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Abstract
Travelling modulating pulse solutions consist of a small amplitude pulse-like
envelope moving with a constant speed and modulating a harmonic carrier
wave. Such solutions can be approximated by solitons of an effective nonlinear
Schrödinger equation arising as the envelope equation. We are interested in a
rigorous existence proof of such solutions for a nonlinear wave equation with
spatially periodic coefficients. Such solutions are quasi-periodic in a reference
frame co-moving with the envelope. We use spatial dynamics, invariant man-
ifolds, and near-identity transformations to construct such solutions on large
domains in time and space. Although the spectrum of the linearised equations
in the spatial dynamics formulation contains infinitely many eigenvalues on
the imaginary axis or in the worst case the complete imaginary axis, a small
denominator problem is avoided when the solutions are localised on a finite
spatial domain with small tails in far fields.
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1. Introduction

We consider the semi-linear wave equation

∂2t u(x, t)− ∂2xu(x, t)+ ρ(x)u(x, t) = γr(x)u(x, t)3 , x, t ∈ R, (1)

where x, t,u(x, t) ∈ R, γ =±1, and ρ,r are bounded, 2π-periodic, strictly positive, and even
functions in the set

X0 = {ρ ∈ L∞ (R) : ρ(x) = ρ(x+ 2π) , ρ(−x) = ρ(x) , ρ(x)⩾ ρ0 > 0, ∀x ∈ R} . (2)

The purpose of this paper is to prove the existence of travelling modulating pulse solutions.

Remark 1.1. The semi-linear wave equation (1) can be considered as a phenomenological
model for the description of electromagnetic waves in photonic crystal fibres. Such fibres show
a much larger (structural) dispersion than homogeneous glass fibres. As a consequence they
are much better able to support nonlinear localised structures such as pulses than their homo-
geneous counterpart. Most modern technologies for the transport of information through glass
fibres use these pulses, see [ISK+20]. Sending a light pulse corresponds to sending the digital
information ‘one’ over the zero background. Physically such a pulse consists of a localised
envelope which modulates an underlying electromagnetic carrier wave.

The travellingmodulating pulse solutions will be constructed as bifurcations from the trivial
solution u= 0. Hence we first consider the linear wave equation

∂2t u(x, t)− ∂2xu(x, t)+ ρ(x)u(x, t) = 0, x, t ∈ R.

Since ρ ∈ X0, the linear wave equation can be solved by the family of Bloch modes

u(x, t) = e±iωn(l)teilxfn (l,x) , n ∈ N, l ∈ B,

where B := R\Z and where the pair (ωn(l), fn(l, ·)) satisfies the eigenvalue problem

−(∂x+ il)2 fn (l,x)+ ρ(x) fn (l,x) = ω2
n (l) fn (l,x) , x ∈ R (3)

subject to the boundary conditions

fn (l,x) = fn (l,x+ 2π) and fn (l,x) = fn (l+ 1,x)eix ∀l ∈ R, ∀x ∈ R.

The eigenfunctions fn are L2(0,2π)-normalised according to

ˆ 2π

0
|fn (l,x) |2dx= 1, ∀n ∈ N, ∀l ∈ B.

The curves of eigenvalues l 7→ ωn(l) are ordered such that

0< ω1 (l)⩽ ω2 (l)⩽ · · ·⩽ ωn (l)⩽ ωn+1 (l)⩽ · · · ∀l ∈ B,
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Figure 1. The curves of eigenvalues {±ωn(l)}n∈N plotted as functions of the Blochwave
numbers l ∈ B in a typical situation.

where ωn(l)→∞ for n→∞, see [DLP+11]. The positivity of ω1(l) follows from positivity
of ρ ∈ X0. A prototypical pattern of the curves of eigenvalues is shown on figure 1.

The modulating pulse solutions can be obtained via a weakly nonlinear multiple scaling
ansatz which results in the nonlinear Schrödinger (NLS) equation for the description of slow
temporal and spatial modulations of the envelope. In detail, for fixed n0 ∈ N and l0 ∈ B solu-
tions of the semi-linear wave equation (1) can be approximated by the ansatz

uapp (x, t) = εA
(
ε(x− cgt) ,ε

2t
)
fn0 (l0,x)e

il0xe−iωn0 (l0)t+ c.c., (4)

with complex amplitude A= A(X,T), group velocity cg := ω ′
n0(l0), and 0< ε� 1 being a

small perturbation parameter. At the leading-order approximation, the envelope amplitude A
satisfies the following NLS equation

2i∂TA+ω ′ ′
n0 (l0)∂

2
XA+ γn0 (l0)A|A|2 = 0, (5)

where

γn0 (l0) =
3γ

ωn0 (l0)

ˆ 2π

0
r(x) |fn0 (l0,x) |4dx.

The NLS equation (5) possesses travelling pulse solutions if ω ′ ′
n0 (l0)γn0(l0)> 0 in the form:

A(X,T) = γ1 sech(γ2 (X− c̃T))e

i(2̃cX−c̃2T)
2ω ′ ′

n0
(l0) e−iω̃T (6)
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where c̃ and ω̃ are arbitrary parameters such that ω̃ω ′ ′
n0 (l0)< 0 and the positive constants γ1

and γ2 are uniquely given by

γ1 =

√
2|ω̃|

|γn0 (l0) |
, γ2 =

√
2|ω̃|

|ω ′ ′
n0 (l0) |

. (7)

Without loss of generality, we can set c̃= 0 and−ω̃ = sgn(ω ′ ′
n0 (l0)) = sgn(γn0(l0)), due to the

scaling properties of the NLS equation (5).

Remark 1.2. As an example consider the spatially homogeneous casewith ρ(x) = 1 and r(x) =
1, i.e. the semi-linear wave equation with constant coefficients. Then, we can re-order the
eigenvalues and define

fn (l,x) =
1√
2π

einx, ωn (l) :=
√
1+(n+ l)2, n ∈ Z, l ∈ B, (8)

producing

cg = ω ′
n0 (l0) =

n0 + l0
ωn0 (l0)

, ω ′ ′
n0 (l0) =

1

ωn0 (l0)
3 , γn0 (l0) =

3γ
2πωn0 (l0)

. (9)

The travelling pulse solutions exist for γ= 1 with ω̃ =−1 since ω ′ ′
n0 (l0)> 0.

Remark 1.3. In [BSTU06] an approximation result was established that guarantees that wave-
packet solutions of the semi-linear wave equation (1) with periodic coefficients can be approx-
imated by solutions of the NLS equation (5) on anO(ε−2)-time scale via uapp given by (4). In
[DR20] this approximation was extended to the d-dimensional case.

Existence of standing and moving modulating pulse solutions in homogenous and periodic
media has been considered beyond theO(ε−2)-time scale. Depending on the problem, we have
to distinguish between pulse solutions which decay to zero for |x| →∞ and generalised pulse
solutions which have some small tails for large values of |x|.

Remark 1.4. In the spatially homogeneous case, i.e. if ρ= r= 1, the modulating pulse solu-
tions are time-periodic in a frame co-moving with the envelope. Time-periodic solutions with
finite energy are called breather solutions. However, it cannot be expected that such solutions
with finite energy do exist in general, according to the non-persistence of breathers result for
nonlinear wave equations in homogeneous media [Den93, BMW94, Man21]. Nevertheless,
generalised breather solutions, i.e. modulating pulse solutions with small tails, do exist. Such
solutions were constructed in [GS01] with the help of spatial dynamics, invariant manifold
theory and normal form theory. In general, such solutions can only be constructed on large,
but finite, intervals in R, see [GS05, GS08].

Remark 1.5. In the spatially periodic case standing generalised modulating pulse solutions
of the semi-linear wave equation (1) have been constructed in [LBC+09]. These solutions
are time-periodic, i.e. again breather solutions, but in contrast to the homogeneous case true
spatially localised solutions can be constructed by properly tailoring the periodic coefficients.
In [BCLS11] breather solutions were constructed by spatial dynamics in the phase space of
time-periodic solutions, invariant manifold theory and normal form theory. With the same
approach in [Mai20] such solutions were constructed for a cubic Klein–Gordon equation on
an infinite periodic necklace graph. The existence of large amplitude breather solutions of
the semi-linear wave equation (1) was shown in [HR19, MS21] via a variational approach.
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Figure 2. Eigenvalues of the spatial dynamics formulation, see (23) below, are dense on
the imaginary axis. However, due to the convolution structure w.r.t. the z-variable, see
theorem 1.7, for a certain power of ε only a part of the linear operator has to be taken
into account. For controlling the order O(ε) of the solution only the part A1(ω,c) has
to be considered. The central spectrum of A1(ω,c) is sketched in the left panel. In the
middle panel the central spectrum of A1(ω,c) and A3(ω,c) is sketched. It plays a role
for controlling the order O(ε3). The right panel shows a sketch of the central spectrum
of A1(ω,c), A3(ω,c) and A5(ω,c) which plays a role for controlling the orderO(ε5). In
all cases there is a spectral gap between zero and the rest of the spectrum.

Breather solutions were recently considered in [KR22] for quasi-linear wave equations with
periodic coefficients.

Remark 1.6. To our knowledge travelling modulating pulse solutions have not been con-
structed before for the semi-linear wave equation (1) with spatially periodic coefficients. For
the Gross–Pitaevski equation with a periodic potential such solutions were constructed in
[PS08] by using the coupled-mode approximation and in [Pel11, chapter 5.6] by using the
NLS approximation. The Gross–Pitaevski equation has a phase-rotational symmetry which
is not present in the semi-linear wave equation (1). Another new aspect is the fact that in
the present paper the normal form transformations are infinite-dimensional in contrast to the
existing literature.

In the spatially periodic case travelling modulating solutions of the semi-linear wave
equation (1) in general are quasi-periodic in the frame co-moving with the envelope. Hence
their construction requires the use of three spatial variables rather than two spatial variables
used in the previous works [LBC+09, PS08]. However, although the spectrum of the linear-
ised equations in the spatial dynamics formulation contains infinitely many eigenvalues on
the imaginary axis or in the worst case the complete imaginary axis, a small denominator
problem is avoided by considering the problem on a finite spatial domain and by allowing for
small tails, as illustrated in figure 2.

The following result will be proven in this work. Figure 3 illustrates the construction of a
generalised modulating pulse solution as described in the following theorem.

Theorem 1.7. Let ρ,r ∈ X0 and γ 6= 0. Choose n0 ∈ N and l0 > 0 such that the following con-
ditions are satisfied:

ωn (l0) 6= ωn0 (l0) , ∀n 6= n0, (10)

ω ′
n0 (l0) 6=±1, ω ′ ′

n0 (l0) 6= 0, (11)
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Figure 3. A generalised modulating pulse solution as constructed in theorem 1.7 with
O(ε2N) tails existing for x in an interval of lengthO(ε−(2N+1))with an envelope advan-
cing with group velocity cg = ω ′

n0(l0), modulating a carrier wave advancing with phase
velocity cp = ωn0(l0)/l0, and leaves behind the standing periodic Bloch wave. The
wavelength of the carrier wave and the period of the coefficients ρ, r are of a comparable
order.

and

ω2
n (ml0) 6= m2ω2

n0 (l0) , m ∈ {3,5, . . . ,2N+ 1} , ∀n ∈ N, (12)

for some fixed N ∈ N. If assumption 4.11 below is satisfied, then there are ε0 > 0 and C> 0
such that for all ε ∈ (0,ε0) there exist travelling modulating pulse solutions of the semi-linear
wave equation (1) in the form

u(x, t) = v(ξ,z,x) with ξ = x− cgt, z= l0x−ωt, (13)

where cg = ω ′
n0(l0), ω = ωn0(l0)+ ω̃ε2 with ω̃ =−sgn(ω ′ ′

n0 (l0)) =−sgn(γn0(l0)), and v ∈
C2([−ε−(2N+1),ε−(2N+1)],X ) satisfies

sup
ξ∈[−ε−(2N+1), ε−(2N+1)]

|v(ξ,z,x)− h(ξ,z,x) |⩽ Cε2N, (14)

where X := H2
per(T,L2(T))∩H1

per(T,H1
per(T))∩L2(T,H2

per(T)) with T := R\{2πZ}.
The function h ∈ C2(R,X ) satisfies

lim
|ξ|→∞

h(ξ,z,x) = 0 and sup
ξ,z,x∈R

|h(ξ,z,x)− happ (ξ,z,x)|⩽ Cε2, (15)

with

happ (ξ,z,x) = εγ1 sech(εγ2ξ) fn0 (l0,x)e
iz+ c.c. (16)

The constants γ1,γ2 are defined in (7), and fn0(l0, ·) ∈ H2
per(T) is a solution of (3).

