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Abstract

We construct and quantify asymptotically in the limit of large mass a variety of edge-localized stationary states of the focusing 
nonlinear Schrödinger equation on a quantum graph. The method is applicable to general bounded and unbounded graphs. The 
solutions are constructed by matching a localized large amplitude elliptic function on a single edge with an exponentially smaller 
remainder on the rest of the graph. This is done by studying the intersections of Dirichlet-to-Neumann manifolds (nonlinear 
analogues of Dirichlet-to-Neumann maps) corresponding to the two parts of the graph. For the quantum graph with a given set of 
pendant, looping, and internal edges, we find the edge on which the state of smallest energy at fixed mass is localized. Numerical 
studies of several examples are used to illustrate the analytical results.
© 2020 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Here we study stationary states of the focusing cubic nonlinear Schrödinger (NLS) equation on a quantum graph 
�. The cubic NLS equation can be written in the normalized form:

iUt + �U + 2|U |2U = 0, (1.1)

where U(x, t) : � ×R �→ C is the wave function and � is the Laplacian operator on the quantum graph �. We assume 
that the graph � has finitely many vertex points and finitely many edges (which are either line segments or half-lines). 
Neumann–Kirchhoff (sometimes called “standard” or “natural”) boundary conditions are used at the vertices of the 
graph: at each vertex the wave function is continuous and the sum of its outgoing derivatives is zero. For general 
terminology concerning differential operators on graphs the reader is invited to consult [12,20].
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The NLS equation is used to describe two distinct physical phenomena that are studied on networks of nano-wires: 
propagation of optical (electromagnetic) pulses and Bose-Einstein condensation. A thorough discussion of the physics 
literature from mathematical point of view can be found in [35]. The most important class of solutions for applications 
are the stationary states which are characterized by solutions of the following elliptic problem:

−�� − 2|�|2� = ��, (1.2)

where � ∈ R is the spectral parameter and the Laplacian � is extended to a self-adjoint operator in L2(�) with the 
domain

H 2
� =

{
U ∈ H 2(�) : Neumann-Kirchhoff conditions at vertices

}
.

Since −� is positive, localized states of the focusing cubic NLS equation on the line exist for negative values of �
and the limit of large mass corresponds to the limit of large negative �. Thus, for the purpose of this work we restrict 
the range of � in (1.2) to negative values, � < 0.

The stationary NLS equation (1.2) is the Euler–Lagrange equation of the action functional H�(U) := E(U) −
�Q(U), where Q(U) and E(U) are the conserved mass and energy of the cubic NLS equation:

Q(U) =
∫
�

|U |2dx, E(U) =
∫
�

(
|∂xU |2 − |U |4

)
dx. (1.3)

The conserved quantities E(U) and Q(U) are defined in the weaker space

H 1
� =

{
U ∈ H 1(�) : U is continuous at vertices

}
.

We use consistently notations Hk(�) with k = 1, 2 to denote Sobolev spaces of component-wise Hk functions and 
Hk

� to include vertex boundary conditions for component-wise Hk functions.
Among stationary states, we single out the standing wave of smallest energy at fixed mass which, if it exists, 

coincides with a solution of the following constrained minimization problem:

Eq = inf
U∈H 1

�

{E(U) : Q(U) = q} . (1.4)

In the variational setting, � is the Lagrange multiplier of the constrained minimization problem (1.4). Applying the 
Gagliardo–Nirenberg inequality on the graph � (see Proposition 2.1 in [6]),

‖U‖4
L4(�)

≤ C�‖U‖3
L2(�)

‖U‖H 1(�), U ∈ H 1
�, (1.5)

the infimum in (1.4) is bounded from below, hence Eq > −∞.
If the infimum in (1.4) is attained, the global minimizer is called the ground state of the cubic NLS equation (1.1)

and it coincides with the stationary state of the Euler–Lagrange equation (1.2) with the smallest energy Eq at fixed 
mass q . The infimum is always attained in the case of bounded graphs. However, the infimum may not be attained 
in the case of unbounded graphs due to the lack of compactness: Eq could be approached by a minimizing sequence 
“escaping” to infinity along one of the unbounded edge of the quantum graph [5,6]. See [1] for a review of various 
techniques used to analyze the existence and non-existence of the ground state.

In this work, we study existence and properties of the stationary states that localize exponentially on a single edge 
of a graph in the limit of large mass q . We call such states the edge-localized states. The relevant asymptotic approach 
was pioneered in [33] for a particular bounded graph, the dumbbell graph. Here we generalize and formalize this 
approach for any bounded and unbounded graph. We summarize the properties of these states below.

Theorem 1.1. Let � be a graph with finitely many edges and Neumann–Kirchhoff conditions at vertices. Then for any 
edge e of finite length � and for large enough μ := √−� there exists a solution � with the following properties

(1) � is positive,
(2) � has a single local maximum on �; this maximum is located on e; � monotone between its maximum and the 

end-vertices of e,
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Fig. 1. A single edge of a finite length can be connected to the remainder of the graph (shown in dashed lines) in three different ways.

(3) � concentrates on e in the following sense,

‖�‖L2(e)

‖�‖L2(�)

≥ 1 − Ce−2μ�, (1.6)

where the constant C is independent of μ.

Full description of solutions �, including the location of the maximum, uniqueness properties and asymptotics 
of E(�) and Q(�) can be found in Theorems 3.1, 3.3, and 3.5. To construct the solutions � with the properties 
described in Theorem 1.1, we glue a suitable elliptic function solution on the edge e to a small solution in the rest 
of the graph. The gluing or, more precisely, matching the values and the derivatives at the endpoints of the edge, is 
achieved by defining a nonlinear analogue of the well-known Dirichlet-to-Neumann (DtN) map, an object we call the 
DtN manifold. We obtain a nonlinear gluing condition which is analyzed, in the asymptotic regime � → −∞, using 
the implicit function theorem. It yields the type and the parameter values of the elliptic function that describes the 
solution on the edge e, thereby leading to the concentration estimate (1.6) as well as the estimates for the energy E
and mass Q of the entire solution.

These asymptotics allow us to compare solutions localized on different edges and to choose (in most cases) the 
edge-localized solution of the smallest energy E(�) for a given mass Q(�) = q . Since edge-localized solutions are 
good candidates for the role of the ground state (see Proposition 4.1 for a description of known properties of a ground 
state), this comparison is an important step towards the ultimate goal of fully describing the ground state for any 
graph.

To summarize the answers to the question of comparison, we introduce the necessary terminology. We distinguish 
three types of edges, illustrated in Fig. 1: a pendant edge (or simply a “pendant”) is an edge with one vertex of degree 
one, a looping edge (or simply a “loop”) is an edge whose end-vertices coincide, and an internal edge is an edge not 
belonging to the above classes — one with distinct end-vertices, each of degree greater than one. When we say an 
edge is incident to N other edges (at an end-vertex), the number N counts the edges in the remainder of the graph 
connected to the end-vertex. In Fig. 1 the pendant edge is incident to N = 3 edges at vertex v, the looping edge is 
incident to N = 1 edge at vertex v, and the internal edge is incident to N− = 2 and N+ = 3 edges at its end-vertices 
v− and v+ correspondingly. The following theorem gives comparison between the energy levels at a fixed (large) mass 
among the edge-localized states of Theorem 1.1.

Theorem 1.2. Let � be a compact graph (a graph with finitely many edges, all of finite length) and Neumann–Kirchhoff 
conditions at vertices. Among the edge-localized states of Theorem 1.1 with a given sufficiently large Q(�) = q , the 
state with the smallest energy localizes on the following edge of the graph �:

(i) The longest among pendants; in the case of a tie, the pendant incident to fewest edges.
(ii) If (i) is void, the shortest among loops incident to a single edge.

(iii) If (i)–(ii) are void, a loop incident to two edges.
(iv) If (i)–(iii) are void, the longest edge among the following: loops incident to N ≥ 3 edges, or internal edges 

incident to N− ≥ 2 and N+ ≥ 2 other edges; in the case of two edges of the same length, the edge for which the 
quantity⎧⎨⎩

N−2
N+2 for a loop√

(N−−1)(N+−1)
(N−+1)(N++1)

for an internal edge

is the smallest.
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Fig. 2. Plots of stationary states from Theorem 1.2 on a graph with two loops and three internal edges, shown on top of the graph itself (thinner 
lines). We demonstrate edge-centered states (left) and loop-centered states (right) on graphs with relatively long loops (top) and relatively short 
loops (bottom). The lengths of all internal edges were taken to be the same in each graph, we have just drawn some edges as semi-circles for 
visualization.

In the case of unbounded graph, we can enlarge the class of graphs for which we guarantee the existence of a 
ground state. This result builds upon [6, Cor. 3.4 and Prop. 4.1].

Corollary 1.3. Consider an unbounded graph � with Neumann–Kirchhoff conditions and with finitely many edges 
(and thus at least one edge as a half-line). The ground state of the constrained minimization problem (1.4) exists for 
sufficiently large q if � has at least one pendant or a loop incident to a single edge. If the graph � has no pendants and 
no loops incident to one or two edges, the ground state does not exist among the edge-localized states of Theorem 1.1.

Remark 1.4. If the graph � has a loop connected to two edges, the existence of the ground state is inconclusive and 
needs separate consideration. For the same reasons, there is no “tie-breaker” in case (iii) of Theorem 1.2. This issue 
has been pointed out before, in [5, Theorem 2.5].

Remark 1.5. To illustrate Theorem 1.2 (iv), in Fig. 2 we show relevant states for a graph � with two loops and three 
internal edges with the states visualized 3-dimensionally on top of the graph itself. For the states plotted on the top of 
the figure, the internal edges are short relative to the loops, and the loop state (top right) has smaller energy at large 
mass. For the states plotted on the bottom of the figure, the internal edges are long relative to the loops, and hence the 
edge state (bottom left) has smaller energy at larger mass.

The main results of this work are comparable and complementary to the recent work [7] on existence of stationary 
states for the subcritical NLS equation (which includes, as a particular case, the cubic NLS equation). In [7, Theorem 
3.3], the existence of local energy minimizers in the limit of large fixed mass was proven in the restricted space of 
functions that attain their maximum on a given edge. Because we are using elliptic functions, our results are only 
limited to the cubic NLS equation compared to the subcritical NLS equation in [7]. On the other hand, our work 
extends to both bounded and unbounded graphs. Moreover, we are computing the exponentially small corrections to 
the mass of each edge-localized state in terms of large negative Lagrange multiplier �. With the help of the main 
comparison result (Lemma 4.2), this tool allows us to compare different edge-localized states and identify the state 
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of minimal energy in the limit of large fixed mass. One important result which follows from [7] is that every edge-
localized state constructed in our work is a local minimizer of energy (at least in the case of unbounded graphs 
considered in [7]), hence it is orbitally stable in the time evolution of the cubic NLS equation (1.1).

Existence and stability of stationary states in the NLS equation defined on a metric graph have been recently 
investigated in great detail [35]. Existence and variational characterization of standing waves was developed for star 
graphs [2–4,8,9,27,29–31] and for general metric graphs [5,6,15,17]. Bifurcations and stability of standing waves 
were further explored for tadpole graphs [19,36,37], flower graphs [28], dumbbell graphs [23,33], double-bridge 
graphs [38], and periodic ring graphs [18,21,40,41]. A variational characterization of standing waves was developed 
for graphs with compact nonlinear core [44–46]. Some of these examples will be reviewed in the limit of large mass 
as applications of our general results.

The paper is organized as follows. The properties of the previously mentioned DtN manifold are described in 
Section 2, first in the linear theory and then for the stationary NLS equation in the limit of large mass. Edge-localized 
states are constructed by matching a localized large-amplitude elliptic function constructed on a single edge of the 
graph with a small amplitude solution on the rest of the graph and the matching is done by finding an intersection of 
two relevant DtN manifolds. This is performed in Section 3 for the three types of edges (a pendant, a loop, and an 
internal edge). In Section 4 we prove the comparison lemma and apply it to the proof of Theorem 1.2 and Corollary 1.3. 
In Section 5, we present numerical studies of generalized dumbbell graphs, generalized tadpole graph, and a periodic 
graph.

Appendix A contains a proof of the asymptotic representation of the Dirichlet–to–Neumann map in the linear 
theory. Appendix B quotes a maximum principle that is useful to understanding the behavior of solutions in the region 
where they are small. Appendix C collects together the well-known results on the contraction mapping principle and 
the implicit function theorem used in our work. Appendix D reports on useful asymptotic expansions for the elliptic 
functions and gives a “reverse Sobolev inequality”: an estimate of the H 2 norm of an a priori bounded solution of the 
stationary NLS in terms of its small L∞ norm.

ACKNOWLEDGMENTS. The first author was supported in part by National Science Foundation under Grants DMS–
1815075 and DMS–1410657. The second author was supported in part by U.S. NSF Grant DMS–1312874 and NSF 
CAREER Grant DMS-1352353. The third author was supported by the NSERC Discovery Grant RGPIN-2020-07049.

The authors wish to thank Riccardo Adami, Roy Goodman and Enrico Serra for helpful conversations that led to 
the development of this work. In particular, this article corrects a computational error that occurred in the final proof 
of [33] and was discovered thanks to an observation of R. Adami and E. Serra.

2. Graphs inside-out: Dirichlet-to-Neumann map

The main idea for constructing the edge-localized state satisfying the stationary NLS equation (1.2) is to match 
a large solution of the known form on a single edge of the graph � with a small solution on the rest of the graph 
denoted by �c. The “feedback” from the small solution on �c to the large solution on the single edge is encoded via 
the nonlinear analogue of the Dirichlet-to-Neumann (DtN) map which is developed in this section. For simplicity of 
notations in this section, we use the same notation � instead of �c.

2.1. Linear DtN map; asymptotics below spectrum

We start by reviewing the linear DtN map. Consider a graph � with a finite number of vertices and a finite number 
of edges. We impose Neumann–Kirchhoff (NK) conditions at every vertex. Declare a subset B of the graph’s vertices 
to be the boundary. We are interested in the asymptotics of the DtN map on the boundary B for the operator −� +μ2

as μ → ∞.
Before we give a precise definition, a couple of remarks are in order. The operator −� on L2(�) with NK con-

ditions on the vertices is well known to be non-negative and therefore we are looking at asymptotics far away from 
its spectrum. By using a scaling transformation, the same question can be interpreted as asymptotics for the operator 
−� + 1 on L2(�μ) as μ → ∞, where the graph �μ is obtained from � by scaling all the edge lengths by a large 
parameter μ. This is the point of view we will use in most of the manuscript.

