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Abstract
Weconstruct the edge-localized stationary states of the nonlinear Schrödinger equation
on a general quantum graph in the limit of large mass. Compared to the previous
works, we include arbitrary multi-pulse positive states which approach asymptotically
a composition of N solitons, each sitting on a bounded (pendant, looping, or internal)
edge. We give sufficient conditions on the edge lengths of the graph under which such
states exist in the limit of large mass. In addition, we compute the precise Morse index
(the number of negative eigenvalues in the corresponding linearized operator) for these
multi-pulse states. If N solitons of the edge-localized state reside on the pendant and
looping edges, we prove that the Morse index is exactly N . The technical novelty of
this work is achieved by avoiding elliptic functions (and related exponentially small
scalings) and closing the existence arguments in terms of the Dirichlet-to-Neumann
maps for relevant parts of the given graph. We illustrate the general results with three
examples of the flower, dumbbell, and single-interval graphs.

1 Introduction

We address standing waves of the focusing NLS (nonlinear Schrödinger) equation
posed on a quantum graph � = {E,V}, where E is the set of edges and V is the
set of vertices (see [22,24] for review). The evolution system can be written in the
normalized form:

i�t + �� + 2|�|2� = 0, (1.1)
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where the Laplacian � and the nonlinear term are defined componentwise on edges
E subject to proper boundary conditions on the vertices V (see [5,11] for introduction
to linear differential equations on quantum graphs).

The quantum graph � = {E,V} is assumed to consist of a finite number |E | of
bounded and unbounded edges. Enumerating every edge in � uniquely gives the set
E = {e1, e2, . . . , e|E |}. The function � on � can be represented as a vector with |E |
components,

� = {ψ1, ψ2, . . . , ψ|E |}, (1.2)

where ψ j is defined on the edge e j only. The function � can be defined in the Hilbert
space of square-integrable functions L2(�) = ⊕

e∈E L2(e).
Weak (resp. strong) solutions of the NLS time flow (1.1) are well defined in the

L2-based Sobolev spaces H1(�) (resp. H2(�)), where H1,2(�) = ⊕
e∈E H1,2(e),

provided the boundary conditions on V are symmetric. Since |E | < ∞, the NLS
time flow (1.1) is essentially the evolution problem in one spatial dimension, which
is globally well-posed both in H1(�) and H2(�) due to the cubic (L2-subcritical)
nonlinearity.

We consider the natural Neumann–Kirchhoff (NK) boundary conditions at each
vertex v ∈ V given by

{
� is continuous on �,∑

e∼v ∂�(v) = 0 for every vertex v ∈ V,
(1.3)

where the derivatives ∂ are directed away from the vertex v ∈ V and e ∼ v denotes
the edges e ∈ E adjacent to the vertex v ∈ V .

Consistent with the boundary conditions (1.3), weak solutions of the NLS equation
(1.1) are defined in the energy space H1

C (�) := H1(�)∩C0(�), whereC0(�) denotes
the space of functions continuous on all edges in E and across all vertex points in V .
These weak solutions conserve the energy and mass functionals given respectively by

E(�) = ‖∇�‖2L2(�)
− ‖�‖4L4(�)

, Q(�) = ‖�‖2L2(�)
. (1.4)

Standing waves of the NLS equation (1.1) are given by the solutions of the form
�(t, x) = �(x)e−iωt , where � ∈ H1

C (�) is a weak solution of the stationary NLS
equation

ω� = −�� − 2|�|2�, (1.5)

for a given ω ∈ R. By bootstrapping arguments, every weak solution of the stationary
NLS equation (1.5) is also a strong solution satisfying the natural NK conditions (1.3).
Hence, we can use the vector representation � = (φ1, φ2, . . . , φ|E |) and rewrite the
stationary NLS equation (1.5) on every edge e j in E as a collection of differential
equations:

ωφ j (x) = −φ′′
j (x) − 2|φ j (x)|2φ j (x), x ∈ e j , (1.6)

which satisfy the boundary conditions (1.3) on every vertex v ∈ V . We write � ∈
H2
NK(�) if � ∈ H2(�) satisfies the NK conditions (1.3). Only real-valued solutions

of the stationary NLS equation are considered but we write the modulus sign for easy
generalizations.
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Fig. 1 Schematic illustration of a pendant edge (left), a looping edge (middle), and an internal edge (right)

Among all possible real-valued solutions of the stationary NLS equation (1.5),
we are particularly interested in the positive edge-localized states which satisfy the
following conditions:

• �(x) > 0 for every x ∈ �;
• on each bounded edge e j ∈ E , there is at most one local critical point of φ j (either
maximum or minimum) inside the edge;

• on each unbounded edge e j ∈ E , the function φ j is monotonically decreasing and
has exponential decay to 0 at infinity.

Depending on the topological properties of the quantum graph �, the positive edge-
localized states could become the ground state, the state of the least energy E(�) at
fixed mass Q(�) [1–3].

Although the set of conditions on � seems to be restrictive, the positive edge-
localized states exist in the limit of large mass [4,6,10,19]. This limit for large μ =
Q(�) can be recast as the limit of large negative ω in the stationary NLS equation
(1.5) for the cubic (L2-subcritical) nonlinearity. Existence of such edge-localized states
was confirmed analytically and/or numerically for the tadpole graph [2,8,9,23,25], the
dumbbell graph [14,21], and the flower graph [17]. The importance of the positive
edge-localized states is motivated by their (possible) orbital stability in the NLS time
flow.

Bounded edges of E are divided into pendant, looping, and internal edges according
to the following classification (see illustrations on Fig. 1):

• A pendant edge of length 
 is associated with the segment [0, 
], where the left
end is isolated from the rest of � subject to the Neumann boundary condition and
the right end is connected with the rest of � at a vertex v.

• A looping edge of length 2
 is associated with the segment [−
, 
], where both
ends at connected to the rest of � at a single vertex v, hence contributing twice to
the derivative condition in (1.3).

• An internal edge of length 2
 is associated with the segment [−
, 
], where dif-
ferent ends at connected to the rest of � at two different vertices v− and v+.

Each unbounded edge is associated with the half-line [0,∞). The edge-localized
states considered in [6] are formed by a single large-amplitude component φe on a
fixed looping or internal edge e of length 2
 such that φe has a single local maximum
inside e, monotone from its maximum to the vertices of e, and concentrated on e in
the following sense

‖�‖L2(e)

‖�‖L2(�)

≥ 1 − Ce−2ε
, (1.7)
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Fig. 2 Schematic illustration of edge-localized states on a pendant (left), a looping edge (middle), and an
internal edge (right)

where ε := √|ω| is a large parameter and the constantC is independent of ε.Moreover,
� has no internal maxima on the remainder of graph �\{e}. The edge-localized state
on the pendant edge e is formed similarly except that φe has a single local maximum
at the terminal vertex. The edge-localized states considered in [6] are illustrated on
Fig. 2.

The construction of the edge-localized states in [6] relies on the properties of ellip-
tic functions and on careful rescaling of exponentially small terms for the elliptic
modulus. In addition, the states of the least energy at fixed mass were analyzed in
[6] by comparing the exponentially small terms in the expansion of μ := Q(�) in
ε := √|ω|.