Remark 1.8. Assumption 4.11 is of technical nature and guarantees the existence of infinite-
dimensional invariant manifolds in the construction of the modulating pulse solutions. It is
satisfied, for instance, if eigenvalues of the linearised operators on and near iR \ {0} are semi-
simple. An extended result can be obtained in the case of double eigenvalues, see remark 4.15
below.

6
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Remark 1.9. The function h solves a second-order differential equation that is an O(ε)-
perturbation of the stationary NLS equation. We select h to be a homoclinic orbit with expo-
nential decay to 0 at infinity that is O(ε2)-close to the NLS approximation (16), see (15),
computed at the pulse solution (6) for c̃= 0 and ω̃ =−sgn(ω ′ ′

n0 (l0)) =−sgn(γn0(l0)).

Remark 1.10. If the non-resonance condition (12) is satisfied for all odd m⩾ 3, then N can be
chosen arbitrarily large, but has to be fixed. The result of [GS05] was improved in [GS08] to
exponentially small tails and exponentially long time intervals w.r.t. ε. It is not obvious that the
exponential smallness result can be transferred to the spatially periodic case. We also do not
use the Hamiltonian setup from [GS01] because it is not clear how the Hamiltonian structure
of the semi-linear wave equation (1) can be developed in the spatial dynamics formulation.

The solution v of theorem 1.7 is only defined on a large but finite spatial interval for the
semi-linear wave equation (1). However, due to the finite speed of propagation in the semi-
linear wave equation (1), it is also an approximate solution of the initial-value problem for
a very long time, on a very large, but shrinking, spatial domain. The corresponding result is
given by the following theorem.

Theorem 1.11. Let v be the solution of theorem 1.7 and take an arbitrary function ϕ ∈ C2(R \
[−ε−(2N+1),ε−(2N+1)],X ) such that

vext (ξ,z,x) :=

{
v(ξ,x,z) , (ξ,x,z) ∈

[
−ε−(2N+1),ε−(2N+1)

]
×R×R,

ϕ(ξ,x,z) , (ξ,x,z) ∈
(
R \
[
−ε−(2N+1),ε−(2N+1)

])
×R×R,

satisfies vext ∈ C2(R,X ). Let

u0 (x) := vext (x, ℓ0x,x) and u1 (x) :=−cg∂ξvext (x, ℓ0x,x)−ω∂zvext (x, ℓ0x,x) .

The corresponding solution of the semi-linear wave equation (1) with u(·,0) = u0 and
∂tu(·,0) = u1 satisfies

u(x, t) = v(x− cgt, l0x−ωt,x)

for all (x, t) ∈ [−ε−(2N+1),ε−(2N+1)]× (0,∞) such that |x|+ t< ε−2N+1.

Remark 1.12. By theorem 1.11, the modulated pulse solutions are approximated by happ much
longer than on the O(ε−2)-time scale guaranteed by the approximation theorem given in
[BSTU06]. For instance, on the spatial interval [− 1

2ε
−(2N+1), 12ε

−(2N+1)] the approximation
holds up to time t= 1

2ε
−(2N+1).

We shall describe the strategy of the proof of theorems 1.7 and 1.11. As in [GS01, GS05,
GS08] the construction of the modulating pulse solutions is based on a combination of spa-
tial dynamics, normal form transformations, and invariant manifold theory. Plugging the
ansatz (13) into (1), we obtain an evolutionary system w.r.t. the unbounded space variable
ξ, the spatial dynamics formulation, i.e. we obtain a system of the form

∂ξũ=M(∂z,∂x,x) ũ+ Ñ(∂z,∂x,x, ũ) , (17)

with Mũ linear and N nonlinear in ũ which is a vector containing v and derivatives of v. For
all values of the bifurcation parameter 0< ε� 1 there are infinitely many eigenvalues of

7
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M(∂z,∂x,x) on the imaginary axis, see figure 2, and hence the centre manifold reduction is
of no use. However, the system is of the form

∂ξũ0 =M0ũ0 + Ñ0 (ũ0, ũr) , (18)

∂ξũr =Mrũr+ Ñr (ũ0, ũr)+Hr (ũ0) , (19)

where ũ0 is a vector in C2 corresponding to the eigenvalues of M which are close to zero and
where ũr corresponds to the infinite-dimensional remainder, i.e. to all the eigenvalues of M
which are bounded away from zero for small |ε|. For ε= 0 all eigenvalues of M0 are zero.
The nonlinearity in the ũr-equation is split into two parts such that Ñr(ũ0,0) = 0. By finitely
many normal form transformations in the ũr-equation we can achieve that the remainder term
Hr in (19) has the property Hr(ũ0) =O(|ũ0|2N+2) where N is an arbitrary, but fixed number, if
certain non-resonance conditions are satisfied, see remark 3.6. Concerning orders of ε, we have
ũ0 =O(ε) and ũr =O(ε2N+2). Hence, the finite-dimensional subspace {ũr = 0} is approxim-
ately invariant, and setting the highest order-in-ε term Hr(ũ0) =O(ε2N+2) to 0, we obtain the
reduced system

∂ξũ0 =M0ũ0 + Ñ0 (ũ0,0) .

For the reduced system, a homoclinic solution inside the subspace {ũr = 0} can be found,
which bifurcates with respect to ε from the trivial solution. The persistence of this solution for
the system (18) and (19) cannot be expected, since the finite-dimensional subspace {ũr = 0} is
not truly invariant for (18) and (19), and therefore the necessary intersection of the stable and
unstable manifolds is unlikely to happen in an infinite-dimensional phase space. However, the
approximate homoclinic orbit can be used to prove that the centre-stablemanifold intersects the
fixed space of reversibility transversally which in the end allows us to construct a modulating
pulse solution with the properties stated in theorem 1.7.

The proof of theorem 1.11 is based on the energy method in the backward light cone asso-
ciated to the point (x0, t0). The point is arbitrarily chosen in the upper half-plane inside applic-
ability of the solution v obtained in theorem 1.7, that is, for ξ ∈ [−ε−(2N+1),ε−(2N+1)].

The paper is organized as follows. In section 2 we introduce the spatial dynamics formu-
lation by using Fourier series and Bloch modes. We develop near-identity transformations in
section 3 for reducing the size of the tails and increasing the size of the spatial domain. A local
centre-stable manifold in the spatial dynamics problem is constructed in section 4. The proof
of theorem 1.7 is completed in section 5 by establishing an intersection of the centre-stable
manifold with the fixed space of reversibility. Theorem 1.11 is proven in section 6.

2. Spatial dynamics formulation

Here we introduce the spatial dynamics formulation by using Fourier series and Bloch modes.
We fix l0 ∈ B and define

u(x, t) = v(ξ,z,x) with ξ = x− ct, z= l0x−ωt, (20)

where ω and c are to be determined and v(ξ, ·, ·) satisfies

v(ξ,z+ 2π,x) = v(ξ,z,x+ 2π) = v(ξ,z,x) , ∀(ξ,z,x) ∈ R3.

8
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Inserting (20) into the semi-linear wave equation (1) and using the chain rule, we obtain a new
equation for v:[(

c2 − 1
)
∂2ξ + 2(cω− l0)∂ξ∂z− 2∂ξ∂x+

(
ω2 − l20

)
∂2z − 2l0∂z∂x− ∂2x

]
v(ξ,z,x)

+ ρ(x)v(ξ,z,x) = γr(x)v(ξ,z,x)3, ξ ∈ R, x,z ∈ T. (21)

In order to consider this equation as an evolutionary system with respect to ξ ∈ R, we use
Fourier series in z

v(ξ,z,x) =
∑
m∈Z

ṽm (ξ,x)e
imz, ṽm (ξ,x) =

1
2π

ˆ 2π

0
v(ξ,z,x)e−imzdz. (22)

Equation (21) is converted through the Fourier expansion (22) into the spatial dynamics system
for every c 6=±1:

∂ξ

(
ṽm
w̃m

)
= Am (ω,c)

(
ṽm
w̃m

)
− γ

(
1− c2

)−1
(

0
r(x)(ṽ ∗ ṽ ∗ ṽ)m

)
, (23)

for ξ ∈ R, m ∈ Z, x ∈ T, where w̃m := ∂ξ ṽm, Am(ω,c) is defined by

Am (ω,c) =

(
0 1(

1− c2
)−1

[
−(∂x+ iml0)

2 + ρ(x)−m2ω2
]

2
(
1− c2

)−1
[imcω− (∂x+ iml0)]

)

and the double convolution sum is given by

(ṽ ∗ ṽ ∗ ṽ)m :=
∑

m1,m2∈Z
ṽm1 ṽm2 ṽm−m1−m2 .

The spatial dynamics system (23) can also be written in the scalar form as[(
c2 − 1

)
∂2ξ + 2imcω∂ξ − 2(∂x+ iml0)∂ξ −m2ω2 − (∂x+ iml0)

2
+ ρ(x)

]
ṽm

= γr(x)(ṽ ∗ ṽ ∗ ṽ)m . (24)

Remark 2.1. If ρ ∈ L∞per(T), then the domain D̃ and the range R̃ of the linear operator Am(ω,c) :
D̃⊂ R̃→ R̃ are given by

D̃= H2
per (T)×H1

per (T) , R̃= H1
per (T)×L2 (T) . (25)

Solutions of the dynamical system (23) are then sought such that at each ξ ∈ R they lie in the
phase space

D := {(ṽm, w̃m)m∈Z ∈ (ℓ2,2(Z,L2(T))∩ ℓ2,1(Z,H1
per(T))∩ ℓ2,0(Z,H2

per(T)))

× (ℓ2,1(Z,L2(T))∩ ℓ2,0(Z,H1
per(T)))}, (26)

with the range in

R :=
{(̃
fm, g̃m

)
m∈Z ∈

(
ℓ2,1
(
Z,L2 (T)

)
∩ ℓ2,0

(
Z,H1

per (T)
))

× ℓ2,0
(
Z,L2 (T)

)}
, (27)

9
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where ℓ2,k(Z,Hs), with k ∈ N, is a weighted ℓ2-space equipped with the norm

‖(ṽm)m∈Z ‖ℓ2,k(Z,Hs) =

(∑
m∈Z

‖ṽm‖2Hs

(
1+m2

)k)1/2

.

The solution map for the initial-value problem associated to the dynamical system (23) is then
defined as [0, ξ0] 3 ξ 7→ (ṽm, w̃m)m∈Z ∈ C1([0, ξ0],D). The phase spaceD in (26) is equivalent
to the function space X in theorem 1.7 under the Fourier series (22).

Remark 2.2. Real solutions v= v(ξ,z,x) after the Fourier expansion (22) enjoy the symmetry:

ṽ−m (ξ,x) = ṽm (ξ,x) , ∀m ∈ Z, ∀(ξ,x) ∈ R2. (28)

The cubic nonlinearity maps the space of Fourier series where only the odd Fourier modes
are non-zero to the same space. Hence, we can look for solutions of the spatial dynamics
system (23) in the subspace

Dodd :=
{
(ṽm, w̃m)m∈Z ∈ D : ṽ2m = w̃2m = 0, ṽ−m = ṽm, w̃−m = w̃m, ∀m ∈ Z

}
.

Hence the components (ṽm, w̃m) for−m ∈ Nodd can be obtained from the components (ṽm, w̃m)
for m ∈ Nodd by using the symmetry (28).

2.1. Linearised problem

Truly localised modulating pulse solutions satisfy

lim
ξ→±∞

v(ξ,z,x) = 0,

i.e. such solutions are homoclinic to the origin with respect to the evolutionary variable ξ.
If these solutions exist, they lie in the intersection of the stable and unstable manifold of the
origin. However, the modulating pulse solutions are not truly localised because of the existence
of the infinite-dimensional centre manifold for the spatial dynamics system (23).

The following lemma characterises zero eigenvalues λ of the operators Am(ω0,cg), where
ω0 = ωn0(l0) and cg = ω ′

n0(l0).

Lemma 2.3. Fix N ∈ N. Under the non-degeneracy and the non-resonance assumptions (10),
(11), and (12) the operator Am(ω0,cg) with m ∈ {1,3, . . . ,2N+ 1} has a zero eigenvalue if and
only if m= 1. The zero eigenvalue is algebraically double and geometrically simple.

