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Observation of modulation instability and rogue breathers on stationary periodic waves
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We report an experimental study on the modulation instability process and associated rogue breathers for the
case of stationary periodic background waves, namely dnoidal and cnoidal envelopes. Despite being well-known
solutions of the nonlinear Schrödinger equation (NLSE), the stability of such background waves has remained
unexplored experimentally until now, unlike the constant-amplitude plane wave. By means of two experimental
setups, namely, in nonlinear optics and hydrodynamics, we observe the spontaneous modulation instability gain
seeded by input random noise and the formation of rogue breathers induced by a coherent perturbation. Our
observations are in excellent agreement with the NLSE dynamics.
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I. INTRODUCTION

During the last decades, the modulation instability (MI)
phenomenon has attracted a significant research interest in
a variety of nearly conservative wave systems (water sur-
face, plasmas, guided laser light, electrical transmission lines,
and Bose–Einstein condensates) described by the nonlinear
Schrödinger equation (NLSE) in its many forms [1–12]. This
includes the linear stability analysis of the plane waves and
the subsequent nonlinear stage of MI, namely the formation
of localized waves such as solitons and breathers, as well
as multibreather complexes. Note that the space-time evolu-
tion of the nonlinear stage of MI strongly depends on the
input perturbation considered. In particular, a broad class of
modulationally unstable initial conditions can be described by
so-called continuous spectrum solutions of the NLSE [13–15].
Beyond the plane waves, within the class of stationary solu-
tions of the focusing NLSE, a wide range of periodic solutions
known as dnoidal (dn) and cnoidal (cn) waves are also mod-
ulationally unstable against small perturbations [16,17]. Note
that the plane wave is just a limiting case and thus a special
case of dn-periodic waves. These stationary periodic waves
are highly relevant in the studies of extreme wave formation
and their generalization, resulting from MI in more practical
wave conditions [18–20] and from the development of inte-
grable turbulence [21].

Although the mathematical description of MI for such
stationary periodic waves is well understood [22], no exper-
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imental observation of the phenomenon has been reported
so far. Propagation of the stationary periodic envelopes has
been conducted in distinct water-wave facilities [23,24], but
without reporting the stability against small perturbations. For
nonlinear optical studies, we can only mention the experi-
mental evidence of the cnoidal wave self-compression in a
photorefractive crystal [25]. By contrast, cnoidal waves have
been widely studied in the framework of the Korteweg–de
Vries equation, which is a shallow water framework, and
related physical systems [2,3].

In this work, we provide an overview of both the noise-
driven and the coherent seeding regimes of MI for stationary
periodic waves of the NLSE. To investigate such regimes on a
relevant range of parameters, we provide two complementary
experimental setups based on light-wave propagation in an op-
tical fiber and wave propagation in a water wave tank. Despite
completely different timescales of the nonlinear dynamics
being involved, the MI and rogue breathers are described by
the same theoretical foundation of the universal NLSE. We
quantitatively confirm the spontaneous MI gain and the forma-
tion of rogue breathers on a stationary periodic background. It
is worth to highlight that quantitative generation of temporal
cn- or dn-wave solutions has never been tested in optics until
now since it remains a challenging task.

In optical experiments, we show that the family of cn waves
is more robust against noise than dn waves, thus being of
potential interest for optical data processing and transmis-
sion [26]. This is related to weak MI gains of the cn waves.
As a result, we only observe the MI and rogue breathers
on the dn wave in the optical fibers. On the other hand, in
hydrodynamical experiments, we observe rogue breathers on
both backgrounds of the dn waves and the cn waves; how-
ever, observation of MI gains from random noise is difficult
due to the limitations imposed by the length of the wave
facility.
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FIG. 1. Examples of (left) dn- and (right) cn waves for k = 0.6.
Top panels: Temporal profiles. Bottom panels: Spectral profiles.

II. THEORETICAL DESCRIPTION

Our theoretical framework is based on the dimensionless
form of the universal self-focusing 1D NLSE,

iψξ + 1
2ψττ + |ψ |2ψ = 0, (1)

where subscripts stand for partial differentiations. Here ψ is a
wave envelope which is a function of ξ (a scaled propagation
distance) and τ (a comoving time with the wave-group veloc-
ity). The NLSE has exact complex breather solutions as well
as simpler (ξ -) stationary (τ -) periodic solutions of the dnoidal
and cnoidal type, expressed in terms of elliptic functions [27].