Let the boundary vertices be denoted v1, . . . , vb, b = |B|, and let p = (p1, . . . , pb)
T ∈Rb be a vector of “Dirichlet 

values” on the vertices. Fig. 3 (left) gives a schematic representation of the graph � with boundary vertices. The graph 
1299



G. Berkolaiko, J.L. Marzuola and D.E. Pelinovsky Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 1295–1335
Fig. 3. Left: a graph � with boundary vertices B marked as empty squares. Arrows indicate the outgoing derivatives of the eigenfunction in the 
Neumann data. Right: a simple graph from Example 2.2.

�μ is obtained from � by multiplying all edge lengths by the same value μ. The infinite edges of the graph � are 
unaffected by this transformation.

Let u ∈ H 2(�μ) be a solution of the following boundary–value problem:⎧⎪⎨⎪⎩
(−� + 1)u = 0, on every e ∈ �μ,

u satisfies NK conditions for every v ∈ V \ B,

u(vj ) = pj , for every vj ∈ B.

(2.1)

Existence and uniqueness of the solution u follows from invertibility of the operator (−� + 1) with homogeneous 
vertex conditions; see, for example, [12, Section 3.5.2]. Note that u is not required to satisfy the current conservation 
conditions at vj ∈ B . Let

qj = N (u)j :=
∑
e∼vj

∂ue(vj ), (2.2)

be the Neumann data of the function u at the vertex vj ∈ B , where ∂ denotes the outward derivative from the vertex 
vj . The map M(μ) : p �→ q := (q1, . . . , qb)

T is called the DtN map. The following theorem (proved in Appendix A) 
provides its asymptotics as μ → ∞.

Theorem 2.1. The unique solution u ∈ H 2(�μ) to the boundary value problem (2.1) satisfies asymptotically, as μ →
∞,

‖u‖2
H 2(�μ)

∼ ‖u‖2
L2(�μ)

≤ C
(

1 +O(μe−μ�min)
)

‖p‖2 (2.3)

and

M(μ) = diag(dj )
b
j=1 +O

(
e−μ�min

)
, (2.4)

where dj is the degree of the j -th boundary vertex and �min is the minimal edge length of the original graph �.

Example 2.2. In the simplest case, the graph � is one edge of length � with the boundary vertex at x = � and the 
other vertex at x = 0 under the Neumann condition, as is shown on Fig. 3 (right). It is straightforward to obtain the 
following solution of the boundary-value problem (2.1):

u(z) = p
cosh(z)

cosh(μ�)
, z ∈ [0,μ�]. (2.5)

The DtN map M(μ) : p �→ q is one-dimensional with q = u′(μ�) and

M(μ) = tanh(μ�), (2.6)

and the solution (2.5) satisfies

‖u‖2
L2(0,μ�)

= 1

2
p2

[
tanh(μ�) + μ�sech2(μ�)

]
. (2.7)

The latter quantities are expanded as μ → ∞, in agreement with (2.3) and (2.4). Note that the error bound O(e−μ�)

in (2.3) and (2.4) is larger compared to the error bound O(e−2μ�) following from (2.6) and (2.7), due to cancellations 
specific to this simple example.
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For future use we now establish a related estimate for the following non-homogeneous boundary–value problem:⎧⎪⎨⎪⎩
( − � + 1 − W

)
f = g, on every e ∈ �μ,

f satisfies NK conditions for every v ∈ V \ B,

f (vj ) = pj , for every vj ∈ B,

(2.8)

where g ∈ L2(�μ) and W ∈ L∞(�μ) are given and f ∈ H 2(�μ) is to be found.

Lemma 2.3. For every μ > 0, g ∈ L2(�μ) and W ∈ L∞(�μ) satisfying ‖W‖L∞(�μ) ≤ α < 1, there exists a unique 
solution f ∈ H 2(�μ) to the boundary value problem (2.8). Asymptotically in μ → ∞ (assuming that α is independent 
of μ) we have

‖f ‖L2(�μ) ≤ Cα

(
‖p‖ + ‖g‖L2(�μ)

)
, (2.9)

with the Neumann data of f on B satisfying

‖N (f )‖ ≤ Cα

(
‖p‖ + ‖g‖L2(�μ)

)
, (2.10)

where the constant Cα is independent of μ.

Proof. Represent f = u + ξ , where u is the solution to the boundary-value problem (2.1). Let us define the operator

−� + 1 − W : Dom(�D
μ ) ⊂ L2(�μ) �→ L2(�μ), (2.11)

where Dom(�D
μ ) ⊂ H 2(�μ) is the domain of the Laplacian −� on the graph �μ with homogeneous Dirichlet condi-

tions at the boundary B (the rest of the vertices retain their NK conditions). Since 1 − W(z) ≥ 1 − α > 0 the operator 
(2.11) is invertible which implies that there cannot be more than one solution f . Since 

( − � + 1
)
u = 0 and u takes 

care of the non-homogeneous boundary values, the remainder term ξ is given by

ξ = ( − � + 1 − W
)−1

(g + Wu). (2.12)

The inverse operator 
( − � + 1 − W

)−1 is bounded as an operator from L2(�μ) to H 2(�μ) uniformly in μ ≥ μ0. 
Therefore, the L2(�μ) norm of ξ and the Neumann trace N (ξ) are estimated from (2.12) as follows:

‖ξ‖L2(�μ) + ‖N (ξ)‖ ≤ Cα‖g + Wu‖L2(�μ) ≤ Cα

(
‖g‖L2(�μ) + α‖u‖L2(�μ)

)
,

where we have implicitly used the Sobolev embedding ‖∂u‖L∞(�) ≤ C‖u‖H 2(�). The L2(�μ) norm of u and the 
Neumann data N (u) is bounded by C‖p‖ due to (2.3) and (2.4) respectively. Using f = u + ξ and N (f ) = N (u) +
N (ξ) we obtain (2.9) and (2.10). �
2.2. Definition of nonlinear DtN manifold

The analogue of DtN map for the stationary NLS equation is what we call a “nonlinear DtN manifold.” The name 
is chosen because in most cases of interest (such as in the example we consider in Section 2.3) this object turns out 
to be a geometric manifold. It is also not a “map” due to lack of uniqueness of the solution to the stationary NLS 
equation.

Definition 2.4. Consider a μ-scaled graph �μ with a boundary B . The DtN manifold is the set N ⊂ R|B| × R|B| of 
(p, q) such that there is a solution � ∈ H 2(�μ) of the following nonlinear boundary value problem:⎧⎪⎪⎨⎪⎪⎩

(−� + 1)� = 2|�|2�, on every e ∈ �μ,

� satisfies NK conditions for every v ∈ V \ B,

�(vj ) = pj , for every vj ∈ B,∑
e∼v ∂�e(vj ) = qj , for every vj ∈ B,

(2.13)

where ∂ denotes the outward derivative at the vertex vj ∈ B .
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In the same way that linear DtN map is intricately related to the scattering matrix, the DtN manifold is related to 
the nonlinear scattering map defined in [22]. Exploring this connection further lies outside the scope of this article.

2.3. An example of DtN manifold

We will now describe the nonlinear analogue of Example 2.2. To do so, let us briefly recall the structure of the 
solutions of the stationary NLS equation on the line given by

−�′′ + � = 2|�|2�. (2.14)

Equation (2.14) is translation- and phase-invariant. We will impose, for definiteness, the condition �′(0) = 0 and 
�(0) ∈ R, obtaining a list of real-valued solutions of the differential equation (2.14). All other real-valued solutions 
may be obtained from the listed ones by translations. More general complex-valued solutions also exist but they are 
beyond the scope of this work.

There are three constant solutions to (2.14): � = 0 and � = ± 1√
2

. There exists a H 2(R) solution called the NLS 
soliton:

�(z) = sech(z), x ∈ R. (2.15)

This solution separates two families of periodic wave solutions expressible in terms of Jacobian elliptic functions (see 
8.14 in [25]). These are the sign-indefinite cnoidal waves

�cn(z) = κ√
2κ2 − 1

cn

(
z√

2κ2 − 1
;κ

)
, κ ∈

(
1√
2
,1

)
(2.16)

and the sign-definite dnoidal waves

�dn(z) = 1√
2 − k2

dn

(
z√

2 − k2
; k

)
, k ∈ (0,1), (2.17)

where κ (corresp. k) is the elliptic modulus. These solutions are illustrated in Fig. 4.
The Jacobi real transformation implies that letting κ = 1/k in equation (2.16) transforms it into equation (2.17)

with k > 1 (see 8.153.5-6 in [25]). We will thus use the single analytic expression

�n(z) = 1√
2 − k2

dn

(
z√

2 − k2
; k

)
, k ∈ (0,

√
2) (2.18)

to describe the solutions (letter “n” can be interpreted as “noidal” or as referring to the Neumann-type condition 
�′(0) = 0). In particular, setting k = 1 reproduces the NLS soliton (2.15).

Example 2.5. Consider the simple graph of Example 2.2. The DtN manifold can be obtained by going through all real 
solutions of the second-order equation (2.14) on the interval [0, μ�] with zero derivative and variable initial value at 
z = 0. In other words, denoting L = μ�, we set

N� =
{(

�(L),�′(L)
) : −�′′ + � − 2�3 = 0, �′(0) = 0, �(0) ∈ R

}
. (2.19)

The DtN manifold is shown in Fig. 5 for L = 4. There are many peculiar and complex features, but we will concen-
trate on the three nearly straight parallel curves in the neighborhood of (0,0). The middle curve is tangential to the 
corresponding linear DtN map; the other two curves will allow us to construct stationary states localized on a single 
edge of the graph.

2.4. Nonlinear DtN manifold in the almost linear regime

Consider the nonlinear boundary value problem on a μ-scaled graph �μ with a boundary B ,⎧⎨⎩ (−� + 1)� = 2|�|2�, on every e ∈ �μ,

� satisfies NK conditions for every v ∈ V \ B,

�(v ) = p , for every v ∈ B.

(2.20)

j j j
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Fig. 4. Top: phase portrait for the second-order equation −�′′ + � − 2�3 = 0. Bottom: typical solutions with initial conditions �′(0) = 0 and, 
from left to right, �(0) = 0.98 (“dnoidal wave”), �(0) = 1 (“NLS soliton”) and �(0) = 1.02 (“cnoidal wave”).

We will establish the existence and uniqueness of small solutions of this boundary value problem in the limit μ → ∞
and for small boundary data p = (p1, . . . , p|B|) in Theorem 2.9 below. But first we discuss some helpful properties of 
such small solutions.

Lemma 2.6. Suppose � ∈ H 2(�μ) is a solution to the boundary-value problem (2.20) satisfying the uniform bound

|�(z)| < 1√
2

for all z ∈ �μ. (2.21)

Then |�| has no internal local maxima in �μ \B and the maximum of |�| is attained on B . If, additionally, all pj ≥ 0, 
then �(z) ≥ 0 for all z ∈ �μ.

Conversely, if the boundary values pj of a function � satisfy |pj | < 1√
2

and |�| has no internal local maxima in 
�μ \ B , the global bound (2.21) is satisfied.

Remark 2.7. The upper bound in (2.21) comes from the location of the rightmost fixed point in the phase portrait in 
Fig. 4.

Proof. If |�| has no internal local maxima on �μ \ B , the maximum of |�| is attained on the boundary B , since 
|�(z)| → 0 along the unbounded edges of �μ.

Since � satisfies (2.20), we can view it as a solution to (−� +V )� = 0 with V = 1 −2|�|2. By assumption, V > 0
and we can use a maximum principle in the form quoted in Appendix B, Lemma B.1 to conclude that max(�, 0) has 
no local maxima in �μ \ B . Similarly, max(−�, 0) has no local maxima.

If, additionally, all boundary values pj are non-negative and �(z) < 0 is achieved for some z ∈ �μ, the function �
must have a negative internal local minimum. Therefore |�| would have an internal local maximum, a possibility that 
we just ruled out. Hence, �(z) ≥ 0 for all z ∈ �μ if pj ≥ 0 for all j . �
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Fig. 5. Nonlinear DtN manifold (thicker line) for (2.19) with L = 4 plotted on top of the phase portrait from Fig. 4 (dashed and dotted lines).

We also prove a useful “reverse Sobolev estimate” which is so called because it goes in the reverse direction to the 
usual Sobolev-type estimates of L∞ norm in terms of a Sobolev norm. The “reverse” inequality becomes possible if 
we assume a priori that the function satisfies the stationary NLS equation and is sufficiently small.

Lemma 2.8. There exist c0, μ0 and C (which may depend on the graph �μ), such that every real solution � ∈ H 2(�μ)

of the stationary NLS equation −�′′ + � = 2|�|2� satisfying

|�(z)| < c0, z ∈ �μ, μ > μ0 (2.22)

also satisfies

‖�‖H 2(�μ) ≤ C‖�‖L∞(�μ). (2.23)

Lemma 2.8 follows from the corresponding inequality on every edge of the graph �μ, see Proposition D.2. The 
proof of Proposition D.2 is rather technical and is postponed to Appendix D.

We now formulate and prove the main result of this section.

Theorem 2.9. There are C0 > 0, p0 > 0 and μ0 > 0 such that for every p = (p1, . . . , p|B|) with ‖p‖ < p0 and every 
μ > μ0, there exists a solution � ∈ H 2(�μ) to the boundary-value problem (2.20) which is unique among functions 
satisfying the uniform bound (2.21).

The solution � satisfies the estimate

‖�‖H 2(�μ) ≤ C0‖p‖, (2.24)

while its Neumann data q = (q1, . . . , q|B|) := N (�) satisfies

|qj − djpj | ≤ C0

(
‖p‖e−μ�min + ‖p‖3

)
, 1 ≤ j ≤ |B|, (2.25)
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where dj is the degree of the j -th boundary vertex and �min is the length of the shortest edge in �. The Neumann data 
q is C1 with respect to p and μ. The partial derivatives satisfy the following estimates:∣∣∣∣∂qj

∂pi

− dj δij

∣∣∣∣ ≤ C0

(
e−μ�min + ‖p‖2

)
, 1 ≤ i, j ≤ |B|, (2.26)

and ∣∣∣∣∂qj

∂μ

∣∣∣∣ ≤ C0μ
−1‖p‖, 1 ≤ j ≤ |B|. (2.27)

Furthermore, if pj ≥ 0 for every j , then �(z) ≥ 0 for all z ∈ �.

Proof. For the nonlinear boundary value problem (2.20) we decompose

� = u + ψ, (2.28)

where u ∈ H 2(�μ) satisfies the linear boundary value problem (2.1) and ψ ∈ H 2(�μ) satisfies⎧⎪⎨⎪⎩
(−� + 1)ψ = 2|u + ψ |2(u + ψ), on every e ∈ �μ,

ψ satisfies NK conditions for every v ∈ V \ B,

ψ(vj ) = 0, for every vj ∈ B.