Proof. Let m ∈ Nodd. The eigenvalue problem Am(ω0,cg)( VW) = λ( VW) can be reformulated in
the scalar form:[

−(∂x+ iml0 +λ)
2
+ ρ(x)

]
V(x) = (mω0 − icgλ)

2V(x) . (29)

Eigenvalues λ are obtained by setting V(x) = fn(ml0 − iλ,x) and using the spectral problem (3)
for l ∈ C, where both fn(l,x) and ωn(l) are analytically continued in l ∈ C. The eigenvalues are
the roots of the nonlinear equations

ω2
n (ml0 − iλ) = (mω0 − icgλ)

2
, n ∈ N. (30)

10
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Zero eigenvalues λ= 0 exist if and only if there exist solutions of the nonlinear equations
ω2
n(ml0) = m2ω2

0 . Since ω0 = ωn0(l0), ω
2
n(ml0) = m2ω2

0 is satisfied for m= 1 and n= n0. Due
to the non-degeneracy assumption (10), ω2

n(l0) = ω2
0 does not hold for any other n. This shows

the geometric simplicity ofλ= 0 form= 1. It follows from (10) and (12) that no other solutions
of ω2

n(ml0) = m2ω2
0 exist for m ∈ {1,3, . . . ,2N+ 1}.

It remains to prove that the zero eigenvalue for m= 1 is algebraically double. To do so, we
again employ the equivalence of the eigenvalue problem (3) and (29) for λ= 0, l= l0, n= n0,
andm= 1. For n= n0, and l= l0, this equation and its two derivatives with respect to l generate
the following relations:[

−(∂x+ il0)
2
+ ρ(x)−ω2

0

]
fn0 (l0,x) = 0, (31)

[
−(∂x+ il0)

2
+ ρ(x)−ω2

0

]
∂lfn0 (l0,x) = 2ω0cgfn0 (l0,x)+ 2i(∂x+ il0) fn0 (l0,x) , (32)

[
−(∂x+ il0)

2
+ ρ(x)−ω2

0

]
∂2l fn0 (l0,x) = 4ω0cg∂lfn0 (l0,x)+ 4i(∂x+ il0)∂lfn0 (l0,x)

+ 2
(
ω0ω

′ ′
n0 (l0)+ c2g − 1

)
fn0 (l0,x) . (33)

The non-degeneracy condition (11) implies that c2g 6= 1. Computing the Jordan chain for
A1(ω0,cg) at the zero eigenvalue with the help of (31) and (32) yields

A1 (ω0,cg)F0 = 0, F0 (x) :=

(
fn0 (l0,x)

0

)
, (34)

and

A1 (ω0,cg)F1 = F0, F1 (x) :=

(
−i∂lfn0 (l0,x)
fn0 (l0,x)

)
. (35)

We use fn0 and ∂lfn0 to denote fn0(l0, ·) and ∂lfn0(l0, ·) respectively. It follows from (32) and (33)
that

ω0cg − l0 + 〈 fn0 , if ′n0〉= 0, (36)

ω0ω
′ ′
n0 (l0)+ c2g − 1+ 2(ω0cg − l0)〈 fn0 ,∂lfn0〉+ 2〈 fn0 , i∂lf ′n0〉= 0, (37)

where f ′n0 denotes ∂xfn(l0, ·) and where we have used the normalisation ‖fn0(l0, ·)‖L2(0,2π) = 1.

Remark 2.4. Let us define

〈〈 f,g〉〉 := 〈 f1,g1〉+ 〈 f2,g2〉,

where 〈ϕ,ψ 〉=
´ 2π
0 ϕ̄ψdx is the standard inner product in L2(0,2π). With some abuse of nota-

tion in the following we write 〈 f,g〉 for 〈〈 f,g〉〉.

11
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Using complex conjugation, transposition, and integration by parts, the adjoint operator to
A1(ω,c) in L2(0,2π) is computed as follows:

A∗
1 (ω,c) =

(
0
(
1− c2

)−1
[
−(∂x+ il0)

2
+ ρ(x)−ω2

]
1 −2

(
1− c2

)−1
[icω− (∂x+ il0)]

)
, (38)

for which we obtain

A∗
1 (ω0,cg)G0 = 0, G0 (x) :=

1
ω0ω ′ ′

n0 (l0)

(
2 [icgω0 − (∂x+ il0)] fn0 (l0,x)(

1− c2g
)
fn0 (l0,x)

)
, (39)

where the normalisation has been chosen such that 〈G0,F1〉= 1 due to the relation (37). Note
also that 〈G0,F0〉= 0 due to the relation (36).

For the generalised eigenvector of A∗
1(ω0,cg) we have

A∗
1 (ω0,cg)G1 = G0, (40)

with

G1 :=
1− c2g

ω0ω ′ ′
n0 (l0)

(
fn0 + 2i

(
1− c2g

)−1
[icgω0 − (∂x+ il0)]∂lfn0
i∂lfn0

)
+ νG0,

=
1− c2g

ω0ω ′ ′
n0 (l0)

(
fn0 + 2i

(
1− c2g

)−1
[icgω0 − (∂x+ il0)] (∂lfn0 − iνfn0)
i(∂lfn0 − iνfn0)

)
,

where ν is chosen so that 〈G1,F1〉= 0. A direct calculation produces

ν =
2i

ω0ω ′ ′
n0 (l0)

((
1− c2g

)
Re 〈 fn0 ,∂lfn0〉− (cgω0 − l0)‖∂lfn0‖2 − Im〈∂x∂lfn0 ,∂lfn0〉

)
.

As A1(ω0,c0) has a compact resolvent, a standard argument using Fredholm’s alternative
guarantees that there exists a 2π-periodic solution of the inhomogeneous equation

A1 (ω0,cg)

(
ṽ
w̃

)
= F1

if and only if F1 is orthogonal to Ker(A∗
1), i.e. to G0. However, since 〈G0,F1〉= 1, the Jordan

chain for the zero eigenvalue terminates at the first generalised eigenvector (35), i.e. λ= 0 is
algebraically double.

Remark 2.5. By using the same argument, we verify that also the adjoint operator A∗
1(ω0,cg)

has a double zero eigenvalue. This follows from the existence of solutions in (39) and (40) and
non-orthogonality of the generalised eigenvector G1 of A∗

1(ω0,cg) to ker(A1), i.e. to F0 since
〈G1,F0〉= 〈G1,A1F1〉= 〈A∗

1G1,F1〉= 〈G0,F1〉= 1.

In the low-contrast case, i.e. when the periodic coefficient ρ is near ρ≡ 1, the non-
degeneracy conditions (10), (11) and the non-resonance condition (12) are easy to verify. If
ρ(x) = 1, the eigenvalues ωn(l) are known explicitly, see (8). The following lemma specifies
the sufficient conditions under which the non-resonance assumption (12) is satisfied.

12
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Lemma 2.6. Let ρ(x) = 1+ δρ1(x)with ρ1(x) = ρ1(x+ 2π) and δ being a constant parameter.
There exists δ0 > 0 such that for every δ ∈ (−δ0, δ0) the non-degeneracy assumptions (10)
and (11) are satisfied. The non-resonance assumption (12) is satisfied if

n0 + l0 6=
m2 − 1−κ2

2mκ
, where (m,κ) ∈ {3,5, . . . ,2N+ 1}×Z. (41)

Proof. The non-degeneracy assumptions (10) and (11) are satisfied because equation (9) for
δ= 0 implies cg ∈ (−1,1) and ω ′ ′

n0 (l0) 6= 0. As ωn0(l0) and ω
′ ′
n0 (l0) depend continuously on δ,

we get that (10) and (11) hold for |δ| small enough.
For the non-resonance assumption (12) we set n= mn0 +κ with m ∈ {3,5, . . . ,2N+ 1},

κ ∈ Z and note that at δ= 0 we have

ω2
n (ml0) = 1+(mn0 +κ+ml0)

2
,

m2ω2
n0 (l0) = m2

(
1+(n0 + l0)

2
)
,

see (8). Condition (12) at δ= 0 is thus equivalent to (41). As eigenvalues depend continuously
on δ, condition (12) is satisfied for |δ| small enough if it is satisfied for δ= 0.

Remark 2.7. The non-resonance condition (41) is satisfied for all m ∈ N if l0 ∈ R \Q.

2.2. Formal reduction

Let us now consider a formal restriction of system (24) to the subspace

S :=
{
(ṽm, w̃m)m∈Z ∈ Dodd : ṽm = w̃m = 0, m ∈ Zodd\{−1,1}

}
leading to the NLS approximation (16). As S is not an invariant subspace of system (24), this
reduction is only formal and a justification analysis has to be performed, which we do in the
remainder of this paper.

The nonlinear (double-convolution) term on S is given by

(ṽ ∗ ṽ ∗ ṽ)1 = 3|ṽ1|2ṽ1.

The scalar equation (24) on S reduces to[(
c2 − 1

)
∂2ξ + 2icω∂ξ − 2∂ξ (∂x+ il0)−ω2 − (∂x+ il0)

2
+ ρ(x)

]
ṽ1 (ξ,x)

= 3γr(x) |ṽ1 (ξ,x) |2ṽ1 (ξ,x)

for m= 1 and to the complex conjugate equation for m=−1. Using the Jordan block for the
double zero eigenvalue in lemma 2.3, we write the two-mode decomposition:{

ṽ1 (ξ,x) = ψ1 (ξ) fn0 (l0,x)− iϕ1 (ξ)∂lfn0 (l0,x) ,
w̃1 (ξ,x) = ϕ1 (ξ) fn0 (l0,x) ,

(42)

where ψ1(ξ) = εA(X) with X= εξ and real A(X). It follows from ∂ξ ṽ1(ξ,x) = w̃1(ξ,x) that
ϕ1(ξ) = ε2A ′(X), where the O(ε3) terms are neglected. Using ω = ω0 + ω̃ε2 and c= cg with
ω0 = ωn0(l0) and cg = ω ′

n0(l0), we obtain the following equation at order O(ε3):(
c2g − 1

)
A ′ ′fn0 + 2cgω0A

′ ′∂lfn0 + 2iA ′ ′∂l f
′
n0 − 2ω̃ω0Afn0 = 3γrA3|fn0 |2fn0 , (43)

13
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where equations (31) and (32) have been used and fn0 again denotes fn0(l0, ·). Projecting (43)
onto span{fn0} and using (37) yields the stationary NLS equation

−ω0ω
′ ′
n0 (l0)A

′ ′ − 2ω0ω̃A= ω0γn0 (l0)A
3, (44)

which recovers the stationary version of the NLS equation (5) for A(X,T) replaced by
A(X)e−iω̃T with real A(X). The modulated pulse solution corresponds to the soliton solution of
the stationary NLS equation (44),

A(X) = γ1sech(γ2X) , (45)

where γ1 and γ2 are given by (7). Note that among the positive and decaying at infinity solu-
tions of the stationary NLS equation (44) the pulse solution (45) is unique up to a constant
shift in X.

Remark 2.8. Unfolding the transformations (20), (22), and (42) with ψ1(ξ) = εA(εξ) gives an
approximation for happ(ξ,z,x) on S, see (16).

2.3. Reversibility

Because ρ and r are even functions in X0 given by (2), the semi-linear wave equation (1),
being second order in space, is invariant under the parity transformation: u(x, t) 7→ u(−x, t).
Similarly, since it is also second-order in time, it is invariant under the reversibility transform-
ation: u(x, t) 7→ u(x,−t).

The two symmetries are inherited by the scalar equations (21) and (24): if v(ξ,z,x) is a
solution of (21), so is v(−ξ,−z,−x) and if (ṽm(ξ,x))m is a solution of (24), so is (ṽm(−ξ,−x))m.
Since the symmetry is nonlocal in x, one can use the Fourier series in x given by

ṽm (ξ,x) =
∑
k∈Z

v̂m,k (ξ)e
ikx, v̂m,k (ξ) =

1
2π

ˆ π

−π

ṽm (ξ,x)e
−ikxdx, (46)

and similarly for w̃m to rewrite the symmetry in the form:

If {v̂m,k (ξ) , ŵm,k (ξ)}(m,k)∈Nodd×Z is a solution of (23) with (46),

so is
{
v̂m,k (−ξ) ,−ŵm,k (−ξ)

}
(m,k)∈Nodd×Z .

(47)

The implication of the symmetry (28) and (47) is that if a solution {v̂m,k(ξ), ŵm,k(ξ)}(m,k)∈Nodd×Z
constructed for ξ ⩾ 0 satisfies the reversibility constraint:

Im v̂m,k (0) = 0, Re ŵm,k (0) = 0, ∀(m,k) ∈ Nodd ×Z, (48)

then the solution {v̂m,k(ξ), ŵm,k(ξ)}(m,k)∈Nodd×Z can be uniquely continued for ξ ⩽ 0 using the
extension

v̂m,k (ξ) = v̂m,k (−ξ) , ŵm,k (ξ) =−ŵm,k (−ξ) , ∀ξ ∈ R−. (49)

This yields a symmetric solution of the spatial dynamics system (23) for every ξ ∈ R after
being reformulated with the Fourier expansion (46).