The positive-definite dn-periodic waves and the sign-
indefinite cn-periodic waves are, respectively, given by

ψdn = dn(τ, k)ei(1−k2/2)ξ (2)

and

ψcn = k cn(τ, k)ei(k2−1/2)ξ , (3)

where k is the modulus of elliptic functions (0 � k � 1),
which gives the period of the wave function Tc = 2K (k) for
(2) and Tc = 4K (k) for (3), where K (k) is the complete elliptic
integral. One can then obtain the angular frequency interval of
the corresponding comb spectra �c = 2π/Tc (see illustrations
in Fig. 1).

For k → 1, both periodic wave families converge to the
envelope soliton (sech-shape). For k → 0, the dn wave and the
cn wave tend to the plane waves with either normalized or van-
ishing amplitude, respectively. From Fig. 1, it is worth noting
that cn waves are characterized by a spectral envelope mainly
driven by bichromatic waves, whereas dn waves correspond
to modulated single-frequency backgrounds [24]. Recall that
the above waves belong to the restricted group of stationary
periodic waves with trivial phase. More general elliptic wave
solutions with nontrivial phase can be also analyzed [17,22].

The interaction between dispersive and nonlinear effects
leads to MI phenomenon for the plane wave in the presence
of noise (spontaneous regime) or a weak frequency-shifted
signal wave (induced regime) [1–5]. The linear stability anal-
ysis of periodic waves was also elaborated in detail (see for
instance Ref. [17]). It was found that both dn- and cn waves
are modulationally unstable with respect to long-wave per-
turbations. We provide below the forms of MI growth rate
according to parameters of the periodic waves.

FIG. 2. Calculated MI growth rate Re{�} as a function of nor-
malized angular frequencies of perturbation for (a) dn waves and (b)
cn waves. (c), (d) Corresponding calculated Im{�}. The plane-wave
limit (PW) is plotted with a black line in panel (a).

The general evolution of an initial perturbation onto ψdn

or ψcn can be expressed as e�ξ , where the MI growth rate (in
amplitude) is mainly given by the real part of � = ±2i

√
P(λ),

where P(λ) can be calculated by using the following relations
for dn- and cn waves:

Pdn = λ4 −
(

1 − k2

2

)
λ2 + k4

16
(4)

and

Pcn = λ4 − (
k2 − 1

2

)
λ2 + 1

16 . (5)

Here, λ is the spectral parameter defined in the Lax spec-
trum of the Zakharov-Shabat spectral problem (see Ref. [22]
for details). The numerical scheme of computing the eigen-
values is based on the discretization of the frequency comb
interval [22]. We here relate eigenvalues in the Lax spectrum
to parameters of the periodic waves and the frequency range
of perturbations that can be investigated in each frequency in-
terval (0 � |�| � �c). The instability arises only if λ belongs
to the bands of the Lax spectrum with Re{λ} �= 0.

Figure 2 shows calculations of MI growth rate for both dn-
and cn-periodic waves as a function of normalized angular
frequencies of perturbation (i.e., a practical picture for ex-
perimental studies) and for distinct values of their governing
parameter (i.e., the modulus of elliptic functions). In the case
of dn waves evolving from k = 0 towards 1 [see Fig. 2(a)],
the MI starts from the plane-wave limit, where it occurs for
frequencies 0 � |�| � 2 (�c = 2) as well as characterized by
a maximum growth rate equal to 1 at |�| = √

2. Then, when k
increases, the MI spectral bandwidth (here equivalent to |�c|)
continuously reduces as the wave period Tc increases. At the
same time, Re{�} also decreases and vanishes in the limit k →
1 of the stable solitons. On the contrary, for cn waves evolving
from k = 0 (i.e., the zero background limit: no MI) towards
1 [see Fig. 2(b)], the MI starts to grow near |�| = �c = 1
and then MI bands enlarge until reaching maximal growth
rate and bandwidth for k ∼ 0.83. This maximum observed
at ∼0.36 �c remains significantly smaller than the growth
rates obtained for dn-periodic waves. After that, MI growth
rate decreases for higher values of k since the wave period
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FIG. 3. (a) Power spectra obtained from NLSE simulations
showing the spontaneous emergence of MI gain bands for the case of
a cn-periodic wave (k = 0.5) as a function of propagation distance.
(b) Corresponding accumulated MI power gain deduced from panel
(a) and compared to theoretical predictions (black lines) for the
cn wave studied. Solid (dotted) lines are calculated with (without)
Im{�}. Panels from bottom to top correspond to increasing propaga-
tion distances.