A similar result on the edge-localized states in the large-mass limit was obtained
independently in [4] using variational methods (for unbounded graphs only). Since the
edge-localized states were identified in [4] as local energy minimizers in the restricted
space of functions in H1

C (�) that attain their maximum on a given edge e, the Morse
index for such states is exactly one, where the Morse index is the number of negative
eigenvalues of the linearized operator L : H2

NK(�) ⊂ L2(�) → L2(�) given by

L = −� − ω − 6|�|2. (1.8)

If ω < 0, the graph � is unbounded, and � is bounded and decays to 0 at infinity
exponentially fast, then the linearized operator L is self-adjoint and the absolutely
continuous part of the spectrum is strictly positive and bounded away from zero by
|ω| by Weyl’s theorem on essential spectrum. Therefore, the Morse index is well-
defined as the finite number of negative eigenvalues of L accounting for their finite
multiplicity. We denote this number by n(L). We also denote the multiplicity of the
zero eigenvalue of L by z(L).

If the graph� is bounded, then the spectrum ofL is purely discrete and the numbers
n(L) and z(L) are again well-defined since L is bounded from below.

Additional results related to the edge-localized states in the limit of large energy
were obtained in [10], where bounded graphs with the pendant edges were considered
and convergence of the edge-localized states to the half-solitons was proven. Multi-
pulse states were also studied in [10], all pulses localize at the terminal vertices.
Edge-localized states were considered in [19] by recasting the existence problem to
the semi-classical limit of an elliptic problem. It was proven in [19] that the location of
the edge-localized state with a single maximum as the state of the least energy at fixed
mass is determined by the longest pendant edge of a bounded graph or the longest
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internal edge if no pendant and looping edges are present. These results are included
in more general results obtained in [6].

The main result of this work concerns the construction of the multi-pulse edge-
localized states in the limit of large mass (large negative ω). As ω → −∞, the
multi-pulse states approach asymptotically a composition of N solitons, each sitting
on a bounded (pendant, looping, or internal) edge. The edges of the graph, where the
multi-pulse state is localized, must satisfy the following non-degeneracy assumptions.

Assumption 1 Let EN := {e1, e2, . . . , eN } be the set of N edges connected to the
remainder graph �\EN at |B| boundary vertices VB = {v1, v2, . . . , v|B|}. Let 
min be
the length of the shortest edge in �\EN and 
 j,min be the minimal half-length of the
looping and internal edges or the minimal length of the pendant edges adjacent to the
boundary vertex v j ∈ VB from EN , 1 ≤ j ≤ |B|. The edge lengths must satisfy the
constraints:

max
1≤ j≤|B| 
 j,min − min

1≤ j≤|B| 
 j,min < 
min (1.9)

and
max

1≤ j≤|B| 
 j,min < 3 min
1≤ j≤|B| 
 j,min. (1.10)

Assumption 2 Each internal edge in EN has no common vertices with other internal
edges inEN and its half-length is strictlyminimal among the half-lengths of the looping
edges and the lengths of the pendant edges in EN adjacent to its two vertices.

Remark 1 In the definition of the edge lengths, we assume that each vertex has degree
3 or higher, except for the terminal vertices of the pendant edges which have degree
1. In other words, we do not allow dummy vertices of degree 2 in the graph �.

Remark 2 If N = 1, both Assumptions 1 and 2 are satisfied trivially. If |B| = 0 or
|B| = 1 or |B| ≥ 2 and all 
 j,min are equal, Assumption 1 is satisfied.

The following theorem gives the existence result.

Theorem 1 Let � = {E,V} be a graph with finitely many edges and satisfying NK
conditions at its vertices. For any N edges EN := {e1, e2, . . . , eN } of finite lengths
satisfying Assumptions 1 and 2 and for large enough ε := √−ω there exists a positive
edge-localized state � with the following properties:

(1) �|e j has a single local maximum and is monotone from its maximum to the end
vertices of e j ∈ EN , for 1 ≤ j ≤ N;

(2) � has no internal maxima on the remainder of the graph �\EN ;
(3) � is concentrated on EN in the following sense

‖�‖L2(�\EN )

‖�‖L2(EN )

≤ Ce−ε
N , (1.11)

where the constant C is independent of ε and 
N = min{
1,min, 
2,min, . . . , 
|B|,min}.
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Remark 3 For the pendant edge e j ∈ EN , the maximum of �|e j occurs at the left end
with the Neumann boundary conditions. For the looping edge e j ∈ EN , the maximum
of�|e j occurs exactly at themiddle point. For the internal edge e j ∈ EN , themaximum
of �|e j is generally shifted from the middle point. Assumption 2 allows us to control
the shift of the maximum of �|e j on the internal edge. See Fig. 2 for illustration of
edge-localized states.

Remark 4 Condition (1.11) is equivalent to (1.7) in the case N = 1 and EN = {e}.
Indeed, it follows from (1.11) with 
N=1 = 
 that

‖�‖2L2(�)
= ‖�‖2L2(e) + ‖�‖2L2(�\{e}) ≤ (1 + C2e−2ε
)‖�‖2L2(e), (1.12)

which yields (1.7). It follows from Theorems 3.1, 3.3, and 3.5 in [6] that

|‖�‖2L2(e) − ε| ≤ Cε2e−2ε
 (1.13)

for the pendant edge and

|‖�‖2L2(e) − 2ε| ≤ Cε2e−2ε
 (1.14)

for the looping and internal edges, where the constant C is independent of ε. In the
case of N edges, we have

‖�‖2L2(EN )
=

N∑

j=1

‖�‖2L2(e j )
(1.15)

with similar estimates for ‖�‖2
L2(e j )

, where e j ∈ EN .

Remark 5 Compared to the work in [6], we do not use elliptic functions and exponen-
tially small scalings, which makes our results more general and the proofs simpler. We
partition the graph � into EN and �\EN and reduce the existence problem to a system
of equations for Dirichlet data on the boundary vertices in VB . Then, we show that all
these equations can be solved independently of each other under the constraints (1.9)
and (1.10) on the lengths of edges in Assumption 1, which provide compatability of
asymptotic solutions for large ε.

Our second main result is the precise characterization of the Morse index n(L) and
the degeneracy index z(L) of the multi-pulse edge-localized states in the limit of large
mass (large negative ω). This characterization was not provided in [6] even in the case
of N = 1. The following theorem gives the result when the set EN does not include
internal edges.

Theorem 2 Let � be the positive N-pulse edge-localized state of Theorem 1 for large
enough ε and assume that the set EN contains only pendant and looping edges. Then,
n(L) = N and z(L) = 0, where L is the linearized operator in (1.8).
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Remark 6 To obtain the exact count of the Morse index and the multiplicity of the
zero eigenvalue of L, we use a homotopy argument relating the non-positive spectra
of the operators L : H2

NK(�) ⊂ L2(�) → L2(�) and LD : H2
D(�) ⊂ L2(�) →

L2(�) where LD has the same differential representation as L and H2
D(�) differs

from H2
NK(�) by the Dirichlet conditions at the boundary vertices in VB instead of

the NK conditions. The technique resembles the surgery principle widely used in the
spectral analysis of differential operators on graphs [7,20].