(2.29)

Let us denote by Dom(�D
μ ) ⊂ H 2(�μ) the domain of the Laplacian −� on the graph �μ with Dirichlet conditions at 

the boundary B (the rest of the vertices retain their NK conditions). This is a self-adjoint positive operator, therefore 
−� + 1 is invertible with (−� + 1)−1 bounded as an operator from L2(�μ) to H 2(�μ).

Since H 2(�μ) is a Banach algebra by an application of the Sobolev inequality (see Lemma 3.1 in [21] for the 
periodic graphs setting), the mapping T : Dom(�D

μ ) → Dom(�D
μ ) defined by

T : ψ �→ 2(−� + 1)−1|u + ψ |2(u + ψ) (2.30)

satisfies the estimates

‖T (ψ)‖H 2(�μ) ≤ C1‖u + ψ‖3
H 2(�μ)

, (2.31)

and

‖T (ψ1) − T (ψ2)‖H 2(�μ) ≤ C2

(
‖u + ψ1‖2

H 2(�μ)
+ ‖u + ψ2‖2

H 2(�μ)

)
‖ψ1 − ψ2‖H 2(�μ). (2.32)

The latter estimate follows from the elementary inequality

|a3 − b3| = |a − b||a2 + ab + b2| ≤ 3

2
|a − b|(a2 + b2)

as all functions in (2.30) are real.
It follows from Theorem 2.1 that ‖u‖

H2(�μ)
≤ C3‖p‖ < C3p0, hence, taking p0 small enough we obtain that T satis-

fies the conditions of the Contraction Mapping Principle (see Theorem C.1 in Appendix C) in the ball ‖ψ‖H 2(�μ) < p0. 

Using (C.2), this yields a unique solution ψ ∈ Dom(�D
μ ) as a fixed point of T satisfying the following estimate:

‖ψ‖H 2(�μ) ≤ C4‖u‖3
H 2(�μ)

≤ C5‖p‖3, (2.33)

for some p-independent C4, C5 > 0. These estimates, together with Theorem 2.1, immediately yield estimate (2.24)
for � = u + ψ .

In order to confirm that � satisfies the uniform bound (2.21), we use the classical Sobolev’s inequality (see, for 
example, [12, Lemma 1.3.8])

‖�‖L∞(0,L) ≤ C‖�‖H 2(0,L),

where C is independent of L as long as L > L0. Hence
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‖�‖L∞(�μ) ≤ C‖�‖H 2(�μ),

where constant C is independent of μ. Then, the bound (2.24) implies estimate (2.21).
In order to show that the small solution � with the given small boundary data p is unique, we use Lemma 2.6 to 

conclude that

‖�‖L∞(�μ) ≤ max
j

pj ≤ p0,

and then use Lemma 2.8 to get a bound on small ‖�‖H 2(�μ). We conclude that ψ := � − u is H 2-small which puts it 
into the domain of contraction of T . Uniqueness of ψ and hence of � then follows from uniqueness in the Contraction 
Mapping Principle.

The Neumann data for � is the sum of the Neumann data for u and the Neumann data for ψ . The former is bounded 
by (2.4). The latter is estimated using (2.33) and the continuity in H 2(�μ) of the Neumann trace. Combining the two 
estimates, we obtain (2.25).

We now apply Corollary C.4 to the mapping T defined in (2.30) to conclude that the fixed point ψ is C1 in 
u ∈ H 2(�μ). In turn, u ∈ H 2(�μ) is C1 in p because the boundary value problem (2.1) is linear in p. The derivative 
∂pi

u satisfies equation (2.1) with p = (δij )
b
j=1. By Theorem 2.1, we have

‖∂pi
u‖H 2(�μ) ≤ C5 and ∂pi

N (u)j = N
(
∂pi

u
)
j

= dj δij +O
(
e−μ�min

)
. (2.34)

To estimate the derivative of N (ψ) we differentiate equation (2.29) in pj (allowed since we already established 
smoothness in pj ), to obtain⎧⎪⎨⎪⎩

(−� + 1 − 6�2
)
∂pi

ψ = 6�2∂pi
u, on every e ∈ �μ,

∂pi
ψ satisfies NK conditions for every v ∈ V \ B,

∂pi
ψ(v) = 0, for every v ∈ B.

(2.35)

Taking small enough p0 we can ensure, see (2.24), that � is uniformly bounded on �μ by, say, 1/
√

12 and therefore

12�2(z) ≤ 1, z ∈ �μ. (2.36)

We can now apply Lemma 2.3 with ‖p‖ = 0, W = 6�2 and g = 6�2∂pi
u to estimate

‖N (∂pi
ψ)‖ ≤ C6‖�2∂pi

u‖L2(�μ) ≤ C7‖p‖2,

using our bounds on � and ∂pi
u, see (2.24) and (2.34). Combining this estimate with the derivative of N (u) in (2.34)

we obtain (2.26).
To establish smoothness of q in μ we have to overcome a technical difficulty. The Banach spaces H 2(�μ) and 

Dom(�D
μ ) containing u and ψ depend on the parameter μ. To circumvent this problem, we rescale

�(x) = μ�(μx), x ∈ �, (2.37)

and obtain the boundary value problem on the original graph �:⎧⎪⎨⎪⎩
(−� + μ2

)
� = 2|�|2�, on every e ∈ �,

� satisfies NK conditions, for every v ∈ V \ B,

�(vj ) = μpj , for every vj ∈ B.

(2.38)

We already established that there exists a unique solution � ∈ H 2
� to the boundary-value problem (2.38) for every 

μ > μ0. Moreover, bound (2.36) on � translates into the similar bound on �, namely

12�2(x) ≤ μ2, x ∈ �. (2.39)

We will now fix μ and reformulate (2.38) in a form where we can apply the Implicit Function Theorem (see Theo-
rem C.3). In particular, to get a mapping smooth in � (the Jacobian must be a bounded operator) we need to invert (−� + μ2

)
which means that we have to fix the boundary conditions first. Similarly to previous decomposition 

� = u +ψ , we decompose � = w +φ, where w(x) = μu(μx) satisfies the inhomogeneous boundary-value problem:
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⎧⎪⎨⎪⎩
(−� + μ2

)
w = 0, on every e ∈ �,

w satisfies NK conditions for every v ∈ V \ B,

w(vj ) = μpj , for every vj ∈ B.

(2.40)

The remainder φ belongs to H 2(�) with Dirichlet conditions at B and NK conditions elsewhere; we denote this space 
by Dom(�D) ⊂ H 2(�). Let F be the following mapping from X × Y := R1 × Dom(�D) to Z := Dom(�D):

F : (μ,φ) �→ φ − 2
(
−� + μ2

)−1 |w + φ|2(w + φ). (2.41)

Note that the map F in (2.41) can be derived from the map (2.30) after rescaling (2.37) and rewriting the fixed-point 
problem as the root-finding problem.

There exists a solution φ ∈ Dom(�D) given by φ(x) = μψ(μx), where ψ ∈ H 2(�μ) is the fixed point of T in 
(2.30). We check that the Jacobian DφF(μ, φ) has a bounded inverse. The Jacobian applied to h ∈ Dom(�D) is given 
by

DφF(μ,φ)h := h − 6
(
−� + μ2

)−1 |w + φ|2h, (2.42)

and solving DφF(μ, φ)h = g results in

h = g + 6
(
−� + μ2 − 6|w + φ|2

)−1 |w + φ|2g. (2.43)

The right-hand side is a bounded operator from Dom(�D) to Dom(�D) because of the bound (2.39). In addition, 
since w is C1 in μ as follows from (2.40), we have that F(μ, φ) is C1 in μ. By the Implicit Function Theorem 
(Theorem C.3), φ is C1 in μ, so that � = w + φ ∈ H 2

� is also C1 in μ.
Having proved smoothness of � ∈ H 2

� in μ, we can now differentiate equation (2.38) in μ, resulting in the following 
equation for �̂ := ∂μ�:⎧⎪⎨⎪⎩

(−� + μ2 − 6|�|2) �̂ + 2μ� = 0 on every e ∈ �,

�̂ satisfies NK conditions for every v ∈ V \ B,

�̂(vj ) = pj for every vj ∈ B.

(2.44)

We undo the rescaling (2.37) and introduce �̂(x) = �̂(μx) satisfying⎧⎪⎨⎪⎩
(−� + 1 − 6|�|2) �̂ + 2� = 0, on every e ∈ �μ,

�̂ satisfies NK conditions for every v ∈ V \ B,

�̂(vj ) = pj , for every vj ∈ B.

(2.45)

We are again in a position to apply Lemma 2.3, with W = 6|�|2 and g = −2�, obtaining from (2.10):∥∥N (
�̂

)∥∥ ≤ C8‖p‖. (2.46)

We unwind all rescalings, first q =N (�) = μ−2N (�) and then

∂q
∂μ

= 1

μ2N
(
∂μ�

) − 2

μ
q = 1

μ

(
N

(
�̂

) − 2q
)

.

Both terms in the brackets are bounded by ‖p‖, due to (2.46) and (2.25), resulting in (2.27). �
Remark 2.10. Applying Lemma 2.3 to (2.35) yields

‖∂pi
ψ‖L2(�μ) ≤ C‖�2∂pi

u‖L2(�μ) ≤ C‖p‖2.

Combining this with (2.34), we get for � = u + ψ and its rescaled version �,

‖∂pi
�‖L2(�μ) ≤ C, ‖∂pi

�‖L2(�) ≤ Cμ1/2. (2.47)

Similarly, it follows from (2.45) that
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‖�̂‖L2(�μ) ≤ C‖p‖, ‖∂μ�‖L2(�) ≤ Cμ−1/2‖p‖, (2.48)

where the constant C > 0 is independent of μ as μ → ∞.

Remark 2.11. The back-and-forth rescaling in the proof of Theorem 2.9 may seem superfluous, but there are limita-
tions to each setting. For example, we cannot differentiate � with respect to μ since the domain �μ of � depends on 
μ. On the other hand, the Jacobian (2.42) may not be bounded uniformly in H 2(�) as μ → ∞ since the H 2(�) norm 
of � grows fast in μ.

2.5. Single bump part of the DtN manifold of a Neumann edge

We now describe the part of the DtN manifold for the single edge of Example 2.5 that corresponds to single bump 
solutions.

Lemma 2.12. Consider the DtN manifold in (2.19) for the graph �μ consisting of a single edge [0, L] with L = μ�

under the Neumann condition at z = 0 and the boundary vertex at z = L. Parameterize �(0) ∈
(

1√
2
,∞

)
by

�(0) = 1√
2 − k2

, (2.49)

where k ∈ (0, 
√

2) is a parameter. There is an interval (k−, k+) such that a solution � in (2.18) satisfies

�(z) > 0, �′(z) < 0, z ∈ (0,L] (2.50)

if and only if k ∈ (k−, k+). The boundaries k± have the asymptotic expansion

k± = 1 ± 8e−2L +O
(
Le−4L

)
as L → ∞, (2.51)

while the boundary values of � are given asymptotically as L → ∞ by{
pL := �(L) = 2e−L − 1

4 (k − 1)eL +O
(
Le−3L

)
,

qL := �′(L) = −2e−L − 1
4 (k − 1)eL +O

(
Le−3L

)
,

(2.52)

where the correction terms denoted by O
(
Le−3L

)
are bounded in absolute value by CLe−3L for some constant C

which is independent of L and of k, provided k ∈ (k−, k+). Furthermore, the boundary values are C1 functions with 
respect to k and their derivatives are given asymptotically as L → ∞ by

∂pL

∂k
,
∂qL

∂k
= −1

4
eL +O

(
Le−L

)
. (2.53)

Remark 2.13. By definition of the interval (k−, k+) as the maximal set satisfying conditions (2.50), it is monotone in 
L, namely(

k−(L′), k+(L′)
) ⊂ (

k−(L), k+(L)
)

if L > L′.

Remark 2.14. Because k is exponentially close to 1 in (2.51), the two terms in the expansion of p and q in (2.52) are of 
the same order. These equations give a parametric description (the parameter being k) of a piece of DtN manifold as a 
line plus smaller order corrections. This line is shown in Fig. 6 by dotted line together with the “linear approximation” 
q = p from Theorem 2.9 shown on Fig. 6 by solid straight line. The part of the dotted line which corresponds to 
k ∈ (k−, k+) is shown on Fig. 6 by thick solid line.

Proof of Lemma 2.12. By using the exact solution (2.18) satisfying the initial condition (2.49), we obtain

pL = 1√
2 − k2

dn

(
L√

2 − k2
; k

)
, (2.54)

and
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Fig. 6. Nonlinear DtN manifold for a single interval of length L = 4 (solid curve) superimposed with the asymptotic approximations provided by 
equation (2.25) of Theorem 2.9 (solid straight line) and equations (2.52) of Lemma 2.12 (dotted straight line). Thick segment highlights the part of 
the dotted line corresponding to k ∈ (k−, k+) in equation (2.51).

qL = − k2

2 − k2 sn

(
L√

2 − k2
; k

)
cn

(
L√

2 − k2
; k

)
. (2.55)

Let us consider the case k < 1. It follows from the single-bump condition (2.50) that qL ≤ 0 if and only if

L ≤
√

2 − k2K(k),

where K(k) is the complete elliptic integral of the first kind. We will give a brief review of elliptic integrals in 
Appendix D. By using the asymptotic expansion (see 8.113 in [25])

K(k) = log

(
4√

1 − k2

)
+O

(
(1 − k2)| log(1 − k2)|

)
as k → 1, (2.56)

we verify that k− = 1 − 8e−2L +O(Le−4L) is an asymptotic solution to L = √
2 − k2K(k) in the limit L → ∞ and 

that the condition L ≤ √
2 − k2K(k) is satisfied for all k ∈ (k−, 1). By Proposition D.1, the asymptotic expansions 

(2.52) follow from expansion of (2.54) and (2.55) as k → 1 uniformly in k ∈ [k−, 1].
The case k > 1 is obtained similarly but the condition k ∈ [1, k+] appears from the requirement that pL ≥ 0 in the 

single-bump condition (2.50).
The asymptotic expansions for derivatives (2.53) follow from differentiation of (2.54) and (2.55) with respect to k

and substitution of the asymptotic results of Proposition D.1. �
3. Constructing the edge-localized stationary solutions

We now prove the existence of edge-localized solutions of the stationary NLS equation (1.2) in the limit � → −∞. 
We will match the single-bump parts of the DtN manifold on a single edge of the graph � with the almost linear parts 
of the DtN manifold on the remainder of the graph, henceforth denoted �c. The solution will then be small on �c

while it will be large and localized on the single edge of �.
The scaling transformation (2.37) transforms the stationary NLS equation (1.2) with � = −μ2 < 0 on the graph �

to the stationary NLS equation on the μ-scaled graph �μ,
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(−� + 1)� = 2|�|2�. (3.1)

� ∈ H 2
� is a solution of (1.2) if and only if � ∈ H 2

�μ
is a solution of (3.1). Throughout, we will use consistently that 

� (and �) are real valued. We shall now develop the asymptotic solution for � ∈ H 2
�μ

separately for the three types 
of edges on Fig. 1.

