
London Mathematical Society Nonlinearity

Nonlinearity 34 (2021) 5979–6016 https://doi.org/10.1088/1361-6544/ac0f4f

Asymptotic stability of viscous shocks in
the modular Burgers equation

Uyen Le1, Dmitry E Pelinovsky1,2,∗ and Pascal Poullet3

1 Department of Mathematics and Statistics, McMaster University, Hamilton,
Ontario, L8S 4K1, Canada
2 Department of Applied Mathematics, Nizhny Novgorod State Technical
University, 24 Minin street, 603950 Nizhny Novgorod, Russia
3 LAMIA, Universite des Antilles, Campus de Fouillole, F-97157 Pointe-a-Pitre,
Guadeloupe, French West Indies

E-mail: leu@mcmaster.ca, dmpeli@math.mcmaster.ca and
pascal.poullet@univ-antilles.fr

Received 10 November 2020, revised 24 May 2021
Accepted for publication 28 June 2021
Published 20 July 2021

Abstract
Dynamics of viscous shocks is considered in the modular Burgers equation,
where the time evolution becomes complicated due to singularities produced by
the modular nonlinearity. We prove that the viscous shocks are asymptotically
stable under odd and general perturbations. For the odd perturbations, the proof
relies on the reduction of the modular Burgers equation to a linear diffusion
equation on a half-line. For the general perturbations, the proof is developed
by converting the time-evolution problem to a system of linear equations cou-
pled with a nonlinear equation for the interface position. Exponential weights
in space are imposed on the initial data of general perturbations in order to gain
the asymptotic decay of perturbations in time. We give numerical illustrations
of asymptotic stability of the viscous shocks under general perturbations.
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1. Introduction

Modular nonlinearity is commonly used for approximations of nonlinear interactions between
particles by piecewise linear functions [14, 36]. Unidirectional propagation of waves in chains
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of particles is described by simplified nonlinear evolution equations with modular nonlinearity
such as the modular Burgers [25, 26, 28, 30] and modular Korteweg–de Vries [21, 27, 29]
equations.

Traveling solutions of modular evolution equations such as viscous shocks and solitary
waves are found from differential equations by matching solutions of linear equations with
suitable condition at the interface where the modular nonlinearity jumps. On the other hand,
the time evolution of the modular equations is a more complicated problem because the trans-
port term tends to break the solution along the characteristic lines whereas the diffusion or
dispersion terms smoothen out the solution and affect propagation of waves near the interface.
It is unclear without detailed analysis if the initial-value problem can be solved in a suitable
function space due to singularities arising from the modular nonlinearity. Because of these
reasons, stability of traveling waves remains open in the modular equations.

Similar questions arise in the context of granular chains and involve the logarithmic versions
of the Burgers and Korteweg–de Vries equations [10, 11]. The logarithmic nonlinearity is
more singular than the modular nonlinearity, hence questions of well-posedness and stability
of nonlinear waves remain open for some time [4, 20, 24].

Stable viscous shocks are important for understanding nonlinear dynamics of the mathemat-
ical models and for matching with experimental data of real-world applications. The purpose
of this work is to clarify stability of viscous shocks in the modular Burgers equation. We take
the modular Burgers equation in the following normalized form:

∂w

∂t
=

∂|w|
∂x

+
∂2w

∂x2
, (1.1)

where w(t, x) : R+ × R �→ R. Preliminary numerical approximations of time-dependent solu-
tions to the modular Burgers equation (1.1) were constructed with the Fourier sine series in
[25]. Traveling wave solutions were constructed analytically in [26, 28]. Collisions of com-
pactly supported pulses were considered in [14] by using heuristic approximation methods.
However, no rigorous analysis of well-posedness, stability of viscous shocks, or numerical
approximations with the control of error terms has been developed so far.

In a similar context of the diffusion equation with the piecewisely defined nonlinearity,
we mention the Kolmogorov–Petrovskii–Piskunov (KPP) model with the cutoff reaction rate
proposed in [3]. Existence and asymptotic stability of traveling viscous shocks were analyzed
in [6] and more recently in [34, 35], where the method of matched asymptotic expansions in
the dynamically moving coordinate frame has been used.

Viscous shocks and metastable N-waves of the classical Burgers equation were studied in
[17]. Stability arguments for viscous shocks and metastable N-waves have been developed
in [2, 19] by using the linearization analysis and dynamical system methods. In particular,
algebraic weights were used to study the spectrum of linearized operators at the metastable
N-waves. Viscous shocks of the classical Burgers equation were also analyzed in [22, 23] in
the context of the enstrophy growth in the limit of small dissipation.

General stability results of the shock waves in the scalar conservation laws were considered
in [16]. Recent work in [7] deals with the asymptotic stability of the shocks under piecewise
regular perturbations by using estimates from the linearized equations of motion. Complete
classification of traveling waves of scalar conservation laws from the point of view of their
spectral and nonlinear stability under (piecewise) smooth perturbations is given in [8].

Non-smoothness of the nonlinear term in the modular Burgers equation (1.1) restricts us
from using the dynamical system methods in the analysis of asymptotic stability of viscous
shocks. Nevertheless, we are able to use the linearized estimates due to the piecewise definition
of the nonlinear term in this model.
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The main novelty of this paper is the rigorous analysis of the modular nonlinearity. We keep
the functional-analytic framework as simple as possible. If the perturbation has the odd spatial
symmetry, the asymptotic stability result follows from analysis of the linear diffusion equation.
For general perturbations, we impose the spatial exponential decay on the initial data in order
to gain the asymptotic decay of perturbations in time. This technique is definitely not novel,
see [9, 15, 31] for earlier studies in similar contexts. Further improvements of the asymptotic
stability results in less restrictive function spaces are left for future work.

The paper is organized as follows. Main results are described in section 2. Properties of
the heat kernel, convolution estimates, solutions to the linear advection–diffusion equations,
and solutions to the Abel integral equations are reviewed in section 3. Asymptotic stability
of viscous shocks in the space of odd and general functions is proven in sections 4 and 5
respectively. Numerical illustrations are given in section 6. The summary and open directions
are described in section 7. Appendix describes the central-difference Crank–Nicholson method
used for numerical simulations.

2. Main results

In what follows, we use the classical notations Hk(R) for the Sobolev space of squared inte-
grable distributions on R with squared integrable derivatives up to the integer order k ∈ N. In
particular, the norms in H1 and H2 are defined by

‖ f ‖H1 :=
(
‖ f ‖2

L2 + ‖ f ′‖2
L2

)1/2
,

‖ f ‖H2 :=
(
‖ f ‖2

L2 + ‖ f ′‖2
L2 + ‖ f ′′‖2

L2

)1/2
.

Similarly, we consider W1,∞ and W2,∞ for bounded functions with bounded derivatives up the
first and second order respectively. To simplify the notations, we use

‖ f ‖Hk∩Wk,∞ := max{‖ f ‖Hk , ‖ f ‖Wk,∞}.

We start with the existence of the traveling viscous shock of the modular Burgers
equation (1.1). Substituting w(t, x) = Wc(x − ct) in (1.1) yields the differential equation

W ′′
c (x) + sign(Wc)W ′

c(x) + cW ′
c(x) = 0. (2.1)

Solutions of (2.1) are piecewise C2 functions satisfying the interface condition

[W ′′
c ]+− (x0) = −2W ′

c(x0) (2.2)

at each interface located at x0, where [ f ]+− (x0) = f (x+0 ) − f (x−0 ) is the jump of a piece-
wise continuous function f across x0. The following theorem gives the exact solution for the
traveling viscous shock.

Theorem 2.1. The only piecewise C2 solution of the differential equation (2.1) satisfying
the boundary conditions Wc(x) → W± as x →±∞ with W− < 0 < W+ is given by

Wc(x) =

{
W+(1 − e−(1+c)x), x > 0,

W−(1 − e(1−c)x), x < 0,
(2.3)
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where the speed c is uniquely defined by

c =
W+ + W−
W− − W+

. (2.4)

The solution Wc satisfies the jump condition (2.2) with x0 = 0 and can be translated in x.

Proof. The second-order differential equation (2.1) is integrable with the first-order invariant

W ′
c(x) + |Wc(x)|+ cWc(x) = d, (2.5)

where d is constant. Since Wc is piecewise C2, it follows that Wc ∈ C1(R) and the value of d
is the same independently of the sign of W ′

c(x). From the boundary conditions Wc(x) → W±
as x →±∞, we find d = (c + 1)W+ = (c − 1)W−, which yields (2.4). Since W− < 0 < W+

and the equilibrium points W− and W+ are reached in infinite ‘time’ x, the value of W ′
c(x)

is sign-definite (positive) both for Wc(x) < 0 and Wc(x) > 0. Therefore, there exists only one
interface x0 ∈ R where Wc(x0) = 0 and W

′
c(x0) = d. Up to the translational invariance, one

can chose x0 = 0, after which the exact solution of the first-order differential equation (2.5) is
found in the piecewise form (2.3). �

Remark 2.2. If W+ = −W−, then c = 0 and the viscous shock W0 is time-independent.

The modular Burgers equation (1.1) on the line R can be closed on the half-line in the space
of odd functions. In this case, the evolution equation with the normalized boundary conditions
takes the form:⎧⎪⎪⎨

⎪⎪⎩
wt = wx + wxx , x > 0,

w(t, 0) = 0,

w(t, x) → 1 as x →+∞,

(2.6)

subject to the positivity condition

w(t, x) > 0, x > 0. (2.7)

The classical solution of the boundary-value problem (2.6) satisfies the constraint

wx(t, 0+) + wxx(t, 0+) = 0. (2.8)

If a classical solutionw(t, x) : R+ × R+ �→ R to the boundary-value problem (2.6) is extended
to the odd functionwext(t, x) : R+ × R �→ R, thenwext(t, ·) is a piecewise C2 function satisfying
the interface condition

[wxx]+− (t, 0) = −2wx(t, 0), (2.9)

where w ≡ wext for simplicity of notations.
The following theorem states the asymptotic stability of the viscous shock (2.3) with c = 0

under the odd perturbations from the analysis of the boundary-value problem (2.6) subject to
the positivity condition (2.7) and the boundary constraint (2.8). The proof of this theorem is
presented in section 4.

Theorem 2.3. For every ε > 0 there is δ > 0 such that for every odd w0 satisfying

‖w0 − W0‖H2 < δ, (2.10)
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there exists a unique odd solution w(t, x) to the modular Burgers equation (1.1) with w(0, x) =
w0(x) satisfying

‖w(t, ·) − W0‖H2 < ε, t > 0 (2.11)

and

‖w(t, ·) − W0‖W2,∞ → 0 as t →+∞. (2.12)

The solution belongs to the class of functions such that w − W0 ∈ C(R+, H2(R)).

Remark 2.4. Since H2(R) is continuously embedded into C1(R) ∩ W1,∞(R) with functions
and their first derivatives decaying to zero at infinity, whereas W0(0) = 0, W ′

c(0) > 0, and
W0(x) → 1 as x →∞, the only interface of the solution w(t, ·) in theorem 2.3 with small ε > 0
is located at the origin. The positivity condition (2.7) is satisfied for all t ∈ R+.

Remark 2.5. The following transformation

w(t, x) =

{
W+v((1 + c)2t, (1 + c)(x − ct)), x − ct > 0,

W−v ((1 − c)2t, (1 − c)(x − ct), x − ct < 0,
(2.13)

where c is given by (2.4), relates solutions w(t, x) with W+ �= −W− to solutions v(t, x) with
normalized boundary conditions v(t, x) →±1 as x →±∞. If v(t, x) is odd in x, then it satisfies
the same boundary-value problem (2.6) subject to the same constraints (2.7) and (2.8). Hence
theorem 2.3 can be extended trivially to the traveling viscous shock Wc with c �= 0 under the
odd perturbation of v(t, x) in (2.13).

For the general perturbations, we consider the solution w(t, x) to the modular Burgers
equation (1.1) with exactly one interface located dynamically at x = ξ(t). Without loss of gen-
erality, we assume ξ(0) = 0. The evolution equation with the normalized boundary conditions
takes the form:⎧⎪⎪⎨

⎪⎪⎩
wt = ±wx + wxx , ±(x − ξ(t)) > 0,

w(t, ξ(t)) = 0,

w(t, x) →±1 as x →±∞,

(2.14)

subject to the positivity conditions

±w(t, x) > 0, ±(x − ξ(t)) > 0. (2.15)

Piecewise C2 solutions of the boundary-value problem (2.14) satisfy the interface condition

[wxx]+− (t, ξ(t)) = −2wx(t, ξ(t)), (2.16)

whereas the boundary condition w(t, ξ(t)) = 0 implies

wt(t, ξ(t)) + ξ′(t)wx(t, ξ(t)) = 0, (2.17)

for continuous wt and wx across the interface at x = ξ(t).
The following theorem states the asymptotic stability of the viscous shock (2.3) with c = 0

under general perturbations from the analysis of the boundary-value problem (2.14) subject to
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the positivity conditions (2.15) and the interface conditions (2.16) and (2.17). The proof of this
theorem is presented in section 5.