Remark 7 If an internal edge is present in the set EN , then the explicit count of the
Morse index in Theorem 2 is no longer applicable, as shown in Example 3. Therefore,
characterization of the Morse index and the multiplicity of the zero eigenvalue of L
is still an open problem in the case of multi-pulse states localized on internal edges.

Remark 8 The implication of Theorem 2 to the time evolution of perturbations to the
positive N -pulse edge-localized states of Theorem 1 is that these states are orbitally
unstable under theNLS time flow (1.1) if N ≥ 2. This follows from an easy application
of the main results of [15] and [26]. In agreement with the variational characterization
of the single-pulse states on unbounded graphs � in [4], the positive edge-localized
states with N = 1 are orbitally stable. This follows via the standard orbital stability
theory [16] from the monotonicity of the mapping

ε �→ ‖�‖2L2(EN )
(1.16)

for large ε and the exponential smallness of ‖�‖L2(�\EN ) due to the bound (1.11), the
decomposition (1.15) and the bounds (1.13) and (1.14). Note that it was proven in [6]
that the mapping (1.16) is C1.

Remark 9 Multi-pulse stateswith N ≥ 2 cannot be the ground state because n(L) ≥ 2.
It is still unclear (see discussion in [6]) if the ground state can only be realized among
the single-pulse edge-localized states of Fig. 2 in the large-mass limit.

The paper is organized as follows. Section 2 reviews preliminary results from [6]
and [17]. Sections 3 and 4 give the proof of Theorems 1 and 2 respectively. Section 5
contains examples of flower, dumbbell, and single-interval graphs where Theorems 1
and 2 are applicable and discuss counter-examples when assumptions of Theorem 2
are violated. Section 6 concludes the paper with a summary and open directions.

2 Preliminary results

Since ε := √−ω is considered to be large,we rescale the stationaryNLSequation (1.5)
with the transformation �(x) = εU (εx), x ∈ �. As a result, the graph � = {E,V} is
transformed to the ε-scaled graph �ε = {Eε,V} for which every bounded edge e ∈ E
of length 
e transforms to the edge eε ∈ Eε of length ε
e but the unbounded edge
e ∈ E remains the same as e ∈ Eε . The stationary NLS equation (1.5) is rewritten in
the parameter-free form

(1 − �)U − 2|U |2U = 0. (2.1)
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Writing U = (u1, u2, . . . , u|E |) gives a collection of differential equations

− u′′
j (z) + u j (z) − 2|u j (z)|2u j (z) = 0, z ∈ e j,ε, (2.2)

subject to the boundary conditions (1.3) at vertices v ∈ V .
We select N edges EN := {e1, e2, . . . , eN } with N ≤ |E | in the original graph �

and partition the graph into two parts EN and �\EN . The two graphs intersect at the
vertices in the setVB := {v1, v2, . . . , v|B|}, which are referred to as boundary vertices.
After rescaling of � to �ε , we obtain EN ,ε and �ε\EN ,ε .

We introduce the Dirichlet data on the boundary vertices p = (p1, p2, . . . , p|B|)
and the Neumann data q = (q1, q2, . . . , q|B|) for the graph �ε\EN ,ε with

p j := ue∼v j (v j ), q j :=
∑

e∼v j

∂ue(v j ), v j ∈ VB, (2.3)

where the derivatives ∂ are directed away from �ε\EN ,ε and e ∼ v j lists all edges
e ∈ �ε\EN ,ε incident to the vertex v j . We are looking for solutions of the differential
equations (2.2) such that

sup
z∈e j,ε

|u j (z)| <
1√
2
, e j,ε ∈ �ε\EN ,ε, (2.4)

and

sup
z∈e j,ε

|u j (z)| >
1√
2
, e j,ε ∈ EN ,ε (2.5)

where 1√
2
is the constant solution of the differential equations in (2.2).

The following two lemmas were proven in [6] (Theorem 2.9 and Lemma 2.12).

Lemma 1 There exist C0 > 0, p0 > 0, and ε0 > 0 such that for every pwith ‖p‖ < p0
and every ε > ε0, there exists a solution U ∈ H2

NK(�ε\EN ,ε) to the stationary NLS
equation (2.1) on �ε\EN ,ε subject to the Dirichlet data on VB which is unique among
functions satisfying (2.4). The solution satisfies the estimate

‖U‖H2(�ε\EN ,ε )
≤ C0‖p‖, (2.6)

while its Neumann data satisfies

|q j − D j p j | ≤ C0

(
‖p‖e−ε
min + ‖p‖3

)
, 1 ≤ j ≤ |B|, (2.7)

where D j is the degree of the j-th boundary vertex in �ε\EN ,ε and 
min is the length
of the shortest edge in �\EN . Furthermore, if p j ≥ 0 for every j , then U (z) ≥ 0 for
all z ∈ �ε\EN ,ε and U has no internal local maxima in �ε\EN ,ε .

Lemma 2 There exist C0 > 0, p0 > 0, and ε0 > 0 such that for every p ∈ (0, p0) and
every ε > ε0, there exists a real solution u ∈ H2(0, ε
) to the differential equation
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−u′′ + u − 2u3 = 0 satisfying u′(0) = 0 and u(ε
) = p, which is unique among
positive and decreasing functions satisfying (2.5). The solution satisfies u′(ε
) < 0
and ∣

∣
∣u′(ε
) − u(ε
) + 4e−ε


∣
∣
∣ ≤ C0εe−3ε
. (2.8)

Remark 10 TheC1 property of Neumann data q and u′(ε
)with respect to parameter ε
and Dirichlet data p and u(ε
) = p in Lemmas 1 and 2 respectively was established in
[6]with similar exponentially small estimates.Wewill notwrite this property explicitly
but will use the C1 property in the application of the implicit function theorem.

Remark 11 The solution u(z) in Lemma 2 was represented by elliptic functions and
its dependence on the elliptic modulus was also studied in Lemma 2.12 of [6]. This
information is not used in the present work.

For the solution u ∈ H2(0, ε
) to the differential equation −u′′ + u − 2u3 = 0 in
Lemma 2, we write the boundary conditions as

p+ := u(0), 0 = u′(0), p := u(ε
), q := −u′(ε
), (2.9)

where p+ ∈ (p, 1), p > 0, and q > 0. Denoting v(z) := u′(z), the pair (u(z), v(z))
for all z ∈ (0, ε
) stays on the invariant curve

Eβ := {(u, v) : v2 − u2 + u4 = β} (2.10)

with some constant β > − 1
4 . In particular, it follows from (2.9) that

β = q2 − p2 + p4 = −p2+ + p4+. (2.11)

Figure 3 shows the (u, v) phase plane and the invariant curve between the points
(p+, 0) and (p,−q). The period function T+(p, q) defined by

T+(p, q) :=
∫ p+

p

du
√

β + u2 − u4
(2.12)

gives the z-length of the solution u(z) obtained along the invariant curve Eβ between
points (p+, 0) and (p,−q). For the solution u ∈ H2(0, ε
) in Lemma 2, the relations
(2.9) can be written as

T+(p, q) = ε
, u(T+(p, q)) = p, u′(T+(p, q)) = −q.