14
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Remark 2.9. The pulse solution (45) gives a leading order approximation (42) on S ⊂ Dodd

which satisfies the reversibility constraint (48). Indeed, since A ′(0) = 0, we have w̃1(0,x) = 0
which implies ŵ1,k(0) = 0. On the other hand, we have ṽ1(0,x) = εA(0)fn0(l0,x)with real A(0)
and generally complex fn0(l0,x). However, the Bloch mode fn0(l0,x) satisfies the symmetry

fn0 (l0,−x) = fn0 (l0,x) ,

thanks to the non-degeneracy assumption (10): if fn0(l0,x) is a solution of (3) so is fn0(l0,−x)
and the eigenvalue ω2

0 = ω2
n0(l0), is simple in the spectral problem (3). Consequently, all

Fourier coefficients of fn0(l0,x) are real which implies Im v̂1,k(0) = 0.

2.4. SO(2)-symmetry

The starting equation (21) for v= v(ξ,z,x) is translational invariant with respect to z 7→ z+
z0, with z0 ∈ R arbitrary. This corresponds to an invariance under the mapping (ṽm, w̃m) 7→
(ṽm, w̃m)eimz0 for all m ∈ Zodd in the Fourier representation (22). This symmetry allows us to
restrict A for ψ1(ξ) = εA(X) and ϕ1(ξ) = ε2A ′(X) in (42) to real-valued functions.

3. Near-identity transformations

By lemma 2.3, the Fredholm operator A1(ω0,cg) has the double zero eigenvalue, whereas
Am(ω0,cg) for 3⩽ m⩽ 2N+ 1 admit no zero eigenvalues. In what follows, we decompose the
solution in X into a two-dimensional part corresponding to the double zero eigenvalue and the
infinite-dimensional remainder term.

3.1. Separation of a two-dimensional problem

Like in the proof of lemma 2.3, we denote the eigenvector and the generalised eigenvector of
A1(ω0,cg) for the double zero eigenvalue by F0 and F1, see (34) and (35), and the eigenvector
and the generalised eigenvector of A∗

1(ω0,cg) for the double zero eigenvalue by G0 and G1,
see (39) and (40).

We defineΠ as the orthogonal projection onto the orthogonal complement of the generalised
eigenspace span(G0,G1), i.e.

Π : L2 (0,2π)×L2 (0,2π)→ span(G0,G1)
⊥
,

ΠΨ := Ψ−〈G0,Ψ〉F1 −〈G1,Ψ〉F0.

The orthogonality follows from our normalisation, which was chosen in the proof of lemma
2.3 so that 〈G0,F0〉= 〈G1,F1〉= 0 and 〈G0,F1〉= 〈G1,F0〉= 1. Also note that ker Π =
span(F0,F1). Moreover, we have

A1 (ω0,cg)ΠΨ = A1 (ω0,cg)Ψ −〈G0,Ψ〉A1 (ω0,cg)F1 −〈G1,Ψ〉A1 (ω0,cg)F0

= A1 (ω0,cg)Ψ −〈G0,Ψ〉F0

= A1 (ω0,cg)Ψ −〈G0,A1 (ω0,cg)Ψ〉F1 −〈G1,A1 (ω0,cg)Ψ〉F0

=ΠA1 (ω0,cg)Ψ.

15
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Compared to the two-mode decomposition (42), we write(
ṽ1 (ξ,x)
w̃1 (ξ,x)

)
= εq0 (ξ)F0 (x)+ εq1 (ξ)F1 (x)+ εS1 (ξ,x) ,

where q0,q1 : R→ C are unknown coefficients and where S1(ξ, ·) ∈ D̃ for ξ ∈ R satisfies
ΠS1 = S1, i.e.

〈G0,S1 (ξ, ·)〉= 〈G1,S1 (ξ, ·)〉= 0, ∀ξ ∈ R.

Similarly, we write(
ṽm (ξ,x)
w̃m (ξ,x)

)
= εYm (ξ,x) , m ∈ Nodd\{1}

and define Y1 := q0F0 + q1F1 + S1. Furthermore, we represent Ym = (Vm,Wm)
T, i.e. ṽm = εVm,

w̃m = εWm, and use the notation V := (Vm)m∈Nodd and V⩾3 := (Vm)m∈Nodd\{1}.
For ω = ω0 + ε2ω̃ and c= cg, we write

Am (ω,cg) = Am (ω0,cg)+ ε2ω̃
(
1− c2g

)−1
Bm, Bm =

(
0 0

−m2 (ω+ω0) 2imcg

)
.

Because of (
〈G0,F0〉 〈G0,F1〉
〈G1,F0〉 〈G1,F1〉

)
=

(
0 1
1 0

)
,

the spatial dynamics system (23) with ω = ω0 + ω̃ε2 and c= cg is now rewritten in the
separated form:(

∂ξ q1
∂ξ q0 − q1

)
= ε2H0 (q0,q1,S1,V⩾3) , (50a)

∂ξ S1 =ΠA1 (ω0,cg)S1 + ε2ω̃
(
1− c2g

)−1
ΠB1Y1 + ε2ΠH1 (q0,q1,S1,V⩾3) , (50b)

and for m ∈ Nodd\{1},

∂ξ Ym = Am (ω0,cg)Ym+ ε2ω̃
(
1− c2g

)−1
BmYm+ ε2Hm (q0,q1,S1,V⩾3) , (50c)

where the correction terms H0 and (Hm)m∈Nodd are given by

H0 =
ω̃

ω0ω
′ ′
n0 (l0)

(
−(ω+ω0)q0 + i((ω+ω0)〈 fn0 ,∂lfn0〉+ 2cg)q1

〈∂lfn0 − iνfn0 , fn0〉(i(ω+ω0)q0 + 2cgq1)+ (ω+ω0)〈∂lfn0 − iνfn0 ,∂lfn0〉q1

)
+

1
ω0ω

′ ′
n0 (l0)

(
〈 fn0 , ω̃ (B1S1)2 − γr(V ∗V ∗V)1〉

−i〈∂lfn0 − iνfn0 , ω̃ (B1S1)2 − γr(V ∗V ∗V)1〉

)
,

and

Hm =−γ
(
1− c2g

)−1
(

0
r(V ∗V ∗V)m

)
, m ∈ Nodd.
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Remark 3.1. System (50) does not have an invariant reduction at S1 = 0 and V⩾3 = 0 because

(V ∗V ∗V)1 |S1=0,V⩾3=0 = 3|q0fn0 − iq1∂lfn0 |2 (q0fn0 − iq1∂lfn0) ,

(V ∗V ∗V)3 |S1=0,V⩾3=0 = (q0fn0 − iq1∂lfn0)
3
,

which contributes to ΠH1 and H3 (as well as to H0).

3.2. Resolvent operators for the linear system

In order to derive bounds (14) and (15), we need to perform near-identity transformations,
which transform systems (50b) and (50c) to equivalent versions but with residual terms of the
order O(ε2(N+1)). To be able to do so, we will ensure that the operators ΠA1(ω0,cg)Π and
Am(ω0,cg), 3⩽ m⩽ 2N+ 1 are invertible with a bounded inverse.

By lemma 2.3, these operators do not have zero eigenvalues but this is generally not suf-
ficient since eigenvalues of these infinite-dimensional operators may accumulate near zero.
However, the operators Am(ω0,cg) have the special structure

Am (ω0,cg) =

(
0 1
Lm Mm

)
,

Lm =
(
1− c2g

)−1
[
−(∂x+ iml0)

2
+ ρ(x)−m2ω2

0

]
,

Mm = 2
(
1− c2g

)−1
[imcgω0 − (∂x+ iml0)] ,

(51)

which we explore to prove invertibility of these operators under the non-degeneracy and non-
resonance conditions. The following lemma gives the result.

Lemma 3.2. If the conditions (10)–(12) are satisfied, then there exists a C0 > 0 such that

‖(ΠA1 (ω0,cg)Π)
−1 ‖R̃→D̃+

2N+1∑
m=3

‖Am (ω0,cg)
−1 ‖R̃→D̃ ⩽ C0, (52)

where D̃ and R̃ are defined in (25).

Proof. Under the non-degeneracy condition (11) which yields cg 6=±1, the entries of
Am(ω,cg) are all non-singular. To ensure the invertibility of Am(ω0,cg) with m ∈ Nodd\{1},
we consider the resolvent equation

Am (ω0,cg)

(
v
w

)
=

(
f
g

)
,

for a given ( f,g) ∈ R̃. The solution (v,w) ∈ D̃ is given by w= f and v obtained from the scalar
Schrödinger equation

Lmv= g−Mmf.

Under the non-resonance conditions (12), 0 is in the spectral gap of Lm making the lin-
ear operator Lm : H2

per 7→ L2 is invertible with a bounded inverse from L2 to H2
per. Hence

v= L−1
m (g−Mmf) and Am(ω0,cg) is invertible with a bounded inverse from R̃ to D̃.
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Figure 4. Purely imaginary eigenvalues λ= i(l−ml0), l ∈ R, as roots of the nonlinear
equation (30) can be obtained graphically as intersections of the curves l 7→ ωn(l) and
l 7→ mω0 + cg(l−ml0) for n ∈ N and l ∈ B. For ρ≡ 1 we have ωn(l) =

√
1+(n+ l)2

(not ordered by magnitude) and recall that ωn is 1-periodic. Due to the symmetry about
the l-axis we plot only the upper part. We choose l0 = 0.35 and ω0 = ω1(l0)≈ 1.06.

The operator A1(ω0,cg) is not invertible due to the double zero eigenvalue in lemma 2.3.
However, it is a Fredholm operator of index zero and hence by the closed range theorem there
exists a solution of the inhomogeneous equation

A1 (ω0,cg)

(
v
w

)
=Π

(
f
g

)
,

for every ( f,g) ∈ R̃. The solution is not uniquely determined since span(F0,F1) can be added
to the solution (v,w) ∈ D̃, however, the restriction to the subset defined by the condition

Π

(
v
w

)
=

(
v
w

)
removes projections to span(F0,F1). Consequently, the operator (ΠA1(ω0,cg)Π) is invertible
with a bounded inverse from R̃ to D̃.

In the limit δ→ 0 of lemma 2.6 we can calculate the eigenvalues λ ofAm(ω0,cg) graphically,
see figure 4, and explicitly. The following lemma summarises the key properties of eigenvalues
which are needed for assumption 4.11 in theorem 1.7.

Lemma 3.3. Let ρ≡ 1. For every fixed m ∈ Nodd, the operator Am(ω0,cg) has purely imagin-
ary eigenvalues, Jordan blocks of which have length at most two, and complex semi-simple
eigenvalues with nonzero real parts bounded away from zero. Moreover, if l0 ∈ R\Q, then all
nonzero, purely imaginary eigenvalues are semi-simple.

Proof. Eigenvalues of Am(ω0,cg) are found as solutions of the nonlinear equation (30). For
ρ≡ 1 we use Fourier series (46) and write ω2

n(l) = 1+(n+ l)2 with n= k ∈ Z. After simple
manipulations, eigenvalues λ are found from(

ω−1
0 λ+ iω0 (k−mn0)

)2
= 1+ k2 + 2l0mk−m2

(
ω2
0 − l20

)
−ω2

0 (k−mn0)
2
, k ∈ Z,
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where m ∈ Nodd, n0 ∈ N, and l0 ∈ B are fixed and where ω0 =
√
1+(n0 + l0)2. Setting κ :=

k−mn0, we get(
ω−1
0 λ+ iω0κ

)2
= 1− (m−κ(n0 + l0))

2
.

Eigenvalues λ are found explicitly as

λ=−iκω2
0 ± iω0

√
(m−κ(n0 + l0))

2 − 1.

For each k ∈ Z, the value of κ ∈ Z is fixed. Eigenvalues are double if

(m−κ(n0 + l0))
2 − 1= 0

for some m ∈ Nodd and κ ∈ Z, in which case the Jordan blocks have length two. If l0 ∈ R\Q
and κ 6= 0, then (m−κ(n0 + l0))2 − 1 6= 0 and the eigenvalues are semi-simple, in which case
there are no Jordan blocks.

If κ= 0, then λ=±iω0

√
m2 − 1 which includes a double zero eigenvalue for m= 1 and

pairs of semi-simple purely imaginary eigenvalues. If κ 6= 0, then complex eigenvalues off
the imaginary axis arise for each (m,κ) ∈ Nodd ×Z with |m−κ(n0 + l0)|< 1; the two com-
plex eigenvalues appear in pairs symmetrically about iR. Therefore, complex eigenvalues with
nonzero real parts are semi-simple.Moreover, Im(λ) =−κω2

0 and hence |Im(λ)|⩾ ω2
0 for each

complex eigenvalue.