Theorem 2.6. Fix α ∈
(
0, 1

2

)
. For every ε > 0 there is δ > 0 such that for every w0

satisfying

‖w0 − W0‖H2∩W2,∞ + ‖eα|·|(w0 − W0)‖W2,∞ < δ (2.18)

and w0(0) = 0, there exists a unique solution w(t, x) to the modular Burgers equation (1.1)
with w(0, x) = w0(x) satisfying

‖w(t, ·+ ξ(t)) − W0‖H2∩W2,∞ < ε, t > 0 (2.19)

and

‖w(t, ·+ ξ(t)) − W0‖W2,∞ → 0 as t →+∞, (2.20)

where ξ(t) is the uniquely determined interface position satisfying ξ(0) = 0 and ξ′ ∈ L1(R+) ∩
L∞(R+). The solution belongs to the class of functions such that

w(t, ·+ ξ(t)) − W0 ∈ L∞(R+, H2(R) ∩ W2,∞(R)) (2.21)

and

eα|·+ξ(t)|[w(t, ·+ ξ(t)) − W0] ∈ L∞(R+, W2,∞(R)). (2.22)

Remark 2.7. The additional requirement w0 − W0 ∈ H2(R) ∩ W2,∞(R) for the initial data
w0 in theorem 2.6 compared to w0 − W0 ∈ H2(R) in theorem 2.3 is due to the necessity to
control ξ′(t) from the interface conditions (2.16) and (2.17). As we will show in lemma 5.1,
this is possible if the solution stays in the class of functions satisfying (2.21).

Remark 2.8. We assume in (2.18) that |w0(x) − W0(x)| → 0 as |x| →∞ at least expo-
nentially with the decay rate α ∈ (0, 1

2 ). This gives the asymptotic stability resulting in

ξ′(t) → 0 and ‖w(t, ·+ ξ(t)) − W0‖W2,∞ → 0 as t →+∞.

The exponential decay in space is preserved in time as is shown in (2.22). It is opened for
further studies to relax the exponential decay requirement on the general initial data w0.

Remark 2.9. Thanks to the transformation (2.13), theorem 2.6 can be extended trivially to
the traveling viscous shock Wc with c �= 0 under a general perturbation of v(t, x).

Remark 2.10. Since ξ′ ∈ L1(R+), there exists ξ∞ := lim
t→+∞

ξ(t). The value of ξ∞ depends on

the asymmetry of w0 and satisfies generally ξ∞ �= 0 even if ξ(0) = 0.

Numerical illustrations of the asymptotic stability of the viscous shock (2.3) with c =
0 for two examples of general perturbations are given in section 6, where the boundary-
value problem (2.14) with (2.15)–(2.17) is approximated by using the central-difference
Crank–Nicholson method. Error of the central-difference numerical approximation is con-
trolled by the standard analysis. The two examples are constructed for perturbations with the
Gaussian and exponential decay at infinity. Numerical simulations illustrate the asymptotic
stability result of theorem 2.6.
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3. Preliminary results

We review here properties of the heat kernel, convolution estimates, solutions to the linear
advection–diffusion equations, and solutions to the Abel integral equations.

3.1. Heat kernel and linear diffusion equations

The heat kernel is defined by

G(t, x) :=
1√
4πt

e−
x2
4t . (3.1)

It follows from explicit computations of integrals that the heat kernel satisfies the properties:

‖G(t, ·)‖L1(R) = 1, ‖G(t, ·)‖L2(R) =
1

(8πt)1/4
, ‖G(t, ·)‖L∞(R) =

1
(4πt)1/2

, (3.2)

‖∂xG(t, ·)‖L1(R) =
1

(πt)1/2
, ‖∂xG(t, ·)‖L2(R) =

1
2(8π)1/4t3/4

, (3.3)

and

‖∂xG(t, ·)‖L∞(R) =
1

2(2πe)1/2t
. (3.4)

The heat kernel G(t, x) is used to solve the following Dirichlet problem for the linear
diffusion equation on the half-line:

⎧⎪⎪⎨
⎪⎪⎩
vt = vxx , x > 0, t > 0,

v(t, 0) = 0, t > 0,

v(0, x) = v0(x), x > 0.

(3.5)

For a rather general class of functions v0(x) : R+ �→ R (not necessarily decaying to zero at
infinity), the Dirichlet problem (3.5) can be solved by the method of images:

v(t, x) =
∫ ∞

0
v0(y) [G(t, x − y) − G(t, x + y)] dy. (3.6)

Convolution integrals in (3.6) are analyzed with Young’s convolution inequality:

‖ f ∗ g‖Lr(R) � ‖ f ‖Lp(R)‖g‖Lq(R), p, q, r � 1, 1 +
1
r
=

1
p
+

1
q

, (3.7)

for every f ∈ Lp(R) and g ∈ Lq(R), where ( f ∗ g)(x) :=
∫
R

f (y)g(x − y)dy is the convolution
integral. When integration is needed to be restricted on R+ as in (3.6), we can use the
characteristic function χR+ defined by χR+ (x) = 1 for x > 0 and χR+ (x) = 0 for x < 0.

For the inhomogeneous linear diffusion equation on the half-line:

⎧⎪⎪⎨
⎪⎪⎩
vt = vxx + f (t, x), x > 0, t > 0,

v(t, 0) = 0, t > 0,

v(0, x) = v0(x), x > 0.

(3.8)
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with given v0(x) : R+ �→ R and f (t, x) : R+ × R+ �→ R, the exact solution is written in the
form

v(t, x) =
∫ ∞

0
v0(y) [G(t, x − y) − G(t, x + y)] dy

+

∫ t

0

∫ ∞

0
f (τ , y) [G(t − τ , x − y) − G(t − τ , x + y)] dy dτ. (3.9)

The exact solutions to the linear diffusion equations (3.5) and (3.8) are used in the proof of
lemmas 4.3 and 5.5.

3.2. Convolution estimates

Convolution integrals in time are analyzed with Young’s convolution inequality:

‖β � γ‖Lr(R+) � ‖β‖Lp(R+)‖γ‖Lq(R+), p, q, r � 1, 1 +
1
r
=

1
p
+

1
q

, (3.10)

for every β ∈ Lp(R+) and γ ∈ Lq(R+), where (β � γ)(t) :=
∫ t

0β(t − τ )γ(τ )dτ is the convolu-
tion integral in time. The following two lemmas give bounds used in the proof of lemmas 3.3,
3.6, 5.7, 5.8, and 5.10.

Lemma 3.1. For every γ ∈ L1(R+) ∩ L∞(R+) and every s ∈ [0, 1), there exists a positive
constant Cs such that∫ t

0

|γ(τ )|
(t − τ )s

dτ � Cs‖γ‖L1(R+)∩L∞(R+), t > 0. (3.11)

Proof. For every fixed T > 0, it is obvious that∫ t

0

|γ(τ )|
(t − τ )s

dτ � T1−s

1 − s
‖γ‖L∞(R+), t ∈ [0, T].

Then, provided T > 1, we get the bounds∫ t

0

|γ(τ )|
(t − τ )s

dτ =

∫ t−1

0

|γ(τ )|
(t − τ )s

dτ +

∫ t

t−1

|γ(τ )|
(t − τ )s

dτ

� ‖γ‖L1(R+) +
1

1 − s
‖γ‖L∞(R+), t > T,

and the bound (3.11) holds. �

Lemma 3.2. For every γ ∈ L1(R+) ∩ L∞(R+) satisfying γ(t) → 0 as t →+∞ and every
λ > 0 and s ∈ [0, 1), we have

lim
t→+∞

∫ t

0

|γ(τ )|e−λ(t−τ )

(t − τ )s
dτ = 0. (3.12)

Proof. One can write for t > 0:∫ t

0

|γ(τ )|e−λ(t−τ )

(t − τ )s
dτ =

∫ t/2

0

|γ(τ )|e−λ(t−τ )

(t − τ )s
dτ +

∫ t

t/2

|γ(τ )|e−λ(t−τ )

(t − τ )s
dτ

� ‖γ‖L1(R+)2
st−s e−

λt
2 + sup

τ∈[t/2,t]
|γ(τ )|

∫ t/2

0
τ−s e−λτ dτ ,
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from which the limit (3.12) follows from the assumptions of the lemma. �

3.3. Linear advection–diffusion equation

For a given function γ ∈ L1(R+) ∩ L∞(R+), we analyze the following initial-value problem
for the advection–diffusion equation:{

νt = νy + νyy + 2γ(t)δ(y), y ∈ R, t > 0,

ν(0, y) = 0, y ∈ R,
(3.13)

where δ is the Dirac distribution centered at zero. The advection–diffusion equation is used in
the proof of lemmas 5.7 and 5.8.

In order to construct the exact solution to the initial-value problem (3.13), we use the Laplace
transform in time t defined by

γ̂(p) :=L(γ)(p) =
∫ ∞

0
γ(t)e−pt dt, p � 0. (3.14)

We also use the following relations from the table of Laplace transforms for every y ∈ R:

L
(

1√
πt

e−
y2
4t

)
=

1
√

p
e−

√
p|y|, p > 0 (3.15)

and

L
(

1√
πt

y
2t

e−
y2

4t

)
= sign(y) e−

√
p|y|, p > 0. (3.16)

The following lemma gives the exact solution to the initial-value problem (3.13).

Lemma 3.3. For every γ ∈ L1(R) ∩ L∞(R+), there exists a unique solution to the initial-
value problem (3.13) in the exact form:

ν(t, y) := 2
∫ t

0

γ(τ )√
4π(t − τ )

e−
(y+t−τ )2

4(t−τ ) dτ , y ∈ R, t > 0. (3.17)

Moreover, ν belongs to the class of functions in L∞(R+, H1(R) ∩ W1,∞(R+)) satisfying

νy(t, 0±) +
1
2
ν(t, 0) = ∓γ(t), t > 0. (3.18)

Proof. By using (3.14) and (3.15), we compute from (3.17):

ν̂(p, y) = L
(

1√
πt

e−
(y+t)2

4t

)
(p) × L(γ)(p) = e−

y
2

e−
√

p+ 1
4 |y|√

p+ 1
4

γ̂(p),

where we have used the following properties of the Laplace transform:

L( f (t)e−
t
4 )(p) = f̂

(
p+

1
4

)
and L

(∫ t

0
f (τ )g(t − τ )dτ

)
(p) = f̂ (p)ĝ(p).

Differentiations of ν̂(p, y) in y yield

ν̂y = −1
2
ν̂ − sign(y)e−

y
2 e−

√
p+ 1

4 |y|γ̂(p), (3.19)
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ν̂yy = −1
2
ν̂y − 2δ(y)γ̂(p) +

1
2

sign(y)e−
y
2 e−

√
p+ 1

4 |y|γ̂(p) +

(
p+

1
4

)
ν̂. (3.20)

Combining (3.19) and (3.20) yields

ν̂yy = −ν̂y − 2δ(y)γ̂(p) + pν̂, (3.21)

which becomes the initial-value problem (3.13) after the inverse Laplace transform. It follows
from (3.19) for p � 0 that

ν̂y(p, 0±) = −1
2
ν̂(p, 0) ∓ γ̂(p),

which yields (3.18) after the inverse Laplace transform. Uniqueness of the solution (3.17) is
proven from uniqueness of the zero solution in the homogeneous version of the initial-value
problem (3.13).

It remains to estimate the solution (3.17) in H1(R) ∩ W1,∞(R+) provided that γ ∈ L1(R) ∩
L∞(R+). By using (3.2), we obtain

‖ν(t, ·)‖L2(R) �
2

(8π)1/4

∫ t

0

|γ(τ )|
(t − τ )1/4

dτ (3.22)

and

‖ν(t, ·)‖L∞(R) �
1√
π

∫ t

0

|γ(τ )|
(t − τ )1/2

dτ. (3.23)

The derivative ν(t, y) in y is given by

νy(t, y) = −
∫ t

0

γ(τ )(y + t − τ )√
4π(t − τ )3

e−
(y+t−τ )2

4(t−τ ) dτ. (3.24)

By using (3.3), we obtain

‖νy(t, ·)‖L2(R) �
1

(8π)1/4

∫ t

0

|γ(τ )|
(t − τ )3/4

dτ. (3.25)

It follows from (3.22) and (3.25) with lemma 3.1 that ν ∈ L∞(R+, H1(R)) if γ ∈ L1(R) ∩
L∞(R+). By Sobolev embedding, ν ∈ L∞(R+, L∞(R)), which also follows from (3.23).

