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Abstract. We address the nonlinear Schrödinger equation with intensity-dependent

dispersion which was recently proposed in the context of nonlinear optical systems. Con-

trary to the previous findings, we prove that no solitary wave solutions exist if the sign

of the intensity-dependent dispersion coincides with the sign of the constant dispersion,

whereas a continuous family of such solutions exists in the case of the opposite signs. The

family includes two particular solutions, namely cusped and bell-shaped solitons, where

the former represents the lowest energy state in the family and the latter is a limit of

solitary waves in a regularized system. We further analyze the delicate analytical prop-

erties of these solitary waves such as their asymptotic behavior near singularities, the

convergence of the fixed-point iterations near such solutions, and their spectral stability.

The analytical theory is corroborated by means of numerical approximations.

1. Introduction. The study of solitary waves in nonlinear Schrödinger (NLS) type

equations [1–4] is a topic of wide interest in a broad range of disciplines. This is because

of the ubiquitous nature of the relevant envelope wave equation which appears in settings

as diverse as the propagation of the electric field in optical fibers [5, 6], the evolution of
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the probability density of atoms in Bose-Einstein condensates [7,8], but also in nonlinear

waves in plasmas [9], and freak waves in the ocean [10]. In the simplest case of bright [4,

6] and dark [11] solitary waves the interplay of linear, constant coefficient dispersion

and cubic nonlinearity (e.g., stemming from the Kerr effect in optics [5, 6] or a mean-

field approximation in Bose-Einstein condensation [7,8]) leads to the Duffing differential

equation for the spatial profile of the solitary wave. The spatial profile is smooth and

decays exponentially to zero or to a nonzero constant background.

In recent years, however, there has been an increasing interest in the study of systems

that feature intensity-dependent dispersion (IDD). There exist multiple relevant examples

of such systems, ranging from femtosecond pulse propagation in quantum well wave-

guides [12] to electromagnetically induced transparency in coherently prepared multistate

atoms [13]. A recent work on this subject in [14] introduced a prototypical example of

IDD and addressed non-standard types of solitary wave solutions of the NLS equation

with IDD. Two different signs of the intensity dependence were considered: one being the

same as that of linear dispersion and the other being opposite to that of linear dispersion.

The purpose of this work is to follow the intriguing example of the NLS equation

with IDD and to examine the relevant solitary wave solutions in detail. Contrary to the

previous findings in [14], we prove that one of the two solutions examined earlier, namely

the cusped soliton, does not exist in the case of the same sign of IDD but exists in the

case of the opposite sign of IDD. In the latter case, it is a member of the continuous

family of solitary wave solutions, which includes the bell-shaped soliton explored in [14].

Periodic in space solutions are also possible in the model with the opposite sign of

IDD. We briefly mention these periodic solutions but focus mainly on the existence and

stability of the solitary wave solutions in the NLS equation with IDD.

1.1. Main results. We address the following NLS equation with IDD:

iψt + (1− b|ψ|2)ψxx = 0, (1)

where ψ = ψ(x, t) is the complex wave function and b is a real parameter. It was shown

in [14] that the NLS equation (1) admits formally two conserved quantities:

Q(ψ) = −1

b

∫
R

log |1− b|ψ|2|dx, E(ψ) =

∫
R

|ψx|2dx. (2)

The two conserved quantities have the meaning of the mass and energy of the optical

system and they are related to the phase rotation (ψ �→ ψeiθ, θ ∈ R) and the time

translation (ψ(x, t) �→ ψ(x, t + t0), t0 ∈ R) symmetries of the NLS equation (1). The

conserved quantities (2) are defined in the subspace of H1 functions given by

X =

{
u ∈ H1(R) :

∣∣∣∣
∫
R

log |1− b|u|2|dx
∣∣∣∣ < ∞

}
, (3)

which is the energy space of the NLS equation (1).

The standing wave solutions are given by

ψ(x, t) = eictu(x) (4)

where c is a real parameter and u(x) satisfies the differential equation

cu = (1− bu2)u′′. (5)
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Since the linear Schrödinger equation iψt + ψxx = 0 admits the linear waves ψ(x, t) ∼
eikx−ik2t which corresponds to c = −k2 ≤ 0, the true localization is possible only if c > 0,

for which tails of solitary waves avoid resonance with the linear waves.

Let us now give the definition of the weak solutions of the differential equation (5).

