transform, then ω(ξ) = p(ξ) is called the dis-

persion relation. The linear equation ∂tu(t) = Lu(t) is called dispersive if ω′′(ξ) �= 0. For the
dispersive equations, the ‘group velocity’ vg(ξ) = ω′(ξ) depends on ξ, and in general differs
from the ‘phase velocity’ of the wave, vp(ξ) = ω(ξ)/ξ. As a consequence, an initially concen-
trated wave-packet ‘disintegrates’ or ‘disperses’ with time. Let us inspect the same examples
above.

• The linear KdV equation ∂tu = ∂xu − ∂3
x u is dispersive due to ω(ξ) = −ξ − ξ3 and

ω′′(ξ) = −6ξ.
• The linear Schrödinger equation i∂tu = −∂2

x u is dispersive due to ω(ξ) = ξ2 and ω′′(ξ) =
2.

• The linear Klein–Gordon equation ∂2
t u = ∂2

x u − m2u is dispersive due to ω(ξ) =
±
√

m2 + ξ2 and ω′′(ξ) �= 0. However, ω′′(ξ) → 0 as |ξ| →∞, hence the short waves are
less dispersive compared to the long waves. If m = 0, then there is no dispersion and the
equation becomes the one-dimensional wave equation.

10
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Using the Fourier transform and the dispersion relation, one can obtain very precise results
about the decay of solutions in time by means of the stationary phase method. A different and
very powerful tool suitable to measure the decay of solutions in time is given by the so-called
dispersive estimates.

Consider for example the linear Schrödinger equation i∂tu = −∂2
x u on the line R. If the

initial datum u0 is sufficiently regular and decaying at infinity, then the unique solution is given
in the convolution form:

u = U(t)u0 :=
1

(4πit)1/2

∫
R

e
i|x−y|2

4t u0(y)dy.

It follows from this representation that

• The L2 norm conserves in time:

‖U(t)u0‖L2(R) = ‖u0‖L2(R).

• The L∞ norm decays in time:

‖U(t)u0‖L∞(R) := sup
x∈R

|U(t)u0| �
1

(4πt)1/2
‖u0‖L1(R).

With some additional efforts, one can also interpolate the two estimates above to the more
general estimate:

‖U(t)u0‖Lp(R) �
1

(4πt)
1
2

(
1
q−

1
p

) ‖u0‖Lq(R), p ∈ [2,∞],
1
p
+

1
q
= 1,

and to the so-called Strichartz estimates, which involve the space-time norms [50].
A similar toolbox of dispersive estimates exists for the linear KdV and Klein–Gordon

equations. The important point is that dispersion, or the decay just illustrated, conflicts with the
tendency to concentrate solutions due to the nonlinear part of the general equation (2.1). This
competition is exactly what makes the analysis of nonlinear dispersive equations so interesting,
because it makes possible the existence of coherent structures such as standing waves.

The analysis of dispersion on metric graphs is not fully developed until now and it is mostly
an open problem. We only mention that dispersive and Strichartz estimates for the Schrödinger
equations on star graphs and trees were studied in [2, 27, 79], while those on the tadpole graph
were studied in [96].

2.2. The nonlinear Schrödinger equation

The most studied nonlinear dispersive wave equation on metric graphs is without any doubt
the focusing version of the NLS equation with power nonlinearity,

i
d
dt
Ψ = −ΔGΨ+ VΨ− (p+ 1)|Ψ|2pΨ, (2.2)

where V is the external potential and p > 0 is the power. The focusing version of the NLS
equation is defined by the minus sign in front of the power nonlinearity, in contrast to the
defocusing version defined by the plus sign. It appears that the defocusing NLS equation on
metric graphs is less studied than the focusing NLS equation.

11
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Figure 3. A metric graph with a compact core and a finite number of half-lines.

One of the main physical applications of the focusing NLS equation is propagation of matter
waves in attractive Bose–Einstein condensates or optical pulses in fibers. The graph geome-
try models T-junctions, X-junctions and other similar geometrical settings (see [94, 101] and
references therein).

The power nonlinearity of the NLS equation (2.2) can be defined edge by edge. Each com-
ponent on the metric graph satisfies the following one-dimensional NLS equation on edges of
the graph G,

i
∂

∂t
ψe(x, t) = − ∂2

∂x2
ψe(x, t) + V(x)ψe(x, t)

− (p+ 1)|ψe(x, t)|2pψe(x, t), x ∈ e,

closed with the corresponding boundary conditions at vertices. The problem consists in a sys-
tem of identical equations, as many as there exist edges of the graph, coupled through the
boundary conditions at the vertices {v}v∈V, where the values of the wave functions {ψe}e∈E

and their first derivatives are related.
The first issue to deal with is the time evolution of the NLS equation (2.2). As it is well

known, the classical analysis of the existence and uniqueness of the initial-value problem is
difficult due to the presence of the unbounded operatorΔG . To overcome the difficulty, one can
use mapping properties of the propagator U(t) = eitΔG , which is a unitary operator in L2(G).
Using Duhamel’s formula, one can rewrite the initial-value problem for the NLS equation (2.2)
as the integral equation

Ψ(t) = U(t)Ψ0 − i
∫ t

0
U(t − s)VΨ(s) ds + i(p+ 1)

∫ t

0
U(t − s)|Ψ(s)|2pΨ(s)ds, (2.3)

where Ψ0 = Ψ(0). The NLS equation (2.2) follows from the integral equation (2.3) by formal
differentiation in t. The validity of the Duhamel’s formula can be shown exactly as in the
standard case of the NLS equation on R (see [50]).

Since U(t) is unitary in L2(G), one can try using iterations of the Banach fixed point theorem
and showing local well posedness of the initial-value problem in different functional spaces:
L2(G), energy space E(−ΔG), and the operator domain D(ΔG), similarly to the case of the NLS
equation on the line R [50].

A prototypical and fairly general case where this strategy has been pursued is the case of
NLS on a metric graph with a compact core and a finite set of half-lines (see figure 3). Moreover,
both the Neumann–Kirchhoff and δ-type conditions can be considered on vertices of the graph
G. The following proposition gives local well-posedness of the corresponding initial-value
problem in the energy space E(−ΔG) = H1

C(G) (see [45] for the proof).

12
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Proposition 2.1. Let G be a graph with a compact core and V = V+ − V−, where V± � 0
satisfy V+ ∈ L1(G) + L∞(G) and V− ∈ Lr(G) for some r ∈ [1, 1 + 1/p] and p > 0. Then,

• For any Ψ0 ∈ H1
C(G), there exists T > 0 such that the integral equation (2.3) has a unique

solution Ψ ∈ C([0, T), H1
C(G)) ∩ C1([0, T), H1

C(G)�), where H1
C(G)� is the dual of H1

C(G).
• Moreover, if T� is the maximal existence time, then the following ‘blow-up alternative’

holds: either T� = ∞ or lim
t→T�

‖Ψ(t)‖H1(G) = ∞.

Remark 2.2. The meaning of the blow-up alternative is that there are only two possibilities
for the solution Ψ(t): existence for all times or explosion of the H1(G) norm in a finite time T�.

Thanks to the blow-up alternative, one can obtain global well posedness of the NLS
equation (2.2) in H1

C(G) if the H1(G) norm of the solution can be controlled in the time evolu-
tion. To this end, a typical strategy is to exploit conservation laws, since the NLS equation (2.2)
admits the following conservation laws of mass and energy.

Proposition 2.3. For any solution Ψ ∈ C([0, T), H1
C(G)) ∩ C1([0, T), H1

C(G)�) to the NLS
equation (2.2) with any p > 0 the following conservation laws hold at any time t ∈ [0, T):

M(Ψ(t)) = ‖Ψ(t)‖2
L2(G) = M(Ψ0),

E(Ψ(t)) = ‖Ψ′(t)‖2
L2(G) + 〈Ψ(t), VΨ(t)〉+

∑
v∈V

α(v)|Ψ(v, t)|2

− ‖Ψ(t)‖2p+2
L2p+2(G)

= E(Ψ0).

By using Gagliardo–Nirenberg inequality of proposition 1.1 and the mass and energy
conservation of proposition 2.3, one can obtain a priori bounds on the H1

C(G) norm of the
local solution of proposition 2.1 assuring global well posedness of the initial-value problem
for 0 < p < 2.

Proposition 2.4. For anyΨ0 ∈ H1
C(G), the NLS equation (2.2) with 0 < p < 2 has a unique

solution Ψ ∈ C([0,∞), H1
C(G)) ∩ C1([0,∞), H1

C(G)�).

The range of power nonlinearities p ∈ (0, 2) where the global well-posedness of proposition
2.4 holds is called sub-critical. When p = 2, solutions can again exist for every time but only
for the initial data with small mass M(Ψ0). The case p = 2 where the global existence is sub-
ordinated by the mass of the initial datum is called critical. The case p > 2 is supercritical
and in that case, one can expect the explosion of the H1(G) norm in a finite time for negative
energy E(Ψ0) even for small mass M(Ψ0) [50]. The finite-time blow-up has not been proved
for the NLS equation on a general metric graph G but only for the simplified case of star graphs
(see [76]).

Remark 2.5. A similar analysis can be carried out for more regular initial data in the operator
domain D(ΔG) (see again [45, 76]) obtaining solutions with values in the operator domain.
Global well posedness is identical to the case of data in the energy space E(−ΔG) = H1

C(G).

Remark 2.6. There are fewer works on the well posedness of the NLS equation (2.2) with
boundary conditions different from the δ-type conditions and in L2(G). For the special case
of star graphs, well-posedness of the NLS equation with δ′-type conditions was considered in
[75]. Dispersive and Strichartz estimates were obtained in [79] to prove well-posedness of the
NLS equation with some general boundary conditions in L2(G).
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3. Standing waves of the NLS equation

Consider the focusing NLS equation (2.2) on the metric graph G. A standing wave of the NLS
equation is a solution of the form Ψ(x, t) = e−iωtΦω(x), where the parameter ω is often called
the frequency of the standing wave. The profile Φω satisfies the stationary NLS equation

−ΔGΦω + VΦω − (p+ 1)|Φω|2pΦω = ωΦω. (3.1)

The stationary NLS equation is a system of ordinary differential equations coupled through
boundary conditions at the vertices of G.

3.1. Ground state and bound states

Recall the conservation laws of mass and energy of the NLS equation in proposition 2.3.
It is obvious that these quantities computed at the standing waves are independent of time.
Correspondingly, a class of standing waves can be defined by means of a variational principle.

A ground state of the NLS equation is defined as the minimizer of the energy E(Ψ) at fixed
mass M(Ψ) = μ. More formally, Φ ∈ H1

C(G) is a ground state if E(Φ) = Eμ, where

Eμ = inf
Ψ∈H1

C (G)
{E(Ψ) : M(Ψ) = μ}. (3.2)

This definition assumes that the following two requirements are satisfied:

• Eμ > −∞
• Eμ is attained at some Φ ∈ H1

C(G).

The definition of the ground state is completely analogous to the one used for quantum
systems in the Schrödinger theory of quantum mechanics.

A minimizing sequence is any sequence {Ψn}n∈N ∈ H1
C(G) such that

lim
n→∞

E(Ψn) = Eμ.

If Eμ > −∞ and the infimum is attained at the minimizer Φ ∈ H1
C(G), then the minimizing

sequence converges to the minimizer. However, if Eμ > −∞ but the infimum is not attained,
then the minimizing sequence may converge to some trivial function in H1

C(G) due to either
splitting or vanishing, according to the concentration-compactness principle of Lions [92, 93].

The existence and variational characterization of the ground state of the NLS equation has
been considered only for the Neumann–Kirchhoff conditions and for the δ-type conditions. If
the ground state is attained, it admits the following properties [8].

Proposition 3.1. Assume that Φ ∈ H1
C(G) is a minimizer of the variational problem (3.2).

Then we have:

(a) There exists ω ∈ R such that Φ is a weak solution of the stationary NLS equation (3.1).
(b) For every vertex v, Φ satisfies∑

v≺e

dφe

dxe
(v) = α(v)φe(v). (3.3)

(c) Φ is a classical solution on every edge of the graph G and up to the change of sign, we
may assume that Φ is real-valued and positive on G.

Besides the problem of controlling if the infimum Eμ is attained for a given mass μ, another
problem is to relate the mass parameter μ in (3.2) with the frequency parameter ω in (3.1).
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Standing wave solutions of the stationary NLS equation (3.1) for fixed ω may also appear
as local minimizers or saddle points of the constrained energy E(Ψ). If they are not global
minimizers, they are usually referred to as bound states.

3.2. Stability of standing waves

If Φ ∈ H1
C(G) is the ground state of the variational problem (3.2), it is expected to be stable in

the time evolution of the NLS equation (2.2). However, if Φ ∈ H1
C(G) is only the bound state,

the stability of this standing wave needs to be analyzed by different tools, e.g., by linearizing
the NLS equation at the neighborhood of Φ.