Finally, we show that νy ∈ L∞(R+, L∞(R+)). Due to (3.4), direct estimates on
‖νy(t, ·)‖L∞(R) from (3.24) produce a non-integrable singularity in the convolution integral in
time. Nevertheless, we show hereafter that ‖νy(t, ·)‖L∞(R+) can be estimated in terms of |γ(t)|.

The initial-value problem (3.13) can be rewritten in the piecewise form:

⎧⎪⎪⎨
⎪⎪⎩
νt = νy + νyy, ±y > 0, t > 0,

νy(t, 0+) − νy(t, 0−) = −2γ(t), t > 0,

ν(0, y) = 0, y ∈ R.

(3.26)

With the transformation

ν(t, y) = e−
y
2−

t
4 ν̃(t, y),
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the initial-boundary-value problem (3.26) is equivalently written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ν̃ t = ν̃yy, ±y > 0, t > 0,

ν̃y(t, 0+) − ν̃y(t, 0−) = −2γ(t)e
t
4 , t > 0,

ν̃(0, y) = 0, y ∈ R.

(3.27)

Due to the parity symmetry of the boundary and initial conditions in (3.27), ν̃ is even in y, ν̃y is
odd in y, so that ν̃y solves Dirichlet’s problems for the diffusion equation on the quarter planes
{y > 0, t > 0} and {y < 0, t > 0} subject to the boundary conditions ν̃y(t, 0+) = −γ(t)e

t
4 and

ν̃y(t, 0−) = γ(t)e
t
4 respectively. It follows by the maximum principle for the diffusion equation

that

‖ν̃y(t, ·)‖L∞(R) � |γ(t)|e t
4 , t > 0, (3.28)

which yields

‖νy(t, ·)‖L∞(R+) �
1
2
‖ν(t, ·)‖L∞(R+) + |γ(t)|, t > 0, (3.29)

since νy +
1
2ν = e−

y
2−

t
4 ν̃y and e−

y
2 � 1 for y � 0. Hence, νy ∈ L∞(R+, L∞(R+)). �

Remark 3.4. Since e−
y
2 is unbounded for y ∈ R−, no bound on ‖νy(t, ·)‖L∞(R−) can be

obtained from the estimate (3.28). However, we only need to use ν(t, y) for t > 0 and y > 0.

3.4. Abel’s integral equations

For a given function f ∈ W1,∞(R+), we solve the linear integral equation

M(γ) =
1√
4πt

∫ ∞

0
f (η)e−

η2
4t dη, t > 0, (3.30)

where

M(γ) :=
∫ t

0

γ(τ )√
π(t − τ )

dτ −
∫ t

0

γ(τ )√
4π(t − τ )

∫ ∞

0
e−

η
2 e−

η2
4(t−τ ) dη dτ. (3.31)

The linear equation (3.30) with the integral operator (3.31) is used in the proof of lemma 5.6.
The linear integral equations (3.30) and (3.31) is related to Abel’s integral equation [32,

33]. We use again the Laplace transform in time t, as is defined in (3.14). The following lemma
gives the exact solution to the integral equation (3.30) in the space of bounded functions.

Lemma 3.5. For every f ∈ W1,∞(R+) satisfying f(0) = 0, there exists a unique solution
γ ∈ L∞(R+) to the integral equation (3.30) in the exact form:

γ(t) =
1√
4πt

∫ ∞

0
f (η)

(
η + t

2t

)
e−

η2
4t dη, t > 0, (3.32)

or, equivalently,

γ(t) =
1√
4πt

∫ ∞

0

[
f ′(η) +

1
2

f (η)

]
e−

η2
4t dη, t > 0. (3.33)
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Proof. By using (3.14) and (3.15), we rewrite the integral equation (3.30) in the product
form:

1
√

p
γ̂(p) − 1

2
√

p
γ̂(p)

∫ ∞

0
e−

η
2 e−

√
pη dη =

1
2
√

p

∫ ∞

0
f (η)e−

√
pη dη, p > 0.

Evaluating the integral gives the solution in the Laplace transform space:

γ̂(p) =
1
2

∫ ∞

0
f (η)

(
1 +

1
2
√

p

)
e−

√
pη dη.

After the inverse Laplace transform, we obtain the exact solution (3.32) with the use of (3.16).
The equivalent form (3.33) is obtained from (3.32) after integration by parts if f ∈ W1,∞(R+)
and f (0) = 0. It follows from (3.2) and (3.33) that

|γ(t)| � 1
2
‖ f ′‖L∞(R+) +

1
4
‖ f ‖L∞(R+), t > 0,

so that γ ∈ L∞(R+). �

Similarly to lemma 3.5, we solve the linear integral equations

M(γ) =
∫ t

0

1√
4π(t − τ )

∫ ∞

0
g(τ , η)e−

η2
4(t−τ ) dη dτ , t > 0 (3.34)

and

M(γ) =
∫ t

0

h(τ )dτ√
4π(t − τ )

, t > 0, (3.35)

where M(γ) is given by (3.31), g ∈ L1(R+, L∞(R+)) ∩ L∞(R+, L∞(R+)) and h ∈ L1(R+) ∩
L∞(R+) are given functions. The linear equations (3.34) and (3.35) are also used in the proof
of lemma 5.6. The following lemma gives the exact solutions of the integral equations (3.34)
and (3.35) in the space of bounded functions.

Lemma 3.6. For every g ∈ L1(R+, L∞(R+)) ∩ L∞(R+, L∞(R+)), there exists a unique
solution γ ∈ L∞(R+) to the integral equation (3.34) in the exact form:

γ(t) =
∫ t

0

1√
4π(t − τ )

∫ ∞

0
g(τ , η)

(
η + t − τ

2(t − τ )

)
e−

η2
4(t−τ ) dη dτ , t > 0. (3.36)

For every h ∈ L1(R+) ∩ L∞(R+), there exists a unique solution γ ∈ L∞(R+) to the integral
equation (3.35) in the exact form:

γ(t) =
1
2

h(t) +
1
2

∫ t

0

h(τ )dτ√
4π(t − τ )

, t > 0. (3.37)

Proof. By using (3.14) and (3.15), we solve the integral equation (3.34) for the Laplace
transform:

γ̂(p) =
1
2

∫ ∞

0
ĝ(p, η)

(
1 +

1
2
√

p

)
e−

√
pη dη.
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After the inverse Laplace transform, we obtain the exact solution (3.36) with the use of (3.16).
By using the first integrals in (3.2) and (3.3), we obtain

|γ(t)| � 1
4

∫ t

0
‖g(τ , ·)‖L∞(R+) dτ +

1
2

∫ t

0

‖g(τ , ·)‖L∞(R+) dτ√
π(t − τ )

, t > 0,

where the upper bound is bounded if ‖g(t, ·)‖L∞(R+) belongs to L1(R+) ∩ L∞(R+) by lemma
3.1.

For the integral equation (3.35), we use the substitution γ(t) = 1
2 h(t) + υ(t), where υ(t)

satisfies the integral equation

M(υ) =
1
2

∫ t

0

h(τ )√
4π(t − τ )

∫ ∞

0
e−

η
2 e−

η2
4(t−τ ) dη dτ , t > 0.

Since g(τ , η) := 1
2 h(τ )e−

η
2 belongs to L1(R+, L∞(R+)) ∩ L∞(R+, L∞(R+)), we can use the

exact solution (3.36) and obtain

υ(t) =
1
2

∫ t

0

h(τ )√
4π(t − τ )

∫ ∞

0
e−

η
2

(
η + t − τ

2(t − τ )

)
e−

η2
4(t−τ ) dη dτ , t > 0.

Integrating the inner integral by parts gives

υ(t) =
1
2

∫ t

0

h(τ )dτ√
4π(t − τ )

, t > 0,

which recovers (3.37) for γ(t) = 1
2 h(t) + υ(t). Again, we have γ ∈ L∞(R+) if h ∈ L1(R+) ∩

L∞(R+) by lemma 3.1. �
Remark 3.7. Compared to the decomposition method γ = 1

2 h + υ in the proof of lemma
3.6, the exact solution (3.37) can be independently obtained by using the Laplace transform
(3.14) in the linear equation (3.35).

4. Asymptotic stability under odd perturbations

Here we study the boundary-value problem (2.6) in order to prove theorem 2.3. The boundary-
value problem (2.6) is solved by direct methods. First, we decompose

w(t, x) = W0(x) + u(t, x), x > 0, (4.1)

where W0(x) = 1 − e−x is the viscous shock given by (2.3) with c = 0 and W+ = −W− = 1.
The perturbation u(t, x) satisfies the following boundary-value problem:⎧⎪⎪⎨

⎪⎪⎩
ut = ux + uxx , x > 0, t > 0,

u(t, 0) = 0, t > 0,

u(t, x) → 0 as x →+∞, t > 0,

(4.2)

subject to the initial condition u(0, x) = w(0, x) − W0(x)=: u0(x).

Remark 4.1. Although the boundary-value problem (4.2) can be solved with the unified
transform method which involves complex analysis, implicit solutions, and numerical compu-
tations [1], we can solve this problem explicitly using the exact formula (3.6) from the method
of images and the exponential transformation.

5991



Nonlinearity 34 (2021) 5979 U Le et al

In order to prove theorem 2.3, we first derive a priori energy estimates (lemma 4.2) and then
explore the exact formula (3.6) to study the solution in H2 (lemma 4.3) and in W2,∞ (lemma
4.5).

The following lemma implies that the H1-norm of a smooth solution u(t, ·) is decreasing in
time t. The result is obtained by using a priori energy estimates.

Lemma 4.2. Assume existence of the solution u ∈ C(R+, H2(R+)) to the boundary-value
problem (4.2) with the initial condition u(0, x) = u0(x). Then, for every t > 0:

‖u(t, ·)‖L2 � ‖u0‖L2 , ‖u(t, ·)‖H1 � ‖u0‖H1 .

Proof. Multiplying ut = ux + uxx by u and uxx and integrating by parts yield for t > 0

d
dt
‖u(t, ·)‖2

L2 = −2‖ux(t, ·)‖2
L2 , (4.3)

d
dt
‖ux(t, ·)‖2

L2 = [ux(t, 0)]2 − 2‖uxx(t, ·)‖2
L2 , (4.4)

where ut(t, 0) = 0 has been used due to the boundary condition u(t, 0) = 0 for t > 0. It follows
from (4.3) that ‖u(t, ·)‖L2 � ‖u0‖L2 for every t > 0. By Sobolev embedding, it follows for every
f ∈ H1(R+) that

[ f (0)]2 = −2
∫ ∞

0
f (x) f ′(x)dx � ‖ f ‖2

H1 , (4.5)

so that we obtain by adding both equations (4.3) and (4.4) together and using (4.5) that

d
dt
‖u(t, ·)‖2

H1 = [ux(t, 0)]2 − 2‖ux(t, ·)‖2
H1 � −‖ux(t, ·)‖2

H1 ,

hence ‖u(t, ·)‖H1 � ‖u0‖H1 for every t > 0. �

Lemma 4.2 implies uniqueness and continuous dependence of solutions to the boundary-
value problem (4.2) with initial condition u(0, x) = u0(x). It remains to show existence of a
solution u ∈ C(R+, H2(R+)) for any given u0 ∈ H2(R+). The following lemma explores an
explicit formula for solutions to the boundary-value problem (4.2).

Lemma 4.3. For any given u0 ∈ H2(R+) satisfying u0(0) = 0, there exists a solution u(t, x)
to the boundary-value problem (4.2) with the initial condition u(0, x) = u0(x) given explicitly
by

u(t, x) =
1√
4πt

∫ ∞

0
u0(y)

[
e−

(x−y+t)2
4t − e−x e−

(x+y−t)2
4t

]
dy. (4.6)

Moreover, u ∈ C(R+, H2(R+)).

Proof. By using the transformation

u(t, x) = e−
x
2 −

t
4 v(t, x), (4.7)

we can write the boundary-value problem (4.2) in the form (3.5) with the initial condi-
tion v0(x) = e

x
2 u0(x). By substituting the transformation (4.7) to the exact solution (3.6) and

completing squares for the heat kernel G(t, x), we obtain the exact representation (4.6).
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It remains to show that u ∈ C(R+, H2(R+)) if u0 ∈ H2(R+). The convolution integrals in
(4.6) are analyzed by means of Young’s inequality (3.7) with p = r = 2 and q = 1:

‖u0χR+ ∗ G(t, ·+ t)‖L2(R+) � ‖u0‖L2(R+)‖G(t, ·+ t)‖L1(R) � ‖u0‖L2(R+)

and

‖u0χR+ ∗ G(t,− ·+t)‖L2(R+) � ‖u0‖L2(R+)‖G(t,− ·+t)‖L1(R) � ‖u0‖L2(R+).