Compared to the standard terminology, see, e.g., [12], where the period function is
introduced for the fundamental period of the periodic function u(z) along the integral
curve Eβ , the period function T+(p, q) given by (2.12) corresponds to a part of the
integral curve Eβ .

The following two lemmas describe properties of the period function T+(p, q) and
the solution u(z) in Lemma 2.
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Fig. 3 Phase plane (u, v) for the differential equation −u′′ + u − 2u3 = 0 showing the homoclinic loop
for β = 0, the integral curve Eβ for β ∈ (− 1

4 , 0), and the part of the integral curve between points (p+, 0)
and (p, −q)

Lemma 3 There is small δ > 0 such that

∂pT+(p, q) < 0 and ∂q T+(p, q) < 0 (2.13)

for every p ∈ (0, δ) and q ∈ (0, δ).

Proof It follows from the bound (2.8) that

T+(p, q) = − ln

(
p + q

4

)

+ O
(
(p2 + q2)(| ln p| + | ln q|)

)
. (2.14)

for small p > 0 and q > 0. Taking derivatives of (2.14) in p and q justifies the
inequalities in (2.13). ��
Remark 12 The second property in (2.13) is also proven in Lemma 3.6 of [17] by using
more complicated analysis of the integrals in (2.12).

Lemma 4 Let u be a real, positive, and decreasing solution to the nonlinear equation
−u′′ + u − 2u3 = 0 on (0, T+(p, q)) satisfying

u(0) = p+, u′(0) = 0, u(T+(p, q)) = p, u′(T+(p, q)) = −q (2.15)

with some p > 0 and q > 0, where p+ and T+(p, q) are defined in (2.11) and (2.12).
Then, the general solution of the linearized equation −w′′(z)+w(z)−6u2(z)w(z) = 0
is given by

w(z) = Au′(z) + Bs(z), (2.16)
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where A and B are arbitrary parameters and s(z) satisfies s(0) �= 0, s′(0) = 0.
Moreover, for sufficiently small p and q, u′ is negative on (0, T+(p, q)), s vanishes at
exactly one point on the interval (0, T+(p, q)) and both functions satisfy

u′′(T+(p, q))

u′(T+(p, q))
< 0,

s′(T+(p, q))

s(T+(p, q))
> 0. (2.17)

Proof It follows from properties of u(z) in Lemma 2 that u′(z) < 0 for z ∈
(0, T+(p, q)). The first inequality in (2.17) follows from

u′′(T+(p, q))

u′(T+(p, q))
= − p(1 − 2p2)

q
< 0, (2.18)

for p ∈ (0, 1√
2
) and q > 0.

In order to study the decomposition (2.16),we introduce s(z) := ∂qu(z) and r(z) :=
∂pu(z), where the parameters p and q are not written in the arguments of u(z), s(z),
and r(z). The two functions satisfy the following boundary conditions obtained after
differentiating (2.15) with respect to p and q:

{
s(T+(p, q)) = q∂q T+,

s′(T+(p, q)) = −1 − p(1 − 2p2)∂q T+

and {
r(T+(p, q)) = 1 + q∂pT+,

r ′(T+(p, q)) = −p(1 − 2p2)∂pT+.

It follows from (2.11) and (2.15) that

s(0) = −q

p+(1 − 2p2+)
, r(0) = p(1 − 2p2)

p+(1 − 2p2+)
.

Since s′(0) = r ′(0) = 0, uniqueness of solutions of the differential equations implies
that the two functions are related by

s(z) = − q

p(1 − 2p2)
r(z). (2.19)

It follows from the boundary conditions at z = T+(p, q) and relation (2.19) that

{
s(T+(p, q)) = q∂q T+,

s′(T+(p, q)) = q∂pT+,
(2.20)

so that

s′(T+(p, q))

s(T+(p, q))
= ∂pT+(p, q)

∂q T+(p, q)
> 0,
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where positivity follows from (2.13) for sufficiently small p and q.
In order to prove that s vanishes at exactly one point on (0, T+(p, q)), we consider

the invariant curve Eβ given by (2.10) and the period function T+(p, q) given by
(2.12). Every z ∈ (0, T+(p, q)) can be represented by z = T+(P, Q) for some point
(P, Q) ∈ Eβ with P ∈ (p, p+). By Lemma 3.8 in [17], we have s(z) = 0 if and
only if ∂Q T+(P, Q) = 0, which also follows from the first equation in system (2.20).
Then, by Lemmas 3.6, 3.7, 3.9, 3.10 in [17], for sufficiently small p and q there is
exactly one point (P, Q) ∈ Eβ with P ∈ (p, p+), where s(z) = s(T+(P, Q)) = 0. ��

3 Existence of multi-pulse loop-localized states

Here we explain the asymptotic construction of the multi-pulse loop-localized states
and give the proof of Theorem 1.

For each boundary vertex v j ∈ VB with 1 ≤ j ≤ |B|, we use the Dirichlet data
p j as the unknown variable and write the flux boundary condition to determine p j .
The main advantage of this method is that the value of p j can be found independently
from the conditions at the other boundary vertices.

Fix j in 1 ≤ j ≤ |B|. Assume that the boundary vertex v j ∈ VB is in contact
with K j pendants, L j loops, and M j internal edges from the set EN ,ε . We denote the
corresponding sets by E j,pend, E j,loop, and E j,int respectively. Furthermore, we divide
E j,int into E−

j,int and E+
j,int depending on whether v j is the left or right vertex of the

internal edge e ∈ E j,int, respectively. The large solutions of Lemma 2 are centered at
0 on the pendants and loops but centered at an unknown point ae ∈ (−ε
e, ε
e) for
e ∈ E j,int. Assume a priori that for all large ε, we have

max
e∈E j,int

|ae| ≤ a j,max, (3.1)

where the constant a j,max > 0 is ε-independent.
By Lemma 1, the Neumann data at v j directed away from �ε\EN ,ε is

q(1)
j = D j p j + O(‖p‖e−ε
min + ‖p‖3), (3.2)

where O denotes the error terms in the bound (2.7).
By Lemma 2, the Neumann data at v j directed away from EN ,ε is

q(2)
j = (K j + 2L j + M j )p j − 4

∑

e∈E j,pend

e−ε
e − 8
∑

e∈E j,loop

e−ε
e

−4
∑

e∈E−
j,int

e−ε
e−ae − 4
∑

e∈E+
j,int

e−ε
e+ae + O(εe−3ε
j,min), (3.3)

where


 j,min := min{ min
e∈E j,pend

{
e}, min
e∈E j,loop

{
e}, min
e∈E j,int

{
e}}
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and O denotes the error terms in the bound (2.8). Note that the summation in q(2)
j

includes two contributions from the looping edges in E j,loop due to the two ends of
the looping edge incident to the vertex v j .