3.1. Pendant edge

Theorem 3.1. Let �μ be a graph with μ-scaled edge lengths and with a pendant edge of length L = μ� attached to 
the remainder of the graph, �c

μ, by a vertex v of degree N + 1, see Fig. 1(a). Then, for large enough μ, there is a 
unique solution � ∈ H 2

�μ
to the stationary NLS equation (3.1) with the following properties:

• the solution is strictly positive on the pendant edge and decreases monotonically from its maximum at the vertex 
of degree one to the attachment vertex v,

• it is positive and has no internal local maxima on the remainder graph �c
μ.

On the pendant edge, the solution is described by (2.18) with

k = 1 + 8
N − 1

N + 1
e−2μ� +O

(
e−2μ�−μ�min

)
, (3.2)

where �min is the length of the shortest edge in �c. The corresponding solution � ∈ H 2
� to the stationary NLS equation 

(1.2) with � = −μ2 on the original graph � concentrates on the pendant edge, so that

‖�‖2
L2(�c)

≤ Cμe−2μ�, (3.3)

whereas the mass and energy integrals Q :=Q(�) and E := E(�) in (1.3) are expanded asymptotically by

Q = μ − 8
N − 1

N + 1
μ2�e−2μ� +O

(
μe−2μ�

)
(3.4)

and

E = −1

3
μ3 +O

(
μ4e−2μ�

)
. (3.5)

The mass integral Q is a C1 increasing function of μ when μ is large.

Remark 3.2. Unless the graph �, which we assume to be connected, is a single interval, the degree of the attachment 
vertex v is N + 1 ≥ 2, that is, N ≥ 1. It is well-known that a vertex of degree 2 with NK conditions can be absorbed 
into the edge without affecting any solutions, while increasing effective edge length � and thus making our estimates 
sharper. Therefore, the result above is only useful with N ≥ 2. Still, it is valid for N = 1.

Proof. Let L = μ� be the length of the pendant edge on the μ-scaled graph �μ. All solutions � satisfying the desired 
properties in the pendant edge are described by Lemma 2.12 with k in the allowed region (k−, k+). On the other 
hand, given a small boundary value p on the attachment vertex v, there is a unique solution in � ∈ H 2(�c), which 
is described by Lemma 2.6 and Theorem 2.9. Matching two DtN manifolds in Theorem 2.9 and Lemma 2.12 at the 
attachment vertex v between the pendant edge and the graph �c

μ we get

p = pL, q = −qL. (3.6)

The above discussion shows that the solutions � with the desired properties are in one-to-one correspondence with the 
roots k of equation (3.6), where pL and qL are functions of k by Lemma 2.12 and q is a function of p via Theorem 2.9.

Since, by Lemma 2.12, the value pL at the vertex v of the pendant edge is exponentially small in the large parameter 
L, we are indeed justified in using Theorem 2.9 to conclude that q ≈ Np = NpL, where N is the degree of the 
attachment vertex v in the graph �c. More precisely, we have

−qL = NpL +R(pL,μ), (3.7)
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where by (2.25), (2.26) and (2.27), the remainder function R satisfies the bounds⎧⎨⎩
|R(p,μ)| ≤ C(pe−μ�min + p3),

|∂pR(p,μ)| ≤ C(e−μ�min + p2),

|∂μR(p,μ)| ≤ Cμ−1p,

(3.8)

for some C > 0 independently of large μ and small p. Here �min is the minimal edge length in �c, but naturally the 
estimate remains valid if we take �min to be the minimal edge length in the whole of �. For large enough μ and any k in 
the allowed region (k−, k+), it follows from (2.52) that 0 ≤ pL ≤ ce−μ� for some c > 0. Therefore, the absolute value 
of R(pL) (which depends on k) is uniformly bounded by C(e−μ(�+�min) + e−3μ�) ≤ Ce−μ(�+�min) because � ≥ �min.

For convenience we rescale the parameter k by substituting

k − 1 = 8e−2μ�x, x ∈ (x−, x+) (3.9)

with x± = ±1 +O
(
μe−2μ�

)
. Using the expansion (2.52) with L = μ� and the scaling (3.9), we can write

pL = 2e−μ�
[
1 − x +Rp(x,μ)

]
, (3.10)

where the remainder function Rp satisfies the bounds⎧⎨⎩
|Rp(x,μ)| ≤ Cμe−2μ�,

|∂xRp(x,μ)| ≤ Cμe−2μ�,

|∂μRp(x,μ)| ≤ Cμe−2μ�,

(3.11)

for some C > 0 independently of large μ and x ∈ (x−, x+). In order to derive (3.11) for the derivatives of Rp(x, μ), 
we use the chain rule and the estimates (2.52) and (2.53):

∂pL

∂x
= 8e−2μ� ∂pL

∂k
= −2e−μ�

[
1 +O(μe−2μ�)

]
= 2e−μ�

[−1 + ∂xRp(x,μ)
]

and
∂pL

∂μ
= �

∂pL

∂L
− 16�xe−2μ� ∂pL

∂k
= �qL − 2�x

∂pL

∂x
= −2�e−μ�

[
1 − x +O(μe−2μ�)

]
= −2e−μ�

[
�(1 − x +Rp(x,μ)) − ∂μRp(x,μ)

]
.

Similarly, we can write

qL = −2e−μ�
[
1 + x +Rq(x,μ)

]
, (3.12)

where the remainder function Rq satisfies the same bounds (3.11) as Rp . Upon substituting (3.9), (3.10), and (3.12)
into equation (3.7), we obtain

1 + x +Rq(x,μ) = N
[
1 − x +Rp(x,μ)

] + R̂(x,μ), (3.13)

where R(pL, μ) = 2e−μ�R̂(x, μ) and the new remainder term R̂ satisfies the bounds⎧⎪⎨⎪⎩
|R̂(x,μ)| ≤ Ce−μ�min ,

|∂xR̂(x,μ)| ≤ Ce−μ�min ,

|∂μR̂(x,μ)| ≤ C
(
μ−1 + e−μ�min

)
,

(3.14)

for some C > 0 independently of large μ and x ∈ (x−, x+). In order to derive (3.14), we have used the fact that 
μe−3μ� � e−μ(�+�min) because � ≥ �min, as well as the chain rule

∂R̂
∂x

= 1

2
eμ� ∂R

∂pL

∂pL

∂x
= [−1 + ∂xRp(x,μ)

] ∂R
∂pL

and

∂R̂ = �R̂+ 1
eμ� ∂R + 1

eμ� ∂R ∂pL
.

∂μ 2 ∂μ 2 ∂pL ∂μ
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Rearranging (3.13), we get

x = N − 1

N + 1
+ R̃(x,μ), (3.15)

where the remainder R̃ := 1
N+1 (R̂+ NRp −Rq) satisfies the bounds⎧⎨⎩

|R̃(x,μ)| ≤ C
(
e−μ�min + μe−2μ�

)
,

|∂xR̃(x,μ)| ≤ C
(
e−μ�min + μe−2μ�

)
,

|∂μR̃(x,μ)| ≤ C
(
μ−1 + e−μ�min + μe−2μ�

)
,

(3.16)

for some C > 0 independently of large μ and x ∈ (x−, x+). For large enough μ, the right-hand side of (3.15) maps the 
interval (x−, x+) into a subset of (x−, x+), moreover, the map is contractive in (x−, x+). By the Contraction Mapping 
Principle (see Theorem C.1), there exists a unique solution of the scalar equation (3.15) satisfying the estimate∣∣∣∣x − N − 1

N + 1

∣∣∣∣ ≤ C
(
e−μ�min + μe−2μ�

)
(3.17)

where the constant C > 0 is independent of μ for large μ. Since p = pL is expanded by (3.10), the estimate (3.2)
follows from (3.9) and (3.17). Since the scalar equation (3.15) is C1 in μ, Corollary C.4 implies that the root x in 
(3.17) is C1 in μ satisfying the estimate∣∣∣∣ dx

dμ

∣∣∣∣ ≤ C
(
μ−1 + e−μ�min + μe−2μ�

)
, (3.18)

where the constant C > 0 is independent of μ for large μ.
The estimate (3.3) follows from (2.24) with p = pL given by (3.10) and (3.17) and the scaling transformation 

(2.37).
We now turn to the expansion (3.4) for the mass Q := Q(�). Thanks to the scaling transformation (2.37) and the 

estimate (3.3), we can split the mass Q as follows:

Q = ‖�‖2
L2(0,�)

+ ‖�‖2
L2(�c)

= μ‖�‖2
L2(0,μ�)

+O(μe−2μ�), (3.19)

where the first term is needed to be computed up to the accuracy of the remainder term of the O(μe−2μ�) error. The 
first term in the splitting (3.19) is estimated from the explicit expression (2.18):

‖�‖2
L2(0,μ�)

= 1√
2 − k2

ξ0∫
0

dn(ξ ; k)2dξ

= 1√
2 − k2

K(k)∫
0

dn(ξ ; k)2dξ + 1√
2 − k2

ξ0∫
K(k)

dn(ξ ; k)2dξ, (3.20)

where ξ0 := μ�√
2−k2

< K(k) and K(k) is the complete elliptic integral of the first kind, see Appendix D. The second 

term of the decomposition (3.20) is estimated by∣∣∣∣∣∣∣
ξ0∫

K(k)

dn(ξ ; k)2dξ

∣∣∣∣∣∣∣ = O(e−2μ�), (3.21)

since ξ0 = μ� + O(μe−2μ�), k = 1 + O(e−2ξ0) by using (3.2) and dn(ξ ; k)2 = O(e−2ξ ) for every ξ ∈ (ξ0, K(k)) by 
applying Proposition D.1. By virtue of the estimate (3.21), the second term in (3.20) is comparable with the remainder 
term in (3.19) and is much smaller than the first term in (3.20). To estimate the first term in (3.20), we consider the 
case k < 1 (computations for k > 1 are similar). It follows from 8.114 in [25] for k < 1 and k → 1 that
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E(k) :=
K(k)∫
0

dn(ξ ; k)2dξ

= 1 + 1

2
(1 − k2)

[
log

4√
1 − k2

− 1

2

]
+O

(
(1 − k2)2| log(1 − k2)|

)
,

where E(k) is a complete elliptic integral of the second kind, see Appendix D. Therefore, we have

‖�‖2
L2(0,μ�)

= 1 − 1

2
(1 − k) log(1 − k) +O(e−2μ�)

= 1 − 8
N − 1

N + 1
μ�e−2μ� +O(e−2μ�), (3.22)

where the estimate (3.2) has been used. Combining (3.19), (3.20), (3.21), and (3.22) yields the expansion (3.4).
The differentiability of � ∈ H 2

� and k in μ implies that the map μ �→ Q is C1. In order to prove monotonicity of 
Q with respect to μ, we differentiate (3.19) in μ keeping in mind that the solution � (or its rescaled form �) depends 
on μ both directly and indirectly, via the parameters p and k, correspondingly. We have from (3.19):

dQ
dμ

= ‖�‖2
L2(0,μ�)

+ μ
d

dμ
‖�‖2

L2(0,μ�)
+ d

dμ
‖�‖2

L2(�c)
. (3.23)

The first term in (3.23) yields 1 +O(μe−2μ�) due to the estimate (3.22). The second term in (3.23) is estimated from 
the chain rule:

d

dμ
‖�‖2

L2(0,μ�)
=

(
∂

∂μ
+ ∂k

∂μ

∂

∂k

)
1√

2 − k2

ξ0∫
0

dn(ξ ; k)2dξ, (3.24)

where ξ0 := μ�√
2−k2

. It follows from (3.9) and (3.18) that∣∣∣∣ ∂k

∂μ

∣∣∣∣ ≤ Ce−2μ�.

Furthermore, recall that since ξ0 = μ�√
2−k2

= μ� + O(μe−2μ�), k = 1 + O(e−2ξ0), |dn(ξ ; k)| ≤ Ce−ξ , and 

|∂kdn(ξ ; k)| ≤ Ceξ . As a result, we obtain from (3.24) that∣∣∣∣ d

dμ
‖�‖2

L2(0,μ�)

∣∣∣∣ ≤ Cμe−2μ�.

The last term in (3.23) is estimated from another chain rule:

d

dμ
‖�‖2

L2(�c)
=

∫
�c

(
∂�

∂μ
+ dp

dμ

∂�

∂p

)
�dx, (3.25)

so that∣∣∣∣ d

dμ
‖�‖2

L2(�c)

∣∣∣∣ ≤ Cμe−2μ�,

by applying the estimates (2.47), (2.48), (3.3), (3.10), and (3.17). Combining all estimates together in (3.23), we obtain 
that

dQ
dμ

= 1 +O(μ2e−2μ�),

hence Q is monotonically increasing in μ.
Finally, we establish the expansion (3.5) for the energy E := E(�). By using the scaling (2.37), we split the energy 

E into two parts:
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E = ‖�′‖2
L2(0,�)

− ‖�‖4
L4(0,�)

+ ‖�′‖2
L2(�c)

− ‖�‖4
L4(�c)

= μ3
(
‖�′‖2

L2(0,μ�)
− ‖�‖4

L4(0,μ�)

)
+ o(1), (3.26)

where o(1) denote terms vanishing in the limit of μ → ∞ by applying the estimate (2.24) with |p| ≤ Ce−μ�. Using 
the exact solution (2.18), we estimate the expression in the bracket in (3.26):

‖�′‖2
L2(0,μ�)

− ‖�‖4
L4(0,μ�)

= 1

(2 − k2)3/2

ξ0∫
0

[
k4sn(ξ ; k)2cn(ξ ; k)2 − dn(ξ ; k)4

]
dξ, (3.27)

where ξ0 := μ�√
2−k2

= μ� +O(μe−2μ�). The estimate in Proposition D.1 with k = 1 +O(e−2μ�) from (3.2) gives that 

the remainder terms to the limiting hyperbolic functions in (D.5), (D.6), and (D.7) are as small as O(e−μ�) in the 
L∞(0, ξ0) norm, hence we obtain from (3.27) that

‖�′‖2
L2(0,μ�)

− ‖�‖4
L4(0,μ�)

=
ξ0∫

0

[
sech(ξ)2 tanh(ξ)2 − sech(ξ)4

]
dξ + o(1)

=
∞∫

0

[
sech(ξ)2 tanh(ξ)2 − sech(ξ)4

]
dξ + o(1)

= −1

3
+ o(1). (3.28)

Combining (3.26) and (3.28) yields E = − 1
3μ3 + o(1). Since � is a critical point of the augmented energy S�(U) :=

E(U) − �Q(U), it follows that Q and E satisfy the differential equation:

dE
d�

= �
dQ
d�

⇒ dE
dμ

= −μ2 dQ
dμ

. (3.29)

Since Q is C1 in μ, then E is C1 in μ. It follows from the balance of exponential terms in (3.4) and (3.29) that the 
remainder o(1) is given by O(μ4e−2μ�), which completes the proof of (3.5). �
3.2. Looping edge

Theorem 3.3. Let �μ be a graph with μ-scaled edge lengths and with a looping edge of length 2L = 2μ� attached 
to the remainder of the graph �c

μ by a vertex v of degree N + 2, see Fig. 1(b). Then, for large enough μ, there is a 
unique solution � ∈ H 2

�μ
to the stationary NLS equation (3.1) with the following properties:

• the solution is strictly positive on the looping edge and decreases monotonically from its maximum at the midpoint 
towards the attachment vertex v,

• it is positive and has no internal local maxima on the remainder graph �c
μ.