At the same time, e−x � 1 for x � 0, so that

‖u(t, ·)‖L2 � 2‖u0‖L2 , (4.8)

where the L2 norms are understood as L2(R+). In order to obtain similar estimates for ux and
uxx , we differentiate (4.6) in x, use integration by parts under the consistency condition u0(0) =
0, and obtain

ux(t, x) =
1√
4πt

∫ ∞

0
u′

0(y)

[
e−

(x−y+t)2
4t + e−x e−

(x+y−t)2
4t

]
dy

+
1√
4πt

e−x
∫ ∞

0
u0(y)e−

(x+y−t)2

4t dy (4.9)

and

uxx(t, x) =
1√
4πt

∫ ∞

0
u′′

0(y)

[
e−

(x−y+t)2
4t − e−x e−

(x+y−t)2
4t

]
dy

− 1√
πt

e−x
∫ ∞

0
u′

0(y)e−
(x+y−t)2

4t dy

− 1√
4πt

e−x

∫ ∞

0
u0(y)e−

(x+y−t)2
4t dy. (4.10)

By the same estimates used in (4.8), we obtain:

‖ux(t, ·)‖L2 � 2‖u′
0‖L2 + ‖u0‖L2 , (4.11)

‖uxx(t, ·)‖L2 � 2‖u′′
0‖L2 + 2‖u′

0‖L2 + ‖u0‖L2 . (4.12)

This shows that u(t, ·) ∈ H2(R+) continuously in t ∈ R+. �

Remark 4.4. It follows from (4.9) and (4.10) as x → 0+ that the solution u ∈
C(R+, H2(R+)) satisfies the interface condition

ux(t, 0+) + uxx(t, 0+) = 0, t > 0. (4.13)

The decay condition u(t, x) → 0 as x →∞ is satisfied by the continuous embedding of H2(R+)
into C1(R+) ∩ W1,∞(R+) with functions and their first derivatives decaying to zero at infinity.

The following lemma establishes the decay of ‖u(t, ·)‖W2,∞ to zero as t →+∞.

Lemma 4.5. Let u ∈ C(R+, H2(R+)) be the solution to the boundary-value problem (4.2)
given by lemma 4.3. Then, we have

‖u(t, ·)‖W2,∞ → 0 as t →∞. (4.14)
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Proof. For t � 1, we can estimate the convolution integrals in (4.6) by means of Young’s
inequality (3.7) with p = q = 2 and r = ∞:

‖u0χR+ ∗ G(t, ·+ t)‖L∞(R+) � ‖u0‖L2(R+)‖G(t, ·+ t)‖L2(R)

� 1
(8πt)1/4

‖u0‖L2(R+)

and

‖u0χR+ ∗ G(t,− ·+t)‖L∞(R+) � ‖u0‖L2(R+)‖G(t,− ·+t)‖L2(R)

� 1
(8πt)1/4

‖u0‖L2(R+).

Using these estimates in (4.6), (4.9), and (4.10), we obtain

‖u(t, ·)‖L∞ � 2
(8πt)1/4

‖u0‖L2 ,

‖ux(t, ·)‖L∞ � 1
(8πt)1/4

(2‖u′
0‖L2 + ‖u0‖L2),

‖uxx(t, ·)‖L∞ � 1
(8πt)1/4

(2‖u′′
0‖L2 + 2‖u′

0‖L2 + ‖u0‖L2 ),

which prove the decay (4.14). �

Proof of theorem 2.3. By lemma 4.3 and the bounds (4.8), (4.11), and (4.12), if u0 ∈
H2(R+) satisfies ‖u0‖H2 < δ as in (2.10), then

‖u(t, ·)‖H2 � C‖u0‖H2 < Cδ

for a fixed δ-independent positive constant C. Hence, for every ε > 0, there is δ := ε/C such
that the odd perturbation u(t, ·) to the viscous shock W0 in the decomposition (4.1) is bounded
in H2(R) norm for every t > 0 according to the bound (2.11). The decay (2.12) follows from
the decay (4.14) in lemma 4.5.

The constraint (2.8) is satisfied because both W0 and u in the decomposition (4.1) satisfy this
constraint. Under the constraint (2.8), the solutions w(t, x) : R+ × R+ �→ R to the boundary-
value problem (2.6) are extended to the odd function wext(t, x) : R+ × R �→ R satisfying the
interface condition (2.9).

It remains to verify that w(t, x) = W0(x) + u(t, x) > 0 for every x > 0. The positivity
condition (2.7) is necessary for reduction of the modular Burgers equation (1.1) with the
odd functions to the boundary-value problem (2.6). By Sobolev embedding of H2(R+) into
C1(R+) ∩ W1,∞(R+), we obtain

‖u(t, ·)‖L∞ + ‖ux(t, ·)‖L∞ < ε, t > 0,

where ε is small. The symmetry point x = 0 is a simple root of w(t, ·) for every t > 0 because
W0(0) = 0, W ′

0(0) = 1, u(t, 0) = 0, and |ux(t, 0)| < ε is small. Therefore, there exists an ε-
independent x0 > 0 such that w(t, x) > 0 for every t > 0 and x ∈ (0, x0). Now, W0(x) �
W0(x0) > 0 for every x � x0 and since |u(t, x)| < ε for every t > 0 and x > 0, thenw(t, x) > 0
for every t > 0 and x � x0 if ε is sufficiently small. Combining these two estimates together
yields w(t, x) > 0 for every t > 0 and x > 0. �

5994



Nonlinearity 34 (2021) 5979 U Le et al

5. Asymptotic stability under general perturbations

Here we study the boundary-valueproblem (2.14) in order to prove theorem 2.6. The boundary-
value problem (2.14) can be reformulated by using the decomposition

w(t, x) = W0(x − ξ(t)) + u(t, x − ξ(t)), x ∈ R, (5.1)

where W0 is the viscous shock (2.3) with c = 0 and W+ = −W− = 1, ξ(t) is the location of a
single interface, and u(t, y) with y := x − ξ(t) is a perturbation satisfying⎧⎪⎪⎨

⎪⎪⎩
ut = (ξ′(t) ± 1)uy + uyy + ξ′(t)W ′

0(y), ±y > 0,

u(t, 0) = 0,

u(t, y) → 0 as y →±∞,

(5.2)

subject to the initial condition u(0, x) = w(0, x) − W0(x)=: u0(x). We assume without loss of
generality that ξ(0) = 0. The interface dynamics is defined by the following lemma.

Lemma 5.1. Let u(t, ·) ∈ C1(R) ∩ C2(R\{0}) be a solution of the boundary-value problem
(5.2) for t ∈ R+. Then, ξ′(t) can be expressed in two equivalent ways by

ξ′(t) = −uy(t, 0+) + uyy(t, 0+)
1 + uy(t, 0+)

=
uy(t, 0−) − uyy(t, 0−)

1 + uy(t, 0−)
, t ∈ R+. (5.3)

Proof. It follows from (2.16) and (5.1) that piecewise C2 solutions of the boundary-value
problem (5.2) satisfy the interface condition

[uyy]+− (t, 0) = −2uy(t, 0). (5.4)

On the other hand, it follows from (2.17) and (5.1) that ut(t, 0) = 0. Taking the limits y → 0±

in ut = (ξ′(t) ± 1)uy + uyy + ξ
′
(t)W ′

0(y) yields

(ξ′(t) ± 1)uy(t, 0±) + uyy(t, 0±) + ξ′(t) = 0,

since W ′
0(0) = 1. This balance yields the dynamical equation (5.3). The two equalities in (5.3)

are consistent under the interface condition (5.4) since uy(t, 0+) = uy(t, 0−). �
Remark 5.2. The system of equations (5.2)–(5.4) is derived under the conditions

± [W0(y) + u(t, y)] > 0, ±y > 0 (5.5)

which follow from (2.15) and (5.1). Since W0(0) = 0, W
′
0(0) = 1, u(t, 0) = 0, and u(t, ·) ∈

C1(R), the positivity conditions (5.5) are attained near y = 0 if 1 + uy(t, 0) > 0, which also
ensures that the interface dynamics is well defined by the evolution equation (5.3).

Let us define

u+(t, y) := u(t, y), u−(t, y) := u(t,−y), y > 0. (5.6)

We also define γ(t) := ξ′(t) and use W ′
0(y) = e−|y|. The boundary-value problem (5.2) can be

rewritten in the equivalent form⎧⎪⎪⎨
⎪⎪⎩

u±
t = (1 ± γ)u±

y + u±
yy + γ e−y, y > 0,

u±(t, 0) = 0,

u±(t, y) → 0 as y →∞,

(5.7)
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subject to the continuity condition

u+
y (t, 0+) = −u−

y (t, 0+), (5.8)

the interface condition

u+
yy(t, 0+) − u−

yy(t, 0+) = −2u+
y (t, 0+), (5.9)

and the dynamical condition

γ(t) = −
u+

y (t, 0+) + u+
yy(t, 0+)

1 + u+
y (t, 0+)

= −
u−

y (t, 0+) + u−
yy(t, 0+)

1 − u−
y (t, 0+)

. (5.10)

The proof of theorem 2.6 is divided into two steps.
In the first step, for a given γ ∈ L1(R+) ∩ L∞(R+), we show that the boundary-value

problems (5.7) equipped with the initial conditions u±(0, y) = u±
0 (y) can be uniquely solved

provided the norms of γ ∈ L1(R+) ∩ L∞(R+) and u±
0 ∈ H2(R+) ∩ W2,∞(R+) are small. The

unique global solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) satisfy the dynamical conditions
(5.10) for any t > 0.

The two solutions for u+ and u− are uncoupled if γ is given. However, if the solutions u+ and
u− are required to satisfy the continuity condition (5.8), then this constraint yields an integral
equation on γ ∈ L1(R+) ∩ L∞(R+). In the second step, we prove that the integral equation for
γ ∈ L1(R+) ∩ L∞(R+) can be uniquely solved provided u±

0 ∈ H2(R+) ∩ W2,∞(R+) are small
and satisfy an additional requirement of the exponential decay in space.

Finally, the two conditions (5.8) and (5.10) imply the interface condition (5.9), which is
thus redundant in the boundary-value problem.

The following lemma gives a priori energy estimates for the boundary-value problems (5.7)
completed with the continuity condition (5.8). These energy estimates imply monotonicity of
the H1-norm of a smooth solution in time t.

Lemma 5.3. Assume existence of the solutions u± ∈ C(R+, H2(R+)) to the boundary-value
problem (5.7) completed with the continuity condition (5.8) for the initial conditions u±(0, y) =
u±

0 (y) and for some γ ∈ L1(R+) ∩ L∞(R+). Then, for every t > 0:

‖u+(t, ·)‖2
H1 + ‖u−(t, ·)‖2

H1 � ‖u+
0 ‖2

H1 + ‖u−
0 ‖2

H1 . (5.11)

Proof. Multiplying u±
t = (1 ± γ)u±

y + u±
yy + γ e−y by u± and u±

yy and integrating by parts
yield for t > 0

d
dt
‖u±(t, ·)‖2

L2 = −2‖u±
y (t, ·)‖2

L2 + 2γ
∫ ∞

0
u±(t, y)e−y dy, (5.12)

d
dt
‖u±

y (t, ·)‖2
L2 = (1 ± γ)

[
u±

y (t, 0+)
]2 − 2‖u±

yy(t, ·)‖2
L2

+ 2γu±
y (t, 0+) − 2γ

∫ ∞

0
u±(t, y)e−y dy,

where u±
t (t, 0) = 0 has been used due to the boundary conditions u±(t, 0) = 0 for t > 0. Adding

all equations and using the continuity condition (5.8) yield

d
dt
‖u+(t, ·)‖2

H1 +
d
dt
‖u−(t, ·)‖2

H1 =
[
u+

y (t, 0+)
]2

+
[
u−

y (t, 0+)
]2

− 2‖u+
y (t, ·)‖2

H1 − 2‖u−
y (t, ·)‖2

H1 .
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By using the same inequality (4.5), we close the estimate and obtain

d
dt

[
‖u+(t, ·)‖2

H1 + ‖u−(t, ·)‖2
H1

]
� −‖u+

y (t, ·)‖2
H1 − ‖u−

y (t, ·)‖2
H1 � 0,

from which the inequality (5.11) follows. �

Remark 5.4. Compared to lemma 4.2, we are not able to conclude on monotonicity of the
L2-norm of the solution. By using Cauchy–Schwarz inequality in (5.12), we get

d
dt
‖u±(t, ·)‖L2 � |γ|‖e−y‖L2

y (R+),

which yields the Stritcharz-type estimate

sup
t∈R+

‖u±(t, ·)‖L2 � ‖u±
0 ‖L2 + ‖γ‖L1‖e−y‖L2

y (R+),

where we write ‖e−y‖L2
y (R+) instead of ‖e−·‖L2 for better clarity.