Stability of standing waves is very similar to the stability of equilibrium points or periodic
orbits in finite-dimensional dynamical systems. In the particular case of the NLS dynamics,
the stability of standing waves needs to be understood in the orbital sense, as we explain next.

Recall that the NLS equation (2.2) on a metric graph G is invariant with respect to the action
of the group

U(1) = {T(θ) : θ ∈ R} , T(θ) := e−iθ, (3.4)

meaning that if Ψ is a solution of the NLS equation, T(θ)Ψ is a solution as well. This symmetry
is at the origin of existence of the standing waves: a solution of the form Ψ(x, t) = e−iωtΦω(x)
is nothing but the action on Φω by the element of the group with θ = ωt, i.e. Ψ = T(ωt)Φω .
As a result, a standing wave cannot be stable in the usual sense of stability of equilibrium
points. This is a general property of dynamical systems with symmetries, well known in the
finite-dimensional case, where it gives rise to so called relative equilibria.

Let us show why it is so. Fix a standing wave Ψ(x, t) = e−iωtΦω(x) and consider a set of
frequencies {ωn}n∈N of the corresponding standing waves Ψ(x, t) = e−iωntΦωn(x) such that
ωn −→ ω as n →∞. It can be shown that solutions of the stationary NLS equation (3.1)
are continuous with respect to the parameter ω such that ‖Φωn − Φω‖H1(G) −→ 0 as n →∞.
Explicitly, for every δ > 0 there exists Nδ ∈ N such that for every n � Nδ , we have

‖Φωn − Φω‖H1(G) � δ.

On the other hand, we have along the time evolution that

‖e−iωntΦωn − e−iωtΦω‖H1(G)

= ‖e−iωntΦωn − e−iωntΦω + e−iωntΦω − e−iωtΦω‖H1(G)

�
∣∣|e−iωnt − e−iωt|‖Φω‖H1(G) − ‖Φωn − Φω‖H1(G)

∣∣
and taking the supremum in time we obtain for fixed n � Nδ that

sup
t�0

‖e−iωntΦωn − e−iωtΦω‖H1(G) � 2‖Φω‖H1(G) − δ.

This means that solutions cannot be made as near as we want so that the given standing wave
is not stable in the usual sense. Failure of stability is due to the fact that the phases θ = ωnt and
θ = ωt of the standing waves can assume any value drifting along the orbit of standing waves
that are initially nearby.

Similar arguments exclude stability in the presence of other symmetry groups. The conse-
quence of this fact is the need to update both the definition of stability and of the criteria useful
to assure stability of the standing waves. For the definition, the key is that instead of comparing
the values of solutions at any fixed time, we compare the whole orbits and choose the nearest
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point along the orbits. We arrive at the notion of orbital stability and orbital instability, where
the standing wave is orbitally unstable if it is not orbitally stable.

Definition 3.2. The standing waveΨ(x, t) = e−iωtΦω(x) is orbitally stable if for every ε > 0
there exists δ > 0 such that for every Ψ0 ∈ H1

C(G) satisfying ‖Ψ0 − Φω‖H1(G) < δ, the unique
solution Ψ ∈ C([0,∞), H1

C(G)) of the NLS equation (2.2) with Ψ(·, 0) = Ψ0 satisfies

inf
θ∈R

‖Ψ(·, t) − e−iθΦω‖H1(G) < ε, t > 0.

Definition 3.3. The standing wave Ψ(x, t) = e−iωtΦω(x) is orbitally unstable if there exists
ε > 0 such that for every δ > 0 there exists Ψ0 ∈ H1

C(G) satisfying ‖Ψ0 − Φω‖H1(G) < δ such
that the unique solutionΨ ∈ C([0, T), H1

C(G)) of the NLS equation (2.2) with Ψ(·, 0) = Ψ0 and
some T > 0 satisfies for some t0 ∈ (0, T)

inf
θ∈R

‖Ψ(·, t0) − e−iθΦω‖H1(G) � ε.

Orbital stability in definition 3.2 means that if the initial datum Ψ0 ∈ H1
C(G) is close to the

standing wave Φω in the H1(G) norm, the unique solution Ψ(·, t) ∈ H1
C(G) remain close to the

orbit of the standing wave {T(θ)Φω}θ∈R for all t > 0. Orbital instability in definition 3.3 means
that for any small distance from the standing waveΦω in the H1(G) norm, there exists the initial
datum Ψ0 ∈ H1

C(G) such that the unique solution Ψ(·, t) ∈ H1
C(G) departs from the orbit of the

standing wave {T(θ)Φω}θ∈R at some time t0 in some fixed distance ε.
The sufficient criteria ensuring orbital stability of solitary waves have been developed dur-

ing 1970s and 1980s starting with the KdV equation [30, 35] and NLS equation [123], and
continued by [80, 81, 125, 126] that consolidated a rather general and comprehensive theory,
now applied in a wide range of examples including the NLS equation on metric graphs.

A Lyapunov function for stability of standing waves in the NLS equation (2.2) is constructed
by using conserved energy and mass in the following action functional

Sω(Ψ) :=E(Ψ) − ωM(Ψ). (3.5)

Differentiation yields S′
ω(Ψ) = 0, which is just the stationary NLS equation (3.1) solved by

Φω . The idea for stability analysis is to derive the sufficient conditions of positivity (also called
coercivity) of Sω near Φω by using the second derivative test.

If δ is small enough in definition 3.2, we set the perturbation η = α+ iβ, explore conser-
vation laws and phase invariance, and obtain

δ2 > Sω(Ψ0) − Sω(Φω)

= Sω(Ψ(·, t)) − Sω(Φω)

= Sω(eiθΨ(·, t)) − Sω(Φω)

= Sω(Φω + α+ iβ) ) − Sω(Φω)

= 〈L+α,α〉+ 〈L−β, β〉+ R(α, β),

where the second variation of Sω is defined by two self-adjoint operators L± with the dense
domain D(ΔG) in L2(G) given by

L+ := −ΔG + V(x) − (p+ 1)(2p+ 1)|Φω(x)|2p − ω, (3.6)

L− := −ΔG + V(x) − (p+ 1)|Φω(x)|2p − ω, (3.7)
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and R(α, β) is the super-quadratic remainder term. If there exist C+, C− > 0 such that

〈L+α,α〉 � C+‖α‖2
H1(G), 〈L−β, β〉 � C−‖β‖2

H1(G) (3.8)

and the remainder term R is controlled in the H1(G) norm, orbital stability of definition 3.2
follows with ε = Cδ for some C > 0.

The main issue for getting the coercivity bounds (3.8) is that L− and L+ may admit zero
and negative eigenvalues.

The stationary NLS equation (3.1) can be written as L−Φω = 0 with Φω ∈ D(ΔG). Hence,
Φω ∈ Ker L−. If Φω(x) > 0 for every x ∈ G, which is true for the ground state due to the
property (c) of proposition 3.1, then the spectrum of L− for the Neumann–Kirchhoff and δ-
type conditions is non-negative and the kernel is non-degenerate with Ker (L−) = span(Φω)
[4, 45]. The same properties of L− were recently proven in [31] for more general boundary
conditions on a metric graph G.

On the other hand, L+ cannot be non-negative because

〈L+Φω ,Φω〉 = −2p(p+ 1)‖Φω‖2p+2
L2p+2(G)

< 0. (3.9)

Therefore, L+ has at least one negative eigenvalue. The negative eigenvalue of L+ is poten-
tially a source of instability if the constraint of fixed mass M(Ψ) = μ does not ensure
strict positivity for L+. The fixed mass constraint induces the constrained space L2

c ⊂ L2(G)
defined by

L2
c := {α ∈ L2(G) : 〈α,Φω〉 = 0}.

The same constraint can be used onβ = Im(η) to fix translation along the orbit {T(θ)Φω}θ∈R
and to remove the zero eigenvalue of L−. If Ker(L−) = span(Φω) and the spectrum of L− is
non-negative, then L− is strictly positive in L2

c . Controlling positivity of L+ in L2
c gives the

orbital stability or instability of standing waves in the time evolution of the NLS equation (2.2)
according to the following result [80, 81, 123].

Proposition 3.4. Assume that Φω ∈ D(ΔG) is a positive real solution of the stationary NLS
equation (3.1) and ω does not belong to the spectrum of −ΔG + V(x) in L2(G). Then,

(a) If Ker(L−) = span(Φω) and L+ has exactly one negative eigenvalue with the rest of
its spectrum in L2(G) being strictly positive, then Φω is orbitally stable in H1

C(G) if the
following slope condition holds:

d
dω

‖Φω‖2 < 0 (3.10)

while it is orbitally unstable if d
dω‖Φω‖2 > 0.

(b) If L+ has two or more negative eigenvalues, then Φω is orbitally unstable in H1
C(G)

Remark 3.5. Φω is a negative vector for L+ due to (3.9), but it is not the eigenvector of L+.
The condition (3.10) assures strict positivity of L+ on L2

c . Nothing can be said on stability of
standing waves without further analysis if d

dω‖Φω‖2 = 0.

Remark 3.6. The number of negative eigenvalues of L+ is called the Morse index of the
linearization. Proposition 3.4 shows that the Morse index is a key object in the analysis of
stability.

17



J. Phys. A: Math. Theor. 55 (2022) 243001 Topical Review

Remark 3.7. When the bound state Φω is a ground state of the variational problem (3.2),
and more generally when the bound state is a local minimizer of a constrained variational
problem with exactly one constraint, then L+ has exactly one negative eigenvalue due to (3.9)
and the slope condition (3.10) is satisfied. When the bound state Φω is a saddle point of a
constrained variational problem, then L+ may have more than one negative eigenvalues or the
slope condition (3.10) is not satisfied.

The first proof of orbital stability for the ground state of the NLS equation in Rn was given
by Cazenave and Lions [51]. The proof does not use the expansion of the action functional (3.5)
but relies on properties of minimizing sequences and the concentration-compactness theorem.
The proof is valid if the ground state in the minimization problem (3.2) is unique. If the ground
state is not unique, one can only obtain the stability of the set of the ground states, which is
a weaker result. Uniqueness of the ground states for the NLS equation on metric graphs was
recently discussed in [59] and can be proven for some simplest graphs such as the tadpole
graph or the graph with a terminal edge, see figure 8 below. The uniqueness of the ground state
on the metric graphs with the external potential V can also be proven for the branch of ground
states bifurcating from the lowest eigenvalue of the associated self-adjoint operator [45], as in
proposition 4.3.

Besides the variational problem (3.2), other variational characterizations of standing waves
have been used for the NLS equation on a metric graph G. One can consider the variational
problem

Bω = inf
Ψ∈H1

C (G)

{
Bω(Ψ) : ‖Ψ‖L2p+2(G) = 1

}
, (3.11)

where

Bω(Ψ) := ‖∇Ψ‖2
L2(G) +

∫
G

V(x)|Ψ|2 − ω‖Ψ‖2
L2(G) (3.12)

and ω < 0. The variational problem (3.11) gives generally a larger set of standing waves with
profiles Φω compared to the set of ground states in the variational problem (3.2).

Versions of the variational problem (3.11) arise in the determination of the best constant of
the Sobolev inequality, which is equivalent to the Gagliardo–Nirenberg inequality in Rn (see,
e.g., [13, 14, 54]). However, the minimizer of the variational problem (3.11) on a metric graph
G does not give the best constant in the Gagliardo–Nirenberg inequality [102].

Another variational problem is the minimization of the action functional on the Nehari
manifold,

Nω := inf
Ψ∈H1

C (G)\{0}

{
Sω(Ψ) : Bω(Ψ) = (p+ 1)‖Ψ‖2p+2

L2p+2(G)

}
, (3.13)

where Sω is given by (3.5) and Bω is given by (3.12). This approach was used in [65] for the δ-
type potential on the line R and generalized in [4] for the star graph with the δ-type conditions.
More recently, the variational problems on the Nehari manifold were analyzed in [15, 105].

Relation between the variational problems (3.11) and (3.13) was studied in [102] for p = 2
and for the tadpole graph. It was shown that although the minimizers of the two problems
do not generally coincide, if the minimizers satisfy the same monotonicity properties on the
tadpole graph (see proposition 5.5 below), then the minimizer of one variational problem is at
least a local minimizer of the other variational problem.

Relation between variational problem (3.2) and (3.13) is subtler and has been clarified on
R

n only recently [60].
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3.3. Example of star graphs

The NLS equation on star graphs with N unbounded edges was the first example studied in
the context of the existence of ground states. In [4, 5] (see also [101] for an overview) bound
states were classified in the case of attractive and repulsive δ-type conditions at the vertex with
the parameter α in (1.6). In this simple case, the bound states are obtained by gluing pieces of
soliton solutions of the NLS equation on the line, and the classification is pictorially described
by using the number of tails and bumps of the resulting bound state.