On the looping edge, the solution is described by (2.18) with the origin (maximum) located at the midpoint and with

k = 1 + 8
N − 2

N + 2
e−2μ� +O

(
e−2μ�−μ�min

)
(3.30)

where �min is the length of the shortest edge in �c. The corresponding solution � ∈ H 2
� to the stationary NLS equation 

(1.2) with � = −μ2 satisfies the concentration estimate

‖�‖2
L2(�c)

≤ Cμe−2μ�, (3.31)

whereas the mass and energy integrals Q :=Q(�) and E := E(�) in (1.3) are expanded asymptotically by
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Q = 2μ − 16
N − 2

N + 2
μ2�e−2μ� +O

(
μe−2μ�

)
, (3.32)

and

E = −2

3
μ3 +O

(
μ4e−2μ�

)
. (3.33)

The mass integral Q is a C1 increasing function of μ when μ is large.

Remark 3.4. The wave on the looping edge is dnoidal for N = 1 (since k < 1) and cnoidal for N ≥ 3 (since k > 1). 
Its character in the case N = 2 is undetermined since the first correction vanishes and our results do not provide 
higher order corrections. However, since neither solution changes sign on the edge due to the constraints (2.50) in 
Lemma 2.12, the difference between the cnoidal and dnoidal waves is largely irrelevant.

Similar issues have been observed in studies of both linear (for example, [16]) and nonlinear (for instance, [5, 
Example 2.4] or [30]) problems on graphs. In a vertex of degree 4 (or, more generally, a “balanced” vertex of even 
degree [16,30]), there is a possibility to form a solution by superposition of identical solutions, each living on a pair of 
edges, and attaining the same value on the vertex. Such a solution would not be affected if we cut through the vertex 
[13, Sec 3.1], separating it into two vertices of degree 2 and thus making the edge lengths effectively longer. This 
consideration affects resonance statistics of [16] and our asymptotic results in a very similar way.

Proof. Continuity of the solution at the attachment vertex v coupled with its single-bump character implies that we 
can restrict our search to the solutions symmetric on the looping edge. From the midpoint to the attachment vertex v, 
possible solutions are described by Lemma 2.12; all of them are exponentially small in L at v. Given a small boundary 
value p on the attachment vertex v, there is a unique solution � ∈ H 2(�c), which is described by Lemma 2.6 and 
Theorem 2.9. Therefore, all solutions in the prescribed class of functions are in one-to-one correspondence with 
solutions of the following equation from the NK conditions:

−2qL = NpL +R(pL,μ). (3.34)

This equation should be interpreted as an equation on k (through pL and qL that depends on k). This equation replaces 
equation (3.7) in the proof of Theorem 3.1. The rest of the proof is identical to the previous one with the change 
N �→ N/2 and the double factor in (3.32) and (3.33) compared to (3.4) and (3.5) because of the splitting

L2(�μ) = L2(−L,0) ⊕ L2(0,L) ⊕ L2(�c). (3.35)

Monotonicity of Q is established by a similar expansion of the derivative resulting in dQ
dμ

= 2 +O(μ2e−2μ�). �
3.3. Internal edge

We finally arrive to the “generic” type of edge: an edge which connects two distinct vertices of degree larger than 
two. We call such edges internal.

Theorem 3.5. Let �μ be a graph with μ-scaled edge lengths and with a internal edge e connecting vertices v− and v+
of degrees N− +1 ≥ 3 and N+ +1 ≥ 3 correspondingly, see Fig. 1(c). Identify the edge e with the interval [−μ�, μ�], 
so that the length of e is 2μ�. Introduce the notation

a∗ = 1

2
tanh−1

(
N− − N+
N+N− − 1

)
, (3.36)

and let (−a0, a0) be an arbitrary interval containing a∗.
Then, for large enough μ, there is a unique solution � ∈ H 2

�μ
to the stationary NLS equation (3.1) with the 

following properties:

• on the internal edge e the solution is strictly positive and achieves its maximum in the interval [−a0, a0]; it 
decreases monotonically from its maximum towards the attachment vertex v,

• on the remainder graph �c
μ the solution is positive and has no internal local maxima.
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Fig. 7. A localized solution localized on a internal edge for N− = 3 and N+ = 2. The maximum of the solution is shifted to the right of the edge 
midpoint at the displacement a.

On the internal edge, the solution is described by

�(z) = 1√
2 − k2

dn

(
z − a√
2 − k2

; k
)

, z ∈ [−μ�,μ�], (3.37)

where

a = a∗ +O
(
e−μ�min

)
, (3.38)

and

k = 1 + 8

√
N− − 1

N− + 1

√
N+ − 1

N+ + 1
e−2μ� +O

(
e−2μ�−μ�min

)
, (3.39)

where �min is the length of the shortest edge in �c. The corresponding solution � ∈ H 2
� to the stationary NLS equation 

(1.2) with � = −μ2 on the original graph � concentrates on the internal edge, so that

‖�‖2
L2(�c)

≤ Cμe−2μ�, (3.40)

whereas the mass and energy integrals Q :=Q(�) and E := E(�) in (1.3) are expanded asymptotically by

Q = 2μ − 16

√
N− − 1

N− + 1

√
N+ − 1

N+ + 1
μ2�e−2μ� +O

(
μe−2μ�

)
, (3.41)

and

E = −2

3
μ3 +O

(
μ4e−2μ�

)
. (3.42)

The mass integral Q is a C1 increasing function of μ when μ is large.

Remark 3.6. Similar to Remark 3.2, estimate (3.41) should also remain valid in the case N− = 1 (or N+ = 1). Of 
course, if N− = 1, then v− is a “spurious” vertex which can be absorbed into the edge thus increasing the length � and 
producing a better estimate.

Proof. Denote by a the location of the maximum of the solution on the internal edge [−μ�, μ�] as in Fig. 7. The 
distance from the vertex v− to the maximum is μ� + a and from the maximum to vertex v+ is μ� − a. Assume that a
is defined in an μ-independent interval [−a0, a0] for a large a0 > 0. Assume the degree of v− is N− + 1 and degree 
of v+ is N+ + 1, with N± ≥ 2 and, without loss of generality, N− ≥ N+.

We will now find a and k such that there is a solution of the form �n(z−a) on the marked edge, see equation (2.18). 
The distance from the maximum at a to either vertex is of order μ. Therefore the solution on both sides of the 
maximum satisfies the setting of Lemma 2.12 with the shared value of k in the smaller of the two allowed regions, see 
Remark 2.13. Solution values pμ�±a on the vertices are exponentially small, 0 ≤ pμ�±a ≤ C±e−μ� for a ∈ (−a0, a0)

with μ-independent constants C± > 0. Therefore we can apply Theorem 2.9 resulting in the matching conditions{
−qμ�+a = N−pμ�+a +R−(pμ�+a,μ),

−qμ�−a = N+pμ�−a +R+(pμ�−a,μ),
(3.43)

where the remainder terms satisfy the bounds
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⎧⎨⎩
|R±(pμ�±a,μ)| ≤ C(pμ�±ae

−μ�min + p3
μ�±a),

|∂pμ�±a
R±(pμ�±a,μ)| ≤ C(e−μ�min + p2

μ�±a),

|∂μR±(pμ�±a,μ)| ≤ Cμ−1pμ�±a,

(3.44)

for some C > 0 independently of large μ and small p, similarly to the estimates (3.8). As before, solutions to (3.43)
are in one-to-one correspondence with solutions � of the NLS with the desired properties.

For convenience we rescale parameter k by substituting

k − 1 = 8e−2μ�x, x ∈ (x−, x+) x± = ±e−2a0 +O
(
μe−2μ�

)
. (3.45)

Using equations (2.52) with L = μ� ± a and scaling (3.45), we can write⎧⎨⎩pμ�±a = 2e−(μ�±a)
[
1 − xe±2a +R±

p (x, a,μ)
]
,

qμ�±a = −2e−(μ�±a)
[
1 + xe±2a +R±

q (x, a,μ)
]
,

(3.46)

where R±
p (x, a, μ) and R±

q (x, a, μ) satisfy the same estimates as in (3.11) for every a ∈ (−a0, a0) and x ∈ (x−, x+)

and an additional estimate due to the additional parameter a:

|∂aR±
p (x,μ)| ≤ Cμe−2μ�, (3.47)

for some C > 0 independently of large μ with a ∈ (−a0, a0) and x ∈ (x−, x+). This estimate comes from

∂pμ�±a

∂a
= ±qμ�±a

and (3.46), which gives

∂R±
p

∂a
= ±

(
R±

p −R±
q

)
and thus gives (3.47). Substituting (3.45) and (3.46) into (3.43) yields{

(1 − N−)e−a + x(1 + N−)ea = R̃−(x, a,μ),

(1 − N+)ea + x(1 + N+)e−a = R̃+(x, a,μ),
(3.48)

which is similar to (3.15) and where the remainder terms R̃±(x, a, μ) and their derivatives in x, a, and μ satisfy 
estimates similar to the bounds (3.16) with |∂aR̃±| ≤ C|R̃±|.

Next, we prove that there is a solution to the system (3.48) in the neighborhood of the point

a∗ = 1

2
tanh−1

(
N− − N+
N+N− − 1

)
, x∗ =

√
N− − 1

N− + 1

√
N+ − 1

N+ + 1
, (3.49)

which are the solutions of system (3.48) with R̃±(x, a, μ) ≡ 0. It can be easily seen that both tanh−1 and square roots 
are well-defined for N± ≥ 2. Also, a∗ ∈ (−a0, a0) for a sufficiently large fixed a0 > 0, whereas a neighborhood of x∗
belongs to the allowed region (x−, x+) for large enough μ because

e−2|a∗| =
√

(N+ − 1)(N− + 1)

(N− − 1)(N+ + 1)
> x∗.

Applying the inverse of the (nonlinear) left-hand side of (3.48) to the right-hand side turns the system into a fixed-
point problem. The map of the fixed-point problem is contractive in (x−, x+) ×(−a0, a0). By the Contraction Mapping 
Principle (see Theorem C.1), there exists a unique solution of the system of two nonlinear equations (3.48) satisfying 
the estimate

a = a∗ +O
(
e−μ�min

)
, x = x∗ +O

(
e−μ�min

)
, (3.50)

thus obtaining (3.38) and (3.39). Since 0 ≤ pμ�±a ≤ C±e−μ� for a ∈ (−a0, a0) and x ∈ (x−, x+), the estimate (3.40)
follows from (2.24) and the scaling transformation (2.37). In order to prove the expansion (3.41), we partition
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‖�‖2
L2(�μ)

= ‖�‖2
L2(−μ�,a)

+ ‖�‖2
L2(a,μ�)

+ ‖�‖2
L2(�c)

. (3.51)

Each of the two leading-order integrals in (3.51) is expanded similarly to (3.20), after which the expansion (3.22) with 
(3.39) yields (3.41). The expansion (3.42) is derived from a decomposition similar to (3.51). Furthermore, in a similar 
fashion, the derivative of Q may be estimated as dQ

dμ
= 2 +O(μ2e−2μ�) establishing monotonicity of Q. �

4. Search for the edge-localized state with smallest energy

The ground state of the constrained minimization problem (1.4) with fixed mass q , when it exists, has the following 
properties

Proposition 4.1. Let � ∈ H 1
� be the ground state of the constrained minimization problem (1.4). Then

(1) � is real and positive (up to a non-zero factor),
(2) � ∈ H 2

� and is a solution to the stationary NLS equation (1.2) with some � ∈R,
(3) � is “non-oscillatory” on every edge e of the graph: the number of preimages of any value φ ∈ R in the open 

edge e does not exceed 2,

#{x ∈ e : �(x) = φ} ≤ 2. (4.1)

Proof. The first two properties are established in [5, Proposition 3.3]. The last property is a consequence of the Polya–
Szegö inequality (see [5, Proposition 3.1]). Informally, if (4.1) is violated, we can rearrange the function � ∈ H 1

� in a 
way that lowers energy while conserving the mass.

To give full details, if (4.1) is violated, one can find an interval (φ−, φ+) of values with 3 or more preimages. 
Starting with φ, we can easily show this by considering three cases: all preimages of φ are local extrema, none of 
preimages of φ are local extrema, and at least one is a local extremum and at least one is not.

Without loss of generality (and passing to a smaller interval if necessary) we can assume that �(u) < φ− and 
�(v) /∈ (φ−, φ+), where e = (u, v). There are now two cases to consider, �(v) > φ+ and �(v) < φ−, shown on the 
top left and bottom left panels of Fig. 8 respectively.

In the former case, we rearrange the function � on the edge e by first collecting together all open intervals where 
� < φ− (preserving their relative order in the edge e). Then we collect all pre-images of the interval (φ−, φ+) and, 
finally, all open intervals where � > φ+, see Fig. 8 (top right). It is easy to see that the resulting function is continuous 
(in particular, its values on the vertices u and v are unchanged) and piecewise differentiable, thus an admissible H 1

�

test function. Applying monotone rearrangement to the middle part (pre-images of the interval (φ−, φ+)) we obtain 
an equimeasurable with � function with a smaller derivative and therefore strictly smaller energy for the same mass.