Definition 1. We say that u ∈ H1(R) is a weak solution of the differential equation

(5) if it satisfies the following equation

c〈u, ϕ〉+ 〈(1− bu2)u′, ϕ′〉 − 2b〈u(u′)2, ϕ〉 = 0, for every ϕ ∈ H1(R), (6)

where 〈·, ·〉 is the standard inner product in L2(R). We say that the solution is positive

if u(x) > 0 for every x ∈ R and single-humped if there exists only one point x0 ∈ R such

that u(x0) = maxx∈R u(x).

We study the weak solutions in Definition 1 by looking for the smooth orbits of the

second-order differential equation (5), see Propositions 1 and 2. The orbits remain

smooth if b < 0 but have singularities if b > 0. With the precise analysis of the as-

ymptotic behavior of the solutions near the singularities (similar to the analysis in the

recent work [15]), we prove that the singular solutions for b > 0 remain in H1(R) across

the singularity points.

The following theorem formulates the first main result of the paper.

Theorem 1. Fix c > 0 and consider weak, positive, and single-humped solutions of

Definition 1. No such solutions exist for b < 0, whereas a one-parameter continuous

family of such solutions exists for each b > 0 in the energy space X.

Two particular solitary wave solutions of the continuous family in Theorem 1 for

b = 1 and c = 1 are shown on Fig. 1. We call them the cusped and bell-shaped solitons as

shown on the left and right panels, respectively. Without loss of generality, the solutions

can be translated to be even in x. The cusped soliton satisfies 0 < u(x) ≤ 1 with the

only singularity at u(0) = 1. The bell-shaped soliton satisfies 0 < u(x) ≤
√
2 with two

singularities at u(±�) = 1 for a uniquely defined � > 0. The singular behavior of these

solutions is further clarified in Proposition 3.
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Fig. 1. The spatial profiles u(x) of the two single-humped solitary
wave solutions of the second-order equation (5) for c = 1 and b = 1:
cusped soliton (left) and bell-shaped soliton (right).
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Remark 1. The result of Theorem 1 disagrees with the numerical results in [14],

where the solitary wave solutions were also obtained for b < 0. According to Theorem

1, such solutions do not exist. In the case of b > 0, the bell-shaped soliton was obtained

in [14], however, the cusped soliton and the continuous family of solitary wave solutions

were missed in [14].

The second main result of this paper is about numerical approximations of the cusped

and bell-shaped solitons. We implement three numerical methods towards identifying

these waves and elaborate on the convergence properties of these methods in the neigh-

borhood of the cusped and bell-shaped solitons in H1(R). The outcomes of this study

are summarized as follows:

• Regularization of the differential equation (5) for b = c = 1 near the singularities

u = ±1 allows us to approximate the bell-shaped soliton only. We prove in

Proposition 4 that the sequence of regularized solitary wave solutions converges

in H1(R) to the bell-shaped soliton.

• Fixed-point iterations with the popular Petviashvili’s method [16] (also referred

to as the spectral renormalization method [17]) allows us to approximate the

cusped soliton only. We prove in Propositions 5 and 6 that the method diverges

for the bell-shaped soliton and for other solitary wave solutions. The cusped

soliton represents the lowest energy state in the continuous family of solitary

waves.

• Fixed-point iterations with the standard Newton’s method allow us to approx-

imate both the bell-shaped and cusped solitons, as well as arbitrary members

within the continuous family of solitary waves upon suitable initial guesses. We

are able to prove convergence of the Newton’s method near the cusped soliton in

Proposition 7.

The third main result of this paper is about stability of solitary waves with respect to

small perturbations in the time evolution of the NLS equation (1). Due to singularities

of the solitary wave solutions, we conclude that the mathematical analysis of stability

is an open problem even at the level of spectral stability. We are only able to charac-

terize the kernel of the linearized operator and only in the case of the cusped soliton in

Proposition 8. Nevertheless, numerical approximations of eigenvalues of the discretized

and truncated spectral stability problem suggest that cusped and bell-shaped solitons are

spectrally stable.

The same conclusion regarding the dynamical stability of the cusped and bell-shaped

solitons is supported by the results of direct numerical simulations of the NLS equation

(1). For time integration, we use a pseudospectral method with the Fourier transform in

the spatial domain [−30, 30] with N = 2048 points. In order to solve the time-evolution

equations for Fourier modes, we use the fourth-order Runge-Kutta method with time

step Δt = 0.001.