Remark 3.4. Conditions (41) ensure that√
(m−κ(n0 + l0))

2 − 1 6= κω0, 1⩽ m⩽ 2N+ 1, κ ∈ N.

As a result, the purely imaginary non-zero eigenvalues of lemma 3.3 are bounded away from
zero by

Dm := |ω0| inf
κ∈N

|
√
(m−κ(n0 + l0))

2 − 1−κω0|> 0, 1⩽ m⩽ 2N+ 1.

The inequality Dm > 0 follows from the fact that∣∣∣∣√(m−κ(n0 + l0))
2 − 1−κω0

∣∣∣∣∼ κ

(√
1+(n0 + l0)

2 − n0 − l0

)
as κ→∞, where ω0 =

√
1+(n0 + l0)2 has been used. We do not need invertibility of

Am(ω0,cg) asm→∞ since we only use the near-identity transformations for 1⩽ m⩽ 2N+ 1.
Therefore, we do not need to investigate whether Dm → 0 as m→∞.

In the next two subsections we proceed with near identity transformations by using the
bounds (52) and prove the following theorem.

Theorem 3.5. There exists ε0 > 0 such that for every ε ∈ (−ε0,ε0), there exists a sequence of
near-identity transformations which transforms system (50) to the following form:(

∂ξ q1
∂ξ q0 − q1

)
=

N∑
j=1

ε2jZ(0)j

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
+ ε2N+2Z(0)N+1

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
, (53a)
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∂ξ S
(N)
1 =ΠA1 (ω0,cg)S

(N)
1 +

N∑
j=1

ε2jZ(1)j

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
+ ε2N+2Z(1)N+1

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
,

(53b)

and for m ∈ Nodd\{1},

∂ξ Y
(N)
m = Am (ω0,cg)Y

(N)
m +

N∑
j=1

ε2jZ(m)j

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
+ ε2N+2Z(m)N+1

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
,

(53c)

where Z(m)j (q0,q1,0,0) = 0 for every 1⩽ j ⩽ N and m ∈ Nodd. The variables S
(N)
1 ,V(N)

⩾3 , and

Y(N)m are obtained from S1,V⩾3, and Ym via N near-identity transformations depending on q0
and q1, e.g.

S(N)1 = S1 + ε2Φ(2) (q0,q1)+ ε4Φ(4) (q0,q1)+ · · ·+ ε2NΦ(2N) (q0,q1) ,

where Φ(2j) depends polynomially on q0, q̄0,q1, and q̄1, and analogously for V
(N)
⩾3 and Y

(N)
m .

Moreover, the transformations preserve the reversibility of the system, see section 2.3.

Remark 3.6. It is well known that in the equation for uj with eigenvalue iλj a term of the form
u
nj1
j1 . . .u

njr
jr can be eliminated by a near identity transformation if the non-resonance condition

λj−
∑r

k=1 njkλnjk 6= 0 is satisfied, see section 3.3 in [GH83]. Since the eigenvalues for the

(q0,q1)-part vanish and since the eigenvalues for the S
(N)
1 -part and the Y(N)m -part do not vanish,

all polynomial terms in (q0,q1) can be eliminated in the equations for the S(N)1 and Y(N)m . This
elimination is done by theorem 3.5 up to order O(ε2N). Some detailed calculations can be
found in the subsequent sections 3.3 and 3.4.

Remark 3.7. The condition Z(m)j (q0,q1,0,0) = 0 for every 1⩽ j ⩽ N and m ∈ Nodd corres-

ponds to Ñr(ũ0,0) = 0 in system (19). Ignoring the higher order terms

ε2N+2Z(m)N+1

(
q0,q1,S

(N)
1 ,V(N)

⩾3

)
for m ∈ Nodd in (53b) and (53c) gives an invariant subspace {(S(N)1 ,V(N)

⩾3 ) = (0,0)} in which
an approximate homoclinic solution for the full system can be found. It bifurcates for ε 6= 0
from the trivial solution for ε= 0.

3.3. Removing polynomial terms in q0 and q1 from (50c)

In order to show how the near-identity transformations reduce (50c) to (53c), we consider a
general inhomogeneous term ε2jqk10 q̄

k2
0 q

k3
1 q̄

k4
1 in the right-hand side of (50c) with some 1⩽ j ⩽

N and positive integers k1,k2,k3,k4. The transformations are produced sequentially, from terms
of order O(ε2) to terms of order O(ε2N) and for each polynomial order in (q0,q1).

At the lowest order j= 1, there exists only one inhomogeneous term in (50c) for m= 3, see
remark 3.1, which is given by

H(q)
3 =−γ

(
1− c2g

)−1
(

0
r(q0fn0 − iq1∂lfn0)

3

)
.
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Hence, H3 = H(q)
3 +Hrest

3 , where Hrest
3 = 0 if (S1,V⩾3) = (0,0). Substituting Y3 = Ỹ3 + ε2Y3

with

Y3 := h0

(
q30

3q20q1

)
+ h1

(
q20q1
2q0q21

)
+ h2

(
q0q21
q31

)
+ h3

(
q31
0

)
into (50c) yields

∂ξ Ỹ3 = A3 (ω0,cg) Ỹ3 + ε2ω̃
(
1− c2g

)−1
B3Ỹ3 + ε2H̃3.

The choice of the second components in each term ofY3 is dictated by the fact that ∂ξ q0 − q1
and ∂ξ q1 are of the order of O(ε2) due to equation (50a). We are looking for scalar functions
hj ∈ H2

per from the sequence of linear inhomogeneous equations obtained with the help of (51):

q30 : L3h0 = γ
(
1− c2g

)−1
rf 3n0 ,

q20q1 : L3h1 =−3iγ
(
1− c2g

)−1
rf2n0∂lfn0 − 3M3h0,

q0q
2
1 : L3h2 =−3γ

(
1− c2g

)−1
rfn0 (∂lfn0)

2 − 2M3h1 + 6h0,

q31 : L3h3 = iγ
(
1− c2g

)−1
r(∂lfn0)

3 −M3h2 + 2h1.

Since L3 is invertible with a bounded inverse by lemma 3.2, there exist unique functions hj ∈
H2

per which are obtained recursively from h0 to h3. After the inhomogeneous terms are removed
by the choice of hj, the transformed right-hand side H̃3 becomes

H̃3 = Hrest
3 − h0

(
3q20 (q̇0 − q1)

6q0q1 (q̇0 − q1)+ 3q20q̇1

)
− h1

(
2q0q1 (q̇0 − q1)+ q20q̇1
2(q̇0 − q1)q21 + 4q0q1q̇1

)
− h2

(
(q̇0 − q1)q21 + 2q0q1q̇1

3q21q̇1

)
− h3

(
3q21q̇1
0

)
+ ε2ω̃

(
1− c2g

)−1
B3Y3,

where Hrest
3 is also modified due to the transformation. Substituting for q̇0 − q1 and q̇1

from (50a) shows that H̃3(q0,q1,0,0) =O(ε2), hence the first step of the procedure trans-
forms (50c) into (53c) with N= 1. One can then define H̃3 = H̃(q)

3 + H̃rest
3 with H̃rest

3 = 0 if
(S1,V⩾3) = (0,0) and proceed with next steps of the procedure.

A general step of this procedure is performed similarly. Without loss of generality, since the
principal part of system (50a) is independent of q̄0 and q̄1, we consider a general polynomial
of degree M at fixed m ∈ {3,5, . . . ,2N+ 1}:

H(q)
m =

M∑
j=0

qM−j
0 qj1

(
aj
bj

)
,

where (aj,bj)T depend on x only. Substituting

Ym = Ỹm+ ε2Ym, Ym :=
M∑
j=0

qM−j
0 qj1

(
hj
gj

)
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into (50c) yields (53c) with N being incremented by one if hm,gm ∈ H2
per are found from two

chains of recurrence equations for j ∈ {0,1, . . . ,M}:

gj =−aj+(M+ 1− j)hj−1,

Lmhj =−bj−Mmgj+(M+ 1− j)gj−1,

which are truncated at h−1 = g−1 = 0. Since Lm for 3⩽ m⩽ 2N+ 1 are invertible with a
bounded inverse by lemma 3.2, the recurrence equations are uniquely solvable from g0 to
h0, then to g1 and h1 and so on to gM and hM. The aforementioned first step is obtained from
here with M= 3 and a0 = a1 = a2 = a3 = 0.

3.4. Removing polynomial terms in q0 and q1 from (50b)

Similarly, we perform near-identity transformations which reduce (50b) to (53b). The only
complication is the presence of the projection operator Π in system (50b).

At lowest order j= 1, there exist two inhomogeneous terms in (50b) due to ΠB1Y1 and
ΠH1, which can be written without the projection operator Π as follows:

ω̃

1− c2g
(q0B1F0 + q1B1F1)−

γ

1− c2g

(
0

3r(q0fn0 − iq1∂lfn0)
2 (q̄0̄fn0 + iq̄1∂l̄fn0

) )
=: q0H

(0) + q1H
(1) + |q0|2q0H(2) + q20q̄1H

(3) + |q0|2q1H(4) + q0|q1|2H(5)

+ q̄0q
2
1H

(6) + |q1|2q1H(7).

Substituting S1 = S̃1 + ε2S1 with

S1 : = q0S
(0) + q1S

(1) + |q0|2q0S(2) + q20q̄1S
(3) + |q0|2q1S(4) + q0|q1|2S(5)

+ q̄0q
2
1S

(6) + |q1|2q1S(7),

where ΠS( j) = S( j), into (50b) yields

∂ξ S̃1 =ΠA1 (ω0,cg) S̃1 + ε2ω̃
(
1− c2g

)−1
ΠB1S̃1 + ε2Π H̃1,

where H̃1 is of the nextO(ε2) order if S(0),S(1) are chosen from the system of inhomogeneous
equations

q0 : ΠA1 (ω0,cg)S
(0) =−ΠH(0),

q1 : ΠA1 (ω0,cg)S
(1) =−ΠH(1) +S(0),

and S(2), . . . ,S(7) are chosen from the system of inhomogeneous equations

|q0|2q0 : ΠA1 (ω0,cg)S
(2) =−ΠH(2),

q20q̄1 : ΠA1 (ω0,cg)S
(3) =−ΠH(3) +S(2),

|q0|2q1 : ΠA1 (ω0,cg)S
(4) =−ΠH(4) + 2S(2),

q0|q1|2 : ΠA1 (ω0,cg)S
(5) =−ΠH(5) + 2S(3) +S(4),

q̄20q
2
1 : ΠA1 (ω0,cg)S

(6) =−ΠH(6) +S(4),

|q1|2q1 : ΠA1 (ω0,cg)S
(7) =−ΠH(7) +S(5) +S(6).
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Since ΠA1(ω0,cg)Π is invertible with a bounded inverse by lemma 3.2, the two chains of
equations are uniquely solvable: from S(0) to S(1) and from S(2) to S(7).

It is now straightforward that a general step of the recursive procedure can be performed to
reduce (50b) to (53b).

4. Construction of the local centre-stable manifold

By theorem 3.5, the spatial dynamical system can be transformed to the form (53), where
the coupling of (q0,q1) ∈ C2 with S(N)1 ∈ D̃ and Y(N)m ∈ D̃ for m ∈ Nodd\{0} occurs at order
O(ε2N+2). We are now looking for solutions of system (53) for ξ on [0, ξ0] for some ε-
dependent value ξ0 > 0. In order to produce the bound (14), we will need to extend the result
to ξ0 = ε−(2N+1).

The local centre-stable manifold on [0, ξ0] will be constructed close to the homoclinic orbit
of the system (

∂ξ q1
∂ξ q0 − q1

)
=

N∑
j=1

ε2jZ(0)j (q0,q1,0,0) (54)

which is a truncation of (53a). The leading-order term Z(0)1 (q0,q1,0,0) is computed explicitly
as

Z(0)1 (q0,q1,0,0) =
2ω̃

ω0ω
′ ′
n0 (l0)

(
−ω0q0 + i(ω0〈 fn0 ,∂lfn0〉+ cg)q1

〈∂lfn0 − iνfn0 , fn0〉(iω0q0 + cgq1)+ω0〈∂lfn0 − iνfn0 ,∂lfn0〉q1

)
− 3γ

ω0ω
′ ′
n0 (l0)

(
〈 fn0 ,r|q0fn0 − iq1∂lfn0 |2 (q0fn0 − iq1∂lfn0)〉

〈i(∂lfn0 − iνfn0) ,r|q0fn0 − iq1∂lfn0 |2 (q0fn0 − iq1∂lfn0)〉

)
.