The bound state with the profile Φ j
ω is indexed by the number j of bumps and it turns out

that there are fewer bumps than tails for α < 0 and more bumps than tails for α > 0. The self-
adjoint operatorsL± have been studied around the N-tail state (no bumps) in [4, 5], whereΦ0

ω is
the ground state for small masses in the minimization problem (3.2) and also the minimizer of
the action on the Nehari manifold (3.13) forα < 0. Later, spectral properties of the self-adjoint
operators L± for the bound states Φ j

ω with j � 1 (at least one bump), and also for α > 0 have
been studied with different techniques in [20] and more comprehensively in [84].

We denote by n(L±) the Morse index (number of negative eigenvalues counted with their
multiplicity) and by z(L±) := dim KerL±. Let Φ j

ω be the bound state for p > 0,

j = 0, . . . ,
N − 1

2
, ω < − α2

(N − 2 j)2
.

It was found in [84] that

• The absolutely continuous spectrum of L± is located on [|ω|,+∞),
• The discrete spectrum of L± in (−∞, |ω|) is finite,
• z(L−) = 1, n(L−) = 0

• z(L+) = 0, n(L+) =

{
j + 1 ifα < 0

N − j ifα > 0

• d
dω‖Φ

0
ω‖2

2 < 0 ifα < 0

Proposition 3.4 applies so that Φ0
ω is orbitally stable if α < 0, and Φ j

ω is orbitally unstable
for any j � 1 (at least one bump) if α < 0 and for any j � 0 if α > 0.

The Neumann–Kirchhoff conditions (α = 0) support the bound states made by gluing half-
solitons on the half-lines of the star graph for odd N (obtaining a single degenerate bound state
invariant by permutation of edges), or by placing shifted solitons on half of the lines of the star
graph for N even (see again [4, 101]). There is no ground state in this case, as we will show in
section 4. The bound states could in principle be linearly or orbitally stable. It was proved in
[86, 87] that the bound states are unstable both for odd and even N.

Other classes of boundary conditions have been considered in the last years, allowing for
discontinuous functions at vertices, as in the boundary conditions (1.7) and (1.8). Stability and
instability of standing waves on star graphs in the case of a δ′ vertex have been considered in
[21, 75]. The case of generalized Kirchhoff boundary conditions has been studied in [87, 89]
when the strength of nonlinearity is suitably adapted on any edge to allow for the existence of
shifted states. It is shown in [87, 89] that these shifted translating states are orbitally unstable.

4. Variational methods for the ground state

To construct the ground state of the variational problem (3.2), we first note that the energy
functional E(Ψ) is not bounded from below, irrespectively of the structure of the metric graph
G. To understand this, we can consider Neumann–Kirchhoff conditions and no potential V(x).
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Let us fix Ψ ∈ H1
C(G) and compute E(λΨ) at the scaled function λΨ with parameter λ > 0.

For every p > 0 we have

E(λΨ) = λ2‖Ψ′‖2
L2(G) − λ2p+2‖Ψ‖2p+2

L2p+2(G)
→−∞ as λ→+∞.

This implies that the energy is unbounded from below and it does not possess an infimum
without a constraint. The situation is however different if the mass constraint ‖Ψ‖2

L2(G) = μ is
imposed in the variational problem (3.2).

Recall the Gagliardo–Nirenberg inequality (1.2) for the graphs with finitely many edges
and at least one half-line. After taking into account that the mass is fixed at ‖Ψ‖2

L2(G)
= μ, we

obtain

‖Ψ‖2p+2
L2p+2(G)

� Cpμ
p+2

2 ‖Ψ′‖p
L2(G)

.

For every p > 0 we have the following lower bound on the energy

E(Ψ) � ‖Ψ′‖2
L2(G) − Cpμ

p+2
2 ‖Ψ′‖p

L2(G)
, (4.1)

which allows us to conclude the following.

• If 0 < p < 2, then the inequality (4.1) implies that E(Ψ) is bounded from below. The
infimum always exists and can be approached by a minimizing sequence. However, the
minimizing sequence may not converge to a minimizer Φ ∈ H1

C(G) if it is not attained.
• If p = 2 (critical power), then the inequality (4.1) implies that

E(Ψ) �
(
1 − C2μ

2
)
‖Ψ′‖2

L2(G),

so that there exists a critical mass μG :=C−1/2
2 below which all states have positive energy

E(Ψ). The infimum exists for μ ∈ (0,μG].
• If p > 2, then the inequality (4.1) is not conclusive. In this case, one can use the fol-

lowing scaling transformation for the half-line: Ψ(x) �→
√
λΨ(λx) =:Ψλ(x), x > 0. This

transformation preserves the mass M(Ψλ) = M(Ψ) = μ and changes the energy:

E(Ψλ) = λ2‖Ψ′‖2
L2 − λp‖Ψ‖2p+2

L2p+2 →−∞ as λ→+∞.

Hence, the infimum does not exist for any μ > 0.

A similar analysis and the same conclusions hold true also for compact graphs, making use
of the corresponding Gagliardo–Nirenberg inequality (1.3). Due to the conclusions above, we
will only consider the bound states in the subcritical and critical cases for p ∈ (0, 2].

For p ∈ (0, 2), the ground state of the NLS equation are well-known in the cases of line R

and half-line R+. The unique solution of the stationary NLS equation

−φ′′
ω − (p+ 1)φ2p+1

ω = ωφω. (4.2)

is given up to a translation by the NLS soliton

φω(x) = |ω|
1

2p sech
1
p (p

√
|ω|x), x ∈ R. (4.3)

The mass μ of the NLS soliton can be calculated as a function of frequency ω:

μ = Cp|ω|
1
p−

1
2 , Cp :=

∫
R

sech
2
p (px)dx. (4.4)
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Figure 4. NLS soliton (4.5) on the line R.

Inverting this relation for p ∈ (0, 2) allows us to parametrize the NLS soliton (4.3) by μ:

φμ(x) = cpμ
1

2−p sech
1
p (cp

pμ
p

2−p x), (4.5)

where cp is a positive constant that depends on p ∈ (0, 2) but not on μ. This solution is shown
in figure 4.

If G = R, the soliton φμ up to a translation in x is the ground state of the variational problem
(3.2) for every μ > 0 and p ∈ (0, 2). Similarly, if G = R+, the half-soliton for the double
mass φ2μ(x) for x > 0 is the ground state of the variational problem (3.2) for every μ > 0 and
p ∈ (0, 2). Notice that the translational symmetry is broken by the Neumann condition at x = 0
so that the ground state on R+ is uniquely defined.

In the critical case p = 2, the mass μ of the NLS soliton (4.4) is independent on ω. The
constant values of the mass on the half-line R+ and the full line R are given by

μR+ =
π

4
, μR =

π

2
. (4.6)

Consequently, if p = 2, then the ground state of the variational problem (3.2) on G = R and
G = R+ exists only for μ = μR and μ = μR+ respectively.

4.1. Compact graphs

Ground states on compact graphs have been treated in [43, 55]. The subcritical case is sim-
ple because of the compact embedding of H1

C(G) into Lp(G) for every p � 2. As a result, a
minimizing sequence {Φn}n∈N satisfying the mass constraint M(Φn) = μ converges strongly
in H1

C(G) and its limit Φ ∈ H1
C(G) also satisfies the mass constraint M(Φ) = μ. Hence Φ is the

ground state of the variational problem (3.2) and it is attained irrespectively of details of the
compact graph G.

It has been proved in [43] that for p ∈ (0, 2] there exists the critical mass μ∗ such that the
unique constant solution of the stationary NLS equation (3.1) with V = 0 is the ground state
for μ ∈ (0, μ∗), whereas the ground state is not a constant solution for μ > μ∗.

A detailed analysis of the ground state and other bound states on the special example of a
compact graph given by the dumbbell graph has been given in [77, 95].

4.2. Unbounded graphs

We consider unbounded metric graphs in the case of Neumann–Kirchhoff conditions and no
external potential V. The lack of compactness of G makes the convergence of a minimizing
sequence a nontrivial issue, especially in the critical case p = 2.

What can go wrong in the convergence of a minimizing sequence can be understood from
the following example (originally discussed in [3]). Let G be a star graph with three infinite
edges. For any function Ψ ∈ H1

C(G) with given mass μ, it is always possible to find a function
Φ ∈ H1

C(G) with the same mass but lower energy shown in figure 5.
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Figure 5. Vanishing of the minimizing sequence on the star graph with three edges.

The original function Ψ has masses μ1, μ2, and μ3 in its components on e1, e2, and e3,
respectively. Put half of the soliton φ2μ1 on e1 (recall that φ2μ1 has the same mass μ1) and a
soliton of mass μ2 + μ3 on the union of the two half-lines e2 ∪ e3. The Neumann–Kirchhoff
boundary conditions are satisfied. Since φμ2+μ3 is the ground state on the line for the mass
μ2 + μ3, and φ2μ1 is the ground state on the half-line for a mass μ1, we have E(Ψ) � E(Φ).
However, Φ is not a ground state. An easy calculation shows that for p ∈ (0, 2), inf E(Φ) is
attained for μ1 = 0. As μ1 decreases, the soliton φμ2+μ3 on e2 ∪ e3 moves away from the ver-
tex of the star graph G and runs away to ∞ taking all the mass while the half-soliton on e1

disappears. However, the limit of this Φ is the zero function in H1
C(G).

This behavior of the minimizing sequences is typical on unbounded star graphs: they move
all the mass along the half lines to infinity and vanish near the vertex points. The bound states
given by the half solitons on the star graphs are saddle points of the constrained minimization
problem (3.2) [3]. They are shown to be unstable in the time evolution of the NLS equation
for p ∈ (0, 2) [86]. Shifted states can be constructed for an even number of half lines or for
generalized Neumann–Kirchhoff conditions (1.8) and most of them are linearly unstable [87].
Even if the shifted states are linearly stable, they are nonlinearly unstable [89].

A thorough analysis of the ground state on unbounded graphs G with finitely many edges
and the Neumann–Kirchhoff conditions has been given in a series of papers by Adami et al
[8–10, 12]. The following proposition gives the topological and metric conditions on G that
guarantee non-existence of the ground state.

Proposition 4.1. Let 0 < p < 2. Assume that every point of the graph G lies on a trail
containing two different half-lines, that is, one can reach infinity from every point of the graph
through two disjoint paths as shown in figure 6. Then, the ground state does not exist unless
G is isometric to a bubble tower graph shown in figure 7.

Remark 4.2. One can easily understand why ground states can exist on the bubble tower
graphs. Fold a line on any bubble tower graph and then place the NLS soliton defined on the
line. Neumann–Kirchhoff conditions are respected by placing the maximum of the soliton on
top of the bubble tower and exploiting symmetry of the soliton. The folded NLS soliton is the
ground state. It is unique because the translation invariance of the line has been broken by the
vertices.
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Figure 6. The dashed line represents the trail from the red point to infinity along two
different paths.

Figure 7. A tower graph with two bubbles.

Figure 8. Examples of graphs where the ground state exists.

There are many metric graphs that escape the non-existence result of proposition 4.1. The
list includes graphs with the terminal (pendant) edge, the signpost graph, the tadpole graph,
and the fork graph shown in figure 8. In fact, any graph with just one half-line violates the
condition of proposition 4.1 and the ground state may exist on such graphs. On the other hand,
simple metric graphs such as the double bridge graph (a circle with two half-lines) meet the
hypotheses of proposition 4.1 and fail to trap a ground state.

The main ideas involved in the proof of proposition 4.1 are given as follows.

• Rearrangements. This is an extension of a classical technique that, given any function in
H1

C(G) allows to build another function which has the same Lp(G) norms but smaller kinetic
energy. There are two types of rearrangements useful in the analysis of ground states on
metric graphs:
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∗ Decreasing rearrangements which associate to any function Ψ ∈ H1
C(G) a second

function Ψ∗ on H1(R+) with the same Lp(R+) norm and a lower L2(R+) for its first
derivative;

∗ Symmetric rearrangements which do the same but for a function Ψ̂ ∈ H1(R).

• Comparison with the half-soliton and the full-soliton. The following inequality holds for
fixed mass M(Ψ) = μ:

E(φ2μ) = inf
Ψ∈H1(R+)

E(Ψ) � inf
Ψ∈H1

C (G)
E(Ψ) � inf

Ψ∈H1(R)
E(Ψ) = E(φμ). (4.7)

The first part of this inequality is a consequence of monotonic rearrangement and states
that no function on the metric graph can do better than the half-soliton on the half-line.
The second part is a nontrivial consequence of a property of minimizing sequences.

• Sufficient condition for existence of the ground state. If there exists Φ ∈ H1
C(G) such that

E(Φ) � inf
Ψ∈H1(R)

E(Ψ) = E(φμ) (4.8)

then the ground state exists. This is exactly the condition that prevents the minimizing
sequence to runaway to infinity and vanishing inside G.

The ground state on the tadpole graph in the critical case p = 2 was studied in [102] by using
the variational problem (3.11). It was shown that the ground state exists for μ ∈ (μR+ ,μR] and
two bound states coexist for someμ > μR: one is a local minimizer and the other one is a saddle
point of the variational problem (3.2). Local minimizers of the variational problem (3.2) in the
absence of the ground state are studied in [109].