We shall now consider the existence of solutions to the boundary-value problems (5.7) for
a given γ(t). Due to the condition (5.10) satisfied by smooth solutions u±(t, y), we need to
require u±

yy be bounded in a one-sided neighborhood of y = 0. This is achieved by using a
sharper condition on the initial data u±

0 ∈ H2(R+) ∩ W2,∞(R+) compared to the requirement
u0 ∈ H2(R+) imposed in lemma 4.3. On the other hand, the L∞ norm of the solution does
not need to be continuous in time [18], hence we consider solutions to the boundary-value
problems (5.7) in function space L∞(R+, H2(R+) ∩ W2,∞(R+)).

The following lemma provides a convenient reformulation of the boundary-value problems
(5.7) as systems of integral equations, where u± and γ are not required to satisfy the continuity
condition (5.8), the interface condition (5.9), and the dynamical conditions (5.10).

Lemma 5.5. There exist solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) to the boundary-
value problems (5.7) with the initial conditions u±(0, y) = u±

0 (y) and the given function γ(t) if
there exist solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) to the following integral equations
for (t, y) ∈ R+ × R+:

u±(t, y) =
1√
4πt

∫ ∞

0
u±

0 (η)

[
e−

(y−η+t)2

4t − e−y e−
(y+η−t)2

4t

]
dη

+

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
e−η

[
e−

(y−η+t−τ )2

4(t−τ ) − e−y e−
(y+η−t+τ )2

4(t−τ )

]
dη

±
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±
η (τ , η)

[
e−

(y−η+t−τ )2
4(t−τ ) − e−y e−

(y+η−t+τ )2
4(t−τ )

]
dη.

Proof. Similar to the transformation formula (4.7) in the proof of lemma 4.3, the system of
equation (5.7) can be simplified by using the transformation formulas:

u±(t, y) = e−
y
2−

t
4 v±(t, y), γ(t) = e−

t
4 γ̃(t). (5.13)

The boundary-value problems (5.7) can be rewritten in the form (3.8) with v = v±,

f (t, y) = γ̃ e−
y
2 ± γ̃ e−

t
4

(
v±y − 1

2
v±

)
,
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and v0(y) := u±
0 (y)e

y
2 . The exact solution (3.9) yields the integral equations for v±:

v±(t, y) =
1√
4πt

∫ ∞

0
v±0 (η)

[
e−

(y−η)2
4t − e−

(y+η)2
4t

]
dη

+

∫ t

0

γ̃(τ )dτ√
4π(t − τ )

∫ ∞

0
e−

η
2

[
e−

(y−η)2
4(t−τ ) − e−

(y+η)2
4(t−τ )

]
dη

±
∫ t

0

γ̃(τ )e−
τ
4 dτ√

4π(t − τ )

∫ ∞

0

(
v±y (τ , η) − 1

2
v±(τ , η)

)[
e−

(y−η)2
4(t−τ ) − e−

(y+η)2
4(t−τ )

]
dη.

Substituting the transformation (5.13) yields the integral equations for u±(t, y). �

If solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) of the integral equations in lemma 5.5 are
required to satisfy the continuity condition (5.8), then γ ∈ L1(R+) ∩ L∞(R+) satisfies a cer-
tain constraint. Computing partial derivatives of u±(t, y) in y, taking the limit y → 0+, and
substituting u±

y (t, 0+) into (5.8) yields the constraint in the form

1√
4πt3

∫ ∞

0

[
u+

0 (η) + u−
0 (η)

]
η e−

(η−t)2
4t , dη

+ 2
∫ t

0

γ(τ )dτ√
4π(t − τ )3

∫ ∞

0
e−ηη e−

(η−t+τ )2
4(t−τ ) dη

+

∫ t

0

γ(τ )dτ√
4π(t − τ )3

∫ ∞

0

[
u+
η (τ , η) − u−

η (τ , η)
]
η e−

(η−t+τ )2
4(t−τ ) dη = 0. (5.14)

The following lemma rewrites the constraint (5.14) as the integral equation for γ(t).

Lemma 5.6. Assume that u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) are solutions to the
boundary-value problems (5.7) with the initial conditions u±(0, y) = u±

0 (y) satisfying u±
0 (0) =

0 and u+′
0 (0) + u−′

0 (0) = 0. There exists a solution γ ∈ L1(R+) ∩ L∞(R+) to the integral
equation (5.14) if there exists a solution γ ∈ L1(R+) ∩ L∞(R+) to the following integral
equation

γ(t) = − 1√
4πt

∫ ∞

0

[
u+′

0 (η) + u−′
0 (η) +

1
2

u+
0 (η) +

1
2

u−
0 (η)

](
η + t

2t

)
e−

(η−t)2
4t dη

− 1
2
γ(t)

[
u+

y (t, 0+) − u−
y (t, 0+)

]

− 1
2

∫ t

0

γ(τ )e−
t−τ

4√
4π(t − τ )

[
u+

y (τ , 0+) − u−
y (τ , 0+)

]
dτ

−
∫ t

0

γ(τ )√
4π(t − τ )

∫ ∞

0

[
u+

yy − u−
yy +

1
2

u+
y − 1

2
u−

y

]
(τ , η)

(
η + t − τ

2(t − τ )

)
e−

(η−t+τ )2
4(t−τ ) dη dτ.

Proof. First, we integrate by parts in (5.14) with the use of the boundary conditions
u±(t, 0) = 0 and u±

0 (0) = 0 in order to obtain the integral equations in time variable with a
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weakly singular kernel. A short computation yields the following integral equation:

∫ t

0

γ(τ )√
π(t − τ )

e−
t−τ

4 dτ −
∫ t

0

γ(τ )√
4π(t − τ )

∫ ∞

0
e−

(η+t−τ )2
4(t−τ ) dη dτ

+
1√
4πt

∫ ∞

0

[
u+′

0 (η) + u−′
0 (η) +

1
2

u+
0 (η) +

1
2

u−
0 (η)

]
e−

(η−t)2
4t dη

+

∫ t

0

γ(τ )√
4π(t − τ )

∫ ∞

0

[
u+

y − u−
y +

1
2

u+ − 1
2

u−
]

(τ , η)

(
η − t + τ

2(t − τ )

)
e−

(η−t+τ )2
4(t−τ ) dη dτ

= 0.

By using the transformation (5.13), we rewrite the integral equation in the equivalent form:

M(γ̃) +
1√
4πt

∫ ∞

0

[
v+′

0 (η) + v−′
0 (η)

]
e−

η2
4t dη

+

∫ t

0

γ̃(τ )e−
τ
4√

4π(t − τ )

∫ ∞

0

[
v+y − v−y

]
(τ , η)

(
η − t + τ

2(t − τ )

)
e−

η2
4(t−τ ) dη dτ = 0, (5.15)

where the linear operatorM is given by (3.31) and v±0 (y) = u±
0 (y)e

y
2 . By using lemma 3.5 with

f ∈ W1,∞(R+) given by

f (η) := v+′
0 (η) + v−′

0 (η),

the linear operator M can be inverted on the second term of the integral equation (5.15).
Note that f (0) = 0 in lemma 3.5 is satisfied due to the consistency conditions u±

0 (0) = 0 and
u+′

0 (0) + u−′
0 (0) = 0.

In order to invert the linear operator M on the third term of the integral equation (5.15), we
integrate it by parts and obtain

∫ t

0

γ̃(τ )e−
τ
4√

4π(t − τ )

∫ ∞

0

[
v+y − v−y

]
(τ , η)

(
η − t + τ

2(t − τ )

)
e−

η2
4(t−τ ) dη dτ

=

∫ t

0

γ̃(τ )e−
τ
4

√
4π(t − τ )

[
v+y (τ , 0+) − v−y (τ , 0+)

]
dτ

+

∫ t

0

γ̃(τ )e−
τ
4

√
4π(t − τ )

∫ ∞

0

[
v+yy − v−yy −

1
2
v+y +

1
2
v−y

]
(τ , η)e−

η2
4(t−τ ) dη dτ.

We are now in position to use lemma 3.6 with g ∈ L1(R+, L∞(R+)) ∩ L∞(R+, L∞(R+)) given
by

g(τ , η) = γ̃(τ )e−
τ
4

[
v+yy(τ , η) − v−yy(τ , η) − 1

2
v+y (τ , η) +

1
2
v−y (τ , η)

]

and h ∈ L1(R+) ∩ L∞(R+) given by

h(τ ) = γ̃(τ )e−
τ
4
[
v+y (τ , 0+) − v−y (τ , 0+)

]
.

By using lemmas 3.5 and 3.6 as described above, we obtain the following integral equation:

5999



Nonlinearity 34 (2021) 5979 U Le et al

γ̃(t) = − 1√
4πt

∫ ∞

0

[
v+′

0 (η) + v−′
0 (η)

](η + t
2t

)
e−

η2
4t dη

− 1
2
γ̃(t)e−

t
4
[
v+y (t, 0+) − v−y (t, 0+)

]
− 1

2

∫ t

0

γ̃(τ )e−
τ
4

√
4π(t − τ )

[
v+y (τ , 0+) − v−y (τ , 0+)

]
dτ

−
∫ t

0

γ̃(τ )e−
τ
4

√
4π(t − τ )

∫ ∞

0

[
v+yy − v−yy −

1
2
v+y +

1
2
v−y

]
(τ , η)

(
η + t − τ

2(t − τ )

)
e−

η2
4(t−τ ) dη dτ.

Substituting the transformation (5.13) yields the integral equation for γ(t). �

Next, we solve the integral equations in lemmas 5.5 and 5.6.
The following lemma guarantees existence of the global solutions u± ∈ L∞(R+, H2(R+) ∩

W2,∞(R+)) to the boundary-value problems (5.7) for small initial data u±
0 ∈ H2(R+) ∩

W2,∞(R+) and small function γ ∈ L1(R+) ∩ L∞(R+). The global solutions satisfy the dynam-
ical conditions (5.10) for t > 0 but do not generally satisfy the additional conditions (5.8) and
(5.9).

Lemma 5.7. For every ε > 0 (small enough), there is δ > 0 such that for every u±
0 ∈

H2(R+) ∩ W2,∞(R+) and for every γ ∈ L1(R+) ∩ L∞(R+) satisfying

‖u+
0 ‖H2∩W2,∞ + ‖u−

0 ‖H2∩W2,∞ + ‖γ‖L1∩L∞ < δ (5.16)

and u±
0 (0) = 0, there exist unique solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) to the inte-

gral equations in lemma 5.5. Moreover, the solutions satisfy

‖u+(t, ·)‖H2∩W2,∞ + ‖u−(t, ·)‖H2∩W2,∞ < ε t > 0 (5.17)

and the dynamical conditions (5.10) for t > 0.