The stationary NLS equation (44) for A rewritten as a first order system for q0(ξ) = A(X) with
X= εξ and q1(ξ) = εA ′(X) is(

∂ξ q1
∂ξ q0 − q1

)
= ε2

(
ω ′ ′
n0 (l0)

)−1
(

−2ω̃q0 − γn0 (l0) |q0|2q0
0

)
, (55)

or equivalently

A ′ ′ =
(
ω ′ ′
n0 (l0)

)−1 (−2ω̃A− γn0 (l0) |A|2A
)
, (56)

where ω ′ ′
n0 (l0) 6= 0 due to the non-degeneracy condition (11). Equation (55) is the leading order

(in ε) part of (54) if q0 =O(1) and q1 =O(ε).
The following lemma gives persistence of the sech solution (45) of the reduced system (55)

with (q0,q1) = (A(ε·),εA ′(ε·)) as a solution of the truncated system (54).

Lemma 4.1. Assume (11) and let A be given by (45). For each N ∈ N and a sufficiently small
ε> 0, there exists a unique homoclinic orbit of system (54) satisfying the properties

Im q0 (0) = 0, Re q1 (0) = 0. (57)

such that

‖q0 −A(ε·)‖L∞ ⩽ Cε, ‖q1 − εA ′ (ε·)‖L∞ ⩽ Cε2, (58)
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and

|q0 (ξ) |⩽ Ce−εα|ξ|, |q1 (ξ) |⩽ εCe−εα|ξ|, ∀ξ ∈ R, (59)

for some α> 0 and C> 0.

Proof. Since

q0F0 (x)+ q1F1 (x) =

(
q0fn0 (l0,x)− iq1∂lfn0 (l0,x)

q1fn0 (l0,x)

)
, (60)

and since the Fourier coefficients of fn0(l0,x) and ∂lfn0(l0,x) are real by remark 2.9, the con-
dition (57) expresses the reversibility condition (48) for m= 1 in the linear combination (60).
The reduced system (55) has two symmetries: if (q0(ξ),q1(ξ)) is a solution, so is(

q0 (ξ+ ξ0)e
iθ0 ,q1 (ξ+ ξ0)e

iθ0
)

(61)

for real ξ0 and θ0. In the scaling q0(ξ) = q̌0(X) with X= εξ and q1(ξ) = εq̌1(X) system (54)
is of the form(

∂Xq̌1
ε−1 (∂Xq̌0 − q̌1)

)
=

j=N∑
j=1

ε2j−2Z(0)j (q̌0,εq̌1,0,0)

=

( (
ω ′ ′
n0 (l0)

)−1 (−2ω̃q̌0 − γn0 (l0) |q̌0|2q̌0
)

0

)
+O (ε) . (62)

For ε= 0 there is a homoclinic orbit qhom for system (55) which is given by (q̌0, q̌1) =
(A,A ′) with A in (45). The existence of a homoclinic orbit for small ε> 0 can be estab-
lished with the following reversibility argument. For ε= 0 in the point (q̌∗0 , q̌

∗
1) = (γ1,0) with

γ1 =
√
2|ω̃|/|γn0(l0)|, the family of homoclinic orbits eiθqhom(·+ ξ) intersects the fixed space

of reversibility

Im q̌0 (0) = 0, Re q̌1 (0) = 0

transversally. This can be seen as follows, see figure 5.
In the coordinates (Re q̌0, Im q̌0,Re q̌1, Im q̌1) the fixed space of reversibility lies in the span

of (1,0,0,0) and (0,0,0,1). The tangent space at the family of homoclinic orbits eiθqhom(·+
ξ) in (q̌∗0 , q̌

∗
1) is spanned by the ξ-tangent vector which is proportional to (0,0,1,0) and the

θ-tangent vector which is proportional to (0,1,0,0). Since the vector field of (62) depends
smoothly on the small parameter 0< ε� 1 this intersection persists under adding higher order
terms, i.e. for small ε> 0. Thus, the reversibility operator gives a homoclinic orbit for (62) for
small ε> 0, too. Undoing the scaling gives the homoclinic orbit for the truncated system (54)
with the exponential decay (59).

It remains to prove the approximation bound (58). The symmetry (61) generates the two-
dimensional kernel of the linearised operator associated with the leading-order part of the
truncated system (54):(

q0
q1

)
=

(
A ′ (X)
εA ′ ′ (X)

)
and

(
q0
q1

)
= i

(
A(X)
εA ′ (X)

)
. (63)
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Figure 5. Transversal intersection of the homoclinic orbit of system (54) with the fixed
space of the reversibility operator.

The symmetry modes (63) do not satisfy the reversibility constraints (57) because A(0) 6= 0
and A ′ ′(0) 6= 0, whereas the truncated system (54) inherits the reversibility symmetry (57) of
the original dynamical system (23). Therefore, if we substitute the decomposition(

q0 (ξ)
q1 (ξ)

)
=

(
A(εξ)
εA ′ (εξ)

)
+

(
q0 (ξ)
εq1 (ξ)

)
into (54), then the correction term (q0,q1) satisfies the nonlinear system where the residual
terms of the order ofO(ε), see (62), are automatically orthogonal to the kernel of the linearised
operator. By the implicit theorem in Sobolev spaceH1(R), one can uniquely solve the nonlinear
system for the correction term (q0,q1) under the reversibility constraints (57) such that

‖q0‖H1 + ‖q1‖H1 ⩽ Cε,

for some ε-independent C> 0. This yields the approximation bound (58) in the original vari-
ables due to the Sobolev embedding of H1(R) into L∞(R).

Remark 4.2. The approximation bound (58) yields the estimate (15) in theorem 1.7, where

h(ξ,z,x) = εq0 (ξ) fn0 (l0,x)e
iz− iεq1 (ξ)∂lfn0 (l0,x)e

iz+ c.c.

with q0 and q1 from lemma 4.1.

Remark 4.3. Referring to system (18), we have now constructed the homoclinic solution for
the approximate reduced system

∂ξũ0 =M0ũ0 + Ñ0 (ũ0,0) .

It remains to prove the persistence of the homoclinic solutions as generalised breather solutions
under considering the higher order terms ε2N+2Z(m)N+1(q0,q1,S

(N)
1 ,V(N)

⩾3 ) in (53b) and (53c) for

m ∈ Nodd which lead to (S
(N)
1 ,V(N)

⩾3 ) 6= (0,0).We do so by constructing a centre-stablemanifold
nearby the approximate homoclinic solution, see the rest of section 4, and by proving that the
centre-stable manifold intersects the fixed space of reversibility transversally, see section 5.
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Let us denote the ε-dependent reversible homoclinic orbit of lemma 4.1 by (Q0,εQ1)
and introduce the decomposition (q0,q1) = (Q0,εQ1)+ (q0,εq1). We abbreviate c0,hom :=

(Q0,Q1,Q0,Q1) and c0,r := (q0,q1,q0,q1). Furthermore, we collect the components S(N)1 ,Y(N)m

for m ∈ Nodd\{1} in cr. With these notations system (53) can now be rewritten in the abstract
form:

∂ξ c0,r = εΛ0 (ξ)c0,r+ εG(c0,r,cr)+ ε2N+1GR (c0,hom + c0,r,cr) , (64a)

∂ξ cr = Λr (ξ)cr+ ε2F(c0,hom + c0,r,cr)+ ε2N+2FR (c0,hom + c0,r,cr) , (64b)

where the vector c0,r(ξ) ∈ C4 is controlled in the norm ‖ · ‖C4 , whereas the vector cr(ξ) is
controlled in the phase space D defined by (26) with the norm ‖ · ‖D. The operator εΛ0 is
the linearisation around the homoclinic orbit c0,hom and hence G depends nonlinearly on c0,r.
Note that including the complex conjugated variables in c0,r is needed in order for the linearised
system ∂ξ c0,r = εΛ0(ξ)c0,r to be linear with respect to the complex vector field.

Remark 4.4. At leading order in ε the matrix Λ0 is derived from (62) in the form

Λ0 =

(
K 0
0 K

)
− γn0 (l0)

(
ω ′ ′
n0 (l0)

)−1
(
M1 (A) M2 (A)
M2 (A) M1 (A)

)
+O (ε) ,

where

K=

(
0 1

−2ω̃
(
ω ′ ′
n0 (l0)

)−1
0

)
, M1 (A) =

(
0 0

2A2 0

)
, M2 (A) =

(
0 0
A2 0

)
,

using the fact that A is real.

Remark 4.5. Although not indicated by our notation, the operators Λ0, Λr and the functions
G, GR, F, and FR depend on ξ and ε continuously.

Remark 4.6. We lose one power of ε in front of G andGR by working withQ1 instead of εQ1.

4.1. Residual terms of system (64)

Residual terms are controlled as follows.

Lemma 4.7. There exists ε0 > 0 such that for every ε ∈ (0,ε0) the residual terms of system (64)
satisfy the bounds for every ξ ∈ R:

‖G(c0,r,cr)(ξ)‖C4 ⩽ C
(
‖c0,r (ξ)‖2C4 + ‖cr (ξ)‖D

)
,

‖F(c0,hom + c0,r,cr)(ξ)‖R ⩽ C(‖c0,hom (ξ)+ c0,r (ξ)‖C4 + ‖cr (ξ)‖D)‖cr‖D,
‖GR (c0,hom + c0,r,cr)(ξ)‖C4 ⩽ C(‖c0,hom (ξ)+ c0,r (ξ)‖C4 + ‖cr (ξ)‖D) ,
‖FR (c0,hom + c0,r,cr)(ξ)‖R ⩽ C(‖c0,hom (ξ)+ c0,r (ξ)‖C4 + ‖cr (ξ)‖D) ,

as long as ‖c0,r(ξ)‖C4 + ‖cr(ξ)‖D ⩽ C, where C> 0 is a generic ε-independent constant,
which may change from line to line.

Proof. The residual terms are defined in theorem 3.5. FunctionsG,GR, F, and FR mapD into
D since D forms a Banach algebra with respect to pointwise multiplication. Using (q0,q1) =
c0,hom + c0,r and the fact that ‖c0,hom(ξ)‖C4 is bounded independently of ε, the bounds on G,
GR, F, and FR follow.
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4.2. Linearised operator of system (64a)

The linear part of system (64a) is the linearisation around the approximate homoclinic orbit
q0,hom from lemma 4.1. Due to the translational and the SO(2)-symmetry of the family of
homoclinic orbits generated by these symmetries applied to the reversible homoclinic orbit,
the solution space of the linearised equation includes a two-dimensional subspace spanned by
exponentially decaying functions.

Lemma 4.8. Consider the linear inhomogeneous equation

∂ξ c0,r = εΛ0c0,r+ εFh, (65)

with a given Fh ∈ C0
b(R,C4). The homogeneous equation has a two-dimensional stable sub-

space spanned by the two fundamental solutions

s1 (ξ) = c ′0,hom (εξ) , s2 (ξ) = iJc0,hom (εξ) , (66)

where J= diag(1,1,−1,−1). If Fh = (F0,F1,F0,F1) satisfies the constraints

F0 (ξ) = F0 (−ξ) , F1 (ξ) =−F1 (−ξ) , ξ ∈ R, (67)

then there exists a two-parameter family of solutions c0,r ∈ C0
b(R) in the form

c0,r = α1s1 +α2s2 + c̃0,r,

where (α1,α2) ∈ C2 and c̃0,r ∈ C0
b(R) is a particular solution satisfying the constraints (67)

and the bound

‖c̃0,r‖L∞(R) ⩽ C‖Fh‖L∞(R) (68)

for an ε-independent constant C.

Proof. As already said, the existence of the two-dimensional stable subspace spanned by (66)
follows from the translational symmetries due to spatial translations and phase rotations of
the truncated system (54). Since the truncated system is posed in C4, the solution space is
four dimensional and the other two fundamental solutions of the homogeneous equation are
exponentially growing as ξ→∞. This can be seen from the limit of Λ0(ξ) as ξ →∞. Indeed,
we have

lim
ξ→∞

Λ0 (ξ) =

(
K 0
0 K

)
,

the eigenvalues of which are±
√
−2ω̃(ω ′ ′

n0 (l0))
−1, each being double, where ω̃(ω ′ ′

n0 (l0))
−1 < 0

by assumption of theorem 1.7.
As a result, system (65) possesses an exponential dichotomy, see proposition 1 in chapter

4 and the discussion starting on page 13 of [Cop78]. The existence of a particular bounded
solution c0,r ≡ c(p)0,r satisfying the bound (68) now follows from theorem 7.6.3 in [Hen81]. Let

us then define c̃0,r := c(p)0,r + α̃1s1 + α̃2s2 = (q̃0, q̃1, q̃0, q̃1) and pick the unique values of α̃1 and
α̃2 to satisfy the constraints

Im(q̃0)(0) = 0 and Re(q̃1)(0) = 0. (69)
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This is always possible since

s1 (0) =


Q ′

0 (0)
Q ′

1 (0)
Q̄ ′

0 (0)
Q̄ ′

1 (0)

 and s2 (0) =


iQ0 (0)
iQ1 (0)
−iQ̄0 (0)
−iQ̄1 (0)

 ,
where Re(Q0(0)) = A(0)+O(ε), Im(Q1(0)) =O(ε), Im(Q ′

0(0)) =O(ε), and Re(Q ′
1(0)) =

A ′ ′(0)+O(ε) by lemma 4.1 with A(0) 6= 0 and A ′ ′(0) 6= 0. Hence, for every c(p)0,r ∈ L∞(R),
the linear system (69) for α̃1 and α̃2 admits a unique solution such that

|α̃1|+ |α̃2|⩽ C‖c(p)0,r ‖L∞(R).