Several papers study bound states (not necessarily ground states) making use of other analyt-
ical techniques. Number-theoretic properties for the existence of standing waves on the double
bridge graph were discovered and studied in [104]. Canonical perturbation theory is used to
classify standing waves in [72, 73]. Existence of standing waves in the presence of generalized
Neumann–Kirchhoff conditions is studied in [112, 117], with an attempt to establish a con-
nection with integrable Hamiltonian systems. The integrable properties of the system of NLS
equations on the edges of the star graph were studied in [49].

4.3. δ-type conditions and external potentials

The δ-type conditions at one or more vertices or the presence of external potentials V may
give rise to a negative eigenvalue of the linear operator associated with the quadratic part of
the energy. In this case, a ground state always exist in the subcritical [45], critical [42], and
supercritical [25, 26] cases. First examples of the ground state for the δ-type conditions were
considered in [5, 6]. We only sketch the subcritical case p ∈ (0, 2).

Assume that G is a connected graph with a finite number of edges and it is composed
of at least one half-line attached to a compact core. Let V = V+ − V− with V± � 0, V+ ∈
L1(G) + L∞(G), and V− ∈ Lr(G) for some r ∈ [1, 1 + 1/μ]. The quadratic part of the energy is
given by

E(Ψ) = ‖Ψ′‖2
L2(G) +

∑
v∈V

α(v)|Ψ(v)|2 + 〈Ψ, VΨ〉,

which is generated by the self adjoint operator H := −ΔG + V with the form domain
E(H) = H1

C(G). The spectrum of H is defined in L2(G) with the domain D(H) given by the
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δ-type conditions. Assume that the spectrum σ(H) has the infimum at −E0 < 0, which is an
isolated eigenvalue of H.

Proposition 4.3. Let 0 < p < 2. If the above assumptions hold true, then

−∞ < Eμ � −E0μ

for any μ > 0. Moreover, there exists μ∗ > 0 such that for 0 < μ < μ∗ the infimum Eμ is
attained, i.e., the ground state exists and it is orbitally stable.

Remark 4.4. If −E0 is a simple eigenvalue of H, one can use bifurcation theory to find a
candidate for the ground state. It turns out that the ground state of proposition 4.3 bifurcates
from the linear eigenstate associated with the eigenvalue −E0.

Remark 4.5. A sufficient condition to have an isolated eigenvalue of the linear operator
H is ∫

G
V +

∑
v∈V

α(v) < 0 (4.9)

which is a generalization of the condition on the line R. Simplicity of the ground state is a
consequence of the semi-group of H being positivity improving (see [45]).

4.4. Localized nonlinearities

A natural question is to understand what happens when the nonlinearity affects only a compact
portion of the metric graph G. Namely, one can consider a metric graph where the evolution
is given by the NLS equation on a compact part K and by the linear Schrödinger equation on
the remaining unbounded part G\K. This setting is referred to as a metric graph with localized
nonlinearity [38]. Such models are physically meaningful because it is reasonable to consider
the wave interactions to be asymptotically linear.

The simplest graph with the localized nonlinearity is given by the line R, for which the non-
linearity is present on a bounded segment [−L, L] with some L > 0. When the segment length
reduces to zero, that is, when L → 0, the ruling equation is the linear Schrödinger equation on
the line, with no bound states. In the opposite limiting case, when the segment length increases
to infinity, that is, when L →∞, there is only a ground state (up to symmetries) coinciding with
the soliton, and no other bound states. Therefore, the intermediate case is rather nontrivial.

The problem was addressed for some metric graphs in [71], where the existence of many
bound states in the presence of a rather complex pattern of scattering resonances was shown
numerically. Analysis of ground states and more generally bound states for a metric graph
with localized nonlinearity has been treated in the papers [115, 116, 120] in the subcritical
case 0 < p < 2 and in [61] in the critical case p = 2.

A first unexpected result which makes localized nonlinearities quite different from the
standard nonlinearities concerns the existence of the ground state (see [120]). Let the energy
functional E : H1

C(G) → R be given by

E(u) =
1
2
‖u′‖2

L2(G) −
1

2p+ 2
‖u‖2p+2

L2p+2(K)

and as before we consider minimization of E(u) under the fixed constant mass M(u) = μ for
μ > 0. Then, −∞ < Eμ � 0 and the infimum is attained if it is strictly negative. Moreover, we
have the following:
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Figure 9. Schematic illustration of a half-pulse on a pendant (left) and a pulse on a
looping edge (middle) and on an internal edge (right).

• If p ∈ (0, 1), then there exists the ground state for every μ > 0
• If p ∈ (1, 2), then there exist two constants 0 < μ2 < μ1 such that:

∗ The ground state exists for every μ > μ1;
∗ The ground state does not exist for every μ < μ2.

The physically important cubic NLS equation (p = 1) is the critical case since there exists
the gap in the set of masses admitting a ground state for p > 1 and no gap exists for p < 1.
The existence of bound states with higher energy levels than the ground state energy has also
been studied for localized nonlinearities [115, 116].

5. Bound states via period function

Bound states including the ground state, if it exists, can be analyzed by other methods, e.g., by
studying orbits on the phase plane, since each component of the bound state with the profile
Φ ∈ H1

C(G) satisfies the second-order differential equation on each edge of the general graph
G. Let us look again for real-valued solutions of the stationary NLS equation (3.1) but rewritten
without the potential V as

−ΔGΦω − (p+ 1)|Φω|2pΦω = ωΦω. (5.1)

The following class of functions defines the edge-localized states on a general graph G:

• Φω(x) > 0 for every x ∈ G;
• On each bounded edge e ∈ E, there is at most one local critical point of Φω (either

maximum or minimum) inside the edge;
• On each unbounded edge e ∈ E, the function x �→ Φω is monotonically decreasing and

has exponential decay to 0 as x →+∞.

On each bounded edge e ∈ E, we point out the case when Φω has a local maximum inside
the edge, and call such a profile a pulse. If the maximum happens at one vertex of the edge
e ∈ G, then we call it a half-pulse. The examples of a pulse and a half-pulse on different types
of edges are given in figure 9.

Figure 9 does not give an exhaustive list of all possible edge-localized states as one can
think of cases when, for example, a local maximum is strictly inside of the pendant edge or
two maxima are located at both ends of the edge e. The corresponding bound states have larger
values of energy at fixed mass and we will not consider such bound states here.
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We shall distinguish edge-localized states based on the number of pulse profiles. If a pulse
profile occurs on a single edge of the graph, we call the corresponding bound state a single-
pulse state and if several pulse profiles occur on multiple edges of the graph, we call it a
multi-pulse state.

The existence of edge-localized states with pulse profiles on certain edges was con-
firmed analytically and numerically for several simple graph models, e.g. the tadpole graph
[9, 44, 59, 102, 103], the dumbbell graph [77, 95], and the flower graph [85]. More gen-
eral results were obtained in the limit of large mass in [12, 33, 88], where the existence of
single-pulse states and multi-pulse states was proven for a general graph, as we will describe
in section 6.

Here we focus on a novel analytical approach where pulses on bounded edges are obtained
by using properties of the period function for second-order differential equations. The period
function is typically used in the analysis of existence of periodic solutions to nonlinear evolu-
tion equations [66, 69] as well as their spectral stability [67, 68]. Recently, the period function
was introduced in the context of metric graphs in [85, 102] and for solitary waves with compact
singular heads in [108].

5.1. Integral curves for the pulse solutions

A pulse profile might appear generally on any bounded edge e of a graphG. We parametrize the
edge e by an interval [−�1, �2]. The pulse profile on e satisfies the stationary NLS equation (5.1)
on the interval,

−φ′′(x) − (p+ 1)φ(x)2p+1 = ωφ(x), x ∈ (−�1, �2). (5.2)

The parametrization of e is chosen in such a way that x = 0 corresponds to the maximum of
the pulse, this imposes the condition φ′(0) = 0. If e is a looping edge, then �1 = �2 follows by
the symmetry of the Neumann–Kirchhoff conditions. If e is a pendant (terminal) edge, then
we set �1 = 0 and consider the half-pulse with the maximum at x = 0. If e is an internal edge,
then it is typical that �1 �= �2. The exact representation of the pulse on the edge e is determined
by information from the remainder of the graph G\{e}.

The parameter ω < 0 in (5.2) can be eliminated by the scaling transformation

ω := − ε2, φ(x) = ε
1
p u(εx), (5.3)

where ε > 0. The stationary NLS equation (5.2) transforms into the normalized equation

−u′′(z) + u(z) − (p+ 1)u(z)2p+1 = 0, z ∈ (−ε�1, ε�2), (5.4)

with z = εx, where ε determines the new length of the interval.
The scaling transformation (5.3) does not change the derivative condition at the origin where

the pulse maximum is located, hence u′(0) = 0 is still true. This implies that the solution is an
even function of z and it makes sense to partition the interval [−ε�1, ε�2] into two intervals
[−ε�1, 0] and [0, ε�2]. On each of these intervals the pulse solution is monotone towards the
vertices of the edge. The analysis on both intervals is very similar, so we further focus on
solutions restricted to the interval [0, ε�] subject to the boundary conditions

z = 0 : (u, u′) = (p+, 0), and z = ε� : (u, u′) = (p,−q), (5.5)

where p+ > p > 0 and q > 0 due to positivity and monotonicity assumptions on u restricted
to the interval [0, ε�].
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Figure 10. Phase portrait of the differential equation −u′′ + u − 2u3 = 0 on the (u, v)-
plane given by the level curves Eβ .

Let us denote v := u′. The solution (u(z), v(z)) stays for all z ∈ (0, ε�) on the invariant level
curve given by

Eβ := {(u, v) : v2 − u2 + u2p+2 = β}, β � βp := − p

(p+ 1)
p+1

p

, (5.6)

where β p is the minimal value of the function f (u) := − u2 + u2p+2.

The choice β = βp gives the constant solution u(z) = up := (p+ 1)−
1

2p for all z ∈ [0, ε�].
Since we are looking only for pulse profiles on the edge e, the constant solution is neglected
and β > βp.

Figure 10 shows the phase portrait on the (u, v)-plane given by the level curves Eβ . Each
level curve Eβ represents a solution to the differential equation (5.4) for p = 1. We note the
following:

• E0 at the level β = 0 represents two homoclinic orbits (the blue dashed lines), and the
solution on the positive homoclinic orbit is represented by the shifted NLS soliton

u(z) = sech
1
p p(z + a), (5.7)

where a ∈ R is an arbitrary translation parameter.
• Eβ with β ∈ (βp, 0) corresponds to either strictly positive or strictly negative periodic orbit

(the blue solid lines).
• Eβ with β > 0 corresponds to a sign-indefinite periodic orbit outside the homoclinic loops

(the red solid line).
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5.2. Explicit solutions

In some explicit computations (see, e.g., [33, 95] for p = 1 and [102] for p = 2), it is useful
to recall the exact solutions of the differential equation (5.4) expressed with Jacobi elliptic
functions. For p = 1, the dnoidal functions represent the sign-definite periodic orbits and the
cnoidal functions represent the sign-indefinite periodic orbits in figure 10.

Jacobi elliptic functions are related to the elliptic integral of the first kind,

F(ϕ; k) :=
∫ ϕ

0

dθ√
1 − k2 sin2 θ

, (5.8)

where k ∈ (0, 1) is the elliptic modulus. The complete elliptic integral is given by

K(k) :=F
(π

2
; k
)
=

∫ π
2

0

dθ√
1 − k2 sin2 θ

. (5.9)

Jacobi elliptic functions sn(u; k) = sinϕ and cn(u; k) = cosϕ generalize the trigonometric
sine and cosine functions and satisfy the fundamental relation

sn2(u; k) + cn2(u; k) = 1. (5.10)

These functions are derived from the inversion of the elliptic integral with u = F(ϕ; k). They
are smooth, sign-indefinite, and periodic with the period equal to 4K(k).