The flux boundary condition in (1.3) gives q(1)
j + q(2)

j = 0, which becomes the

implicit equation on p j . Since C1 property of the error terms is proven in [6] (Remark
10), the implicit equation is immediately solved with

p j = 4

Z j

⎛

⎜
⎝

∑

e∈E j,pend

e−ε
e + 2
∑

e∈E j,loop

e−ε
e +
∑

e∈E−
j,int

e−ε
e−ae +
∑

e∈E+
j,int

e−ε
e+ae

⎞

⎟
⎠

+O
(
‖p‖e−ε
min + +‖p‖3 + εe−3ε
j,min

)
, (3.4)

where Z j := D j + K j + 2L j + M j is the total degree of the vertex v j in �ε .

Remark 13 Although the boundary conditions (1.3) are satisfied for all vertices if p j

is defined by (3.4) for 1 ≤ j ≤ |B|, there are two consistency conditions to be
verified. One condition arises from the fact that ‖p‖ in the error terms in (3.4) include
all Dirichlet data p = (p1, p2, . . . , p|B|). Therefore, the error terms in (3.4) must
be smaller than the leading-order terms in (3.4) as ε → ∞ for each j . The second
condition arises from the fact that the values ae for e ∈ E j,int must be uniquely defined
and be bounded as ε → ∞ according to the a priori assumption (3.1).

In order to complete the proof of Theorem 1, it remains to verify the two consistency
conditions in Remark 13 from the two technical assumptions, Assumptions 1 and 2.

The first consistency condition is satisfied if

‖p‖e−ε
min � e−ε
 j,min , ‖p‖3 � e−ε
 j,min , 1 ≤ j ≤ |B|,

where e−ε
 j,min defines the size of the leading-order terms in (3.4). This leads to the
constraints (1.9) and (1.10) in Assumption 1.

The second consistency condition can be formulated in terms of the invariant curve
(2.10). The same level β for the large solution of Lemma 2 on a given internal edge
must correspond to two segments extending to two different boundary vertices.

Let e0 ∈ EN ,ε be an internal edge connecting v j ∈ VB at the left end and vk ∈ VB

at the right end, so that e0 ∈ E−
j,int and e0 ∈ E+

k,int and j �= k. Then, ae0 must be found
from the following equation

q2
e0∼v j

− p2j + p4j = q2
e0∼vk

− p2k + p4k , (3.5)

where qe0∼v j and qe0∼vk are given by the expansion

{
qe0∼v j = 4e−ε
e0−ae0 − p j + O(εe−3ε
e0 ),

qe0∼vk = −4e−ε
e0+ae0 + pk + O(εe−3ε
e0 ),
(3.6)

due to the bounds (2.8).
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Let us now assume that the internal edge e0 ∈ EN ,ε does not have commonboundary
vertices with other internal edges in EN ,ε as in Assumption 2. This means that E j,int =
{e0} and Ek,int = {e0}. Substituting (3.4) and (3.6) into the two sides of equation (3.5)
gives the expansions:

q2
e0∼v j

− p2j + p4j = 16

Z j

⎡

⎣(Z j − 2)e−2ε
e0−2ae0

− 2e−ε
e0−ae0

⎛

⎝
∑

e∈E j,pend

e−ε
e + 2
∑

e∈E j,loop

e−ε
e

⎞

⎠

⎤

⎦

+ O
(
‖p‖e−ε
min−ε
0 + +‖p‖3e−ε
0 + εe−3ε
 j,min−ε
e0

+e−4ε
 j,min + εe−3ε
e0−ε
 j,min + εe−4ε
e0

)

and

q2
e0∼vk

− p2k + p4k = 16

Zk

⎡

⎣(Zk − 2)e−2ε
e0+2ae0

− 2e−ε
e0+ae0

⎛

⎝
∑

e∈Ek,pend

e−ε
e + 2
∑

e∈Ek,loop

e−ε
e

⎞

⎠

⎤

⎦

+ O
(
‖p‖e−ε
min−ε
0 + +‖p‖3e−ε
0 + εe−3ε
k,min−ε
e0

+e−4ε
k,min + εe−3ε
e0−ε
k,min + εe−4ε
e0

)
.

By Remark 1, we have Z j ≥ 3 and Zk ≥ 3 for the internal edge e0. Equating the
two sides in (3.5) and dividing by e−2ε
e0 gives the unique solution of the implicit
equation:

e4ae0 = (Z j − 2)Zk

(Zk − 2)Z j
+ E0, (3.7)

where the error terms in E0 are given by

E0 = 2

Zk − 2
e3ae0+ε
e0

⎛

⎝
∑

e∈Ek,pend

e−ε
e + 2
∑

e∈Ek,loop

e−ε
e

⎞

⎠

− 2Zk

Z j (Zk − 2)
eae0+ε
e0

⎛

⎝
∑

e∈E j,pend

e−ε
e + 2
∑

e∈E j,loop

e−ε
e

⎞

⎠

+O
(
‖p‖eε
e0−ε
min + +‖p‖3eε
e0 + εeε
e0−3ε
 j,min + εeε
e0−3ε
k,min

)
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+O
(

e2ε
e0−4ε
 j,min + e2ε
e0−4ε
k,min + εe−ε
e0−ε
 j,min + εe−ε
e0−ε
k,min + εe−2ε
e0

)
.

The error terms beyond the first (leading-order) term in (3.7) are small if

‖p‖e−ε
min � e−ε
e0 ,

‖p‖3 � e−ε
e0 ,

εe−3ε
 j,min � e−ε
e0 ,

εe−3ε
k,min � e−ε
e0 ,

e−ε
e � e−ε
e0 , ∀e ∈ E j,pend ∪ E j,loop,

e−ε
e � e−ε
e0 , ∀e ∈ Ek,pend ∪ Ek,loop.

The first two conditions coincide with the consistency conditions satisfied byAssump-
tion 1. The other four conditions are satisfied if 
e0 is strictly minimal among the
half-lengths of the looping edges and the lenghts of the pendant edges as in Assump-
tion 2. This means that


e0 = 
 j,min = 
k,min < 
e, ∀e ∈ E j,pend ∪ E j,loop ∪ Ek,pend ∪ Ek,loop.

Since the first (leading-order) term in (3.7) is independent of ε, the a priori assumption
(3.1) on the admissible values of ae0 is satisfied by the solution (3.7).

The proof of Theorem 1 is complete. The bound (1.11) follows from the bound
(2.24) in Theorem 2.9 in [6].

Remark 14 If two or more internal edges in EN are connected to the same vertex, a
system of two or more equations (3.5) is set up and the solution for ae0 is no longer
available in the simple form (3.7). It is generally hard to obtain the solution for ae0 on
each internal edge in the system of nonlinear equations.

4 Morse index for multi-pulse edge-localized states

Herewe count theMorse index formulti-pulse edge-localized states and give the proof
of Theorem 2.

Let � be the positive N -pulse edge-localized state of Theorem 1 such that the set
EN only contains pendant and looping edges. Let L : H2

NK(�) ⊂ L2(�) → L2(�) be
the linearized operator with the differential expression given by (1.8). The number of
its negative eigenvalues (the Morse index) is denoted by n(L) and the multiplicity of
its zero eigenvalue is denoted by z(L). We will prove that n(L) = N and z(L) = 0
for large enough ε.