Proof. We rewrite the integral equations in lemma 5.5 as the fixed-point equations associated
with the following integral operators:

u± = A±(u±) := u±
1 + u±

2 ± u±
3 , (5.18)

where

u±
1 (t, y) =

1√
4πt

∫ ∞

0
u±

0 (η)

[
e−

(y−η+t)2

4t − e−y e−
(y+η−t)2

4t

]
dη, (5.19)

u±
2 (t, y) =

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
e−η

[
e−

(y−η+t−τ )2

4(t−τ ) − e−y e−
(y+η−t+τ )2

4(t−τ )

]
dη, (5.20)

u±
3 (t, y) =

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±
η (τ , η)

[
e−

(y−η+t−τ )2
4(t−τ ) − e−y e−

(y+η−t+τ )2
4(t−τ )

]
dη. (5.21)

The fixed-point equations (5.18) are considered in a small ball Bε ⊂ X of radius ε > 0 in
Banach space

X := L∞(R+, H2(R+) ∩ W2,∞(R+)),
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where u±
0 ∈ H2(R+) ∩ W2,∞(R+) and γ ∈ L1(R) ∩ L∞(R) are given and satisfy the initial

bound (5.16). We analyze hereafter each term in the definition of A±(u±) in X.
The explicit expressions for u±

1 in (5.19) coincide with (4.6) after the change of the initial
data u0 to u±

0 . By using the same analysis as in the proof of lemma 4.3, we obtain the same
bounds (4.8), (4.11), and (4.12) for u±

1 (t, ·) and their first and second y-derivatives in the L2(R+)
norm. Similarly, the same bounds can be rederived in the L∞(R+) norm. Combining them
together, we deduce that there exists C > 0 such that

‖u±
1 (t, ·)‖H2∩W2,∞ � C‖u±

0 ‖H2∩W2,∞ , t > 0. (5.22)

It follows from (4.13) in remark 4.4 that

∂yu±
1 (t, 0+) + ∂2

y u±
1 (t, 0+) = 0, t > 0. (5.23)

Let us now consider the explicit expressions for u±
2 in (5.20). Recall from the proof of

lemma 4.3 that the estimates for e−yG(t,−y + t) in L2
y(R+) ∩ L∞

y (R+) are identical to those
for G(t, y + t) and result in the double factors in the bounds (4.8), (4.11), and (4.12). In what
follows, we only show the explicit estimates for the first term G(t, y + t). By Young’s inequality
(3.7) with either p = 1 and q = r = 2 or p = q = 2 and r = ∞, we obtain

‖u±
2 (t, ·)‖L2∩L∞ � 2

∫ t

0
|γ(τ )|‖e−y ∗ G(t − τ , y + t − τ )‖L2

y (R+)∩L∞y (R+) dτ

� 2
∫ t

0
|γ(τ )|‖e−y‖L1

y (R+)∩L2
y (R+)‖G(t − τ , y + t − τ )‖L2

y (R) dτ

� 2
(8π)1/4

∫ t

0

|γ(τ )|
(t − τ )1/4

dτ ,

where the second equality in (3.2) has been used together with ‖e−y‖L1
y (R+) = 1 and

‖e−y‖L2
y (R+) =

1√
2
< 1. Computing derivatives in y and integrating by parts yield

∂yu±
2 (t, y) = −

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
e−η e−

(y−η+t−τ )2
4(t−τ ) dη + ν(t, y) (5.24)

and

∂2
y u±

2 (t, y) =
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
e−η e−

(y−η+t−τ )2

4(t−τ ) dη − 1
2
ν(t, y) + νy(t, y), (5.25)

where ν(t, y) is given by (3.17). By using estimates (3.22), (3.23), (3.25), and (3.29) in the
proof of lemma 3.3, we obtain

‖∂yu
±
2 (t, ·)‖L2 � 3

(8π)1/4

∫ t

0

|γ(τ )|
(t − τ )1/4

dτ ,

‖∂yu
±
2 (t, ·)‖L∞ � 3√

4π

∫ t

0

|γ(τ )|
(t − τ )1/2

dτ ,

‖∂2
y u±

2 (t, ·)‖L2 � 2
(8π)1/4

∫ t

0

|γ(τ )|
(t − τ )1/4

dτ +
1

(8π)1/4

∫ t

0

|γ(τ )|
(t − τ )3/4

dτ ,
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and

‖∂2
y u±

2 (t, ·)‖L∞ � 3√
4π

∫ t

0

|γ(τ )|
(t − τ )1/2

dτ + |γ(t)|.

Combining all estimates together, we deduce that there exists C > 0 such that

‖u±
2 (t, ·)‖H2∩W2,∞ � C

(∫ t

0

|γ(τ )|
(t − τ )1/4

dτ +

∫ t

0

|γ(τ )|
(t − τ )1/2

dτ +

∫ t

0

|γ(τ )|
(t − τ )3/4

dτ + |γ(t)|
)
.

(5.26)

By taking the limit y → 0+ in (5.24) and (5.25) and using (3.18) in lemma 3.3, we obtain

∂yu±
2 (t, 0+) + ∂2

y u±
2 (t, 0+) =

1
2
ν(t, 0+) + νy(t, 0+) = −γ(t), t > 0. (5.27)

Let us now consider the explicit expressions for u±
3 in (5.21). Integrating by parts with the

boundary conditions u±(t, 0+) = 0, we obtain

u±
3 (t, y) = −

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±(τ , η)

(
y − η + t − τ

2(t − τ )

)
e−

(y−η+t−τ )2

4(t−τ ) dη

−
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±(τ , η)

(
y + η − t + τ

2(t − τ )

)
e−y e−

(y+η−t+τ )2
4(t−τ ) dη. (5.28)

The second term again enjoys the same estimates as the first term and give a double factor
in the resulting bounds. By Young’s inequality (3.7) with p = 1 and either q = r = 2 or q =
r = ∞, we obtain

‖u±
3 (t, ·)‖L2∩L∞ � 2

∫ t

0
|γ(τ )|‖u±(τ , y) ∗ ∂yG(t − τ , y + t − τ )‖L2

y (R+)∩L∞y (R+) dτ

� 2
∫ t

0
|γ(τ )|‖u±(τ , ·)‖L2∩L∞‖∂yG(t − τ , y + t − τ )‖L1

y (R) dτ

� 2
∫ t

0

|γ(τ )|√
π(t − τ )

‖u±(τ , ·)‖L2∩L∞ dτ ,

where the first equality in (3.3) has been used. Computing derivative in y and integrating by
parts yield

∂yu±
3 (t, y) = −

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±

y (τ , η)

(
y − η + t − τ

2(t − τ )

)
e−

(y−η+t−τ )2

4(t−τ ) dη

+

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±

y (τ , η)

(
y + η − t + τ

2(t − τ )

)
e−y e−

(y+η−t+τ )2
4(t−τ ) dη

+

∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±(τ , η)

(
y + η − t + τ

2(t − τ )

)
e−y e−

(y+η−t+τ )2

4(t−τ ) dη.

With similar estimates as above, we obtain

‖∂yu
±
3 (t, ·)‖L2∩L∞ �

∫ t

0

|γ(τ )|√
π(t − τ )

(2‖∂yu
±(τ , ·)‖L2∩L∞ + ‖u±(τ , ·)‖L2∩L∞ ) dτ.
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Computing another derivative in y and integrating by parts yield

∂2
y u±

3 (t, y) = −
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±

yy(τ , η)

(
y − η + t − τ

2(t − τ )

)
e−

(y−η+t−τ )2

4(t−τ ) dη

−
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±

yy(τ , η)

(
y + η − t + τ

2(t − τ )

)
e−y e−

(y+η−t+τ )2
4(t−τ ) dη

− 2
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±

y (τ , η)

(
y + η − t + τ

2(t − τ )

)
e−y e−

(y+η−t+τ )2

4(t−τ ) dη

−
∫ t

0

γ(τ )dτ√
4π(t − τ )

∫ ∞

0
u±(τ , η)

(
y + η − t + τ

2(t − τ )

)
e−y e−

(y+η−t+τ )2
4(t−τ ) dη

−
∫ t

0

γ(τ )√
4π(t − τ )

∂yu
±(τ , 0+)

(
y

t − τ

)
e−

(y+t−τ )2
4(t−τ ) dτ ,

where the last term can be written as ν̃y(t, y) + 1
2 ν̃(t, y) with

ν̃(t, y) := 2
∫ t

0

γ(τ )∂yu±(τ , 0+)√
4π(t − τ )

e−
(y+t−τ )2

4(t−τ ) dτ.

All terms in ∂2
y u±

3 including the last one are estimated similarly to what was done above. As a
result, we obtain

‖∂2
y u±

3 (t, ·)‖L2∩L∞ � 2
∫ t

0

|γ(τ )|dτ√
π(t − τ )

(
‖∂2

y u±(τ , ·)‖L2∩L∞ + ‖∂yu
±(τ , ·)‖L2∩L∞

)
dτ

+

∫ t

0

|γ(τ )|dτ√
π(t − τ )

‖u±(τ , ·)‖L2∩L∞ dτ + ‖ν̃y(t, ·) + 1
2
ν̃(t, ·)‖L2∩L∞ ,

where the following estimates from the proof of lemma 3.3 can be used:

‖ν̃y(t, ·) +
1
2
ν̃(t, ·)‖L2 � 1

(8π)1/4

∫ t

0

|γ(τ )||∂yu±(τ , 0+)|
(t − τ )1/4

dτ

+
1

(8π)1/4

∫ t

0

|γ(τ )||∂yu±(τ , 0+)|
(t − τ )3/4

dτ

and

‖ν̃y(t, ·) +
1
2
ν̃(t, ·)‖L∞ � |γ(t)||∂yu

±(t, 0+)|.

Combining all estimates together, we deduce that there exists C > 0 such that

‖u±
3 (t, ·)‖H2∩W2,∞ � C

(∫ t

0

|γ(τ )|
(t − τ )1/2

‖u±(τ , ·)‖H2∩W2,∞ dτ

+

∫ t

0

|γ(τ )||∂yu±(τ , 0+)|
(t − τ )1/4

dτ +

∫ t

0

|γ(τ )||∂yu±(τ , 0+)|
(t − τ )3/4

dτ

+ |γ(t)||∂yu
±(t, 0+)|

)
, t > 0. (5.29)
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By taking the limit y → 0+ in ∂yu±
3 (t, y) and ∂2

y u±
3 (t, y) and using (3.18) in lemma 3.3, we

obtain

∂yu±
3 (t, 0+) + ∂2

y u±
3 (t, 0+) = ν̃y(t, 0+) +

1
2
ν̃(t, 0+) = −γ(t)∂yu

±(t, 0+), t > 0. (5.30)

Summing (5.23), (5.27), and (5.30) with the decomposition u± = u±
1 + u±

2 ± u±
3 recovers

the dynamical conditions (5.10) for t > 0.
Next, we run the fixed-point arguments for the fixed-point equations (5.18) in Bε ⊂ X. If u±

0
and γ satisfy the initial bound (5.16), then there exists C > 0 such that

‖A±(0)‖X � Cδ

due to bounds (5.22) and (5.26), where we have also used the bound (3.11) in lemma 3.1.
Furthermore, for every small ε > 0, there is sufficiently small δ > 0 such that if u± ∈ Bε ⊂ X,
then A±(u±) ∈ Bε ⊂ X; moreover A± are contractions on Bε ⊂ X due to bounds (5.29), where
the bound (3.11) is used again. Existence and uniqueness of the fixed points u± ∈ Bε ⊂ X to
the fixed-point equations (5.18) follow by the Banach fixed-point theorem. Hence, the bound
(5.17) is proven and the proof of the lemma is complete. �

When u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) are substituted from lemma 5.7 into the integral
equation (5.14), we are looking for a small solution γ ∈ L1(R+) ∩ L∞(R+) in response to small
initial data u±

0 ∈ H2(R+) ∩ W2,∞(R+). However, we were not able to close the fixed-point
iterations unless we added the additional requirement of the spatial exponential decay of the
initial data u±

0 .
The following lemma shows that the spatial exponential decay of the initial data u±

0 is
preserved in time.

Lemma 5.8. In addition to (5.16), we assume that u±
0 ∈ H2(R+) ∩ W2,∞(R+) satisfy

‖eα·u+
0 ‖W2,∞ + ‖eα·u−

0 ‖W2,∞ < δ, (5.31)

for a fixed α ∈ (0, 1
2 ] and that |γ(t)| → 0 as t →+∞. The unique solutions u± ∈

L∞(R+, H2(R+) ∩ W2,∞(R+)) of lemma 5.7 satisfy

‖eα·u+(t, ·)‖W2,∞ + ‖eα·u−(t, ·)‖W2,∞ < ε, t > 0 (5.32)

and

‖u±(t, ·)‖W2,∞ → 0 as t →+∞. (5.33)

Proof. By rearranging the heat kernels, we can rewrite (5.19), (5.20), and (5.28) as

eαyu±
1 (t, y) =

e−α(1−α)t

√
4πt

∫ ∞

0
eαηu±

0 (η)

[
e−

(y−η+(1−2α)t)2
4t − e−(1−2α)y e−

(y+η−(1−2α)t)2
4t

]
dη, (5.34)

eαyu±
2 (t, y) =

∫ t

0

γ(τ )e−α(1−α)(t−τ ) dτ√
4π(t − τ )

×
∫ ∞

0
e−(1−α)η

[
e−

(y−η+(1−2α)(t−τ ))2

4(t−τ ) − e−(1−2α)y e−
(y+η−(1−2α)(t−τ ))2

4(t−τ )

]
dη, (5.35)
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and

eαyu±
3 (t, y) = −

∫ t

0

γ(τ )e−α(1−α)(t−τ ) dτ√
4π(t − τ )

∫ ∞

0
eαηu±(τ , η)

(
y − η + t − τ

2(t − τ )

)
e−

(y−η+(1−2α)(t−τ ))2

4(t−τ ) dη

−
∫ t

0

γ(τ )e−α(1−α)(t−τ ) dτ√
4π(t − τ )

∫ ∞

0
eαηu±(τ , η)

(
y + η − t + τ

2(t − τ )

)
e−(1−2α)y e−

(y+η−(1−2α)(t−τ ))2

4(t−τ ) dη.