Tc increases and cn waves tend to the stable sech-solution
(k = 1).

Unlike dn waves, an original specificity of the MI phe-
nomenon in the case of cn waves is that the imaginary part
of � is nonzero [see Figs. 2(c) and 2(d)], thus leading to oscil-
lations of the genuine growth rate along propagation distance.
It means that the fastest-growing perturbation changes accord-
ing to Im{�}. Consequently, the MI growth rate indicated in
Fig. 2(b) does not report the fine ξ -dependent spectral struc-
ture, but only the asymptotic solution for very large distances.

MI can be triggered by noise when the wave field evolves
over a significant propagation distance as generally the case
in optical experiments. To address this, we provide in Fig. 3
a typical example of spontaneous modulation instability gain
bands that emerge in the case of cn-periodic waves (here,
k = 0.5). Figure 3(a) reports the evolution of power spectra
as a function of propagation distance obtained from numerical
simulations of the NLSE. The simulated output spectra result
from an averaging over 100 simulations based on a small noise
with random spectral phase superposed to the initial cn wave.
We found that the exponential growth of initial noise exhibits
spectral oscillations, as well as distinct fastest-growing fre-
quencies along propagation distance. This confirms the impact
of the nonzero imaginary part of �.

We compared the corresponding accumulated MI gain
obtained for various propagation distances to the analytical
predictions [see Fig. 3(b)]. The accumulated MI gain differs
in bandwidth and shapes for distinct propagation distances. In
the first steps of propagation (bottom panel), a first spectral
band emerges and then continuously drifts to larger frequency
detunings. By increasing the propagation distance (middle and
top panels), more spectral bands appear and fill the frequency
interval defined by Re{�} (dotted lines) while the overall gain
also increases. In order to describe the fine ξ -dependent MI
spectral structure, Im{�} has to be carefully included in the
theoretical predictions, whereas Re{�} only gives the asymp-
totic solution for very large distances.

For both cases of periodic waves, it was shown in
Refs. [19,20,22] that the roots of the polynomial P(λ) for
which � = 0 can be used to construct the rogue breather (or

rogue wave, RW) solutions ψRW on the corresponding peri-
odic background. Such solutions generalize the well-known
Peregrine’s breather (or rogue wave) on the continuous-wave
background. The analytical expression of RW on the dn-
periodic wave can be written as

ψRW
dn (τ, ξ ) =

[
dn(τ, k) + F (τ, ξ )

G(τ, ξ )

]
ei(1− k2

2 )ξ , (6)

where

F (τ, ξ ) = [1 − 2i Im{θ (τ, ξ )}
− |θ (τ, ξ )|2][dn(τ, k)2 +

√
1 − k2]

G(τ, ξ ) = [|θ (τ, ξ )|2 + 1]dn(τ, k)

+ 2(1 −
√

1 − k2)Re{θ (τ, ξ )} sn(τ, k) cn(τ, k)

and

θ (τ, ξ ) = [dn(τ, k)2 +
√

1 − k2]

×
[

− 2(1 +
√

1 − k2)

×
∫ τ

0

dn(τ ′, k)2

[dn(τ ′, k)2 + √
1 − k2]

2 dτ ′ − iξ

]
.

This RW tends to the Peregrine’s breather when k → 0,
whereas it looks like a two-soliton interaction for k → 1 [19].
The maximum amplitude of the RW is equal to M = 2 +√

1 − k2 at (τ, ξ ) = (0, 0), which is the magnification factor
of the RW.

Similarly, the analytical expression of RW on the cn-
periodic wave can be written as

ψRW
cn (τ, ξ ) =

[
k cn(τ ; k) + F (τ, ξ )

G(τ, ξ )

]
ei(k2−1/2)ξ , (7)

where

F (τ, ξ ) = k [1 − 2i Im{θ (τ, ξ )} − |θ (τ, ξ )|2 ]

× [cn(τ, k) dn(τ, k) + i
√

1 − k2 sn(τ, k)]

G(τ, ξ ) = [|θ (τ, ξ )|2 + 1 ]dn(τ, k)

+ 2Re{θ (τ, ξ )} k sn(τ, k) cn(τ, k)

and

θ (τ, ξ ) = [k2cn(τ, k)2 + ik
√

1 − k2]

×
[

− 2(k + i
√

1 − k2)

×
∫ τ

0

k2cn(τ ′, k)2

[k2cn(τ ′, k)2 + ik
√

1 − k2]
2 dτ ′ − iξ

]
.