Figure 2 presents outcomes of the numerical simulations of the initial conditions taken

as perturbations of the solitary wave solutions ψ(x, 0) = 1.01u(x). The evolution of

these waveforms is (nearly) steady and the small perturbations disperse away from the

stationary localized solution. Notice that, in the vicinity of the boundary, a dissipative

layer has been used, absorbing the small amplitude wavepackets originally emitted by the
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Fig. 2. The space-time evolution of the wavefunction modulus |ψ|
in the NLS equation (1) with the initial perturbations of the cusped
soliton (left) and bell-shaped soliton (right).

localized waves. Simulations for considerably longer times have also been performed and

we have confirmed stability of both solitons in longer computations and under different

types of small perturbations.

The methods and results obtained in this work are very similar to the recent studies of

compactons in the degenerate NLS equation [18] and in the sublinear KdV equation [19].

1.2. Organization of the paper. Our presentation is structured as follows.

We study the smooth orbits of the differential equation (5) in Section 2. The asymp-

totic behavior of the solitary wave solutions near the singularity is clarified in Section 3.

The results of these two sections will accomplish the proof of Theorem 1.

Section 4 describes the outcomes of the three numerical methods implemented for the

approximation of solitary wave solutions of the differential equation (5) with b = c = 1. It

is interesting that the regularization method approximates the bell-shaped soliton only,

Petviashvili’s method approximates the cusped soliton only, and Newton’s method allows

to approximate both the bell-shaped and cusped solitons as well as other solutions in the

continuous family of solitary waves.

Spectral stability of the solitary wave solutions is addressed in Section 5. We show

how to characterize the kernel of the linearized operator and raise an open question on

the mathematical analysis of the spectral stability problem. Numerical results suggest

that the spectrum of the linearized operator is neutrally stable both for the cusped and

bell-shaped solitons.

Section 6 summarizes our findings and presents some directions for future study.

2. Solitary wave solutions of the model. We consider the differential equation

(5) for c > 0. The positive parameter c can be set to unity without loss of generality

because if u(x) = U(
√
cx) satisfies (5) for c > 0, then U(x) satisfies the same equation

with c = 1. Hence, we set c = 1 and rewrite the second-order equation (5) as the Newton

equation:

d2u

dx2
=

u

1− bu2
= −V ′(u), (7)
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where the potential V is given by

V (u) = −
∫

udu

1− bu2
=

1

2b
log |1− bu2|. (8)

The first invariant for the Newton equation (7) is given by

1

2

(
du

dx

)2

+ V (u) = C, (9)

where the value of C is constant along every smooth solution of the Newton equation

(7).

If b �= 0, then it can be set to unity up to the choice of its sign without loss of generality

because if u(x) = |b|−1/2U(x) satisfies (7) for b �= 0, then U(x) satisfies the same equation

with either b = 1 or b = −1. In what follows, we consider the two cases separately.

2.1. Solitary wave solutions for b = −1. We show that no solitary wave solutions exist

in the Newton equation (7) for b = −1 (or generally, for b < 0).

Proposition 1. There exist no solutions with u(x) → 0 as |x| → ∞ in the Newton

equation (7) with b = −1.

Proof. If b = −1, the potential V (u) can be written in the form:

V (u) = −1

2
log(1 + u2). (10)

All solutions are uniquely defined by the level C in (9) and remain smooth due to the

smoothness of V (u) in (10). Solutions satisfying u(x) → 0 as |x| → ∞ correspond to the

level C = 0 since V (0) = 0. They exist if and only if there exist nonzero turning points

given by nonzero roots of V (u). Since V (u) < 0 for every u > 0, no nonzero turning

points exist at the level C = 0. �
Fig. 3 (top panel) shows the level curves of the function in (9) on the phase plane

(u, u′). The level curves with C > 0 (C < 0) lie outside (inside) the stable and unstable

curves corresponding to C = 0. All curves are unbounded since no two turning points

exist for each orbit (see the bottom panel).

Remark 2. It was claimed in [14] that solitary wave solutions may exist for b < 0, in

contradiction to Proposition 1. The problem with the approach of [14] stems from the

Taylor expansion of the potential V (u) and truncation of this expansion. Indeed, the

potential in (10) can be expanded as

V (u) = −1

2
u2 +

1

4
u4 +O(u6) as u → 0. (11)

If the remainder term is truncated, the truncated Taylor expansion (11) admits artificial

turning points at u = ±
√
2, which are not present in the original potential (10). As a

result, the truncated problem has the artificial solution u(x) =
√
2sech(x) which does

not persist in the full system with the potential (10). Note that further to the Taylor

expansion (11), the approach of [14] used the expansion of the integrand near u = 0,

after which the artificial solution was approximated with the Lambert-W function.
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Fig. 3. Top: Orbits on the phase plane for the potential (10) cor-
responding to energy levels C = 0.2, 0,−0.1,−0.2,−0.3. Bottom:
levels of C relative to the potential V with admissible regions occur-
ring for V (u) ≤ C.