Applying the scaling transformation �(x) = εU (z) with z = εx and ε := √−ω,
we rewrite the spectral problem for L as a collection of differential equations

− w′′
j (z) + w j (z) − 6u j (z)

2w j (z) = λw j (z), z ∈ e j,ε, (4.1)
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subject to theboundary conditions (1.3) at verticesv ∈ V .HereW = (w1, w2, . . . , w|E |)
is a rescaled eigenvector in H2

NK(�ε) and λ is a rescaled eigenvalue of the linearized
operator L. Abusing notations, we still refer to the linearized operator in the rescaled
variables as to L.

4.1 Idea of the proof

Recall that VB is the set of boundary vertices separating EN ,ε and �ε\EN ,ε . Then
for every α = (α1, α2, · · · , α|B|), let the space H2

α (�ε) be defined by the modified
boundary conditions:

⎧
⎨

⎩

W is continuous on �ε,∑
e∼v ∂W (v) = 0 for every vertex v ∈ V\VB,∑
e∼v j

∂W (v j ) = α j W (v j ) for every vertex v j ∈ VB,
(4.2)

where the derivatives ∂ are directed away from the vertex.
We use α = 0 to denote α = (0, 0, . . . , 0) and α = ∞ to denote α =

(+∞,+∞, . . . ,+∞). Then, we have H2
NK(�ε) ≡ H2

α=0(�ε) and H2
D(�ε) ≡

H2
α=∞(�ε), where H2

D(�ε) stands for the domain with the Dirichlet conditions at
the boundary vertices:

⎧
⎨

⎩

W is continuous on �ε,∑
e∼v ∂W (v) = 0 for every vertex v ∈ V\VB,

W (v j ) = 0 for every vertex v j ∈ VB .

(4.3)

We also introduce the linearized operator Lα , such that the spectral problem LαW =
λW is still represented by the differential equations (4.1), but the domain of Lα is
H2

α (�ε) ⊂ L2(�ε).
The proof of Theorem 2 relies on the continuity argument from α = ∞ to α = 0

given by the following proposition.

Proposition 1 Assume that LαW = 0 admits no solutions W ∈ H2
α (�ε) for every

α ∈ [0,∞)|B|. Then, we have n(Lα=0) = n(Lα=∞) and z(Lα=0) = 0.

Proof The proof relies on the standard perturbation theory of linear operators given
in Chapter 7 of [18]. Since Lα is a holomorphic family of self-adjoint operators, each
isolated eigenvalue of Lα depends continuously on α. Therefore, if no eigenvalues of
Lα cross zero when α traverses from α = ∞ to α = 0, then the number of negative
eigenvalues remains the same. ��

By using Proposition 1, Theorem 2 holds if we can verify the following claims for
large ε:

Claim 1: n(Lα=∞) = N ;
Claim 2: LαW = 0 admits no solutions W ∈ H2

α (�ε) with α ∈ [0,∞)|B|.

Below we give proofs of these claims.
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4.2 Proof of Claim 1

The proof is based on the Sturm’s Comparison theorem (see Sect. 5.5 in [27]). For
simplicity, we assume that EN contains only looping edges. Due to the symmetry of
solutions in the looping edges with respect to the middle point, the proof extends to
the pendant edges with minor modifications.

The spectral problem for the operator Lα=∞ can be expressed by the second-order
differential equations (4.1) equipped with the Dirichlet conditions at the boundary
vertices given by (4.3). The spectral problem for Lα=∞ is given by N uncoupled
problems on the N edges in EN ,ε and another uncoupled problem in �ε\EN ,ε . On each
edge e j,ε ∈ EN ,ε , we have

{−w′′
j (z) + w j (z) − 6u j (z)2w j (z) = λw j (z), z ∈ (−ε
 j , ε
 j ),

w j (−ε
 j ) = w j (ε
 j ) = 0,
(4.4)

where u j (z) satisfies the condition (2.5). Since ε is large, p := u(ε
 j ) and q :=
−u′(ε
 j ) are small and positive by Lemma 2. For λ = 0, the homogeneous equation
(4.4) is solved by the superposition formula (2.16) inLemma4,where the even solution
s(z) has exactly one nodal point on (0, ε
 j ) and the odd solution u′(z) has no nodal
points on (0, ε
 j ). By Sturm’s Comparison theorem, the spectral problem (4.4) admits
exactly one simple negative eigenvalue. Since eigenvalues of all N spectral problems
(4.4) also appear in the spectrum of the operator Lα=∞, we have n(Lα=∞) ≥ N .

Remark 15 If e j,ε ∈ EN ,ε is a pendant edge, the Neumann condition at one end implies
that the spectral problem (4.4) is solved in the space of even functions, where it still
admits exactly one simple negative eigenvalue and no zero eigenvalue.

Next, we show that the uncoupled problem in �ε\EN ,ε given by

− W ′′ + W − 6U 2W = λW , z ∈ �ε\EN ,ε, (4.5)

subject to the boundary conditions (4.3) has a strictly positive spectrum. Since U on
�ε\EN ,ε satisfies the bound (2.6) with small p given by (3.4), we obtain from (4.5)
after multiplication by W and integration over �ε\EN ,ε with the boundary conditions
(4.3):

λ‖W‖2L2(�ε\EN ,ε )
= ‖W‖2L2(�ε\EN ,ε )

− 6‖U W‖2L2(�ε\EN ,ε )
+ ‖W ′‖2L2(�ε\EN ,ε )

≥ C‖W‖2L2(�ε\EN ,ε )
,

for some C > 0. Hence, λ ≥ C > 0 for every solution W ∈ H2
D((�ε\EN ,ε), and the

spectral problem (4.5) does not contribute into the nonpositive part of the spectrum of
the operator Lα=∞. This completes the proof of n(Lα=∞) = N .



  171 Page 18 of 26 A. Kairzhan, D. E. Pelinovsky

4.3 Proof of Claim 2

Let W be a solution of LαW = 0 in H2(�ε) with large enough ε. For every looping
edge e j,ε ∈ EN ,ε associated with the segment [−ε
 j , ε
 j ], the restriction of W to the
edge e j,ε denoted by w j solves the second-order differential equation

− w′′
j (z) + w j (z) − 6u j (z)

2w j (z) = 0, z ∈ (−ε
 j , ε
 j ). (4.6)

where u j (z) satisfies the condition (2.5). The following lemma computes the contri-
butions of the solution of the differential equation (4.6) to the last boundary condition
in (4.2).

Lemma 5 If e j,ε ∈ EN ,ε is a looping edge with ε large enough, then either w j ≡ 0 on
the entire edge or

α±(e j,ε) := ∓w′
j (±ε
 j )

w j (±ε
 j )
< 0. (4.7)

Proof By Lemma 4, the general solution is given by (2.16) rewritten again as

w j (z) = Au′
j (z) + Bs j (z) (4.8)

for some parameters A and B. Since u′
j (z) is odd, s j (z) is even, and u′

j (±ε
 j ) �= 0,
the continuity condition w j (−ε
 j ) = w j (ε
 j ) necessarily implies A = 0.