This RW looks like a propagating soliton for k → 0,
whereas it can be compared to a two-soliton interaction for
k → 1 [19]. Again, the maximum occurs at (τ, ξ ) = (0, 0)
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FIG. 4. Theoretical space-time dynamics of RW solutions
|ψRW(τ, ξ )| on periodic dn- (top panels) and cn- (bottom panels)
periodic waves, namely (a), (b) RW on the dn-periodic waves for
k = 0.3, 0.9, respectively. (c), (d) RW on the cn-periodic waves for
k = 0.5, 0.95, respectively.

and is equal to 2k which gives the k-independent magnifica-
tion factor M = 2.

Typical illustrations of the above RW solutions and de-
scribed space-time dynamics are depicted in Fig. 4, for
different values of k. We confirm that the maximal amplitude
of RW on the cn-periodic waves is always lower than that on
the dn-periodic wave.

III. EXPERIMENTAL SETUPS

The observation of spontaneous MI gain and RW solutions
is different in nonlinear optics and hydrodynamics due to their
restricted ranges of parameters, since all the experimental
parameters (e.g., wave period and amplitude, fiber dispersion,
and nonlinearity) are embedded into a single parameter of the
stationary periodic wave, namely the modulus k of elliptic
functions. To find the correspondence between theory and
experimental parameters, we refer the reader to the normal-
ization relations given in the following.

The spontaneous MI that grows from small random noise
requires a long propagation length with almost no dissipation
because the expected MI gain is lower for the stationary pe-
riodic waves than for the plane wave. Nonlinear fiber optics
represents a suitable solution for this issue and provide a direct
spectral characterization of the MI dynamics. By contrast,
rogue breathers on both the dn- and cn-periodic waves can be
observed in the water-wave tank, whereas only the RW on the
dn-periodic wave can be generated with light waves since their
precise arbitrary waveform shaping at various periodicities is
far more difficult. We emphasize that all our experiments are
designed in such a way as to prevent as much as possible any
contribution from higher-order effects beyond the standard
focusing NLSE, but losses can still affect our results. Nonideal
conditions would induce the emergence of asymmetric wave
profiles or/and introduce some complex spatial recurrence
phenomenon, thus diverging from the NLSE dynamics during
propagation [28–31].

FIG. 5. Experimental setups for nonlinear propagation of dn- and
cn-periodic (a) water waves and (b) light waves.

Our experimental setups (depicted in Fig. 5) are based on
the propagation of arbitrarily shaped light waves in optical
fibers and a common water wave tank. Each system is capable
of synthesizing nontrivial exact periodic wave profiles in the
temporal domain, i.e., a prerequisite for confirming the exis-
tence of their genuine instability.

For light waves, the initial state is obtained through the
optical pulse shaping with phase and amplitude controls in the
spectral domains. This specific processing of a home-made
optical frequency comb source allows generation of exact
wave profiles with a specific period fixed by the frequency
spacing of the optical comb. Nonlinear propagation is then
studied in different lengths of the same standard single-mode
fiber (SMF28) by an appropriate choice of the input average
power. At fiber output, the power profiles are characterized in
both time and frequency domains by means of an ultrafast op-
tical sampling oscilloscope (with subpicosecond resolution)
and an optical spectrum analyzer (with 2.5-GHz resolution).
We refer to Refs. [28,32,33] for more details about the system
characterization. In general, only slight discrepancies can be
noticed mainly ascribed to the linear propagation losses in our
optical fiber and some artifacts of the initial wave shaping.