Jacobi elliptic function dn(u; k) =
√

1 − k2 sin2 ϕ is strictly positive and satisfies the
fundamental relation

dn2(u; k) + k2 sn2(u; k) = 1. (5.11)

This function is also smooth and periodic with the period equal to 2K(k).
The Jacobi elliptic functions are related by the derivatives:

d
du

⎡⎣sn(u; k)
cn(u; k)
dn(u; k)

⎤⎦ =

⎡⎣ cn(u; k)dn(u; k)
−sn(u; k)dn(u; k)
−k2 sn(u; k)cn(u; k)

⎤⎦ . (5.12)

Up to translation, writing the dnoidal solution as u(z) = A dn(Bz; k) with constants A, B gives
v(z) = −ABk2 sn(Bz; k)cn(Bz; k). Substituting u and v to the relation v2 − u2 + u4 = β and
using (5.10)–(5.12) yield the exact solution:

udn(z) =
1√

2 − k2
dn

(
x√

2 − k2
; k

)
, β =

k2 − 1
(2 − k2)2

. (5.13)

Since β ∈
(
− 1

4 , 0
)
, the dnoidal solution (5.13) corresponds to a level curve Eβ inside the

positive homoclinic orbit.
Similar computations for cnoidal waves imply that

ucn(z) =
k√

2k2 − 1
cn

(
x√

2k2 − 1
; k

)
, β =

(1 − k2)k2

(2k2 − 1)2
. (5.14)

Since β > 0, the cnoidal solution corresponds to a level curve Eβ outside the homoclinic orbits.
Note that the parameter k takes values in ( 1√

2
, 1] and that the cnoidal solution ucn(z) can be

obtained from the dnoidal solution udn(z) by the Jacobi real transformation

dn(x; k) = cn(kx; k−1).
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Figure 11. Phase plane (u, v) for the differential equation −u′′ + u − 2u3 = 0 showing
the homoclinic loop for β = 0 and the integral curve Eβ for β ∈ (− 1

4 , 0). The part of the
integral curve between points (p+, 0) and (p,−q) corresponds to the unique decreasing
solution with the boundary conditions (5.5).

5.3. Properties of the period function

The main disadvantage of Jacobi elliptic functions is that they can only be applied to the cases
p = 1 and p = 2. In comparison, the method relying on the period function can be applied to
the differential equation (5.4) for every p > 0.

Let us now introduce the period function for the periodic orbit on the level curve Eβ . Given
a point (p, q) on the level curve Eβ , we define the period function as follows:

T+(p, q) :=
∫ p+

p

du√
β + A(u)

, where A(u) := u2 − u2p+2. (5.15)

The period function gives the z-length of the solution u(z) obtained along the level curve Eβ

between the two points (5.5). Figure 11 shows the two points and the part of the invariant curve
between these points on the phase plane (u, v). The point (p+, 0) represents a turning point for
the periodic orbit defined by β + A(p+) = 0. Since (p, q) and (p,−q) also belong to the level
curve Eβ , they are related by β + A(p) = q2.

Since the pulse profile u is located on the interval [0, ε�], the period function defines another
relation between p and q:

T+(p, q) = ε�. (5.16)

The pulse solution u can be constructed using the following steps: for every point (p̃,−q̃) on
the same level curve Eβ between points (p+, 0) and (p,−q), we have z̃ = T+(p̃, q̃) ∈ (0, ε�)
such that u(̃z) = p̃ and u′(̃z) = −q̃.

The period function T+(p, q) defined in (5.15) satisfies certain monotonicity properties
which are useful in the analysis of pulses on edges of a metric graph G. These results were
obtained in [85, 88] for cubic nonlinearity, which are reviewed here.
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Figure 12. T+(p, q) versus q for fixed p ∈ (0, p∗) (left) and p ∈ (p∗, 1) (right).

Recall that A(u) := u2 − u4 (for p = 1) attains a minimum at u = ±p∗, where p∗ = 1√
2
. Prop-

erties of T+(p, q) depend on whether p ∈ (0, p∗] or p ∈ (p∗, 1). The following two propositions
were proven in section 3.3 in [85].

Proposition 5.1. For every p ∈ (0, p∗], T+(p, q) is a monotonically decreasing function of
q in (0,∞).

Proposition 5.2. For every p ∈ (p∗, 1), T+(p, q) is a non-monotone function of q in (0,∞)
satisfying T+(p, q) → 0 as q→ 0 and q→∞.

Figure 12 illustrates the monotonicity result of proposition 5.1 (left) and the non-
monotonicity result of proposition 5.2 (right).

In the case of non-monotonicity, figure 12 (right) suggests that there exists exactly one
critical point of T+(p, q) with respect to q for a fixed value of p ∈ (p∗, 1), and it is the maximum
point. We denote the corresponding value of q by qmax(p). This maximum point exists for every
p ∈ (p∗, 1), and since the period function T+(p, q) is a continuous differentiable function of
(p, q) in (0, 1) × (0,∞), the value qmax is continuous in p.

Figure 13 shows that the value qmax (the blue solid line) is a monotonically increasing func-
tion of p. The black dashed line displays the homoclinic orbit at the energy level E0 at β = 0
so that qmax crosses the homoclinic orbit at the unique value of p∗∗ ≈ 0.782. This implies that,
for every p ∈ (p∗∗, 1), the period function T+(p, q) is a monotonically increasing function of q
inside the homoclinic orbit as is stated in the following proposition [85].

Proposition 5.3. There exists p∗∗ ∈ (p∗, 1) such that for every p ∈ (p∗, p∗∗), there is exactly
one critical (maximum) point of T+(p, q) in q inside (0,

√
A(p)), where A(p) := p2 − p4. For

p ∈ (p∗∗, 1), T+(p, q) is monotonically increasing in q inside (0,
√

A(p)).

Finally, the asymptotic representation

T+(p, q) ∼ − ln(p+ q), as p, q→ 0

proven in [33] (see also [88]) suggests the following property, which is important for the study
of pulses in the limit of large ε in ω = −ε2.

Proposition 5.4. There is a small δ > 0 such that

∂pT+(p, q) < 0 and ∂qT+(p, q) < 0

for every p ∈ (0, δ) and q ∈ (0, δ).
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Figure 13. Dependence of qmax (the maximum of T+(p, q) in q) versus p is shown by
the blue solid line. The black dashed line shows the homoclinic orbit.

5.4. Example of the tadpole graph

Here we show how the period function T+(p, q) can be applied to obtain precise analyti-
cal results on the existence of single-pulse states on a tadpole graph with a single loop (see
figure 8). The arguments were applied to the flower graph with N loops [85].

We parameterize the unbounded edge of the tadpole graph G by [0,∞) and the loop by
[−π, π]. After the scaling transformation (5.3), the stationary NLS equation (5.4) with the
cubic nonlinearity can be written as the following system of differential equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−u′′
1(z) + u1(z) − 2u1(z)3 = 0, z ∈ (−πε, πε),

−u′′
0(z) + u0(z) − 2u0(z)3 = 0, z > 0,

u1(πε) = u1(−πε) = u0(0),

u′
1(πε) − u′

1(−πε) = u′
0(0).

(5.17)

The only dependence of system (5.17) on ε is due to the length of the interval [−πε, πε].
We are looking for the positive decaying solution to the second equation of system (5.17),

which is the shifted NLS soliton u0(z) = sech(z + a), where a ∈ R is an arbitrary positive trans-
lation parameter. In general, if one is interested in other bound states, then a can be chosen to
be negative, which leads to non-monotone u0 on [0,∞).

After eliminating u0(z) = sech(z + a), we obtain the closed boundary-value problem for a
single looping edge [−πε, πε]. However, since the pulse is symmetric on the looping edge, the
boundary-value problem can be reduced on the half-interval:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−u′′
1(z) + u1(z) − 2u1(z)3 = 0, z ∈ (0, πε),

u1(0) = p+, u1(πε) = p,

u′
1(0) = 0, u′

1(πε) = −1
2

√
A(p),

(5.18)
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Figure 14. Left: geometric construction of the single-pulse state on the phase plane for
the tadpole graph. Right: profile of solutions on the loop and on the half-line.

where p = u0(0) = sech (a) ∈ (0, 1) is a free parameter of the boundary-value problem,
whereas p+ is computed from the turning point satisfying

−A(p+) = q2 − A(p) = −3
4

A(p)

with q := 1
2

√
A(p) and A(p) := p2 − p4 since u′

0(0) = −
√

A(p) is determined on the homoclinic
orbit E0 with β = 0.

To solve the boundary-value problem (5.18), we use the period function T+(p, q) introduced
in (5.15). On the interval [0,πε], the system (5.18) is equivalent to (5.4) and (5.5) with � = π
and p = 1. The existence of a single-pulse edge-localized state on G depends on the existence
of a root to the nonlinear equation (5.16), which becomes

T+

(
p,

1
2

√
A(p)

)
= επ. (5.19)

It was proven in [85] that the mapping p→ T+

(
p, 1

2

√
A(p)

)
is monotonically decreasing for

every p ∈ (0, 1) and has the asymptotic limits:

lim
p→0

T+

(
p,

1
2

√
A(p)

)
= ∞, lim

p→1
T+

(
p,

1
2

√
A(p)

)
= 0.

This means that for every positive ε there is an unique root p to the nonlinear equation (5.19)
so that the following result holds.

Proposition 5.5. For every ε > 0, there exists only one single-pulse edge-localized solu-
tion to the stationary NLS equation (5.17) on the tadpole graph. Such solution is symmetric on
the loop parameterized by [−πε, πε], and is monotonically decreasing on the tail [0,∞).

Figure 14 shows a geometric construction of solutions to the boundary-valueproblem (5.17)
on the phase plane (u, v). The dashed line represents the homoclinic orbit at E0 = 0 with the
solid part depicting the shifted NLS soliton u0(z) = sech(z + a). The dashed-dotted vertical
line depicts the value of p = u0(0) = sech (a). The level curve E(p, 1

2

√
A(p)) = v2 − A(u) is

shown by the dashed line, whereas the solid part depicts a suitable solution to the boundary-
value problem (5.18).
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Figure 15. Bifurcation diagram for bound states on the tadpole graph. The curve c cor-
responds to a family of single-pulse states for ω < 0 which bifurcate from the trivial
solution at ω = 0.

First results about bound states of the cubic NLS equation on the tadpole graph were
obtained in [44] by using the Jacobi elliptic functions (5.13) and (5.14) on the looping edge.
Parameters of the Jacobi elliptic functions and their translations were found from the bound-
ary conditions in the boundary-value problem (5.17). Figure 15 adopted from [44] shows the
bifurcation diagram with many branches of bound states. Branch c for ω < 0 corresponds to
the single-pulse state of proposition 5.5.

The branch a corresponds to a sign-indefinite solution in the looping edge with zero tail
u0 = 0. This solution is continued from ω < 0 to ω > 0 up to the bifurcation point prescribed
by a linear boundary-value problem. At ω = 0, the branch a splits with a new branch b which
exists for ω < 0 and consists of a positive exponentially decaying tail u0 and a sign-indefinite
solution on the looping edge. Bifurcations of such and similar solutions for ω < 0 were stud-
ied in [103] for the general power nonlinearities by using the Lyapunov–Schmidt reduction
method.

Finally, there exist pairs of branches d, for which the solution in the looping edge consists
of several pulses, whereas the exponentially decaying tails u0 are either monotone or non-
monotone. These excited states are usually not interesting in applications because they are
typically unstable in the time evolution of the NLS equation [103].

Similar classifications of bound states were obtained from explicit analysis of the stationary
NLS equations with cubic nonlinearity on the dumbbell graph in [77, 95], the truncated star
graph [28], and the periodic graph [107]. Positive bound states on the tadpole graph in the case
of quintic nonlinearity were considered with the period function in [102].

The stability of the ground state of the NLS equation on the tadpole graph with Neu-
mann–Kirchhoff condition has been studied for the subcritical and critical cases in [102, 103],
respectively. Branch c on figure 15 was shown to be orbitally stable in [103] for 0 < p < 2.
Branch b was shown to be orbitally unstable in [103], however, no conclusion on orbital sta-
bility of branch a was made. In the critical case p = 2, orbital stability of the ground state of
the variational problem (3.11) depends on the values of ω [102]. It was shown that there exists
ω∗ < 0 such that the ground state is orbitally stable for ω ∈ (ω∗, 0) and orbitally unstable for
ω ∈ (−∞,ω∗) [102]. Moreover, the ground state of the variational problem (3.11) along the
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solution branch as ω decreases undergoes a transition from the ground state of the variational
problem (3.2), to a local constrained minimum, and eventually to a saddle point.

6. Bound states in the limit of large mass

The question of the existence of edge-localized states to the stationary NLS equation becomes
more complicated when we consider a general graph G where many pulses can be placed on
different bounded edges. Although each pulse still corresponds to a level curve Eβ , the value
of β can be different between different bounded edges. Even in the case of cubic nonlinearity,
when each pulse is expressed by the dnoidal or cnoidal Jacobi elliptic functions, it is hard to
adjust their parameters to satisfy the boundary conditions on different vertices of the general
graph G.

Another method can be used to overcome this difficulty in the limit of large negative ω,
which in the case of subcritical nonlinearities transfers to the limit of large mass M(Φ) = μ in
the variational problem (3.2). The positive edge-localized states were considered in the limit
of large mass in [12, 33, 57, 88, 91].