The solution c̃0,r = c(p)0,r + α̃1s1 + α̃2s2 is bounded and satisfies the bound (68).
The matrix Λ0 commutes with the symmetry operator defined by (67), i.e. if f ∈ C0

b(R,C4)
satisfies (67), then so does Λ0f. In addition, the right-hand side Fh = (F0,F1,F0,F1) satis-
fies (67). Hence the vector field is closed in the subspace satisfying (67). If a bounded solution
c̃0,r = (q̃0, q̃1, q̃0, q̃1) on (0,∞) satisfies the constraints (69), then its extension on (−∞,∞)
belongs to the subspace satisfying (67). Thus, the existence of the bounded solution c̃0,r
of (65) satisfying (67) and (68) is proven. A general bounded solution of (65) has the form
c0,r = α1s1 +α2s2 + c̃0,r, where (α1,α2) ∈ C2 are arbitrary.

Remark 4.9. If |α1|+ |α2| 6= 0, then the solution c0,r = α1s1 +α2s2 + c̃0,r does not satisfy the
reversibility constraint (67) because s1 and s2 violate the reversibility constraints.

4.3. Estimates for the local centre-stable manifold

We are now ready to construct a local centre-stable manifold for system (64). Let us split
the components in cr in three sets denoted by cs, cu, and cc, where cs, cu, and cc correspond to
components ofΛr with eigenvalues λwith Re(λ)< 0, Re(λ)> 0, and Re(λ) = 0 respectively.

Remark 4.10. These coordinates correspond to the stable, unstable, and reduced centre mani-
fold of the linearised system in lemma 2.3, where the reduced centre manifold is obtained after
the double zero eigenvalue is removed since the eigenspace of the double zero eigenvalue is
represented by the coordinate c0,r.

We study the coordinates cs, cu, and cc in subsets of the phase space D denoted by Ds, Du,
and Dc respectively. Similarly, the restrictions of Λr to the three subsets of D are denoted by
Λs, Λu, and Λc respectively. Moreover, let Pj for j = s,u,c be the projection operator from D
to Dj satisfying ‖Ps‖D→D + ‖Pu‖D→D + ‖Pc‖D→D ⩽ C for some C> 0.

We make the following assumption on the semi-groups generated by the linearised system,
see [LBC+09].

Assumption 4.11. There exist K> 0 and ε0 > 0 such that for all ε ∈ (0,ε0) we have

‖eΛsξ‖D→D ⩽ K, ξ ⩾ 0,

‖eΛuξ‖D→D ⩽ K, ξ ⩽ 0,

‖eΛcξ‖D→D ⩽ K, ξ ∈ R.
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The following theorem gives the construction of the local centre-stable manifold near the
reversible homoclinic orbit of lemma 4.1. It also provides a classification of all parameters of
the local manifold which will be needed in section 5 to satisfy the reversibility conditions. The
centre-stable manifold is constructed for ξ ∈ [0,ε−(2N+1)] and not for all ξ ⩾ 0. The bound of
O(ε2N) on the coordinates c0,r and cr is consistent with the bound (14) in theorem 1.7.

Theorem 4.12. Under assumption 4.11, there exist ε0 > 0, C> 0 such that for all ε ∈ (0,ε0)
the following holds. For every a ∈ Dc, b ∈ Ds, and (α1,α2) ∈ C2 satisfying

‖a‖Dc ⩽ Cε2N, ‖b‖Ds ⩽ Cε2N, |α1|+ |α2|⩽ Cε2N, (70)

there exists a family of local solutions of system (64) satisfying the bound

sup
ξ∈[0,ε−(2N+1)]

(‖c0,r (ξ)‖C4 + ‖cc (ξ)‖Dc + ‖cs (ξ)‖Ds + ‖cu (ξ)‖Du)⩽ Cε2N, (71)

as well as the identities cc(0) = a, e−ξ0Λscs(ξ0) = b at ξ0 = ε−(2N+1), and c0,r = α1s1 +α2s2 +
c̃0,r with uniquely defined c̃0,r : [0,ε−(2N+1)]→ C4.

Proof. In order to construct solutions of system (64) on [0, ξ0] with some ε-dependent ξ0 > 0,
we multiply the nonlinear vector field of system (64b) by a smooth cut-off function χ[0,ξ0] ∈
C∞([0,∞)) such that

∂ξ cr = Λrcr+ ε2χ[0,ξ0]F(c0,hom + c0,r,cr)+ ε2N+2χ[0,ξ0]FR (c0,hom + c0,r,cr) , (72)

where χ[0,ξ0](ξ) = 1 for ξ ∈ [0, ξ0] and χ[0,ξ0](ξ) = 0 for ξ ∈ (ξ0,∞). Similarly, we multiply
the nonlinear vector field of system (64a) by the same cut-off function and add a symmetrically
reflected vector field on [−ξ0,0] to obtain

∂ξ c0,r = εΛ0c0,r+ εχ[0,ξ0]G(c0,r,cr)+ ε2N+1χ[0,ξ0]GR (c0,hom + c0,r,cr)

+ εχ[−ξ0,0]G
∗ (c0,r,cr)+ ε2N+1χ[−ξ0,0]G

∗
R (c0,hom + c0,r,cr) ,

=: εΛ0c0,r+ εG̃(c0,r,cr)+ ε2N+1G̃r, (73)

where

Ḡ
∗
0 (−ξ) :=G0 (ξ) ,Ḡ

∗
1 (−ξ) :=−G1 (ξ) ,Ḡ

∗
R,0 (−ξ) :=GR,0 (ξ) ,Ḡ

∗
R,1 (−ξ) :=−GR,1 (ξ) ,

for all ξ ∈ [0, ξ0], resulting in G̃ and G̃R satisfying the reversibility condition (67). This modi-
fication allows us to apply lemma 4.8 on R.

We are looking for a global solution of system (72) and (73) for ξ ∈ [0,∞) which may be
unbounded as ξ →∞. This global solution coincides with a local solution of system (64) on
the interval [0, ξ0]⊂ R.

We write c0,r = α1s1 +α2s2 + c̃0,r and rewrite (73) as an equation for c̃0,r. By the construc-
tion of the vector field in system (73), the vector field satisfies the reversibility constraints (67).
By the bounds of lemma 4.7 and the invertibility of the linear operator in lemma 4.8, the

29



Nonlinearity 37 (2024) 055005 T Dohnal et al

implicit function theorem implies that there exists a unique map from cr ∈ C0
b([0, ξ0],D) to

c0,r ∈ C0
b([0, ξ0],C4) satisfying

sup
ξ∈[0,ξ0]

‖c0,r (ξ)‖C4 ⩽ |α1|+ |α2|+C sup
ξ∈[0,ξ0]

‖cr (ξ)‖D + ε2NC sup
ξ∈[0,ξ0]

(1+ ‖cr (ξ)‖D) , (74)

as long as |α1|+ |α2|+ sup
ξ∈[0,ξ0]

‖cr(ξ)‖D ⩽ Cεµ for some C> 0 and µ> 0.

Using the variation of constant formula the solution of system (72) projected to Dc⊕Ds⊕
Du can be rewritten in the integral form

cc (ξ) = eξΛca+ ε2
ˆ ξ

0
e(ξ−ξ ′)ΛcPcF(c0,hom (εξ ′)+ c0,r (ξ ′) ,cr (ξ ′))dξ ′

+ ε2N+2
ˆ ξ

0
e(ξ−ξ ′)ΛcPcFR (c0,hom (εξ ′)+ c0,r (ξ ′) ,cr (ξ ′))dξ ′, (75)

cs (ξ) = eξΛsb− ε2
ˆ ξ0

ξ

e(ξ−ξ ′)ΛsPsF(c0,hom (εξ ′)+ c0,r (ξ ′) ,cr (ξ ′))dξ ′

− ε2N+2
ˆ ξ0

ξ

e(ξ−ξ ′)ΛsPsFR (c0,hom (εξ ′)+ c0,r (ξ ′) ,cr (ξ ′))dξ ′, (76)

and

cu (ξ) =−ε2
ˆ ξ0

ξ

e(ξ−ξ ′)ΛuPuF(c0,hom (εξ ′)+ c0,r (ξ ′) ,cr (ξ ′))dξ ′

− ε2N+2
ˆ ξ0

ξ

e(ξ−ξ ′)ΛuPuFR (c0,hom (εξ ′)+ c0,r (ξ ′) ,cr (ξ ′))dξ ′, (77)

where cc(0) = a, cs(ξ0) = eξ0Λsb, and cu(ξ0) = 0. It is assumed in (75)–(77) that c0,r ∈
C0
b([0, ξ0],C4) is expressed in terms of cr ∈ C0

b([0, ξ0],D) by using the map satisfying (74).
The existence of a unique local (small) solution cc ∈ C0

b[0, ξ0],Dc), cs ∈ C0
b([0, ξ0],Ds), and

cu ∈ C0
b([0, ξ0],Du) in the system of integral equations (75), (76), and (77) follows from the

implicit function theorem for small ε> 0 and finite ξ0 > 0. To estimate this solution and to
continue it for larger values of ξ0, we use the bounds of lemma 4.7 and assumption 4.11. It
follows from (75) that

sup
ξ∈[0,ξ0]

‖cc (ξ)‖Dc ⩽ K

[
‖a‖Dc + ε2C

ˆ ξ0

0
‖c0,hom (εξ)‖C4‖cr (ξ)‖Ddξ

+ ε2Cξ0 sup
∀ξ∈[0,ξ0]

‖cr (ξ)‖2D + ε2N+2C
ˆ ξ0

0
‖c0,hom (εξ)‖C4dξ

+ε2N+2Cξ0 sup
ξ∈[0,ξ0]

‖cr (ξ)‖D

]

as long as |α1|+ |α2|+ sup
ξ∈[0,ξ0]

‖cr(ξ)‖D ⩽ Cεµ,µ > 0. Similar estimates are obtained for

sup
ξ∈[0,ξ0]

‖cs(ξ)‖Xs and sup
ξ∈[0,ξ0]

‖cu(ξ)‖Xu .
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We denote

S(ξ0) := sup
ξ∈[0,ξ0]

‖cc (ξ)‖Dc + sup
ξ∈[0,ξ0]

‖cs (ξ)‖Ds + sup
ξ∈[0,ξ0]

‖cu (ξ)‖Du .

Since

ε

ˆ ∞

0
‖c0,hom (εξ)‖C4dξ ⩽ C

due to the bound (59), it follows from the previous estimates that there exists C> 0 such that

S(ξ0)⩽ C
(
‖a‖Dc + ‖b‖Ds + ε2N+1 + εS(ξ0)+ ε2ξ0S(ξ0)

2
+ ε2N+2ξ0S(ξ0)

)
.

Using a bootstrapping argument, we show that S(ε−(2N+1))⩽ Cε2N if ε> 0 is small enough.
To do so, let us choose a, b and (α1,α2) to satisfy the bound (70) and let δ ∈ (0,1). Then

S(ξ0)⩽ C
(
ε2N+

(
ε+ ε2N+1+δξ0

)
S(ξ0)

)
(78)

as long as S(ξ0)⩽ ε2N−1+δ.
For ξ0 = 0 we have S(ξ0)⩽ Cε2N because ‖cc(0)‖Dc = ‖a‖Dc , ‖cs(0)‖Ds = ‖b‖Ds , and

‖cu(0)‖Du = 0. Let us assume that there is ξ∗ ∈ (0,ε−(2N+1)] such that S(ξ∗) = ε2N−1+δ and
S(ξ0)< ε2N−1+δ for all ξ0 ∈ (0, ξ∗). Then (78) implies S(ξ0)⩽ C(ε2N+ εδS(ξ0)) for all ξ0 ∈
(0, ξ∗) and hence

S(ξ∗)⩽ Cε2N < ε2N−1+δ

for ε> 0 small enough. This is a contradiction and we get that S(ξ0)⩽ ε2N−1+δ for all ξ0 ∈
[0,ε−(2N+1)]. Applying again (78), we get

S
(
ε−(2N+1)

)
⩽ Cε2N. (79)

In view of the bound (74), it follows that the local solution satisfies the bound (71).