In water-wave experiments conducted in deep-water con-
ditions, the initial periodic wave profiles are shaped with
a piston wave generator located at one end of the tank.
An electric signal drives the piston to directly modulate the
surface height in the time domain according to the exact
mathematical expression for the surface elevation. The tank
dimensions are 30 × 1 × 1 m3 and the water depth is 0.7 m.
A wave-absorbing beach is installed at the opposite end to
avoid the influence of reflected waves. The effective wave
propagation in the absence of wave reflection in the flume
is 20 m, considering the wave maker and beach installations
in this setup. Seven wave gauges are then placed at distinct
distances from the wave excitation to record the discretized
evolution of surface elevation in the longitudinal direction of
wave propagation. Given the upper-frequency range limit of
the wave maker that can generate waves with a frequency
up to 2 Hz only, which in deep water correspond to a wave-
length of 0.4 m following the dispersion relation, the effective
wave-propagation distance corresponds to 50 wavelengths and
is therefore sufficient to observe respective breather growth
dynamics for a wide range of wave steepness values. Never-
theless, this propagation distance is still insufficient to observe
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FIG. 6. (a) Experimental power spectra of spontaneous MI for
a dn wave (k = 0.7) on various propagation distances (here A0 =
0.83 W). (b) Accumulated MI power gain deduced from (a) and
compared to theory (black dotted lines) calculated from respective
normalized distances 0.97, 1.88, 2.74, 3.56, and 4.33 LNL based
on the effective fiber lengths. (c) Experimental power spectra of
spontaneous MI for a cn wave (k = 0.92) on various distances (here
A0 = 0.63 W). No MI gain is clearly observed as the corresponding
normalized distances are, respectively, 1.43, 2.70, 3.84, and 4.85 LNL

based on the effective fiber lengths. (d) Theoretical predictions of
accumulated MI power gain, for the cn wave studied in (c), when
longer distances are considered. Solid (dotted) lines are calculated
with (without) Im{�}.

extreme wave formations from pure noise excitation. A key
to successful experiments is to accurately generate the exact
surface elevation scales in the boundary conditions, as de-
scribed by the theory, and to choose the carrier parameters
(in particular the carrier steepness) properly to avoid physical
wave breaking during the wave focusing process [34].

IV. EXPERIMENTAL RESULTS

We first performed experimental measurements of the
spontaneous MI gain when periodic waves propagate in km-
long optical fibers. Two distinct 60- and 40-GHz frequency
combs are initially generated to subsequently shape exact
periodic solutions (respectively, for dn- and cn waves) accord-
ing to usual values of fiber dispersion β2(−21 ps2 km−1) and
nonlinearity γ (1.2 W−1 km−1), and the optical peak power
A0 suitably chosen and injected. The fiber loss α is very
low, about 5% per kilometer (in power). The correspondence
between theory and experiment is the following: dimensional
distance z(m) and time t(s) are given by z = ξLNL and t =
τ t0, where the characteristic length and timescales are LNL =
(γ A0)−1 and t0 = (|β2|LNL )1/2, respectively. The dimensional
optical field E (W1/2) is E = A0

1/2ψ .
Figures 6(a) and 6(b) show the recorded power spectra |Ẽ |2

and the accumulated MI gain obtained for various propagation
distances in the case of a dn-periodic wave (k = 0.7). We
clearly observe the MI gain bands emerging around the central

peak of the dn wave in Fig. 6(a) and growing exponentially
with propagation distance. Their bandwidth remains limited
by the intrinsic frequency spacing of the comb formed by the
dn wave (i.e., 60 GHz). The limited resolution of the spectrum
analyzer however prevents from accurately measuring the full
MI bands in the vicinity of the comb peaks. This explains why
the accumulated MI gain was obtained over a limited range of
frequency detuning in Fig. 6(b). Even so, these results are in
good agreement with theoretical predictions of MI gain (the
accumulated power gain over a normalized distance ξ is
obtained as 20log10[eRe{�}ξ sin(Im{�}ξ )]). This confirms
that we exceed a 20-dB maximal gain after 5 km of fiber at
a frequency detuning of two-thirds of the comb frequency in-
terval. The corresponding normalized distances for the theory
were calculated from effective fiber lengths (this includes a
partial correction of fiber losses to the nonlinear propagation
distance through Leff = [1 − e−αLfiber ]/α [4]). We can note the
effect of fiber losses on the power of each comb harmonic
after a few kilometers in Fig. 6(a). This effect is typically
accompanied by a strong decrease of the modulation contrast
of the dn wave in the time domain, and even some phase-shift
pulsations [24].