6.1. Single-pulse states

Single-pulse states were constructed in [12] by solving the energy minimization problem

E(Φ) = inf
u∈Vμ,e(G)

E(Ψ) (6.1)

in the space of functions of fixed mass M(Ψ) = μ which additionally attain their maximum on
a fixed bounded edge e of the graph G:

Vμ,e(G) =
{
Ψ ∈ H1

C(G) : M(Ψ) = μ and ‖Ψ‖L∞(G) = ‖ψe‖L∞(e)
}
. (6.2)

It was proven in [12] for the subcritical powers 0 < p < 2 and for unbounded graphs G that
for sufficiently large mass μ, there exists a positive solution Φ ∈ Vμ,e(G) to the energy min-
imization problem (6.1) and (6.2). By construction, Φ is a single-pulse state as it reaches its
maximal value on the edge e only, and such Φ can be found for every arbitrarily chosen edge
e. For example, if G has k bounded edges, then for sufficiently large μ, G admits k single-
pulse states of sufficiently large mass μ each localized on a single edge of G. Each bound state
Φ ∈ Vμ,e(G) is a local minimizer of energy E(Ψ) under the fixed mass constraint M(Ψ) = μ
such that the Morse index, which is the number of negative eigenvalues of the linearized oper-
ator L+ introduced in (3.6), is equal to one. Consequently, the bound state Φ ∈ Vμ,e(G) is
orbitally stable in the time evolution, according to proposition 3.4(a), because the slope con-
dition d

dω‖Φ‖2
L2(G)

< 0 is always satisfied for sufficiently large negative ω for the subcritical
powers 0 < p < 2.

The existence of single-pulse states was proven in [33] for both bounded and unbounded
graphs G but only in the case of cubic nonlinearity. The idea explored in [33] relies on the
Dirichlet-to-Neumann (DtN) mappings constructed separately for two parts of the graph G: a
single bounded edge e and the rest of the graphG\{e}. The single-pulse states are then obtained
by studying the intersections of the DtN mappings corresponding to the two parts of a graph
G. Moreover, the same asymptotic method enables classification of the single-pulse states of
the least energy at fixed mass M(Φ) = μ by comparing the exponentially small terms in the
expansion of μ :=M(Φ) in ε :=

√
|ω|. The following result was obtained in [33].

Proposition 6.1. If e is either a looping or internal edge of length 2� or a pendant of
length � as on figure 9, then for sufficiently large ε, there exists the single-pulse edge-localized
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state Φ ∈ H1
C(G) such that the component φe on edge e attains a single local maximum on e,

monotone from its maximum to the vertices of e, and concentrated on e in the following sense

‖Φ‖L2(e)

‖Φ‖L2(G)

� 1 − C e−2ε�, (6.3)

where the constant C is independent of ε. The profile Φ has no internal maxima on the remain-
der of graph G\{e}. The state of the least energy at fixed (large) mass μ localizes on the
following edges of the graph G:

(a) The longest among pendants; in the case of a tie, the pendant incident to fewest edges.
(b) If (a) is void, the shortest among loops incident to a single edge.
(c) If (a) and (b) are void, a loop incident to two edges.
(d) If (a)–(c) are void, the longest edge among the following: a looping edge incident to more

than two edges or an internal edge.

Additional results related to the single-pulse states in the limit of large mass were obtained
in [57], where bounded graphs with the pendant edges were considered and convergence of
the edge-localized states to the half-solitons was proven. Multi-pulse states were also studied
in [57], all pulses localize at the terminal vertices.

Single-pulse states were considered in [91] by recasting the existence problem to the semi-
classical limit of an elliptic problem. It was proven in [91] that the location of the positive
single-pulse state with a single maximum as the state of the least energy at fixed mass is
determined by the longest pendant edge of a bounded graph or the longest internal edge if
no pendant and looping edges are present. These results are included in more general results of
proposition 6.1.

6.2. Multi-pulse states

Multi-pulse states were classified for the stationary NLS equation with the cubic nonlinearity
in the limit of large mass under some consistency assumptions in [88] based on the properties
of the DtN mappings proven in [33].

In order to illustrate these results, we consider the cubic NLS equation on bounded edges
of a metric graph:

−φ′′
e (z) + φe(z) − 2φe(z)3 = 0, z ∈ e, (6.4)

where φe is the corresponding component of Φ on the edge e and the scaling transformation
(5.3) with p = 1 has already been used. The original graph G = {E, V} is transformed to the
ε-scaled graph Gε = {Eε, V} for which every bounded edge e ∈ E of length �e transforms to
the edge eε ∈ Eε of length ε�e but the unbounded edge e ∈ E remains the same as e ∈ Eε.

As we are interested in the multi-pulse edge-localized states onG, we partition the graph into
two parts: one part containing N bounded edges EN := {e1, e2, . . . , eN} which will contain the
pulse profiles, while the other part is the complementG\EN which will have small components.
Similar notations are used for Gε, EN,ε ⊂ Eε, and e j,ε ∈ EN,ε.

Vertices in the set EN,ε which are connected to Gε\EN,ε are declared as the boundary vertices
and the following Dirichlet data�p = (p1, p2, . . . , p|B|) and Neumann data�q = (q1, q2, . . . , q|B|)
are introduced as follows:

pj := ue∼v j(v j), q j :=
∑
e∼v j

∂ue(v j), v j ∈ VB, (6.5)
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where VB is the set of |B| boundary vertices, the derivatives ∂ are directed away from Gε\EN,ε

and e ∼ v j lists all edges e ∈ Gε\EN,ε incident to the vertex v j. Pulse solutions on EN,ε are
required to satisfy

sup
z∈e j,ε

|u j(z)| > 1√
2

, e j,ε ∈ EN,ε (6.6)

whereas the small remainder terms on Gε\EN,ε are required to satisfy

sup
z∈e j,ε

|u j(z)| < 1√
2

, e j,ε ∈ Gε\EN,ε, (6.7)

where 1√
2

is the constant solution of the differential equations in (6.4).
The following two results were proven in [33] (theorem 2.9 and lemma 2.12) and have been

used for analysis in [88]. The first result concerns to the elliptic estimates of small solutions
to the stationary NLS equation (6.4) on the remainder graph Gε\EN,ε. The second result gives
estimates of the large solution to the stationary NLS equation (6.4) on just one edge e ∈ EN,ε.

Proposition 6.2. There exist C0 > 0, p0 > 0, and ε0 > 0 such that for every �p with
‖�p‖ < p0 and every ε > ε0, there exists a solution U ∈ H2(Gε\EN,ε) to the stationary NLS
equation on Gε\EN,ε subject to the Dirichlet data on VB and the Neumann–Kirchhoff condi-
tions on the interior vertices of Gε\EN,ε. The solution is unique among functions satisfying (6.7)
with the following properties:

‖U‖H2(Gε\EN,ε) � C0‖�p‖ (6.8)

and

|q j − D jpj| � C0
(
‖�p‖e−ε�min + ‖�p‖3

)
, 1 � j � |B|, (6.9)

where D j is the degree of the jth boundary vertex in Gε\EN,ε and �min is the length of the
shortest edge in G\EN.

Proposition 6.3. There exist C0 > 0, p0 > 0, and ε0 > 0 such that for every p ∈ (0, p0)
and every ε > ε0, there exists a real solution u ∈ H2(0, ε�) to the differential equation

−u′′ + u − 2u3 = 0, 0 < z < ε�,

satisfying u′(0) = 0 and u(ε�) = p, which is unique among positive and decreasing functions
satisfying (6.6). The solution satisfies u′(ε�) < 0 and
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∣∣u′(ε�) − u(ε�) + 4 e−ε�
∣∣ � C0ε e−3ε�. (6.10)

For each boundary vertex v j ∈ VB with 1 � j � |B|, we use the Dirichlet data pj as the
unknown variable and write the flux boundary condition to determine pj. The main advantage
of this method is that the value of pj can be found independently from the other boundary ver-
tices under some consistency assumptions. For simplicity of presentation, let us only consider
the case when the bounded edges in EN are represented by the looping edges.

By proposition 6.2, the Neumann data at the boundary vertex v j with 1 � j � |B| directed
away from Gε\EN,ε is

q(1)
j = D jpj +O(‖�p‖e−ε�min + ‖�p‖3). (6.11)

By proposition 6.3, the Neumann data at the same boundary vertex v j directed away from EN,ε is

q(2)
j = 2L jpj − 8

∑
e∈E j,ε

e−ε�e +O(ε e−3ε�j,min ), (6.12)

where E j,ε is a subset of EN,ε of looping edges connected to v j and � j, min is the minimal half-
length of the looping edges in E j,ε.

The flux boundary condition gives q(1)
j + q(2)

j = 0. This implicit equation on pj can be solved
with the implicit function theorem provided that the error terms are smaller than the leading-
order terms in the corresponding explicit solution:

pj =
8
Z j

∑
e∈E j,ε

e−ε�e +O
(
‖�p‖e−ε�min + ‖�p‖3 + ε e−3ε�j,min

)
, (6.13)

where Z j is the total degree of the vertex v j.

Remark 6.4. The same solution (6.13) yields

pj =
8
Z j

∑
e∈E j,ε

e−ε�e +O
(
ε e−3ε�j,min

)
,

if the vertex v is not a boundary vertex in VB but an interior vertex between edges in the set EN,ε.
Therefore, the Dirichlet data at the interior vertices are settled trivially, and it is only required
to find the Dirichlet data at the boundary vertices.

Although the boundary conditions are satisfied for all vertices if pj is defined by (6.13)
for 1 � j � |B|, one needs to verify that ‖�p‖ in the error terms in (6.13) is smaller than the
leading-order terms in (6.13) as ε→∞ for each j. This is true if

‖�p‖e−ε�min � e−ε� j,min , ‖�p‖3 � e−ε� j,min , 1 � j � |B|,

which gives the following restrictions on the lengths of edges in the set EN:

max
1� j�|B|

� j,min − min
1� j�|B|

� j,min < �min (6.14)

and

max
1� j�|B|

� j,min < 3 min
1� j�|B|

� j,min, (6.15)
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where �min is the length of the shortest edge in G\EN . If N = 1, |B| = 0, |B| = 1, or |B| � 2
with all � j, min being equal, the consistency assumptions (6.14) and (6.15) are trivially satisfied.

Remark 6.5. Pendant edges can be included into consideration due to the symmetry of solu-
tions on the looping edges. However, for internal edges, one needs to control the center of
symmetry for pulses on the internal edges, see figure 8. This leads to more complicated solu-
tions of the flux boundary conditions and to additional restrictions that each internal edge in
the set EN is assumed to have no common vertices with other internal edges and its half-length
is strictly minimal to the half-lengths of looping edges that are adjacent to the two vertices of
the internal edge [88].

Morse index of the N-pulse positive state constructed from the DtN mappings has been
computed in [88] by using Sturm’s oscillation theorem. Note that Sturm’s oscillation theorem
has been previously used for the star graphs in [87] and for flower graphs in [85]. The following
result was obtained in [88].

Proposition 6.6. Assume that EN consists of pendant and looping edges, the lengths of
which satisfy the constraints (6.14) and (6.15). For sufficiently large ε, there exists the N-pulse
edge-localized state Φ ∈ H1

C(G) such that the profile Φ is concentrated on EN in the following
sense

‖Φ‖L2(G\EN )

‖Φ‖L2(EN )

� C e−ε�N , (6.16)

where the constant C is independent of ε and �N is the minimum of {� j,min}N
j=1. The profile Φ

has no internal maxima on the remainder of graph G \EN. Morse index of the positive N-pulse
bound state Φ is exactly N.

The implication of proposition 6.6 to the time evolution of perturbations to the N-pulse
edge-localized states is that these states are orbitally unstable under the NLS time flow if
N � 2 according to proposition 3.4(b). In agreement with the variational characterization of
the single-pulse states on unbounded graphs in [12], the single-pulse states with N = 1 are
orbitally stable according to proposition 3.4(a) because the slope condition d

dω‖Φ‖2
L2(G)

< 0 is
always satisfied for sufficiently large negative ω. Consequently, multi-pulse states with N � 2
cannot be the ground state of the variational problem (3.2) because their Morse index exceeds
one. It is still unclear (see discussion in [33]) if the ground state can only be realized among
the single-pulse states of figure 9 in the large-mass limit.

6.3. Examples of the flower and dumbbell graphs

Here we show how the construction of multi-pulse edge-localized states in the limit of large
mass corresponds to the complete study of positive bound states on the flower and dumb-
bell graphs. The flower graph was considered in [85]. The dumbbell graph was considered in
[77, 95]. These examples and their generalizations were also reviewed with some additional
numerical approximations in [33, 88].

Let us consider the flower graph with N = 3 loops shown in figure 16. Each jth loop is
parametrized by a segment [−� j, � j] of length 2� j and the unbounded edge is parametrized by
a half-line [0,∞). The consistency assumptions (6.14) and (6.15) are trivially satisfied because
|B| = 1. Therefore, by proposition 6.6, one can get single-pulse, double-pulse, and triple-pulse
solutions in the limit of large mass. Moreover, the Morse index of the N-pulse state is N.
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Figure 16. A flower graph with three loops.

Figure 17. Bifurcation diagram of multi-pulse edge-localized states on the parameter
plane (ω, μ) (left) and on the mass-energy plane (right) for the flower graph with N = 3
loops.