(5.36)

If α ∈ (0, 1
2 ], the exponential function e−(1−2α)y is still bounded on R+, whereas eαyu±

0 (y)
belongs to W2,∞(R+) and satisfies the initial bound (5.31). All convolution estimates of lemma
5.7 hold true with some α-dependent constants and give the unique solution in W2,∞(R+)
satisfying the bound (5.32).

It remains to prove the asymptotic decay (5.33). Since

‖u‖L∞(R+) � ‖eα·u‖L∞(R+),

‖uy‖L∞(R+) � ‖(eα·u)y‖L∞(R+) + α‖eα·u‖L∞(R+),

‖uyy‖L∞(R+) � ‖(eα·u)yy‖L∞(R+) + 2α‖(eα·u)y‖L∞(R+) + α2‖eα·u‖L∞(R+),

it is sufficient to prove the decay to zero as t →+∞ for eαyu±(t, y) in W2,∞(R+).
Similarly to the expression (5.34), one can write the integral representations for eαy∂yu±

1
and eαy∂2

y u±
1 obtained from (4.9) and (4.10) with the exponential weights. It follows from these

representations that if α ∈ (0, 1
2 ], there exists an α-independent C > 0 such that

‖eα·u±
1 (t, ·)‖W2,∞ � C e−α(1−α)t‖eα·u±

0 ‖W2,∞ , (5.37)

where the upper bound decays to zero as t →+∞ exponentially fast.
Similarly, it follows from (5.35) and the integral representations for eαy∂yu±

2 and eαy∂2
y u±

2
obtained from (5.24) and (5.25) that there exists an α-independent C > 0 such that

‖eα·u±
2 (t, ·)‖W2,∞ � C

(∫ t

0
|γ(τ )|e−α(1−α)(t−τ ) dτ

+

∫ t

0

|γ(τ )|e−α(1−α)(t−τ )

√
4π(t − τ )

dτ + |γ(t)|
)

, (5.38)

where we have used the weighted representation for ν(t, y) in (3.17):

eαyν(t, y) = 2
∫ t

0

γ(τ )e−α(1−α)(t−τ )

√
4π(t − τ )

e−
(y+(1−2α)(t−τ ))2

4(t−τ ) dτ

and the representation

eαyνy(t, y) +
1
2

eαyν(t, y) = e−
1
2 (1−2α)y− t

4 ν̃y(t, y)

with ν̃y satisfying the bound (3.28). By lemma 3.2, the upper bound in (5.38) decays to zero
as t →+∞ since γ ∈ L1(R) ∩ L∞(R) and |γ(t)| → 0 as t →+∞.
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Finally, it follows from (5.36) with (3.3) and Young’s inequality (3.7) with p = r = ∞ and
q = 1 that

‖eα·u±
3 (t, ·)‖L∞ � 2 sup

t∈R+

‖eα·u±(t, ·)‖L∞

[
α

∫ t

0
|γ(τ )|e−α(1−α)(t−τ ) dτ

+

∫ t

0

|γ(τ )|e−α(1−α)(t−τ )

√
π(t − τ )

dτ

]
.

The bounds for ‖eα·∂yu±
3 (t, ·)‖L∞ and ‖eα·∂2

y u±
3 (t, ·)‖L∞ are similar and follow from the inte-

gral representations for eαy∂yu±
3 and eαy∂2

y u±
3 obtained in the proof of lemma 5.7 after adding

exponential weights and using (3.3) and (3.7). As a result, we conclude again that there exists
an α-independent C > 0 such that

‖eα·u±
3 (t, ·)‖W2,∞ � C sup

t∈R+

‖eα·u±(t, ·)‖W2,∞

(∫ t

0
|γ(τ )|e−α(1−α)(t−τ ) dτ

+

∫ t

0

|γ(τ )|e−α(1−α)(t−τ )

√
π(t − τ )

dτ + |γ(t)|
)

, (5.39)

for every u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) of lemma 5.7. By lemma 3.2, the upper bound
in (5.39) decays to zero as t →+∞ since γ ∈ L1(R) ∩ L∞(R) and |γ(t)| → 0 as t →+∞.

Combining all estimates together, we obtain the asymptotic decay (5.33). �

Remark 5.9. Due to the exponential decay with α ∈ (0, 1
2 ], we also have the bound

‖u‖H2(R+) � Cα‖eα·u‖W2,∞(R+),

which implies that ‖u±(t, ·)‖H2 → 0 as t →∞.

The final lemma gives the existence of a unique solution to the integral equation (5.14) for
γ ∈ L1(R+) ∩ L∞(R+), where u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) are substituted from lem-
mas 5.7 and 5.8 into the integral equation (5.14) and the initial data u±

0 ∈ H2(R+) ∩ W2,∞(R+)
satisfy the bounds (5.16) and (5.31).

Lemma 5.10. Fix α ∈ (0, 1
2 ] and consider the integral equation (5.14) with the unique

solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)) defined in lemmas 5.7 and 5.8 that depend on
(small) γ ∈ L1(R+) ∩ L∞(R+). For every ε̃ > 0 (small enough), there is δ̃ > 0 such that for
every u±

0 ∈ H2(R+ ∩ W2,∞(R+)) satisfying

‖u+
0 ‖H2∩W2,∞ + ‖u−

0 ‖H2∩W2,∞ + ‖eα·u+
0 ‖W2,∞ + ‖eα·u−

0 ‖W2,∞ � δ̃ (5.40)

and the boundary conditions u±
0 (0) = 0 and u+′

0 (0) + u−′
0 (0) = 0, there exists a unique

solution γ ∈ L1(R+) ∩ L∞(R+) of the integral equation (5.14) satisfying

‖γ‖L∞∩L1 � ε̃ (5.41)

and |γ(t)| → 0 as t →+∞.

Proof. We rewrite the integral equation in lemma 5.6 as the fixed-point equation associated
with the following integral operator:

γ = A(γ) := γ1 + γ2 + γ3, (5.42)
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where

γ1(t) = − 1√
4πt

∫ ∞

0

[
u+′

0 (η) + u−′
0 (η) +

1
2

u+
0 (η) +

1
2

u−
0 (η)

](
η + t

2t

)
e−

(η−t)2
4t dη,

γ2(t) = −1
2
γ(t)

[
u+

y (t, 0+) − u−
y (t, 0+)

]

− 1
2

∫ t

0

γ(τ )e−
t−τ

4√
4π(t − τ )

[
u+

y (τ , 0+) − u−
y (τ , 0+)

]
dτ ,

γ3(t) = −
∫ t

0

γ(τ )√
4π(t − τ )

∫ ∞

0

[
u+

yy − u−
yy +

1
2

u+
y − 1

2
u−

y

]
(τ , η)

(
η + t − τ

2(t − τ )

)
e−

(η−t+τ )2
4(t−τ ) dη dτ.

The fixed-point equation (5.42) is considered in a small ball Bε̃ ⊂ L1(R+) ∩ L∞(R+) of
radius ε̃ > 0, where u±

0 ∈ H2(R+) ∩ W2,∞(R+) are given and satisfy (5.40) and u± ∈
L∞(R+, H2(R+) ∩ W2,∞(R+)) are defined in lemmas 5.7 and 5.8 such that δ̃ and ε̃ in (5.40)
and (5.41) are smaller than δ in (5.16). We analyze hereafter each term in the definition ofA(γ)
in L1(R+) ∩ L∞(R+).

Since the boundary conditions u±
0 (0) = 0 and u+′

0 (0) + u−′
0 (0) = 0 are satisfied by the initial

condition u±
0 ∈ W2,∞(R+), we can use the equivalent form (3.33) in lemma 3.5 and express

γ1(t) in the form:

γ1(t) = − 1√
4πt

∫ ∞

0
f (η)e−

(η−t)2
4t dη, (5.43)

where

f (η) = u+′′
0 (η) + u−′′

0 (η) +
3
2

u+′
0 (η) +

3
2

u−′
0 (η) +

1
2

u+
0 (η) +

1
2

u−
0 (η).

It follows from the first identity in (3.2) that there exists C > 0 such that

|γ1(t)| � C
(
‖u+

0 ‖W2,∞ + ‖u−
0 ‖W2,∞

)
, t > 0. (5.44)

However, there is no bound on ‖γ1‖L1 unless we add some weights (e.g. the exponential weight
in lemma 5.8) on the initial conditions u±

0 and rewrite (5.43) in the form:

γ1(t) = −e−α(1−α)t

√
4πt

∫ ∞

0
eαη f (η)e−

(η−(1−2α)t)2
4t dη.

Now, thanks to the exponential factor e−α(1−α)t decaying to zero as t →+∞, we obtain

‖γ1‖L1 � 1
α(1 − α)

‖eα· f ‖L∞ ,

so there exists a positive α-dependent constant Cα such that

‖γ1‖L1 � Cα

(
‖eα·u+

0 ‖W2,∞ + ‖eα·u−
0 ‖W2,∞

)
. (5.45)
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Moreover, |γ1(t)| � e−α(1−α)t‖eα· f ‖L∞ , hence |γ1(t)| → 0 as t →+∞.
For γ2(t), we obtain

‖γ2‖L1∩L∞ � 1
2

(
1 +

∫ ∞

0

e−
t
4√

4πt
dt

)
‖γ‖L1∩L∞

× sup
t∈R+

(
‖u+(t, ·)‖W1,∞ + ‖u−(t, ·)‖W1,∞

)
, (5.46)

where the expression in brackets is a finite constant. No weights are needed to estimate
γ2 in L1(R+) ∩ L∞(R+). Moreover, by lemma 3.2, if |γ(t)| → 0 as t →+∞ and u± ∈
L∞(R+, H2(R+) ∩ W2,∞(R+)), then |γ2(t)| → 0 as t →+∞.

For γ3(t), we use (3.2) and (3.3), and Young’s inequality (3.7) with p = q = 2 and r = ∞
and obtain

|γ3(t)| � C

(∫ t

0

|γ(τ )|dτ
(t − τ )1/4

+

∫ t

0

|γ(τ )|dτ
(t − τ )3/4

)
sup

t∈R+

(
‖u+(t, ·)‖H2 + ‖u−(t, ·)‖H2

)
, t > 0,

which is bounded by lemma 3.1 if γ ∈ L1(R+) ∩ L∞(R+). To get the bound on ‖γ3‖L1 , we add
the exponential weight and rewrite γ3(t) in the equivalent form:

γ3(t) = −
∫ t

0

γ(τ )e−α(1−α)(t−τ )

√
4π(t − τ )

∫ ∞

0
eαηg(τ , η)

(
η + t − τ

2(t − τ )

)
e−

(η−(1−2α)(t−τ ))2
4(t−τ ) dη dτ ,

where

g(τ , η) = u+
yy(τ , η) − u−

yy(τ , η) +
1
2

u+
y (τ , η) − 1

2
u−

y (τ , η).

By using Young’s inequality (3.7) with p = r = ∞ and q = 1 and Young’s inequality (3.10)
with either p = r = 1 or p = r = ∞ and q = 1, we now obtain

‖γ3‖L1∩L∞ �
(

1
α
+

∫ ∞

0

e−α(1−α)t

√
πt

dt

)
‖γ‖L1∩L∞ sup

t∈R+

‖eα·g(t, ·)‖L∞ ,

so there exists a positive α-dependent constant Cα such that

‖γ3‖L1∩L∞ � Cα‖γ‖L1∩L∞ sup
t∈R+

(
‖eα·u+(t, ·)‖W2,∞ + ‖eα·u−(t, ·)‖W2,∞

)
. (5.47)

Moreover, by lemma 3.2, if |γ(t)| → 0 as t →+∞ and u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)),
then |γ3(t)| → 0 as t →+∞.

Next, we run the fixed-point arguments for the fixed-point equation (5.42) in Bε̃ ⊂
L1(R+) ∩ L∞(R+). If u±

0 satisfy the initial bound (5.40) and γ ∈ Bε̃, then the solutions u± ∈
L∞(R+, H2(R+) ∩ W2,∞(R+)) in lemmas 5.7 and 5.8 satisfy the bounds (5.17) and (5.32) if
δ̃ � δ and ε̃ � δ. The bounds (5.44)–(5.47) imply that A(γ) ∈ Bε̃ for sufficiently small δ̃ and
given small ε̃. Moreover,A is a contraction on Bε̃ ⊂ L1(R+) ∩ L∞(R+) due to the same bounds
(5.46), and (5.47) and the smallness of the solutions u± ∈ L∞(R+, H2(R+) ∩ W2,∞(R+)).