Remark 4.13. The proximity bound (71) yields the estimate (14) in theorem 1.7.

Remark 4.14. Assumption 4.11 can be satisfied for smooth small-contrast potentials, see
lemmas 2.6 and 3.3. For ρ with a small non-zero contrast spectral gaps occur in figure 4.
Smoothness of ρ allows to control the size of the spectral gaps for large λ, see [Eas73].
Assumption 4.11 can be weakened and Jordan-blocks can be allowed, see remark 4.15.

Remark 4.15. In the generic case of eigenvalues, the Jordan blocks of which have length two,
the bounds of assumption 4.11 must be replaced by

‖eΛsξ‖D→D ⩽ K|ξ|, ξ ⩾ 0,

‖eΛuξ‖D→D ⩽ K|ξ|, ξ ⩽ 0,

‖eΛcξ‖D→D ⩽ K|ξ|, ξ ∈ R.
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The equivalent bound for the estimate of supξ∈[0,ξ0] ‖cc(ξ)‖Dc is given by

sup
ξ∈[0,ξ0]

‖cc (ξ)‖Dc ⩽ K

[
ξ0‖a‖Dc + ε2C

ˆ ξ0

0
(ξ0 − ξ)‖c0,hom (εξ)‖C4‖cr (ξ)‖Ddξ

+ ε2Cξ20 sup
ξ∈[0,ξ0]

‖cr (ξ)‖2D + ε2N+2C
ˆ ξ0

0
(ξ0 − ξ)‖c0,hom (εξ)‖C4dy

+ ε2N+2Cξ20 sup
ξ∈[0,ξ0]

‖cr (ξ)‖D

]

and similarly for sup
ξ∈[0,ξ0]

‖cs(ξ)‖Xs and sup
ξ∈[0,ξ0]

‖cu(ξ)‖Xu . This yields with the help of

Gronwall’s inequality and the bound

lim
ξ0→∞

ε2
ˆ ξ0

0
(ξ0 − ξ)‖c0,hom (εξ)‖C4dξ = lim

y0→∞

ˆ y0

0
(y0 − y)‖c0,hom (y)‖C4dy⩽ C

that

S(ξ0)⩽ C
(
ξ0‖a‖Dc + ξ0‖b‖Ds + ε2N+ ε2ξ20S(ξ0)

2
+ ε2N+2ξ20S(ξ0)

)
.

This bound still implies S(ξ0)⩽ Cε2N but for ξ0 = ε−N−1 and ‖a‖Dc + ‖b‖Ds ⩽ ε3N+1. Thus,
the justification result of theorem 1.7 can be extended on the scale of ξ ∈ O(ε−N−1) to the
generic case of eigenvalues with Jordan blocks of length two when assumption 4.11 cannot be
used, see lemma 3.3.

5. End of the proof of theorem 1.7

In theorem 4.12 we constructed a family of local bounded solutions of system (64) on
[0,ε−(2N+1)]. These solutions are close to the reversible homoclinic orbit of lemma 4.1 in the
sense of the bound (14) for appropriately defined v and h but only on [0,ε−(2N+1)]. It remains
to extract those solutions of this family which satisfy (14) not only on [0,ε−(2N+1)], but also on
[−ε−(2N+1),ε−(2N+1)]. We do so by extending the local solutions on [0,ε−(2N+1)] to the inter-
val [−ε−(2N+1),ε−(2N+1)] with the help of the reversibility constraints. Obviously this is only
possible for the solutions which intersect the fixed space of reversibilty. Hence, for the proof
of theorem 1.7 it remains to prove that the local invariant centre-stable manifold of system (64)
intersects the subspace given by the reversibility constraints (48).

• Since the initial data cc(0) = a ∈ Dc in the local centre-stable manifold of theorem 4.12 are
arbitrary, the components of a can be chosen to satisfy the reversibility constraints (48).
For example, using âm,k = (â(v)m,k, â

(w)
m,k) for Fourier representation (46), we can specify the

reversibility constraints as

Im â(v)m,k = 0, Re â(w)m,k = 0, (m,k) ∈ Nodd ×Z.

• We have c0,r = α1s1 +α2s2 + c̃0,r, where c̃0,r satisfies the reversibility constraints (48) by
lemma 4.8. Since s1 and s2 violate (48), setting α1 = α2 = 0 satisfies the reversibility con-
straints for c0,r = c̃0,r. The choice of α1 = α2 = 0 is unique by the implicit function theorem
in the proof of theorem 4.12.
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• The initial data cs(0) and cu(0) are not arbitrary since the stable and unstable manifold
theorems are used for construction of cs and cu in the proof of theorem 4.12. Combining
cs/u := (cs,cu) together for the complex eigenvalues outside iR, we can write cs/u(0) = b+
c̃s/u(0), where c̃s/u(0) are uniquely defined of the order of O(ε2N) and depend on b ∈ Ds

in higher orders. By the implicit function theorem, there exists a unique solution b ∈ Ds

of b= cs/u(0)− c̃s/u(0) satisfying the reversibility constraints (48) and this unique b ∈ Ds

satisfies the bound (70).

Remark 5.1. There still exist infinitely many parameters after a ∈ Dc have been chosen to sat-
isfy the constraint (48), namely, Re â(v)m,k and Im â(w)m,k for (m,k) ∈ Nodd ×Z. These parameters
of the solution of theorem 1.7 must satisfy the bound (70) in theorem 4.12.

Remark 5.2. Since the local centre-stable manifold intersects the plane given by the
reversibility constraints (48), we have thus constructed a family of reversible solutions on
[−ε−(2N+1),ε−(2N+1)] while preserving the bound (15). Tracing the coordinate transforma-
tions back to the original variables completes the proof of theorem 1.7.

6. Proof of theorem 1.11

For any given point (x0, t0) ∈ R× (0,∞), we define a triangular region in the backward light
cone of the wave equation:

C(x0,t0) := {(x, t) ∈ R× [0, t0] : |x− x0|⩽ t0 − t} .

To prove theorem 1.11, we show that solutions of the semi-linear wave equation (1) have a
finite propagation speed (bounded in absolute value by 1). We start with the following lemma.

Lemma 6.1. Let w ∈ C2(R×R) be a solution of the linear wave equation

∂2t w(x, t)− ∂2xw(x, t)+ ρ(x)w(x, t) = F(x, t) , (80)

for a given F ∈ C0(R×R). For any given point (x0, t0) ∈ R× (0,∞), the energy quantity

E(t) :=
1
2

ˆ
|x−x0|⩽t0−t

[
(∂tw(x, t))2 +(∂xw(x, t))2 + ρ(x)w(x, t)2

]
dx

satisfies

E(t2)⩽ E(t1)+
ˆ t2

t1

ˆ
|x−x0|⩽t0−t

F(x, t)∂tw(x, t)dxdt, (81)

for every 0⩽ t1 ⩽ t2 ⩽ t0.
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Proof. Since the solution w ∈ C2(R×R) is classical and the integration region is finite, we
differentiate E(t) in t and obtain

E ′ (t) =
ˆ
|x−x0|⩽t0−t

[
∂tw∂

2
t w+ ∂xw∂x∂tw+ ρw∂tw

]
dx

− 1
2

[
(∂tw)

2
+(∂xw)

2
+ ρw2

]
|x=x0+t0−t−

1
2

[
(∂tw)

2
+(∂xw)

2
+ ρw2

]
|x=x0−t0+t

=

ˆ
|x−x0|⩽t0−t

[
∂tw∂

2
xw+ ∂xw∂x∂tw+F∂tw

]
dx

− 1
2

[
(∂tw)

2
+(∂xw)

2
+ ρw2

]
|x=x0+t0−t−

1
2

[
(∂tw)

2
+(∂xw)

2
+ ρw2

]
|x=x0−t0+t,

where we have used (80). Integration by parts yields

E ′ (t) =
ˆ
|x−x0|⩽t0−t

F∂twdx−
1
2
(∂tw− ∂xw)

2 |x=x0+t0−t−
1
2
(∂tw+ ∂xw)

2 |x=x0−t0+t

− 1
2
ρw2|x=x0+t0−t−

1
2
ρw2|x=x0−t0+t

⩽
ˆ
|x−x0|⩽t0−t

F∂twdx,

since ρ ∈ X0 is positive in (2). Integration in time on [t1, t2] yields (81).

Lemma 6.1 enables us to use the energy method in the proof of uniqueness of solutions of
the semi-linear wave equation (1) inside the backward light coneC(x0,t0) for any fixed (x0, t0) ∈
R× (0,∞). The uniqueness is equivalent to the property of the finite propagation speed in (1).

Lemma 6.2. Let u,v ∈ C2(R×R) be two solutions of the semi-linear wave equation (1) with

u(x,0) = v(x,0) , ∂tu(x,0) = ∂tv(x,0) , ∀x ∈ [x0 − t0,x0 + t0] .

Then, u(x, t) = v(x, t) for every (x, t) ∈ C(x0,t0).

Proof. Let w := u− v. Then w ∈ C2(R×R) satisfies

∂2
t w(x, t)− ∂2

xw(x, t)+ ρ(x)w(x, t) = γr(x)
[
u(x, t)2 + u(x, t)v(x, t)+ v(x, t)2

]
w(x, t)

=: F(x, t) ,

which coincides with (80). By lemma 6.1 with t1 = 0 and t2 = t, we obtain

E(t)⩽ E(0)+
ˆ t

0

ˆ
|x−x0|⩽t0−t

F(x, t)∂tw(x, t)dxdt

⩽ |γ|‖r‖L∞
ˆ t

0

ˆ
|x−x0|⩽t0−t

|u2 + uv+ v2||w∂tw|dxdt

⩽ 3
2
|γ|‖r‖L∞

(
‖u‖2

L∞
(
C(x0,t0)

) + ‖v‖2
L∞

(
C(x0,t0)

))ˆ t

0

ˆ
|x−x0|⩽t0−t

|w∂tw|dxdt,

since E(0) = 0 and C(x0,t0) is compact. For ρ ∈ X0 given by (2), the energy quantity E(t) is
coercive and we have

‖∂tw(·, t)‖2
L2
(
B(x0,t0,t)

) + ‖∂xw(·, t)‖2
L2
(
B(x0,t0,t)

) + ρ0‖w(·, t)‖2
L2
(
B(x0,t0,t)

) ⩽ 2E(t) ,
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where B(x0,t0,t) := {x ∈ R : |x− x0|⩽ t0 − t}. Hence, by Cauchy–Schwarz inequality, we
obtain

E(t)⩽ C

(
‖u‖2

L∞
(
C(x0,t0)

) + ‖v‖2
L∞

(
C(x0,t0)

))ˆ t

0
E(t)dt,

for some C> 0 that depends on ρ,r ∈ X0. By Gronwall’s inequality, this yields E(t) = 0 for
every t ∈ [0, t0] so that w(·, t) = 0 in H1(B(x0,t0,t)) and ∂tw(·,0) = 0 in L2(B(x0,t0,t)) for every
t ∈ [0, t0]. By Sobolev’s embedding ofH1(R) intoC0

b(R), this implies thatw(x, t) = 0 for every
x ∈ B(x0,t0,t) and t ∈ [0, t0], that is, for every (x, t) ∈ C(x0,t0).

Remark 6.3. Well-posedness of the initial-value problem for the semi-linear wave equation (1)
with ρ,r ∈ X0 and bootstrapping can be used to state that the first partial derivatives of u(x, t)
and v(x, t) in (x, t) are also equal for every (x, t) ∈ C(x0,t0).

Remark 6.4. Theorem 1.11 is a restatement of lemma 6.2, where

v(x, t) = vext (x− cgt, l0x−ωt,x)

is constructed based on theorem 1.7 and an arbitrary function ϕ. The function vext(ξ,z,x)
belongs to C2(R,X )which is weaker than C2(R×R) for the function v(x, t) in variables (x, t).
However, lemmas 6.1 and 6.2 can be extended by a simple density argument to functions for
which the energy E(t) is bounded in C(x0,t0) and for which the linear wave equation (80) is
satisfied almost everywhere C(x0,t0). Functions u(x, t) and v(x, t) constructed from vext(ξ,z, t)
as in theorem 1.11 belong to the required function space.
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