This conclusion coincides with theorems 1–3 of [85] and is illustrated in figure 17. The
blue line shows the three-pulse state with Morse index equal to one before the bifurca-
tion point (smaller values of mass) and to three after the bifurcation point (larger values of
mass). Therefore, the three-pulse state is orbitally stable before bifurcation and unstable after
bifurcation.

The green line depicts the double-pulse state with two components having larger amplitudes
than the third one. It only exists for masses larger than the mass at the bifurcation point and it
has Morse index equal to two, hence it is orbitally unstable.

The red line shows a single-pulse state with one component having a larger amplitude than
the other components. It bifurcates to smaller masses than the mass at the bifurcation point but
the solution branch turns at the fold bifurcation and then extends to the limit of large mass. The
Morse index of the single-pulse state is equal to two near the bifurcation point and to one after
turning at the fold bifurcation. It is orbitally stable for large negative ω.

The energy-mass diagram (right panel of figure 17) shows that the three-pulse solution for
smaller mass belongs to the shaded area where minimizers of the variational problem (3.2)
exist, see inequalities in (4.7). However, once the solution curve leaves the shaded area for
larger mass, it never comes back. Hence, for sufficiently large mass, the infimum of the vari-
ational problem (3.2) is not attained at the flower graph with N = 3 (in fact, for every N � 2)
even at the single-pulse solution given by the red curve. Consequently, it is a local rather than
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Figure 18. A dumbbell graph.

global minimizer of the constrained variational problem (3.2). No ground state exists for the
flower graph with N � 2 in the large-mass limit, despite the flower graph escapes the condition
of proposition 4.1 because it has only one half-line.

Let us now consider a dumbbell graph shown in figure 18. The dumbbell graph consists of
two loops of lengths 2�− and 2�+ connected by an internal edge of length 2�0 at two vertices.
The numerical approximations of the positive multi-pulse states were performed by using the
QGLAB [78] for �− = �+ = π, �0 = 2 < �−, and fixed ω = −4. Figure 19 presents the results
of numerical approximations.

The single-pulse state can be placed at any of the three edges in the limit of large mass.
When it is placed on the loop, its Morse index is equal to one. It was shown in [95] (and also
follows from the variational method in [12]) that when it is placed on the internal edge, its
Morse index is also equal to one. Figures 19(a) and (b) shows the two single-pulse states and
we have confirmed that the Morse index of each state is equal to one, hence, these states are
orbitally stable.

The double-pulse state can be placed at the two loops if �+ < 2�0 + �− and �+ < 3�−,
which follow from the conditions (6.14) and (6.15) respectively. The constraints are satisfied if
�− = �+. Morse index of this double-pulse state is equal to two, hence it is orbitally unstable.
Figure 19(c) shows this double-pulse state and we have confirmed that its Morse index is equal
to two.

The double-pulse state can also be placed at one loop and the internal edge if �0 < �− = �+.
Figure 19(d) shows this two-pulse state and we found that its Morse index is equal to three,
hence it is orbitally unstable. This example shows that proposition 6.6 stating that the Morse
index of N-pulse state is N only holds for the multi-pulse states supported in the looping and
pendant edges and may generally fail when some of the pulses are supported on internal edges.

The three-pulse state can be placed at all three edges if �0 < �− = �+. Figure 19(e) shows
this three-pulse state and we have found that its Morse index is equal to five, hence it is orbitally
unstable. Again, the Morse index exceeds the number of pulses of this three-pulse state because
one pulse is supported on the internal edge.

7. Other evolutionary models on metric graphs

Here we review other important nonlinear dispersive wave models which have been recently
considered on metric graphs. The models include the Dirac equation, the Klein–Gordon
equation, and the KdV equation.
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Figure 19. Five edge-localized states on the dumbbell graph with �− = �+ = π, �0 = 2,
and ω = −4.

7.1. Nonlinear Dirac equation

The nonlinear Dirac (NLD) equation with power type nonlinearity in one spatial dimension is
written in the form:

i
∂Ψ

∂t
= DmΨ− |Ψ|2p+1Ψ, Dm = −icσ1

∂Ψ

∂x
+ mc2σ3Ψ, (7.1)

where m � 0 is the mass, c > 0 is the relativistic parameter, and p > 0 defines the nonlinearity
power. The Dirac operator Dm is expressed in terms of the Pauli matrices σ1 and σ3 given by

σ1 :=

(
0 1
1 0

)
and σ3 :=

(
1 0
0 −1

)
. (7.2)
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The NLD equation (7.1) is an effective model for materials with Dirac points such as graphene
and germanene [124] (see [64] for a rigorous analysis of materials with Dirac points). It has
also been used for Bose–Einstein condensation in periodic traps [82, 106]. In some recent
papers the NLD equation has been considered as an effective equation for BEC in branched
quasi-unidimensional domains and optical fibers, when relativistic effects cannot be neglected
(see [70, 113, 121, 129]).

A rigorous analysis of standing waves for the NLD equation on noncompact metric graphs
has been recently reported in [39, 40]. As for any differential equation on a metric graph one
has to choose boundary conditions at vertices of the graph, which amounts to choose a specific
self-adjoint realization of the Dirac operator [41]. The preferred choice is given by the Kirchhoff
vertex conditions.

Let us denote the Dirac operator with Kirchhoff vertex conditions by DG . The action of DG
is defined on each edge as the action of the Dirac operator Dm:

DGψe = −icσ1ψ
′
e + mc2σ3ψe, ∀ e ∈ E. (7.3)

The domain of DG is defined by

D(DG) := {ψ = (φ,χ)T ∈ H1(G) : (7.4) and (7.5) are satisfied},

where the Kirchhoff vertex conditions are

φe(v) = φ f (v), ∀ e, f � v, ∀ v ∈ V , (7.4)∑
e�v

χe(v) =
∑
e←v

χe(v) −
∑
e→v

χe(v) = 0, ∀ v ∈ V. (7.5)

Let us add few remarks. Firstly, squaring the operator DG and applying it to spinors with the
nonzero first component, one obtains the Laplacian ΔG with the Neumann–Kirchhoff condi-
tions plus zero-order corrections, see [40]. Secondly, in application to the materials with Dirac
points, the NLD equation is an effective model equation, and some caution should be used to
interpret the parameter c > 0.

The NLD equation on the metric graph G is given by

i
∂Ψ

∂t
= DGΨ− |Ψ|2p+1Ψ. (7.6)

One can also consider the model with localized nonlinearity, i.e.

i
∂Ψ

∂t
= DGΨ− χK|Ψ|2p+1Ψ, (7.7)

where χK is the indicator function of the compact part K of the metric graph G, where the
nonlinearity is localized. Bound states of the NLD equation (7.6) are the spinors ψ such that

−icσ1ψ
′
e + mc2σ3ψe − |ψe|2p+1ψe = ωψe, ∀ e ∈ E, (7.8)

where components of ψ satisfy the Kirchhoff vertex conditions (7.4) and (7.5). The wave func-
tion Ψ(t, x) = e−iωtψ(x) is the standing wave solution of the NLD equation (7.6). The same
definition obviously holds true for the model (7.7), where the nonlinearity is concentrated, one
can just add a factor χK in front of the nonlinearity.

In order to study the bound states of the stationary NLD equation (7.8), one should take into
account the important fact that the spectrum of DG is given by (see [39, appendix A])
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σ(DG) = (−∞,−mc2] ∪ [mc2,+∞).

As a consequence, the Dirac operator with the Kirchhoff vertex conditions has the gap
R\σ(DG) = (−mc2, mc2). Bound states correspond to the values of ω in the gap (−mc2, mc2).

The NLD equation (7.7) with localized nonlinearity has been considered in [39] and it is
proved that for every ω ∈ (−mc2, mc2) there exist infinitely many distinct standing wave solu-
tions. Moreover, it is shown that for a sequence {cn}n∈N of values of c such that cn →+∞,
there exist another sequence {ωn}n∈N of values of ω such that ωn →+∞ with corresponding
bound states {ψn}n∈N converging to a certain spinor of the form (u, 0)T, where u ∈ D(ΔG) is a
bound state satisfying the stationary NLS equation with concentrated nonlinearity:

− 1
2m

u′′
e − χK|ue|p−2ue = λue, ∀ e ∈ E. (7.9)

Thus, the NLS equation on a metric graph G becomes the non-relativistic limit of the NLD
equation on the same metric graph G in the case of localized nonlinearities.

The situation is technically more involved in the case of the NLD equation (7.6) due of
the lack of compactness. In this case, the star graphs have been treated in [40] by means of
bifurcation theory and not making use of variational methods. The analysis shows that start-
ing from any real solution u ∈ D(ΔG) of the stationary NLS equation on the star graph with
Neumann–Kirchhoff conditions,

− 1
2m

u′′
e − |ue|p−2ue = λue, ∀ e ∈ E, (7.10)

one can define a branch of bound states of the stationary NLD equation (7.8) for ω sufficiently
near to mc2 (and in the gap). In particular, there exists at least one branch of bound states of the
NLD equation (7.8) bifurcating near the threshold ω = mc2. Moreover, one should notice that
for a star graph with an odd number of edges there is a unique real solution of the stationary
NLS equation (7.10), but for star graph with an even number of edges there are infinitely many
real solutions grouped in continuous families [4, 86, 87].

7.2. Nonlinear Klein–Gordon equation

The square of the Dirac operator is the Klein–Gordon operator, and the Klein–Gordon equation

∂2ψ

∂t2
= −Δψ + m2ψ + λ|ψ|2σψ (7.11)

is another well-known dispersive partial differential equation. Notice that the Klein–Gordon
equation (7.11) is a nonlinear wave equation. A recent analysis of the nonlinear Klein–Gordon
equation (7.11) on star graphs can be found in [74].

A variation on the nonlinear Klein–Gordon equation is the sine-Gordon equation

∂2ψ

∂t2
= −Δψ + m2 sin ψ. (7.12)

This equation appears in several contexts, from field theory to differential geometry and DNA
filaments dynamics. The sine-Gordon equation (7.12) on a star graph has been recently used
to model Josephson junctions in tri-crystal boundaries (see [46, 114, 118, 119] and the recent
papers [22–24]).
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7.3. Korteweg–de Vries equation

In its original form the Korteweg de Vries (KdV) equation reads

∂η

∂t
=

3
2

√
g
�

(
σ

3
∂3η

∂x3
+

2γ
3

∂η

∂x
+ η

∂η

∂x

)
, (7.13)

where the unknown η is the elevation of the shallow water surface with respect to its average
depth � in a shallow canal. This dispersive equation has been the first where solitary waves
were discovered. In this case the solitary wave is just a translation with a constant velocity
of a given profile function. Renaming coefficients and scaling variables one obtains the KdV
equation with parameter α in front of the third derivative and β in front of the first derivative

∂u
∂t

= α
∂3u
∂x3

+ β
∂u
∂x

+ u
∂u
∂x

. (7.14)

The linear part of the KdV equation was reviewed in section 1.4. When it is considered on
the line, one usually takes α < 0 and set β = 0 due to the Galilean transformation. However,
the Galilean transformation is not generally possible on the half-line or on metric graphs and
the properties of the linear KdV equation depend on the signs of α and β.

Very little is known about the behavior of solutions of the KdV equation (7.14) on metric
graphs G. In [48], well-posedness of the initial-value problem for the KdV equation on a star
graph with three edges and special boundary conditions were considered in Sobolev spaces of
low regularity. It was shown that the unique solution exists but in a very weak sense, in par-
ticular, it is not even twice differentiable in spatial coordinate. Further results in this direction
were obtained in [17, 52] for star graphs with bounded edges in the context of arterial flows.

The stability of standing waves for the KdV equation on a balanced star graph was consid-
ered in [18] based on [98]. The linear instability was proven for a special class of boundary
conditions. Nothing is known about the existence of stable bound states of the KdV equation
on a star graph.

Finally, we mention other nonlinear equations related to fluid flows. The Ben-
jamin–Bona–Mahony equation (or the regularized long wave equation) was considered on
finite trees in [36]. Traveling waves of the same equation on more general metric graphs
were considered in [99]. Shallow water equations in the context of river flow at forks were
considered in [47]. Starting with a two-dimensional Boussinesq model in a forked channels
region, a reduced one-dimensional equation on a metric graph was deduced in [100], with
suitable boundary conditions at the vertex. The reduced model was also shown to support the
propagation of solitary waves.

8. Further directions

We have reviewed nonlinear evolutionary models on quantum graphs. Existence and stabil-
ity of standing waves in the NLS equation was studied with different analytical techniques
such as the variational method, the period function, and the Dirichlet-to-Neumann mappings.
Many fundamental results have already been obtained for metric graphs both with bounded
and unbounded edges under the assumption that the number of edges and vertices is finite.
Extensions of these results to other evolutionary models such as the NLD equation, the nonlin-
ear Klein–Gordon equation, and the KdV equation have been recently considered with some
preliminary results.