In the latter case (both �(u) < φ− and �(v) < φ−), we retain the first interval of �−1(−∞, φ−), then place 
all preimages of (φ−, ∞), then all remaining preimages of (−∞, φ−). As before, we obtain an admissible H 1(�)

function, see Fig. 8 (bottom right). We apply symmetric rearrangement to its middle part (preimages of (φ−, ∞)) 
which has at least 2 preimages for all values and at least 3 for values in (φ−, φ+). Therefore the energy becomes 
strictly smaller. �

The edge-localized states constructed in Theorems 3.1, 3.3, and 3.5 satisfy the properties listed in Proposition 4.1
and are therefore good candidates for the ground state. Moreover, by an application of Lemma 2.6, each edge-localized 
state has a unique maximum, which is also suggestive of a ground state. (There is currently no proof that a ground 
state must have unique maximum on the whole graph.)

It is therefore relevant to ask what characterizes an edge that would support a localized solution � ∈ H 2
� with the 

smallest energy Eq for a given mass q . This is not straightforward since we have expressions for both energy and 
mass as functions of the Lagrange multiplier � = −μ2, which now needs to be eliminated. Additionally, in many 
cases the asymptotic representations of Q and E as μ → ∞ differ only in the exponentially-small correction to the 
leading term.

Section 4.1 provides a tool that will enable comparison of the energy E = E(�) for a given mass Q(�) = q based 
on comparison of mass and energy for given Lagrange multiplier �. Section 4.2 applies the tool to distinguish between 
the pendant, looping, and internal edges of different lengths and to provide the proof of Theorem 1.2 in the case of 
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Fig. 8. Two cases of the function � (left column) and their corresponding preliminary rearrangements (right column) described in the proof of 
Proposition 4.1.

bounded graphs. Corollary 1.3 is proven in Section 4.3 for the case of unbounded graphs. Section 4.4 discusses the 
relevance of the edge-localized states in the search for the ground state.

4.1. Comparison lemma

Let � ∈ H 2
� be a solution to the stationary NLS equation (1.2) with the Lagrange multiplier � and define Q :=

Q(�) and E := E(�) by (1.3). Since � is a critical point of the augmented energy S�(U) := E(U) − �Q(U), it 
follows that Q and E satisfy the differential equation

dE
d�

= �
dQ
d�

, (4.2)

provided they are C1 in �. The following comparison lemma is deduced from analysis of the differential equation 
(4.2).

Lemma 4.2. Assume that there are two solution branches with the C1 maps � �→ Q1,2(�) and � �→ E1,2(�), where 
� ∈ (−∞, �0) for some �0 < 0, satisfying

lim
�→−∞|�| |Q2(�) −Q1(�)| = 0 (4.3)

and

lim
�→−∞|E2(�) − E1(�)| = 0. (4.4)

If Q1(�) < Q2(�) for every � ∈ (−∞, �0), then E1(�) > E2(�). If, additionally, Q1,2 are decreasing on (−∞, �0)

and the values �1, �2 ∈ (−∞, �0) are such that Q2(�2) = Q1(�1) = q , then E1(�1) > E2(�2).

Proof. Integrating equation (4.2) by parts we get

E1(�) − E2(�) =
�∫

d

ds
[E1(s) − E2(s)]ds
−∞
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Fig. 9. Schematic diagram of the maps � �→Q1,2 in Lemma 4.2.

=
�∫

−∞
s

d

ds
[Q1(s) −Q2(s)]ds

= � [Q1(�) −Q2(�)] −
�∫

−∞
[Q1(s) −Q2(s)]ds, (4.5)

where the boundary terms as � → −∞ vanish due to (4.3) and (4.4). If Q1(�) < Q2(�) for every � ∈ (−∞, �0)

with negative �0, then the right-hand side of (4.5) is strictly positive and E1(�) > E2(�) for every � ∈ (−∞, �0).
In order to prove the second assertion, we observe the following. It follows from Q1(�) < Q2(�) for every 

� ∈ (−∞, �0) that if Q2(�2) = Q1(�1) = q , then �1 < �2, see Fig. 9. We can now expand

E1(�1) − E2(�2) = E1(�1) − E2(�1) + E2(�1) − E2(�2).

Using (4.5) we can estimate

E1(�1) − E2(�1) > �1 [Q1(�1) −Q2(�1)] .

We also have

E2(�1) − E2(�2) = −
�2∫

�1

dE2

ds
ds

= −
�2∫

�1

s
dQ2

ds
ds

= �1Q2(�1) − �2Q2(�2) +
�2∫

�1

Q2(s)ds.

Combining the two expressions and denoting Q2(�2) = Q1(�1) = q we get

E1(�1) − E2(�2) > �1Q1(�1) − �2Q2(�2) +
�2∫

�1

Q2(s)ds

= −(�2 − �1)q +
�2∫
Q2(s)ds
�1
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=
�2∫

�1

(Q2(s) − q)ds.

Since Q2 is decreasing on (−∞, �0), we have Q2(�) ≥ Q2(�2) = q for every � ∈ (�1, �2), see Fig. 9, so that the 
previous expression implies that E1(�1) − E2(�2) > 0. �
Remark 4.3. Lemma 4.2 presents a surprising fact that if two C1 monotonic maps � �→Q1,2 for the two branches of 
the edge-localized states converge to each other, then the stationary state with the minimal Q for fixed (large negative) 
Lagrange multiplier � corresponds to the maximal E for fixed (large positive) mass q . Because of a trivial sign error, 
the swap between the two branches of stationary solutions on the (�, Q) and (Q, E) diagrams was overlooked in [33]
for the particular case of the dumbbell graph.

4.2. Proof of Theorem 1.2

Consider a compact graph �, i.e. a graph with finitely many edges, each of finite length. We will deduce which 
edge of the graph � gives an edge-localized state of smallest energy E for a given (large) mass Q providing the proof 
of Theorem 1.2.

The first comparison is between a pendant and a non-pendant (looping or internal) edge. For a pendant edge, 
Theorem 3.1 gives, to the leading term,

Q ∼ μ, E ∼ −1

3
μ3, ⇒ Ep ∼ −1

3
Q3, (4.6)

whereas for a non-pendant edge, Theorems 3.3 and 3.5 give, to the leading term,

Q ∼ 2μ, E ∼ −2

3
μ3, ⇒ Enp ∼ − 1

12
Q3 > Ep. (4.7)

Therefore, for a given mass Q, localizing on a pendant edge of any length is preferable to localizing on a non-pendant 
edge.

For comparing similar edges, we can apply Lemma 4.2 where the assumptions (4.3), (4.4), and the monotonicity 
of the map � �→Q have been verified in Theorems 3.1, 3.3, and 3.5.

Comparing two pendant edges via equation (3.4), we see from the exponentially small term that the state localized 
on a longer pendant edge has larger mass Q for fixed μ. Hence, by Lemma 4.2, it has smaller E at fixed mass Q. If 
two edges have the same length, the pendant edge incident to fewer edges is more energetically optimal.

Comparing two non-pendant edges via equations (3.32) and (3.41) we see that the looping edges incident to N = 1
or 2 edges are energetically favorable since Q > 2μ for N = 1 or Q ≈ 2μ for N = 2, whereas Q < 2μ for a looping 
edge with N ≥ 3 or an internal edge. Moreover, the shorter looping edge with N = 1 has smaller energy E at fixed mass 
Q. No conclusion on the lengths can be drawn for the looping edge with N = 2 unless the higher-order exponentially 
small correction is computed and analyzed.

For the looping edge incident to N ≥ 3 edges and for the internal edges, we can see from equations (3.32) and 
(3.41) that the length of the edge is the primary factor (the longer the edge, the lower the energy). To break a tie in the 
case of two edges of the same length the energy is lowest on the edge with the smaller

N − 2

N + 2
or

√
N− − 1

N− + 1

√
N+ − 1

N+ + 1
. (4.8)

Combining all comparisons together provides the proof of Theorem 1.2.

4.3. Proof of Corollary 1.3

Consider an unbounded graph � with finitely many edges and finitely many vertices such that at least one edge as 
a half-line. By [6, Corollary 3.4], if there exists a stationary state with energy E satisfying

E ≤ − 1 Q3 (4.9)

12
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for a given mass, then there exists a ground state in the constrained minimization problem (1.4). The energy level 
E = − 1

12Q3 is the energy of the NLS soliton (2.15) after scaling (2.37) on the infinite line.
In the case of a pendant, the criterion (4.9) is always satisfied thanks to the estimate (4.6), in agreement with [6, 

Proposition 4.1]. If no pendant edges are present in the graph �, the criterion (4.9) can be restated with the help of the 
comparison lemma (Lemma 4.2) as follows. If there exists an edge-localized state with mass Q satisfying

Q ≥ 2μ (4.10)

for a given Lagrange multiplier � = −μ2, then there exists a ground state on the graph �.
By virtue of the estimates (3.32) and (3.41), the criterion (4.10) is satisfied for the edge-localized state on the 

looping edge incident to N = 1 edge since Q > 2μ and is definitely not satisfied for the edge-localized states on the 
looping edge incident to N ≥ 3 edges or on the internal edge since Q < 2μ. The case of the looping edge incident to 
N = 2 edges is borderline since Q ≈ 2μ and no conclusion can be drawn without further estimates.

Comparison between masses of edge-localized states on the pendant edges of different lengths or on the looping 
edges incident to N = 1 edge of different lengths is the same as in the case of bounded graphs.

4.4. Searching for the ground state

In this section we outline some heuristic arguments why the edge-localized states should be the only candidates 
for the ground state. Making these arguments mathematically precise remains a challenging open question of high 
priority.

The condition of being positive and non-oscillatory (see Proposition 4.1) on a long edge of the rescaled graph �μ

imposes restrictions on the solutions � to equation (2.14). On every edge e they must be either identically constant 
or to be close to a portion of the shifted sech-solution (2.15) on every interval between a local maximum and a local 
minimum on the edge e.

Considering only the second possibility, and ignoring all parts of the graph where the solution falls below the small 
value p0 from Theorem 2.9, we can break the solution into M portions of half-sech solutions. The mass and energy 
of these portions are given at the leading-order by

Q ∼ Mμ, E ∼ −M

3
μ3, (4.11)

so that

Eg ∼ − 1

3M2Q
3. (4.12)

We conclude that any value of M above 2 results in a worse energy than that achievable by any edge-localized state, 
see equations (4.6) and (4.7). But the value M = 1 is only possible when the maximum is achieved on a vertex of 
degree 1 (i.e. a pendant edge) and the value M = 2 corresponds to a single point of maximum. This means that the 
solution localizes on a single edge. (A solution localizing on two pendant edges would also result in M = 2, but they 
have larger energy compared to the solution localizing on one of the pendants.)

5. Numerical examples

We now discuss in detail the graph � of Fig. 2 and its edge-localized states. The graph � consists of two identical 
side loops and three identical internal edges connected at a single vertex of each loop. This corresponds to the case 
(iv) of Theorem 1.2.

Let us generalize the graph � with two side loops and K internal edges. For any stationary state � ∈ H 2
� of the 

stationary NLS equation (1.2) centered on one of the K internal edges, Theorem 3.5 with N− = N+ = K + 1 implies 
that the mass integral Qint := Q(�) in (1.3) is expanded asymptotically as μ → ∞ in the form:

Qint = 2μ − 16K

K + 2
μ2�0e

−2μ�0 +O
(
μe−2μ�0

)
, (5.1)

where μ := |�|1/2 and �0 is the half-length of each internal edge. On the other hand, for any stationary state � ∈ H 2
�

centered at one of the two side loops, Theorem 3.3 with N = K implies that the mass integral Qloop := Q(�) in (1.3)
is expanded asymptotically as μ → ∞ in the form:
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Fig. 10. Stationary states for the dumbbell graph with two loops and three internal edges shown on Fig. 2, where the internal edges are shorter 
relative to the loops (edge length is π and loop lengths is 2π ). We plot (top left) Mass Q vs �; (top right) Energy E vs �; (bottom left) E versus 
Q; and (bottom right) the blow-up of the previous graph. The black (—) (color online) line shows the loop-centered state, the green dashed (−−) 
(color online) line shows the edge-centered state, and the dashed-dotted blue ( -.-) line (color online) shows the constant state from which the loop-
centered state bifurcates. The dashed red ( −−) lines show the state bifurcating off the constant state along the second eigenfunction (concentrated 
on two edges) and undergoing a pitchfork bifurcation as in [23].

Qloop = 2μ − 16(K − 2)

K + 2
μ2�∗e−2μ�∗ +O

(
μe−2μ�∗

)
, (5.2)

where �∗ is the half-length of the side loop.
It is clear from comparing (5.1) and (5.2) with K = 3 that the lengths �0 and �∗ determine the state with smaller 

energy. The loop-centered state has smaller energy for large mass when the internal edges are short relative to the 
loops and the internal edge-centered state has smaller energy for large mass when the internal edges are long relative 
to the loops. The former case is illustrated in Fig. 10 (with 2�0 = π and 2�∗ = 2π ) and the latter case is shown in 
Fig. 11 (with 2�0 = 4π and 2�∗ = 2π ).

In addition to plotting the branches of loop-localized and edge-localized states we also show the branches of other 
states bifurcating off the constant solution. The edge-localized states were found for large mass by using Petviashvili’s 
method, see [42] and [39], then continued to small mass. The constant solution and its bifurcations were constructed 
by using an arclength parametrization, see [23] based on [34]. In both cases, the constant state is the ground state 
for small mass [15] which undertakes two bifurcations considered in [33] and [23]. After the first bifurcation, the 
loop-centered state becomes the state with smaller energy and it remains such for every larger mass if the loop is long 
relative to the internal edge (Fig. 10). On the other hand, for long internal edges relative to the loops, the edge-centered 
state has the smaller energy for very large mass (Fig. 11).

Figs. 2, 10 and 11 all solve the stationary NLS equation (1.2) approximated numerically using the quantum graphs 
software package by R. Goodman [24].
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Fig. 11. The same as Fig. 10 but such that the three internal edges are now longer relative to the loops (edge length is 4π and loop lengths is 2π ). A 
switch has occurred so that the edge-centered state has smaller energy in the large mass limit. The dashed red (−−) line shows the state undertaking 
the pitchfork bifurcation with the edge-centered state. In this case, the edge-centered state bifurcates directly from the constant state.

5.1. Other examples of dumbbell graphs

The case on one internal edge corresponds to the canonical dumbbell graph considered in [33] and [23]. It corre-
sponds to the case (ii) of Theorem 1.2. It follows from (5.1) and (5.2) with K = 1 that Qint < 2|�|1/2 < Qloop. By the 
comparison lemma (Lemma 4.2), the loop-centered state has a smaller energy E at a fixed large mass Q independently 
of lengths of the edges and loops. We reiterate here that the opposite incorrect conclusion was reported in [33] because 
of a trivial sign error, however, the fact that the edge-localized state cannot be the ground state for the dumbbell graph 
can be shown with the technique of energy-decreasing symmetric rearrangements from [5].