For the case of a cn-periodic wave, the results are de-
picted in Fig. 6(c). We investigated the evolution of the power
spectrum over 8 km of propagation and no clear signature
of MI gain was observed, except a few-dB gain around the
center frequency (i.e., zero detuning). Different values of the
modulus k were studied with similar results. The apparent ro-
bustness of cn waves needs to be moderated since the studied
normalized distance is only 4.85 LNL after correction of fiber
losses. In addition, two main issues could be raised based on
Fig. 6(c), namely the limited resolution of the spectrum ana-
lyzer that prevents from better distinguishing MI gain bands
from the comb formed by the cn wave, and the significant
impact of fiber losses again observed on the power of each
comb harmonic. But, in any case, Fig. 6(d) confirms that
MI gain bands would be readily observable only if longer
normalized distances are considered beyond 10LNL (i.e., a
13-km-long fiber without any propagation loss).

We emphasize here that the predictions are calculated by
taking into account the nonzero imaginary part of �, thus
describing oscillations of the MI gain with distance. More
specifically, it traduces the frequency location for the fastest-
growing perturbation after a certain distance with a maximum
defined by Re{�}. We clearly show that the accumulated MI
gain differs in bandwidth and shapes for distinct propagation
distances. In the first steps of propagation, a first spectral
band emerges and then continuously drifts to larger frequency
detunings. By increasing the propagation distance, extra sub-
bands appear and fill the frequency interval defined by Re{�}
(dotted lines) while the overall gain also increases. Such com-
plex behaviors were confirmed by numerical simulations of
NLSE (see Fig. 3), but their direct observation appears as a
hard task from the experimental point of view.

In addition to the spontaneous MI, we carried out specific
experiments in both optics and hydrodynamics about the co-
herent seeding of the process, and more particularly on the
generation of rogue breathers (RW solutions) on stationary
periodic backgrounds. To this end, we use the exact solutions
(6) and (7) to shape the input periodic wave with the correct
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FIG. 7. Results for the RW on the dn-periodic wave (k = 0.7)
with light waves. (a), (b) Longitudinal evolution of the optical
envelope |E (z, t )| obtained from experiment and theory, respec-
tively (here A0 = 1.38 W). (c), (d) Corresponding evolution of power
spectrum |Ẽ |2 (in log scale, dB unit) from experiment and theory,
respectively.

localized perturbation. According to the maximal propagation
distance that can be reached, we chose suitable initial condi-
tions (ξ value) to observe the maximum amplification.

Figures 7(a) and 7(c) present both temporal and spectral
evolutions measured for the RW on the dn-periodic wave (4)
with the fiber-based light-wave platform. Our light-shaping
technique implies the time-periodic generation of localized
perturbations, so that a 13-GHz frequency comb was initially
generated to subsequently shape ψRW

dn (τ, ξ = −2.3) at fiber
input. Note that the frequency interval for the dn-periodic
wave is 78 GHz. In Fig. 7(a) we clearly reveal that the local-
ized perturbation (centered at t = 0) grows as predicted by the
theory shown in Fig. 7(b). A typical X-wave interaction forms
in the space-time plane. The optical RW reaches a maximum
amplitude nearly 3 W1/2 after 1.4 km, which is close to the
theoretical prediction A0

1/2(2 + √
1 − k2) despite the fiber

losses. Next, we also observe the RW decay just before 2 km.
As expected, the nonlinear focusing of perturbation induces a
significant spectral broadening shown in Fig. 7(c) and satisfies
the corresponding theory from Fig. 7(d).

We now describe the experiments performed in the water-
wave tank. We recall that the surface elevation η(z, t ) is
related to the NLSE wave envelope ψ (z, t ) up to second order
in steepness by using the computational formula: η(z, t ) =
Re{�(z, t )ei(κz−ωt ) + 1

2κ �2e2i(κz−ωt )}. The correspondence
between theory and experiment can be retrieved here by using
the fact that a�(a2z, at ) is also a solution and the following re-
lations hold: ξ = κz, τ = ω(t − z/cg)/

√
2 and ψ = �

a , where
a and κ are the initial amplitude and the wave number of the
carrier wave, respectively. These two parameters define the
steepness aκ , whereas the dispersion relation of linear deep
water-wave theory gives the angular frequency ω = (gκ )1/2,
where g is the gravitational acceleration. The group velocity
is equal to cg = ω/(2κ ). The carrier amplitude has chosen