In the end of this review, we would like to mention the recent work on the metric graphs
with the unbounded number of edges.

45



J. Phys. A: Math. Theor. 55 (2022) 243001 Topical Review

The NLS equation was considered on periodic graphs in one direction, such as a periodic
chain with the fundamental cell consisting of a single loop and a single internal edge. For
such graphs, homogenization to the NLS and NLD equations with constant coefficients was
considered in [70]. Standing wave solutions on the same periodic graph were classified by using
dynamical system methods [107] and variational methods [105]. Existence of the ground state
at every mass was proven for the periodic graph in [56]. The symmetry of the ground state was
clarified in the limit of large mass in [33].

In the case of the periodic graphs in two dimensions, an interesting dimensional crossover
was found in [7] in the context of the NLS equation with power nonlinearity. It was shown
that if the power is below the cubic nonlinearity, ground states exist for every value of the
mass, while if the power is between the cubic (including) and quintic (excluding) nonlineari-
ties, ground states exist if and only if the mass exceeds a threshold value that depends on the
power. This dimensional crossover is related to the coexistence of the one-dimensional and
two-dimensional Sobolev inequalities, leading to a generalized Gagliardo–Nirenberg inequal-
ity for the doubly-periodic metric graphs. Failure of the dimensional crossover was investigated
in [62] for the doubly periodic graphs with compact or non-compact defects.

Standing waves of the NLS equation on various metric graphs have been approximated
numerically with different techniques. Petviashvili’s iteration method has been explored in
[33, 95]. Other iterative and shooting methods were used in [77, 89] and resulted in the QGLAB
[78]. The gradient method was applied to the stationary NLS equation in [34].

Overall, standing waves of the nonlinear evolutionary models on quantum (metric) graphs
is a rapidly growing area with many interesting developments.
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[17] Ammari K and Crépeau E 2018 Feedback stabilization and boundary controllability of the

Korteweg–de Vries equation on a star-shaped network SIAM J. Control Optim. 56 1620–39
[18] Pava J A and Cavalcante M 2021 Linear instability criterion for the Korteweg–de Vries equation

on metric star graphs Nonlinearity 34 3373–410
[19] Pava J A and Goloshchapova N 2018 Extension theory approach in stability of standing waves for

NLS equation with point interactions Adv. Diff. Equ. 23 793–846
[20] Pava J A and Goloshchapova N 2018 On the orbital instability of excited states for the NLS

equation with the δ-interaction on a star graph Discrete Continuous Dyn. Syst. 38 5039–66
[21] Pava J A and Goloshchapova N 2020 Stability properties of standing waves for NLS equations

with the δ′-interaction Physica D 403 132332
[22] Pava J A and Plaza R 2021 Instability of static solutions of the sine-Gordon equation on a Y-

junction graph with δ-interaction J. Nonlinear Sci. 31 50
[23] Pava J A and Plaza R G 2021 Instability theory of kink and anti-kink profiles for the sine-Gordon

equation on Josephson tricrystal boundaries Physica D 427 133020
[24] Pava J A and Plaza R G 2021 Stability properties of stationary kink-profile solutions for the sine-

Gordon equation on a Y-junction graph with δ′-interaction at the vertex Math. Z. 300 2885–915
[25] Ardila A H 2020 Orbital stability of standing waves for supercritical NLS with potential on graphs

Appl. Anal. 99 1359–72
[26] Ardila A H, Cely L and Goloshchapova N 2021 Instability of ground states for the NLS equation

with potential on the star graph J. Evol. Equ. 21 3703–32
[27] Banica V and Ignat L 2014 Dispersion for the Schrödinger equation on the line with multiple Dirac

delta potentials and on delta trees Anal. PDE 7 903–27
[28] Band R, Gnutzmann S and Krueger A 2019 On the nodal structure of nonlinear stationary waves

on star graphs Symmetry 11 185
[29] Beck G, Imperiale S and Joly P 2015 Mathematical modelling of multi conductor cables Discrete

Continuous Dyn. Syst. S 8 521–46
[30] Benjamin T B 1972 The stability of solitary waves Proc. R. Soc. A 328 153–83
[31] Berkolaiko G, Kennedy J B, Kurasov P and Mugnolo D 2019 Surgery principles for the spectral

analysis of quantum graphs Trans. Am. Math. Soc. 372 5153–97
[32] Berkolaiko G and Kuchment P 2013 Introduction to Quantum Graphs (Mathematical Surveys and

Monographs vol 186) (Providence, RI: American Mathematical Society)

47

https://doi.org/10.1088/1751-8113/45/19/192001
https://doi.org/10.1088/1751-8113/45/19/192001
https://doi.org/10.1016/j.jde.2014.07.008
https://doi.org/10.1016/j.jde.2014.07.008
https://doi.org/10.1016/j.jde.2014.07.008
https://doi.org/10.1016/j.jde.2014.07.008
https://doi.org/10.1016/j.anihpc.2013.09.003
https://doi.org/10.1016/j.anihpc.2013.09.003
https://doi.org/10.1016/j.anihpc.2013.09.003
https://doi.org/10.1016/j.anihpc.2013.09.003
https://doi.org/10.1016/j.jde.2016.01.029
https://doi.org/10.1016/j.jde.2016.01.029
https://doi.org/10.1016/j.jde.2016.01.029
https://doi.org/10.1016/j.jde.2016.01.029
https://doi.org/10.2140/apde.2019.12.1597
https://doi.org/10.2140/apde.2019.12.1597
https://doi.org/10.2140/apde.2019.12.1597
https://doi.org/10.2140/apde.2019.12.1597
https://doi.org/10.1007/s00526-014-0804-z
https://doi.org/10.1007/s00526-014-0804-z
https://doi.org/10.1007/s00526-014-0804-z
https://doi.org/10.1007/s00526-014-0804-z
https://doi.org/10.1016/j.jfa.2016.04.004
https://doi.org/10.1016/j.jfa.2016.04.004
https://doi.org/10.1016/j.jfa.2016.04.004
https://doi.org/10.1016/j.jfa.2016.04.004
https://doi.org/10.1007/s00220-016-2797-2
https://doi.org/10.1007/s00220-016-2797-2
https://doi.org/10.1007/s00220-016-2797-2
https://doi.org/10.1007/s00220-016-2797-2
https://doi.org/10.1007/s00526-018-1461-4
https://doi.org/10.1007/s00526-018-1461-4
https://doi.org/10.1007/s10884-006-9039-9
https://doi.org/10.1007/s10884-006-9039-9
https://doi.org/10.1007/s10884-006-9039-9
https://doi.org/10.1007/s10884-006-9039-9
https://doi.org/10.1016/j.crma.2008.05.015
https://doi.org/10.1016/j.crma.2008.05.015
https://doi.org/10.1016/j.crma.2008.05.015
https://doi.org/10.1016/j.crma.2008.05.015
https://doi.org/10.1016/j.na.2019.02.020
https://doi.org/10.1016/j.na.2019.02.020
https://doi.org/10.1016/j.na.2019.02.020
https://doi.org/10.1016/j.na.2019.02.020
https://doi.org/10.1137/17m113959x
https://doi.org/10.1137/17m113959x
https://doi.org/10.1137/17m113959x
https://doi.org/10.1137/17m113959x
https://doi.org/10.1088/1361-6544/abea6b
https://doi.org/10.1088/1361-6544/abea6b
https://doi.org/10.1088/1361-6544/abea6b
https://doi.org/10.1088/1361-6544/abea6b
https://doi.org/10.3934/dcds.2018221
https://doi.org/10.3934/dcds.2018221
https://doi.org/10.3934/dcds.2018221
https://doi.org/10.3934/dcds.2018221
https://doi.org/10.1016/j.physd.2020.132332
https://doi.org/10.1016/j.physd.2020.132332
https://doi.org/10.1007/s00332-021-09711-7
https://doi.org/10.1007/s00332-021-09711-7
https://doi.org/10.1016/j.physd.2021.133020
https://doi.org/10.1016/j.physd.2021.133020
https://doi.org/10.1007/s00209-021-02899-0
https://doi.org/10.1007/s00209-021-02899-0
https://doi.org/10.1007/s00209-021-02899-0
https://doi.org/10.1007/s00209-021-02899-0
https://doi.org/10.1080/00036811.2018.1530763
https://doi.org/10.1080/00036811.2018.1530763
https://doi.org/10.1080/00036811.2018.1530763
https://doi.org/10.1080/00036811.2018.1530763
https://doi.org/10.1007/s00028-021-00670-w
https://doi.org/10.1007/s00028-021-00670-w
https://doi.org/10.1007/s00028-021-00670-w
https://doi.org/10.1007/s00028-021-00670-w
https://doi.org/10.2140/apde.2014.7.903
https://doi.org/10.2140/apde.2014.7.903
https://doi.org/10.2140/apde.2014.7.903
https://doi.org/10.2140/apde.2014.7.903
https://doi.org/10.3390/sym11020185
https://doi.org/10.3390/sym11020185
https://doi.org/10.3934/dcdss.2015.8.521
https://doi.org/10.3934/dcdss.2015.8.521
https://doi.org/10.3934/dcdss.2015.8.521
https://doi.org/10.3934/dcdss.2015.8.521
https://doi.org/10.1098/rspa.1972.0074
https://doi.org/10.1098/rspa.1972.0074
https://doi.org/10.1098/rspa.1972.0074
https://doi.org/10.1098/rspa.1972.0074
https://doi.org/10.1090/tran/7864
https://doi.org/10.1090/tran/7864
https://doi.org/10.1090/tran/7864
https://doi.org/10.1090/tran/7864


J. Phys. A: Math. Theor. 55 (2022) 243001 Topical Review

[33] Berkolaiko G, Marzuola J and Pelinovsky D E 2021 Edge-localized states on quantum graphs in
the limit of large mass Ann. Inst. Henri Poincare C 38 1295–335

[34] Besse C, Duboscq R and Le Coz S 2022 Gradient flow approach to the calculation of stationary
states on nonlinear quantum graphs Ann. Henri Lebesgue 5 387–428

[35] Bona J 1975 On the stability theory of solitary waves Proc. R. Soc. A 344 363–74
[36] Bona J L and Cascaval R C 2008 Nonlinear dispersive waves on trees Can. J. Appl. Math. 16 1–18
[37] Bona J L, Sun S M and Zhang B-Y 2003 A nonhomogeneous boundary-value problem for the

Korteweg–de Vries equation posed on a finite domain Commun. PDE 28 1391–436
[38] Borrelli W, Carlone R and Tentarelli L 2019 An overview on the standing waves of nonlinear

Schrödinger and Dirac equations on metric graphs with localized nonlinearity Symmetry 11
169

[39] Borrelli W, Carlone R and Tentarelli L 2019 Nonlinear Dirac equation on graphs with localized
nonlinearities: bound states and nonrelativistic limit SIAM J. Math. Anal. 51 1046–81

[40] Borrelli W, Carlone R and Tentarelli L 2021 On the nonlinear Dirac equation on noncompact
metric graphs J. Differ. Equ. 278 326–57

[41] Bulla W and Trenkler T 1990 The free Dirac operator on compact and noncompact graphs J. Math.
Phys. 31 1157–63

[42] Cacciapuoti C 2018 Existence of the ground state for the NLS with potential on graphs Mathe-
matical Problems in Quantum Physics Contemporary Mathematics vol 717) (Providence, RI:
American Mathematical Society) pp 155–72

[43] Cacciapuoti C, Dovetta S and Serra E 2018 Variational and stability properties of constant solutions
to the NLS equation on compact metric graphs Milan J. Math. 86 305–27

[44] Cacciapuoti C, Finco D and Noja D 2015 Topology induced bifurcations for the NLS on the tadpole
graph Phys. Rev. E 91 013206

[45] Cacciapuoti C, Finco D and Noja D 2017 Ground state and orbital stability for the NLS equation
on a general starlike graph with potentials Nonlinearity 30 3271–303

[46] Caputo J G and Dutykh D 2014 Nonlinear waves in networks: model reduction for the sine-Gordon
equation Phys. Rev. E 90 022912

[47] Caputo J-G, Dutykh D and Gleyse B 2019 Coupling conditions for water waves at forks Symmetry
11 434

[48] Cavalcante M 2018 The Korteweg–de Vries equation on a metric star graph Z. Angew. Math. Phys.
69 124

[49] Caudrelier V 2015 On the inverse scattering method for integrable PDEs on a star graph Commun.
Math. Phys. 338 893–917

[50] Cazenave T 2003 Semilinear Schrödinger Equations (Courant Lecture Notes in Mathematics
vol 10) (New York: Courant Institute of Mathematical Sciences, New York University)

[51] Cazenave T and Lions P L 1982 Orbital stability of standing waves for some nonlinear Schrödinger
equations Commun. Math. Phys. 85 549–61
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[93] Lions P L 1984 The concentration-compactness principle in the calculus of variations. The locally
compact case: II Ann. Inst. Henri Poincaré C 1 223–83
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