The same conclusion holds for the dumbbell graph with two internal edges, since expansions (5.1) and (5.2) with 
K = 2 imply Qint < 2|�|1/2 ≈ Qloop. This example corresponds to the case (iii) of Theorem 1.2. Hence the loop-
centered state has a smaller energy at a fixed large mass independently of lengths of the loops and the edges.

For the dumbbell graphs with more than three internal edges, K > 3, the comparison is similar to Figs. 10 and 11
for K = 3. The longest of the internal edges or loops is selected for the edge-localized state of smaller energy at fixed 
large mass. The dumbbell graphs with K ≥ 3 corresponds to the case (iv) of Theorem 1.2.

5.2. Example of the tadpole graphs

As a particular unbounded graph, we consider a tadpole graph with a single loop connected at one vertex point with 
K ≥ 1 half-lines, see Fig. 12(a) for an example. There is only one edge of a finite length with reflection symmetry.

The case K = 1 corresponds to the canonical tadpole graph considered in [37] and in [6]. Since Qloop > 2μ in 
this case, Corollary 1.3 states that there exists a ground state. The loop-centered state is a proper candidate for the 
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Fig. 12. Example graphs considered in Sections 5.2 (a) and 5.3 (b).

ground state. Indeed, it was proven in [6], see Corollary 3.4 and Fig. 4 of [6], by using energy-decreasing symmetry 
rearrangements that the loop-centered states if the ground state of the tadpole graph.

For the case K = 2, Corollary 1.3 is inconclusive because Qloop ≈ 2μ. However, this is an exceptional case, for 
which the tadpole graph with two half-lines can be unfolded to an infinite line, for which the NLS soliton is a valid 
stationary state with Qloop = 2μ. This loop-centered state is the ground state for any value of Q, see Example 2.4 and 
Fig. 3 of [5] and Fig. 1 of [6].

For K ≥ 3, we have Qloop < 2μ and the loop-centered state is not a proper candidate for the ground state by 
Corollary 1.3. Indeed, there is no ground state according to Theorem 2.5 of [5].

5.3. Example of a periodic graph

Here we consider the periodic graphs [18,21,40,41], the basic cell of which consists of one internal edge and one 
loop repeated periodically, see Fig. 12(b). We will use the convention that a connecting edge is of length 2�0 and the 
loop components of length 2�∗ (for a total loop length of 4�∗). Existence of stationary states pinned to the symmetry 
points of the internal edge and the two halves of the loop was proven in the small-mass limit in Theorem 1.1 in [41]. 
Characterization of stationary states as critical points of a certain variational problem was developed in Theorem 3.1 
in [40]. Existence of the ground state at every mass was proven for the periodic graph in [18] without elaborating the 
symmetry of the ground state.

This example of the periodic graph is beyond validity of the variational theory in [6,7] or the comparison theory 
in our Corollary 1.3. However, the estimates of Section 3, in particular equation (3.41), hold without any changes and 
this allows us to compare the energy of different edge-localized states on the internal edge and the half-loop. It follows 
from (3.41) that the edge-localized state at the internal edge has the mass Qint given by

Qint = 2μ − 16

3
μ2�0e

−2μ�0 +O
(
μe−2μ�0

)
, (5.3)

where �0 is the half-length of the internal edge, whereas the edge-localized state at the half-loop has the mass Qloop

given by

Qloop = 2μ − 16

3
μ2�∗e−2μ�∗ +O

(
μe−2μ�∗

)
, (5.4)

where �∗ is the quarter-length of the loop. Comparing (5.3) and (5.4) yields that Qint < Qloop if �0 < �∗ and Qint >

Qloop if �0 > �∗. By the Comparison Lemma (Lemma 4.2), the loop-centered state has smaller energy if �0 < �∗ and 
the edge-centered state has larger energy if �0 > �∗, hence the state of smaller energy localizes at the longer edge. The 
symmetric case �∗ = �0 is not conclusive because Qint ≈ Qloop and computations of the higher-order exponentially 
small terms are needed.

Fig. 13 shows results of numerical computations of stationary states on the periodic graph with a loop of length 
4�∗ = π and a horizontal edge of length 2�0. If �0 = 4π > �∗, the state of smaller energy is centered at the hor-
izontal edge (top panels). If �0 = π/8 < �∗, the state of smaller energy is centered at the half-loop, as predicted 
above.

In order to compute the stationary solutions on a periodic graph, we returned to the finite difference scheme dis-
cussed in [33] and implemented an approximation to the graph by truncating the periodic system after a small number 
of cells in the middle of the internal edges and connecting the two endpoints with periodic boundary conditions. For 
large μ we observed that the predicted asymptotics are verified numerically even in the case of one cell.
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Fig. 13. Stationary states in the stationary NLS equation (1.2) for a periodic graph showing the mass Q vs Lagrange multiplier � (left panels) and 
the energy E versus the mass Q (right panels). Top panels show computations for �0 = 4π and �∗ = π/4. Bottom panels show computations for 
�0 = π/8 and �∗ = π/4. The black dot-dash (−·) (color online) line shows the edge-centered state, the blue dashed (−−) (color online) line shows 
the loop-centered state.
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Appendix A. Proof of Theorem 2.1

Consider a graph � with a finite number of vertices and a finite number of edges, which either connect a pair of 
vertices and have finite length or have only one vertex and are identified with the half-line. We impose Neumann-
Kirchhoff (NK) conditions at every vertex. Declare a subset B of the graph’s vertices to be the boundary. We are 
interested in the asymptotics of the DtN map on the boundary B for the operator −� +μ2 as μ → ∞. The parameter 
μ is treated as the spectral parameter λ := −μ2 for the spectrum of −�.

Let the boundary vertices be denoted b1, . . . , b|B|, and let p = (p1, . . . , p|B|)T ∈ R|B| be a vector of “Dirichlet 
values” on the vertices. Assume μ > 0 and consider a function f ∈ H 2(�) satisfying⎧⎪⎨⎪⎩

(−� + μ2
)
f = 0, on every e ∈ �,

f satisfies NK conditions for every v ∈ V \ B,

f (vj ) = pj , for every vj ∈ B.

(A.1)
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Let N (f )j = ∑
e∼vj

∂f (vj ) be the Neumann data of the function f at the vertex vj ∈ B , where ∂ denotes the outward 
derivative from the vertex vj . Note that f is not required to satisfy the current conservation conditions at vj ∈ B .

The map M�(μ) : p �→ N (f ) ∈ R|B| is called the DtN map at the spectral level λ = −μ2. This is connected to the 
DtN map defined in Theorem 2.1 by a scaling, M = 1

μ
M�. We will derive its asymptotics as μ → ∞ by investigating 

the scattering solutions in the same regime. We refer to [12, Sec 3.5] for more information on DtN map on a compact 
quantum graph. We remark that in the presence of infinite edges all definitions work when λ = −μ2 < 0 is below the 
absolutely continuous spectrum of −� but cease to work (in general) when λ ≥ 0.

Closely related to the DtN map is the scattering matrix �(μ), see [12, Sec 5.4], defined on a compact graph. 
Attaching an infinite edge (a lead) to each boundary vertex (a single edge per vertex), we look for f̃ solving

(−� + μ2)f̃ = 0

on the augmented graph and satisfying NK vertex conditions at every vertex. The space of such solutions is b-
dimensional; writing the solution on the lead e in the form

f̃ (xe) = cin
e eμxe + cout

e e−μxe , (A.2)

the space of solutions may be parametrized by the vectors cin = (cin
1 , . . . , cin

b )T . The scattering matrix �(μ) describes 
the scattering on incoming waves into the outgoing ones,

cout = �(μ)cin. (A.3)

For the graph with NK vertex conditions, there is a fairly explicit formula for the scattering matrix �(μ), derived in 
[11,12,32],

�(μ) = R + Toe
−μL

(
I − Ũe−μL

)−1
Ti, (A.4)

where, informally speaking, R governs reflection of waves from a lead back into a lead, Ti transmits incoming waves 
into the interior of the graph, To transmits interior waves into the outgoing lead waves and Ũ describes scattering of 
waves in the interior. For a graph with scale-invariant vertex conditions (such as NK), all these matrices have constant 
entries. The dependence on μ enters through the diagonal matrix e−μL where L is the diagonal matrix of internal 
edge lengths.

We can also obtain a formula for the solution in the interior by writing the solution on the edge e as

fe(x) = aee
−μx + aee

−μ(�e−x). (A.5)

The vector a of the coefficients ae and ae satisfies (see [11, Thm. 2.1])

a =
(
I − Ũe−μL

)−1
Ticin. (A.6)

Theorem A.1. The scattering matrix at λ = −μ2 of a compact graph � with the boundary set B has the asymptotic 
expansion

�(μ) = diag

(
2

db + 1
− 1

)
b∈B

+ O
(
e−μ�min

)
, μ → ∞, (A.7)

where db is the degree of the boundary vertex b not counting the lead, �min is the length of the shortest edge and the 
remainder term is a matrix with the norm bounded by Ce−μ�min .

In the same asymptotic regime, the vector a of interior coefficients has the expansion

a =
(
Ti + O(e−μ�min)

)
cin, (A.8)

where the correction is a matrix with the specified norm bound.

Proof. In our setting — all vertex conditions are Neumann-Kirchhoff, there are |B| leads with at most one lead per 
vertex — the matrix R in equation (A.4) is the |B| × |B| diagonal matrix with entries 2/(db + 1) − 1; this matrix 
provides the leading order term in (A.7). To estimate the remainder, we note that
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Fig. 14. Left: a graph � with boundary vertices B marked as empty squares. Right: after introducing dummy vertices w1 and w2 we obtain a 
compact graph �c (solid edges only). The graph � combines solid and dash-dotted edges. Dashed edges correspond to “true” leads corresponding 
to the boundary vertices B .∥∥∥e−μL

∥∥∥ ≤ e−μ�min , (A.9)

in the operator sense from R2E to R2E , where E is the number of edges of �. Since the matrix Ũ is sub-unitary (it is 
a submatrix of a unitary matrix), we have∥∥∥Ũ

∥∥∥ ≤ 1,

∥∥∥∥(
I − Ũe−μL

)−1
∥∥∥∥ ≤ 1

1 − e−μ�min
, (A.10)

and, overall,∥∥∥∥Toe
−μL

(
I − Ũe−μL

)−1
Ti

∥∥∥∥ ≤ C̃e−μ�min

1 − e−μ�min
≤ Ce−μ�min .

The asymptotic expansion for a is obtained from equation (A.6), expansion(
I − Ũe−μL

)−1 = I + Ũe−μL
(
I − Ũe−μL

)−1
, (A.11)

and estimates (A.9) and (A.10). �
In order to prove Theorem 2.1, we establish asymptotics of the DtN map defined by problem (A.1) and then use 

the scaling transformation. The following theorem presents the asymptotic estimates for the boundary-value problem 
(A.1).

Theorem A.2. There exists a unique solution f ∈ H 2(�) to the boundary-value problem (A.1) which satisfies asymp-
totically, as μ → ∞,

‖f ‖2
L2(�)

≤ C

(
1

2μ
+O(�mine

−μ�min)

)
‖p‖2 (A.12)

and

M�(μ) = μdiag(db)b∈B +O
(
μe−μ�min

)
, (A.13)

where db is the degree of the boundary vertex b ∈ B , �min is the length of the shortest edge in � and the remainder 
term is a matrix with the norm bounded by Cμe−μ�min .

Proof. We intend to use the asymptotics we derived for the scattering matrix and a formula linking it to the DtN map 
M�(μ) (see, for example, [12, Sec. 5.4]). However, we allow our graph to have infinite edges, a situation which is 
not covered in the results for the scattering matrix. To overcome this limitation, we covert infinite edges into leads. 
To avoid a situation when two leads join the same boundary vertex, we create, on each infinite edge, a dummy vertex 
w of degree 2, see Fig. 14. The resulting graph we still denote by �; by W we denote the set of the newly created 
vertices and by �c the compact graph containing all finite edges of the graph �. We also attach leads to the boundary 
vertices b ∈ B and define the scattering matrix �c(μ) of the compact graph �c with respect to all infinite edges.

The matrix �c(μ) maps a vector cin of incoming wave coefficients to the vector cout of outgoing ones. The 
coefficients will be labeled by the attachment vertices of the corresponding lead, namely by B � W . Denote by P the 
operator from C|B|+|W | to C|B| acting as the orthogonal projection followed by restriction.

Since we are looking for an H 2(�) solution of the boundary-value problem (A.1), on the infinite edges of � the 
solution must have the purely radiating form
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f (xw) = cout
w e−μxw . (A.14)

We now need to solve a “mixed” problem: on the vertices w ∈ W we are prescribing the purely radiating condition 
cin
w = 0 while on the vertices b ∈ B of �c we are prescribing the solution values pj . The latter condition may be 

expressed as

cin
b + cout

b = f̃ (vb) = pb, (A.15)

by substituting xe = 0 in (A.2). Splitting the vectors c into two parts corresponding to B and W , we get(
cout
B

cout
W

)
= �c(μ)

(
cin
B

0

)
.

In particular,

cout
B = �(μ)cin

B , where �(μ) := P�c(μ)P ∗. (A.16)

We note that �(μ) is a |B| × |B| block of the matrix �c(μ). It is an analogue of the scattering matrix for the graph �.
Combining (A.16) and (A.15) we have

cin = (I + �(μ))−1 p. and a =
(
Ti + O(e−μ�min)

)
(I + �(μ))−1 p, (A.17)

which, together with expansion (A.7) for �c(μ), implies

‖a‖ ≤ C ‖p‖ . (A.18)

We note that coefficients a give the expansion of the solution on all edges of the graph �, including the infinite edges 
(the same value of the coefficients applies on the finite and infinite portion, because the connecting vertex w has 
degree 2). We can now estimate the norm of the solution f . From expansion (A.5) on the finite edges, we have

‖fe‖2
L2(�)

= 1 − e−2μ�e

2μ

(
|ae|2 + |ae|2

)
+ 2 Re (aeae) e−μ�e�e ≤ 1 + 2�eμe−μ�e

2μ

(
|ae|2 + |ae|2

)
.

On an infinite edge the solution has the form (A.14) with cout
w equal to ae on the finite edge ending in w. Therefore, 

on the infinite edge together with the corresponding finite part,

‖fw‖2
L2(�)

= 1

2μ
|ae|2.

On the whole of �, the norm of the function f satisfies the bound

‖f ‖2
L2(�)

≤
(

1

2μ
+ O(�mine

−μ�min)

)
‖a‖2. (A.19)

Here we used that

�eμe−μ�e ≤ μ�mine
−μ�min if μ�min > 1.