If B = 0, then w j ≡ 0 on the entire edge. If B �= 0, then w j (±ε
 j ) �= 0 and
α±(e j,ε) in (4.7) is defined by s j (±ε
 j ) and s′

j (±ε
 j ). It follows from the second
inequality in (2.17) and the symmetry of s j (z) that α±(e j,ε) < 0. ��
Remark 16 If e j,ε ∈ EN ,ε is a pendant edge, the Neumann condition at one end still
implies that A = 0 in the general solution (4.8), after which the proof of Lemma 5
holds and gives α+(e j,ε) < 0.

We denote the value of W at each boundary point v j ∈ VB as p j := W (v j ). Then
on the subgraph �ε\EN ,ε , W solves the homogeneous equation

− W ′′ + W − 6U 2W = 0, z ∈ �ε\EN ,ε, (4.9)

subject to the nonhomogeneous Dirichlet boundary conditions:

⎧
⎨

⎩

W is continuous on �ε\EN ,ε,∑
e∼v ∂W (v) = 0 for every vertex v ∈ V\VB,

W (v j ) = p j for every vertex v j ∈ VB .

(4.10)

The following lemma computes the contributions of the solution of the boundary-value
problem (4.9)–(4.10) to the last boundary condition in (4.2).
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Lemma 6 There are C0 > 0 and ε0 > 0 such that for everyp = (p1, p2, . . . , p|B|) and
every ε > ε0, the unique solution W ∈ H2(�ε\EN ,ε) of the boundary-value problem
(4.9)–(4.10) satisfies

‖W‖H2(�ε\EN ,ε )
≤ C0‖p‖ (4.11)

and
|q j − D jp j | ≤ C0‖p‖e−ε
min , (4.12)

where q j is the Neumann data directed away from �ε\EN ,ε , D j is the degree of the
j-th boundary vertex v j ∈ VB in �ε\EN ,ε , and 
min is the length of the shortest edge
in �\EN .

Proof Since ‖U‖L∞(�ε\EN ,ε ) is small for large enough ε by the bound (2.6)withp given
by (3.4), the boundary-value problem (4.9)–(4.10) can be analyzed with Theorem 2.1
and Lemma 2.3 in [6] for g = 0. The bounds (4.11) and (4.12) follow from the bounds
(2.3) and (2.4) in [6] due to the smallness of ‖U‖L∞(�ε\EN ,ε ). ��

Remark 17 The Neumann data q j in (4.12) is directed in the opposite direction com-
pared to ∂W (v j ) in (4.2). In other words,

∑

e∼v j ,e∈�ε\EN ,ε

∂W (v j ) = −q j = −D jp j + O(‖p‖eε
min). (4.13)

We are now ready to show that no solutions W ∈ H2(�ε) of LαW = 0 satisfy the
last boundary condition in (4.2) with α j being nonnegative.

First, we consider the case when p j = 0 for all v j ∈ VB . Then, the right hand
side of the last boundary conditions in (4.2) vanishes and W satisfies the Neumann-
Kirchhoff (NK) boundary conditions. Moreover, by Lemma 5, the EN ,ε-components
of the solution W are entirely zero, and make no contribution into the last condition
in (4.2). In what follows, the restriction of W to �ε\EN ,ε solves the second-order
differential equation (4.9) subject to the Dirichlet conditions at the boundary vertices.
By Lemma 6 due to the bound (4.11), the only solution on �ε\EN ,ε is zero, hence
W ≡ 0 on �ε .

Therefore, there exists at least one boundary vertex v j ∈ VB such that the corre-
sponding p j �= 0. Up to multiplication by a constant, we may assume that p j = 1.
Using Lemmas 5 and 6 and the expansion (4.13), the last condition in (4.2) for large
enough ε becomes

α j =
∑

e∈E j,ε

α−(e) +
∑

e∈E j,ε

α+(e) − q j < 0, (4.14)

where E j,ε ⊂ EN ,ε is the set of edges in EN ,ε adjacent to the vertex v j ∈ VB . This
contradicts to the assumption that α j ∈ [0,∞). Hence no W ∈ H2

α (�ε) exists such
that LαW = 0 for α ∈ [0,∞)|B|.
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Fig. 4 A flower graph with three loops as in Example 1. Each loop j with j = 1, 2, 3 is parametrized by
a segment [−
 j , 
 j ] of length 2
 j , and the unbounded edge is parametrized by a half-line [0,∞). The
direction of the axis associated with each of the segments is specified by the arrows

Fig. 5 A dumbbell graph as in Example 2. The left loop is parametrized by a segment [−
−, 
−] of
length 2
−, and the right loop is parametrized by a segment [−
+, 
+] of length 2
+. The internal edge
is parametrized by a segment [−
0, 
0] of length 2
0. The direction of the axis associated with each of the
segments is specified by the arrows

5 Examples

We end this paper with three examples of quantum graphs, where the assumptions of
Theorems 1 and 2 can be checked. We also discuss limitations of results of Theorems
1 and 2 to cover all edge-localized states on these graphs.

Example 1 Consider a flower graph consisting of L loops of the lengths {2
 j }L
j=1 and

one half-line connected at a single common vertex, see Fig. 4 for L = 3. Assumption 1
is satisfied because |B| = 1 (Remark 2). Assumption 2 is satisfied because no internal
edges exist. Theorem 1 states existence of the N -pulse edge-localized states for every
1 ≤ N ≤ L and Theorem 2 states that Morse index of this N -pulse state is N . This
coincides with the main results of [17] (Theorems 1, 2, and 3) in the limit ω → −∞
obtained with long analysis of the period function in the case of loops of the same
normalized length.
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Example 2 Consider a dumbbell graph consisting of two loops of lengths 2
− and 2
+
connected by an internal edge of length 2
0 at two vertices, see Fig. 5. Assume that

− ≤ 
+ for convenience. The numerical approximations were performed by using
the Quantum Graph Package [13] for 
− = 
+ = π , 
0 = 2 < 
−, and fixed ω = −4.
Several edge-localized states can be constructed by using Theorem 1 as follows.

• By Theorem 1, assumptions of which are trivially satisfied if N = 1, the 1-pulse
state can be placed at any of the three edges in the limit ω → −∞ in agreement
with the main results of [4] and [6]. By Theorem 2, Morse index of the 1-pulse
state placed at the loop is 1. Morse index for the 1-pulse state placed at the internal
edge is not defined by Theorem 2. By the variational theory in [4], the Morse
index of this 1-pulse state is also 1. It was also proven explicitly in Lemma 4.10
in [21] for the symmetric dumbbell graph with 
− = 
+ that the Morse index of
this 1-pulse state is 1. Figure 6a, b show the 1-pulse states and we have confirmed
that the Morse index of each state is 1.

• By Theorem 1, the 2-pulse state can be placed at the two loops if 
+ < 2
0 + 
−
and 
+ < 3
− from the conditions (1.9) and (1.10) respectively. The constraints
are satisfied if 
− = 
+. By Theorem 2, the Morse index of this 2-pulse state is 2.
Figure 6c shows this 2-pulse state and we have confirmed that the Morse index is
2.