Existence and uniqueness of the fixed point γ ∈ Bε̃ ⊂ L1(R+) ∩ L∞(R+) to the fixed-point
equation (5.42) follows from the Banach fixed-point theorem. Hence, the bound (5.41) is
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proven. Moreover, the decay |γ(t)| → 0 as t →+∞ is preserved by the fixed-point iterations.
The proof of the lemma is complete. �
Proof of theorem 2.6. The existence, uniqueness, and continuous dependence of the solu-
tions u± to the boundary-value problems (5.7) with (5.8) and (5.10) is obtained from lemmas
5.7, 5.8, and 5.10 as follows. For a fixed ε in (5.17) and (5.32), there exists a small δ in (5.16)
and (5.31), for which we select ε̃ in (5.41) such that ε̃ � δ. By lemma 5.10, there exists δ̃ in
(5.40) and, if necessary, we reduce δ̃ so that δ̃ � δ. Then, the results of lemmas 5.7, 5.8, and
5.10 hold simultaneously for the initial conditions satisfying (5.40), which is obtained from
(2.18) by the transformations (5.1) and (5.6). The bound (2.19) follows from u± ∈ Bε ⊂ X in
the proof of lemma 5.7 and the transformations (5.1) and (5.6). The decay (2.20) follows from
the decay (5.33). By lemmas 5.7 and 5.8, the solutions belong to the spaces (2.21) and (2.22).

The interface condition (5.9) follows from (5.8) and (5.10). The interface condition (5.3)
of lemma 5.1 follows from the transformation (5.6) and the dynamical condition (5.10). The
positivity conditions (5.5) follow from the decomposition (5.1) and smallness of u in W1,∞(R)
similarly to the proof of theorem 2.3. �

6. Numerical simulations

Here we simulate numerically the boundary-valueproblem (5.2) completed with the dynamical
equation (5.3) and the interface condition (5.4). The interface location ξ(t) satisfies ξ(0) = 0.
By using γ(t) = ξ′(t), W

′
0(y) = e−|y|, and the new variables u±(t, y) in (5.6) the boundary-value

problem is rewritten as the system (5.7)–(5.10). Although this system can also be simulated
numerically, we found more convenient to reformulate the boundary condition (5.8) as a
Neumann condition for a single function. By introducing new variables

v±(t, y) = u(t, y) ∓ u(t,−y), y > 0 (6.1)

we rewrite the boundary-value problem as the following system of two coupled equations:{
v+t = v+y + v+yy + γv−y , y > 0,

v−t = v−y + v−yy + γv+y + 2γ e−y, y > 0,
(6.2)

subject to the boundary conditions⎧⎪⎪⎨
⎪⎪⎩
v±(t, 0) = 0,

v−y (t, 0) = 0,

v±(t, y) → 0 as y →∞,

(6.3)

the interface condition

v+y (t, 0) + v+yy(t, 0) = 0, (6.4)

and the dynamical condition

γ(t) = −
v−yy(t, 0)

2 + v+y (t, 0)
. (6.5)

If v−(0, y) = 0 initially, then γ(t) = 0 and v−(t, y) = 0 are preserved in the time evolution of
(6.2), (6.3), and (6.5). In this case, the variable v+(t, y) satisfies the boundary-value problem
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Figure 1. Numerical simulations for the initial conditions (6.6). Top: plot of u(t, x) ver-
sus x for t = 0, 0.5, 1 (left) and t = 2, 3, 4 (right). Bottom: plot of w(t, x) versus x for
t = 0, 1, 2 (left) and plot of γ(t) versus t (right).

(4.2), which is analyzed in theorem 2.3 for the odd perturbations to the viscous shock. In what
follows, we consider the general case of v−(0, y) �= 0 which is analyzed in theorem 2.6.

We use the central-difference Crank–Nicholson scheme for numerical simulations of sys-
tem (6.2)–(6.5). The numerical scheme is described in appendix. The spatial domain is chosen
at [0, L] with L = 10 and the equally spaced grid has the spacing h = 0.05. Simulations were
performed with the time step τ = 0.001.

Figure 1 reports the results of numerical simulations for the initial condition with the
Gaussian decay:⎧⎨

⎩
v+(0, y) = 0.1(y − 0.5y2)e−y2

,

v−(0, y) = 0.5y2 e−y2
,

(6.6)

where the coefficients are carefully selected to satisfy the boundary conditions in (6.3) and
the interface condition (6.4) at t = 0. After the solution v±(t, y) to the evolution problem
(6.2) is approximated numerically, the function u(t, y) is recovered from (6.1) and then plotted
versus x := ξ(t) + y, where ξ(t) is found from numerical integration of ξ′(t) = γ(t) with γ(t)
approximated from (6.5).

Snapshots of u(t, x) versus x for different values of t (top panels of figure 1) show that the
solution quickly decays to zero in the supremum norm. Although the perturbation u is sign-
indefinite, the values of u are smaller compared to the values of W0 in the viscous shock, hence
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Figure 2. The same as in figure 1 but for the initial condition (6.7).

Figure 3. L2 norm of the solution u(t, ·) over time t for the numerical simulations on
figure 1 (left) and figure 2 (right).

w = W0 + u remains positive (negative) to the right (left) of the interface located at x = ξ(t).
The snapshots of w are shown on the bottom left panel for t = 0, 1, 2 with the insert showing
the profile of w near the interface. The bottom right panel shows the position of the interface
ξ versus t. It quickly relaxes to the equilibrium position at ξ∞ ≈ −0.11. This behavior agrees
with the asymptotic stability result of theorem 2.6 suggesting existence of ξ∞ ∈ R such that
ξ(t) → ξ∞ as t →+∞ (remark 2.10). The value of ξ∞ depends on the initial conditions. We
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Figure 4. Distance between two numerical approximations of γ(tk) with double number
of grid points (left) and their ratio showing the quadruple reduction (right).

have checked that if the sign of v−(0, y) in (6.6) is changed to the opposite, then the sign of ξ∞
changes to the opposite.

Figure 2 reports similar results for the initial conditions with the exponential decay:{
v+(0, y) = 0.1(y + 0.5y2)e−y,

v−(0, y) = 0.5y2 e−y,
(6.7)

which again satisfies the boundary conditions in (6.3) and the interface condition (6.4) at t = 0.
Dynamics of the perturbation u in time t for the initial data (6.7) resembles the same dynamics
as for the initial condition (6.6). However, the relaxation time is slower for the exponentially
decaying perturbations, hence the time window is extended from T = 4 on figure 1 to T = 12
on figure 2. Nevertheless, the interface ξ(t) moves to the left and relaxes to some equilibrium
position ξ∞ ≈ −0.49.

Comparison between figures 1 and 2 illustrates the role of weights in the asymptotic stability
of viscous shocks. The greater is the spatial decay of the initial perturbations, the quicker is
the relaxation dynamics of perturbed solutions to the traveling viscous shocks. The proof of
theorem 2.6 is obtained under the exponential decay but similar results are likely to be available
for other (e.g., algebraic) decay conditions. Figure 3 shows the decay of ‖u(t, ·)‖L2 over the
extended time interval for the same initial conditions (6.6) and (6.7). The rate of decay is
slower in the case of exponential weights (right) compared to the case of Gaussian weights
(left).

In order to check the convergence of the numerical method, we have reduced the grid spac-
ing h by the factor of 2 and the time step τ by the factor of 4. Figure 4 shows the errors
of the numerical simulations (left) computed as a difference between γ(tk) obtained between
two consequent approximations with double number of grid points. As we can see from their
ratio (right), the errors reduce by the factor of 4, which is in agreement with the second-order
accuracy of the central-difference Crank–Nicholson method.

7. Conclusion

We have considered the modular Burgers equation, where the advective nonlinearity produces
singularities related to the modular functions. For the class of viscous shocks with a single
interface at the zero value of the modular function, we have proven their asymptotic stability
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under a general perturbation with the spatial exponential decay at infinity. This work may open
up new directions of research.

First, it is interesting to consider the existence and nonlinear dynamics of the viscous shocks
with multiple interfaces. It is expected that the perturbations at the tails will behave similarly
but the dynamics will be complicated by the internal interactions among the interfaces. The
periodic waves with an infinite number of interfaces located at the equal distance is another
interesting case for further studies, e.g., see [12, 13].

Second, one can wonder if the exponential weight requirement on the initial perturbations
can be relaxed or completely removed. It may be relatively easy to replace the exponential
weights with the algebraic weights as done in [2]. However, we are not able to close the fixed-
point arguments for the perturbations to the viscous shocks in H2(R) ∩ W2,∞(R), hence new
ideas for analysis are needed to remove the weights.

Finally, the Burgers equation with more singular nonlinearity, e.g. given by the logarithmic
functions, arises in the applications of granular chains [11]. It is definitely interesting if the
asymptotic stability of viscous shocks can be proven for the logarithmic Burgers equations.
Unfortunately, our methods rely on the reductions provided by the modular nonlinearity and
cannot be extended to the case of logarithmic or other singular nonlinearities.
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Appendix Central-difference Crank–Nicholson method for system (6.2)

The spatial domain of system (6.2) is discretized at the points yn = nh with equal step size
h for n = 1, . . . , N. It follows from the boundary conditions (6.3) that v±(t, y0) = 0 at y0 = 0.
Although the problem is unbounded in one direction, one can truncate the half-line on the finite
interval [0, L] with sufficiently large L and yN+1 = L = (N + 1)h and apply the Dirichlet con-
dition v±(t, yN+1) = 0 at the end point. This approach of truncation is commonly adopted for
the numerical approximation of evanescent waves in engineering [5] as the Dirichlet condition
does not provide large errors due to reflections if the waves have fast spatial decay.

At each time level tk = kτ with the time step τ , we approximate the spatial derivatives with
the second-order central differences as follows:

v±y (tk, yn) =
v±n+1,k − v±n−1,k

2h
, (A.1)

v±yy(tk, yn) =
v±n+1,k − 2v±n,k + v±n−1,k

h2
, (A.2)

where vn,k is a numerical approximation of v(tk, xn). The Neumann condition v−y (t, 0) = 0 is
modeled with the virtual grid point y−1 = −h so that v−−1,k = v−1,k. By using the virtual grid
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point y−1 and the interface condition (6.4), we also express

v+−1,k = −2 + h
2 − h

v+1,k, (A.3)

after which the approximation of γ(tk) is obtained from (6.5) as follows:

γ(tk) = −
(2 − h)v−1,k

hv+1,k + h2(2 − h)
. (A.4)

We use the Crank–Nicholson method in order to perform steps in time for the evolution
system (6.2). For each equation of the form dv

dt = f (v), the Crank–Nicholson method yields:

vk+1 −
τ

2
f (vk+1) = vk +

τ

2
f (vk), (A.5)

where f for the first and second equations of system (6.2) take the form:

[ f +]n,k =
v+n+1,k − v+n−1,k

2h
+

v+n+1,k − 2v+n,k + v+n−1,k

h2
+ γk

v−n+1,k − v−n−1,k

2h

and

[ f −]n,k =
v−n+1,k − v−n−1,k

2h
+

v−n+1,k − 2v−n,k + v−n−1,k

h2

+ γk
v+n+1,k − v+n−1,k

2h
+ 2γk e−yn .

For simplicity, we use γk at the time level k on both sides of equation (A.5). Thus, in order
to advance the solution of (6.2) to the next time level k + 1, we have to solve the following
algebraic system:

L(−τ )vk+1 = L(τ )vk + ck, (A.6)

where vk and ck are the 2N vectors with the elements

vn,k = v+n,k, 1 � n � N, and vn,k = v−n,k, N + 1 � n � 2N, (A.7)

and

cn,k = 0, 1 � n � N, and cn,k = 2τγk e−yn , N + 1 � n � 2N, (A.8)

and L(τ ) is the (2N × 2N) matrix defined in the block form:

(A.9)

with A and B are (N × N) three-diagonal matrices with the elements:

a j, j = 1 − τ

h2
, a j, j+1 =

τ

2

(
1

2h
+

1
h2

)
, a j, j−1 =

τ

2

(
− 1

2h
+

1
h2

)

and

b j, j = 0, b j, j+1 =
τ

4h
γk, b j, j−1 = − τ

4h
γk.
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The solution u(t, y) to the boundary-value problem (5.2) for y ∈ R is recovered from solution
v±(t, y) to system (6.2) for y ∈ R+ by using the transformation (6.1). Finally, we use y =
x − ξ(t) with ξ(t) :=

∫ t
0γ(t′)dt′ in order to display u(t, x) versus x on R.
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