Combining (A.19) with (A.18) yields the desired estimate on f , equation (A.12).
We now express the DtN map from the matrix �(μ). From the expansion (A.2) we get

N (f ) = μ
(

cin
B − cout

B

)
= μ(I − �(μ))cin

B .

Combining this with (A.17) we obtain

M�(μ) = μ
I − �(μ)

I + �(μ)
, (A.20)

were the fraction notation can be used because two matrices commute. This is the same expression as in [12, 
Eq. (5.4.8)] only now � is allowed to have infinite edges and � is defined via (A.16).

We recall that �(μ) is the B-block of the matrix �c(μ) to which Theorem A.1 applies. We denote �(μ) =
R + S(μ), where R is the diagonal matrix and S(μ) is the remainder term in the asymptotic expansion of �(μ), 
equation (A.7). Using the formula (A.20) we write
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M�(μ) = μ
I − R

I + R
+ μQ, Q := (I − R − S)(I + R + S)−1 − (I + R)−1(I − R). (A.21)

Factoring out the inverse matrices, we estimate the norm of Q as

‖Q‖ ≤
∥∥∥(I + R)−1

∥∥∥‖(I + R)(I − R − S) − (I − R)(I + R + S)‖
∥∥∥(I + R + S)−1

∥∥∥
≤ 2‖S‖

∥∥∥(I + R)−1
∥∥∥∥∥∥(I + R + S)−1

∥∥∥ .

We have∥∥∥(I + R + S)−1
∥∥∥ →

∥∥∥(I + R)−1
∥∥∥ ≤ maxdb + 1

2
,

and, combining with the estimate on ‖S‖ from (A.7), we get ‖Q‖ ≤ Cμe−μ�min . The first term in the expansion (A.21)
can be evaluated explicitly,

I − R

I + R
=

diag
(

2 − 2
db+1

)
diag

(
2

db+1

) = diag (db) ,

yielding (A.13). �
We will now rescale the problem by μ to obtain the results of Theorem 2.1.

Proof of Theorem 2.1. The solution to problem (2.1) is obtained from the solution f of the boundary-value problem 
(A.1) by the rescaling

u(μx) = f (x). (A.22)

This rescaling has the following effect on the Neumann data, the DtN map and the L2 norm:

N (u) = 1

μ
N (f ), M = 1

μ
M�, ‖u‖2

L2(�μ)
= μ‖f ‖2

L2(�)
, (A.23)

where M denotes the DtN map of �μ. Asymptotics in Theorem 2.1 now immediately follow from the corresponding 
asymptotics in Theorem A.2. Finally, we observe that u satisfies the differential equation �u = u and we can use the 
estimate (see [14, Ch. 4, Eq. (4.40)])

‖u‖2
L2(�μ)

≤ ‖u‖2
H 2(�μ)

≤ C
(
‖u‖2

L2(�μ)
+ ‖u′′‖2

L2(�μ)

)
= 2C‖u‖2

L2(�μ)
, (A.24)

where C is uniform in edge lengths as long as they are bounded away from 0 (which is clearly the case as μ → ∞). �
Appendix B. Maximum principle for quantum graphs

There are several results in the quantum graphs literature establishing different versions of “maximum principle”, 
see [43, 2.4.3, Cor 2] and [10, Thm 2]. For our purposes, the most convenient form is that given in [26, Lem 2.1]
which we cite verbatim below.

Lemma B.1 (Lemma 2.1 in [26]). Let V (x) ≥ 0 on an open subset S of �. Suppose that w ∈ C1, and let Hw :=
−w′′ + V (x)w (in the weak sense) on edges, with “super–Kirchhoff” conditions at the vertices, namely,∑

e∼v

w′
e(v) ≥ 0, v ∈ S,

i.e., the sum of the outgoing derivatives of w at every vertex is nonnegative. If Hw ≤ 0 on the edges contained in S, 
then max(w, 0) does not have a strict local maximum on S.
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Remark B.2. In our setting, we have Kirchhoff conditions 
∑

e∼v w′
e(v) = 0 and the homogeneous equation Hw = 0. 

Thus, Lemma B.1 is directly applicable except we would like to exclude non-strict maxima as well. This is almost 
automatic if we impose the strict positivity V > 0 on S. Indeed, let a maximum be achieved at point x and w(x) > 0. 
If the maximum is non-strict, there is a sequence of points converging to x where w takes the same value as w(x), 
therefore (possibly one-sided) derivative of w at x is zero and Hw > 0 (in the weak sense) close to x.

Appendix C. Contraction mapping principle

In this section we collect classical results of nonlinear functional analysis (see, for example [47]) in the setting 
most immediately applicable to our problem.

Theorem C.1 (Contraction Mapping Principle). Let T be a map on a Banach space Y with the norm ‖ · ‖ mapping a 
ball BR = {y ∈ Y : ‖y‖ < R} to itself. If T is a contraction with a parameter λ < 1, i.e.

‖T (y1) − T (y2)‖ ≤ λ‖y1 − y2‖, ∀y1, y2 ∈ BR, (C.1)

then there exists a fixed point y∗ = T (y∗), which is unique in BR . The fixed point satisfies the estimate

‖y∗‖ ≤ 1

1 − λ
‖T (0)‖. (C.2)

In the case when the contraction mapping T smoothly depends on a parameter x, the fixed point will also depend 
on the parameter smoothly. We remind some standard facts and definitions leading to this result.

Definition C.2. The map f : U ⊆ X → Z, with X and Z Banach spaces is Fréchet-differentiable at x ∈ U if there 
exists a bounded linear operator which we denote Dxf : X → Z such that

f (x + h) − f (x) = Dxf (x)h + o(‖h‖), h → 0, (C.3)

for all h in some neighborhood of 0.
If U is open and the derivative Dxf (x) exists for all x ∈ U and depends continuously (in the operator norm) on x, 

the map f is called C1.

The partial Fréchet derivatives for a mapping F : X × Y → Z are defined analogously. A map F is C1 in an open 
U ⊆ X × Y if and only if the partial derivatives DxF and DyF are continuous in U .

Theorem C.3 (Smooth Implicit Function Theorem). Suppose that the mapping F : U ⊆ X ×Y → Z, where U is open 
and X, Y and Z are Banach spaces over R or C, is such that

(1) there is a point (x0, y0) ∈ U satisfying F(x0, y0) = 0,
(2) F is C1 in U ,
(3) the partial derivative DyF(x0, y0) : Y → Z is bijective.

Then there is a positive number r0 and a C1 map y(·) : Br0(x0) ⊂ X → Y such that F(x, y(x)) = 0 and y(x0) = y0. 
Furthermore, there is a number r > 0 such that for any x ∈ Br0(x0), y(x) is the only solution of F(x, y) = 0 satisfying 
‖y − y0‖ < r .

Combining the above two theorems gives a smooth dependence of the fixed point on a parameter.

Corollary C.4 (Contraction Mapping with a Parameter). Let T : X × Y → Y be a C1 mapping on an open set 
U ⊆ X × Y . Suppose for some x0 ∈ X and V ⊆ Y such that {x0} × V ⊂ U , the mapping T (x0, y) : Y → Y is a 
contraction which maps V into itself.

Then there is a positive number r0 and a C1 map y(·) : Br0(x0) ⊂ X → Y such that

T (x, y(x)) = y(x).
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Proof. We first apply Theorem C.1 to T (x0, y) obtaining a fixed point y0 ∈ V . Then we apply Theorem C.3 with 
F(x, y) = y − T (x, y). The partial derivative Fy(x0, y0) is bijective because it is identity minus an operator which 
strictly smaller than 1: ‖Ty(x0, y0)‖ ≤ λ < 1 since T (x0, y) is a contraction. �
Appendix D. Useful estimates on elliptic functions

We introduce the elliptic integrals of the first and second kind, respectively:

F(ϕ; k) :=
ϕ∫

0

dθ√
1 − k2 sin2 θ

, E(ϕ; k) :=
ϕ∫

0

√
1 − k2 sin2 θdθ. (D.1)

From this definition, the complete elliptic integrals of the first and second kind are given by

K(k) := F
(π

2
; k

)
and E(k) := E

(π

2
; k

)
(D.2)

respectively. In addition, Jacobi’s elliptic functions are given by

sn(u; k) = sinϕ, cn(u; k) = cosϕ, dn(u; k) =
√

1 − k2 sin2 ϕ, (D.3)

where u is related to the elliptic integrals by

F(ϕ; k) = u, E(ϕ; k) =
u∫

0

dn2(s; k)ds. (D.4)

Many properties of elliptic integrals and Jacobi’s elliptic functions are collected together in [25].
The following technical result was proven in Appendix of [33].

Proposition D.1. For every ξ ∈ R, it is true that

sn(ξ ;1) = tanh(ξ), ∂ksn(ξ ;1) = −1

2
[sinh(ξ) cosh(ξ) − ξ ] sech2(ξ), (D.5)

cn(ξ ;1) = sech(ξ), ∂kcn(ξ ;1) = 1

2
[sinh(ξ) cosh(ξ) − ξ ] tanh(ξ)sech(ξ), (D.6)

dn(ξ ;1) = sech(ξ), ∂kdn(ξ ;1) = −1

2
[sinh(ξ) cosh(ξ) + ξ ] tanh(ξ)sech(ξ). (D.7)

Moreover, for sufficiently large ξ0, there is a positive constant C such that

|∂ksn(ξ ; k) − ∂ksn(ξ ;1)| + |∂kcn(ξ ; k) − ∂kcn(ξ ;1)| + |∂kdn(ξ ; k) − ∂kdn(ξ ;1)| ≤ Cξ0e
−ξ0 , (D.8)

holds for every ξ ∈ (ξ0, K(k)) and every k ∈ (k∗, 1) with k∗ = 1 −O(e−2ξ0).

We can now address the “reverse Sobolev estimate” on the real line (see also Lemma 2.8).

Proposition D.2. There exist positive L0, c0, and C such that every real positive solution � ∈ H 2(0, L) of the station-
ary NLS equation −�′′ + � = 2|�|2� satisfying

|�(z)| < c, z ∈ [0,L], (D.9)

for every c ∈ (0, c0) and every L ∈ (L0, ∞), also satisfies the bound

‖�‖H 2(0,L) ≤ C‖�‖L∞(0,L). (D.10)

Proof. It is sufficient to obtain the estimates on ‖�‖2
L2(0,L)

since the stationary NLS equation implies that

‖�′′‖L2(0,L) ≤ (1 + 2‖�‖2
L∞(0,L))‖�‖L2(0,L) ≤ (1 + 2c2)‖�‖L2(0,L).
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It follows from the phase portrait for −�′′ + � − 2�3 = 0, see Fig. 4, that the solutions � ∈ H 2(0, L) satisfying 
(D.9) for small c > 0 and large L > 0 have at most one local minimum and no internal maxima on [0, L]. Moreover, 
either � is sign-definite on [0, L] or �′ is sign-definite on [0, L]. Without loss of generality, we give the proof for 
sign-definite (positive) solutions expressed by the dn-elliptic functions (2.17). The proof for sign-indefinite solutions 
expressed by the cn-elliptic functions (2.16) is similar.

We partition [0, L] into [0, L1] and [L1, L], where L1 is the point of minimum of �, such that �′(z) < 0 for 
z ∈ [0, L1) and �′(z) > 0 for z ∈ (L1, L]. Without loss of generality, assume L1 ∈ [

L
2 ,L

]
so that

‖�‖2
L2(0,L)

≤ 2‖�‖2
L2(0,L1)

.

We use the exact solution (2.17) and write for some L2 > 0:

�(z) = 1√
2 − k2

dn

(
z + L2√
2 − k2

; k
)

, z ∈ [0,L1],

where −L2 < 0 is the location of the maximum of �(z) to the left of the interval [0, L1]. Since �′(z) < 0 for 
z ∈ [0, L1), we have

‖�‖L∞(0,L1) = 1√
2 − k2

dn

(
L2√

2 − k2
; k

)
and since �′(L1) = 0, we have

L1 + L2 =
√

2 − k2K(k).

This implies that if c ∈ (0, c0) for some small c0 > 0, then L2 > 0 is sufficiently large and if L ∈ (L0, ∞) for some 
large L0 > 0, then L1 > 0 is also sufficiently large, whereas k ∈ (k−, 1) with k− satisfying |k− − 1| ≤ A1e

−2(L1+L2), 
where a positive constant A1 is independent on L1 and L2. We obtain by direct substitution for k ∈ (k−, 1) that

‖�‖2
L2(0,L1)

= 1

2 − k2

L1∫
0

dn2
(

z + L2√
2 − k2

; k
)

dz

= 1√
2 − k2

[
E

(
φ

[
L1 + L2√

2 − k2

]
; k

)
− E

(
φ

[
L2√

2 − k2

]
; k

)]
,

where ϕ[u] is the inverse of the map F(ϕ; k) = u in (D.4). Hence, we have

‖�‖2
L2(0,L1)

≤ C(k;L1,L2)‖�‖2
L∞(0,L1)

,

where

C(k;L1,L2) :=
√

2 − k2

E

(
φ

[
L1+L2√

2−k2

]
; k

)
− E

(
φ

[
L2√
2−k2

]
; k

)
dn2

(
L2√
2−k2

; k
) .

We need to show that C(k; L1, L2) is bounded uniformly for large L1 and L2 and for k ∈ (k−, 1) with |k− − 1| ≤
A1e

−2(L1+L2). It follows from (D.7) and (D.8) of Proposition D.1 that

E(φ[ξ ]; k) = tanh(ξ) + (1 − k)ξ + RE(ξ ; k),

where RE is the remainder term satisfying ‖RE(·; k)‖L∞(0,K(k)) = O(k − 1) as k → 1. In addition, we use the lower 
bounds:

dn2(ξ ; k) ≥ 1 − k2

to estimate the remainder term RE and

dn2(L2; k) ≥ sech2(L2)
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to estimate the other two terms, where the latter bound holds for sufficiently large L2. Thus, it follows for every 
k ∈ (k−, 1) with |k− − 1| ≤ A1e

−2(L1+L2) that

C(k;L1,L2) ≤ tanh(L1 + L2) − tanh(L2)

sech2(L2)
+ L1(1 − k)

sech2(L2)
+ A2

= sinh(L1) cosh(L2)

cosh(L1 + L2)
+ L1(1 − k) cosh2(L2) + A2

≤ (1 − e−2L1)(1 + e−2L2)

2(1 + e−2(L1+L2))
+ L1(1 − k)e2L2 + A2

≤ 1 + A1L1e
−2L1 + A2,

where a positive constant A2 is independent on L1 and L2. Hence, C(k; L1, L2) is bounded uniformly for sufficiently 
large L1 and L2, which proves the estimate for ‖�‖L2(0,L1)

and hence the estimate (D.10). �
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