• By Theorem 1, the 2-pulse state can also be placed at one loop and the internal
edge if 
0 < 
− ≤ 
+ due to Assumption 2. The conditions (1.9) and (1.10) of
Assumption 1 are satisfied if 
0 < 
− ≤ 
+. The Morse index of this 2-pulse
state is not defined by Theorem 2. Figure 6d shows this 2-pulse state. Numerical
computations show that the Morse index of this state is 3 > N = 2.

• By Theorem 1, the 3-pulse state can be placed at all three edges if 
0 < 
− ≤ 
+.
TheMorse index of this 3-pulse state is not defined by Theorem 2. Figure 6e shows
this 3-pulse state. Numerical computations show that the Morse index of this state
is 5 > N = 3.

Example 3 Consider a graph � which is given in Fig. 7. It formally consists of three
edges, where e1 = [0, 
1] and e3 = [0, 
3] are pendant edges and e2 = [−
2, 
2] is
the internal edge. However, v2 and v3 have are dummy vertices of degree 2, hence the
same graph is mapped into a single interval [−
1 − 
2, 
2 + 
3] subject to Neumann
boundary conditions at the end points. Assume that 
1 ≤ 
3 for convenience.

All possible solutions of the Neumann boundary-value problem for the stationary
equation −u′′ + u − 2u3 = 0 are given by the integral curves shown on Fig. 8. Due to
the Neumann boundary conditions, the positive solution starts and ends at one of the
two points (p−, 0) and (p+, 0) shown in red. Besides two simplest states localized
at one of the two pendant edges from a half-loop on Fig. 8, we can construct three
additional edge-localized states as follows.

• Let us take a single loop on the integral curve of Fig. 8with the boundary conditions

u(−ε(
1 + 
2)) = u(ε(
2 + 
3)) = p−.

Due to the spatial symmetry, the 1-pulse state concentrates at the middle point
z = 1

2ε(
3 − 
1). Since 
1 ≤ 
3 implies 
1 < 2
2 + 
3, the middle point belongs
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(a) (b)

(d)(c)

(e)

Fig. 6 Five edge-localized states on the dumbbell graph with 
− = 
+ = π , 
0 = 2, and ω = −4

Fig. 7 A segment graph � in Example 3

to e2, hence the edge-localized state in the limit of large ε (when p− → 0)
corresponds to the choice E1 := {e2} for the graph � on Fig. 7. This 1-pulse state
is illustrated on the left panel of Fig. 9. The right panel shows the derivative u′(z)
which satisfies the homogeneous equation −w′′(z)+w(z)−6u(z)2w(z) = 0 and
Dirichlet conditions at the end points of the interval [−ε(
1 + 
2), ε(
2 + 
3)].
Using the Courant’s nodal theorem (see Sect. 5.5 in [27]), since u′(z) has two
nodal domains on the interval, the zero eigenvalue is the second eigenvalue of the
Dirichlet boundary-value problem (denoted asλD

j ) interlacingwith the eigenvalues
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Fig. 8 Phase plane (u, v) of the differential equation −u′′ + u − 2u3 = 0 showing the homoclinic loop for
β = 0 and the integral curve Eβ for β ∈ (− 1

4 , 0)

of the Neumann boundary-value problem (denoted as λN
j ) as follows:

λN
1 < λD

1 ≤ λN
2 < λD

2 = 0 ≤ λN
3 < λD

3 ≤ λN
4 < . . . (5.1)

Here the inequality betweenλN
2 andλD

2 is strict because the even potential−6u(z)2

of the Schrödinger operator ∂2z + 1 − 6u(z)2 is extended periodically on R and
it is a well-known fact that the anti-periodic eigenfunctions for λD

1 and λN
2 can

not exist at the same eigenvalues as the periodic eigenfunctions for λD
2 and λN

3 .
Similarly, the inequality between λN

3 and λD
3 is strict. It follows from (5.1) that

the Morse index of the 1-pulse state is n(L) = 2. This is a counter-example to
conclusion of Theorem 2 with N = 1 which is the reason why the internal edges
are excluded from the set EN in Theorem 2.

• Let us take a single loop on the integral curve of Fig. 8with the boundary conditions

u(−ε(
1 + 
2)) = u(ε(
2 + 
3)) = p+.

In the limit of large ε (when p+ → 1), this 2-pulse state corresponds to the choice
E2 := {e1, e3} for the graph� on Fig. 7. Assumption 1 is satisfied if 
+ < 2
0+
−
and 
+ < 3
−. The 2-pulse state exists for sufficiently large ε by Theorem 1.
This solution is illustrated on the left panel of Fig. 10. The right panel shows the
derivative u′(z) with two nodal domains, so that the ordering (5.1) suggests that
n(L) = 2. This agrees with the count of Theorem 2 with N = 2 since the internal
edge e2 is not in the set EN and the dummy vertices v2 and v3 are not obstruction
to the construction of edge-localized states on the pendant edges.
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Fig. 9 Left: the 1-pulse state on the internal edge e2. Right: its derivative satisfying Dirichlet conditions on
the interval

Fig. 10 Left: the 2-pulse state on the two pendants e1 and e3. Right: its derivative satisfying Dirichlet
conditions on the interval

Fig. 11 Left: the 2-pulse state centered in the middle of the two pendants e1 and e3. Right: its derivative
satisfying Dirichlet conditions on the interval

• Let us take two loops on the integral curve of Fig. 8 with the boundary conditions

u(−ε(
1 + 
2)) = u(ε(
2 + 
3)) = p−,

as shown on Fig. 11. Although p− → 0 as ε → 0, this 2-pulse state does not
correspond to the choice E2 := {e1, e3} in Theorem 1 because the edge-localized
states at the pendants must be centered at the ends under the Neumann conditions.
Consequently, the derivative u′(z) also shown on Fig. 11 has four nodal domains
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suggesting by the Courant’s nodal theorem that n(L) = 4 which would contradict
Theorem 2 with N = 2. However, as we explained, the main results are not
applicable to the 2-soliton state which is not localized at the ends of the pendants.

6 Conclusion

We have proven existence of the multi-pulse edge-localized positive states on a gen-
eral quantum graph in the limit of large mass. The existence results are obtained from
nonlinear equations representing the flux boundary condition at the boundary ver-
tices separating N edges where solitons reside from the rest of the graph. Nonlinear
equations are solved independently of each other under certain sufficient conditions
on the edge lengths of the N edges. We have also computed the Morse index of the
multi-pulse states residing on the looping and internal edges.

The sufficient conditions in the main theorems are definitely not sharp conditions
on the existence of multi-pulse edge-localized states. The states may exist when these
conditions are violated, but the nonlinear equationswould have to be solved all together
with different analyticalmethods. Similarly, one can consider existence of non-positive
edge-localized states, for which solvability of the nonlinear equation may be delicate
even in the limit of large mass.

Our consideration excludes multi-pulse states which are localized at the internal
vertices of the quantum graph or in the middle of the pendant edges. Studies of the
nonlinear equations from the flux boundary conditions in these situations are open for
the future work.

Similarly, Morse index was computed when multi-pulse solutions were not local-
ized at the internal edges of the quantum graph. It is possible that some sharp
inequalities instead of equalities can be obtained in a more general setting of internal
edges. This work is also left for future studies.
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