FIG. 8. Results for RWs with water waves (a = 0.01 m, and
aκ = 0.116). Left panels: Evolution of time series of surface
elevation measurement with propagation distance. Right panels: Cor-
responding theory. (a), (b) Rogue dn-periodic wave (k = 0.8). (c), (d)
Rogue dn-periodic wave (k = 0.99). (e), (f) Rogue cn-periodic wave
(k = 0.95). (g), (h) Rogue cn-periodic wave (k = 0.75).

to be a = 0.01 m and its frequency 1.7 Hz for all tests. This
corresponds to a wave frequency of ω = 10.68 s−1 and a wave
number κ = 11.63 m−1. The attenuation rate in our water-
wave experiments was estimated about 0.25% per meter (in
amplitude), which means that the experienced dissipation (see
also Ref. [29]) for RW generation will be larger here than in
the optical experiment reported in Fig. 7.

Figure 8 shows the results of experiments by shaping an
initial localized perturbation centered at t = 0 onto the dn-
and cn-periodic waves for ξ = −2.6. The first two cases
[Figs. 8(a)–8(d)] report the longitudinal evolution of perturba-
tion for dn-periodic waves when k = 0.8 and 0.99 (i.e., close
to the soliton limit) until reaching the maximal amplification
after 16.8 m. In both cases, the measurements agree well with
theory. For k = 0.8, the overall picture is very similar to the
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one reported in optics [see Fig. 7(a)], while for k = 0.99 the
periodic background wave is weaker and the dynamics clearly
approaches a two-soliton interaction with a maximal M factor
near 2 as is predicted by the theory. The last two cases shown
in Figs. 8(e)–8(h) correspond to the case of cn-periodic waves.
Again, the experimental results are in accordance with the
theory. For k = 0.95, we retrieve similar dynamics as just
previously mentioned since we are close to the soliton limit
for cn waves. Now when changing k to 0.75, one can notice
the significant decrease of the nonlinear focusing experienced
by the perturbation, and more particularly we confirm that
maximal amplitude of the RW structure is 2k according to
the theory. Additional experiments with distinct values of k
confirmed that the amplification factor is always close to 2
(independent of k).

In fact, the maximal extreme water surface measured
and predicted, as shown in Fig. 8, namely the cases
{(a),(b);(c),(d);(e),(f);(g),(h)} in meters are {0.027,
0.027;0.022,0.023;0.022,0.019;0.016,0.014}, respectively.
Note that in idealized experimental conditions with negligible
dissipation, such as the case when the wave channels are much
wider compared to current setup, the amplification rate could
be even higher, depending on the significant local steepness
reached in the focused wave group. Consequently, the
higher-order Stokes contributions become more significant by
changing the shape of the wave by making the troughs flatter
and crests sharper, compared to purely linear sinusoidal form.
In addition, higher-order effects, summarized in higher-order
dispersion and mean-flow contributions, are responsible for
the asymmetry of the wave group. These can be accounted in
the Dysthe equation [35].

Due to the limited number of wave gauges, which is seven,
it is not possible to display the evolution as accurately as in
Fig. 7, which is the optical counterpart, or as in Ref. [29].
One possibility to overcome this limitation is to repeat the
same experiment again and again while changing the positions

of the gauges to increase the spatial resolution. However, we
are motivated to show the results as measured from a single
run while wave profiles are measured with respect to this
exact latter test. The comparison with theory clearly confirms
the extreme wave growth on the respective periodic envelope
profiles.

V. CONCLUSION

In summary, we reported the theoretical description and di-
rect observation of the MI process and related rogue breathers
on stationary periodic dnoidal and cnoidal envelopes. The
present work was performed in two distinct disciplines of
wave physics, namely, optics and hydrodynamics, in order
to confirm the existence of the MI phenomenon for more
complex background waves than the common plane wave.
We provided an overview of the main characteristics of MI
gain and RWs for various values of the modulus of elliptic
functions.

Future experimental research should for instance tackle the
complexity of MI gain for cn-periodic waves and the instabil-
ity of other elliptic wave solutions such as the double-periodic
solutions [36,37]. We also expect that our multidisciplinary
approach will motivate new scientific and technological ad-
vances in the field of nonlinear physics, telecommunications,
and marine engineering.
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