Fig. 4 shows the evolution of the NLS equation (1) for b = −1 with the initial condition

ψ(x, 0) =
√
2sech(x). This evolution leads to dispersion, corroborating the absence of a

solitary wave.
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Fig. 4. The space-time evolution of the NLS equation (1) for b =

−1 with ψ(x, 0) =
√
2sech(x). The evolution leads to spreading

(dispersion) of the initially localized pulse as radiation is emitted.
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2.2. Solitary wave solutions for b = 1. We show that a continuous family of positive,

single-humped, and continuous solitary wave solutions exists formally in the Newton

equation (7) for b = 1 (or generally, for b > 0).

Proposition 2. There exists a one-parameter family of positive, single-humped, and

continuous solutions with u(x) → 0 as |x| → ∞ in the Newton equation (7) with b = 1.

Proof. If b = 1, the potential V (u) can be written in the form:

V (u) =
1

2
log |1− u2|. (12)

Two logarithmic singularities exist at u = ±1. Solutions of the Newton equation (7) with

u(x) → 0 as |x| → ∞ correspond to the level C = 0 since V (0) = 0. The turning points

at the level C = 0 are u = ±
√
2, hence the positive and negative solutions for u(x) pass

the singularities at u = ±1, at which the derivative u′(x) becomes unbounded due to the

first-order invariant (9).

A general way to continue the positive and single-humped solution beyond the sin-

gularity with u(x) being continuous through the breaking point is to concatenate the

smooth solution for u(x) < 1 corresponding to the level C = 0 with another smooth

solution for u(x) ≥ 1 corresponding to an arbitrary level C ∈ R. This gives the one-

parameter family of solutions parametrized by C ∈ R for the part of the solution with

u(x) ≥ 1. �
Within the one-parameter family of solitary wave solutions of Proposition 2, we define

two particular solutions:

• The cusped soliton (left panel of Fig. 1), which has the infinite jump singularity

for u′(x). It formally corresponds to C = −∞ for the part of the solution with

u(x) ≥ 1.

• The bell-shaped soliton (right panel of Fig. 1), which has the same infinite value

of the first derivative at the two singularities. It formally corresponds to C = 0

for the part of the solution with u(x) ≥ 1.

Remark 3. It was claimed in [14] that one positive, single-humped solitary wave

solution may exist for b > 0 as the bell-shaped soliton. Proposition 2 alludes to a

continuous family of positive, single-humped, continuous solitary waves with the cusped

soliton being the limiting solution in the family.

The level curves and energy levels C for the potential V (u) in (12) are shown on Fig.

5. Other solutions constructed from the first-order invariant (9) beyond the singularity at

u = ±1 are very similar, i.e., they feature similar ways of continuing past the singularity.

For C < 0, the solutions are periodic and (can be thought of as being) positive definite

as u(x) is squeezed between the turning points. The two periodic solutions (cusped

and bell-shaped) are shown on Fig. 6 with the same values of C below and above the

singularity at u = 1. As C → 0, these two periodic solutions become the cusped and

bell-shaped solitons since their periods diverge to infinity.

For C > 0, the periodic solutions become double-humped with the alternating polar-

ities. At each period, the solution reaches both singularity points u = ±1. Therefore,

there exist four ways to define the double-humped periodic solutions with the same value

of C along each smooth piece of the solution. Three of the solutions are shown in Figure 7.
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One more solution is identical to the solution on the left panel due to the transformation

u �→ −u for solutions of the Newton equation (7).
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Fig. 5. The same as Figure 3 but for the potential (12) and the
energy levels C = −0.2, 0, 0.1, 0.2, 0.3.
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Fig. 6. The spatial profiles of positive periodic solutions for C = −0.2.
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Fig. 7. The spatial profiles of non-sign-definite periodic solutions for
C = 0.3.

3. Singular behavior near the logarithmic singularity. Although we have for-

mally obtained a one-parameter family of positive, single-humped, continuous solitary

wave solutions in Proposition 2, it remains to justify the existence of such solutions in

the weak formulation (6) with c = 1 and b = 1. We do so by clarifying the singular

behavior of positive solutions near the logarithmic singularity at u = 1 and by verifying

that the solitary wave solutions belong to H1(R).

The Newton equation (7) with b = 1 can be rewritten in the form:

u′′(x) =
u(x)

1− u(x)2
. (13)

Let ucusp denote the cusped soliton. The cusped soliton ucusp is defined by the implicit

equation that follows from integration of the first-order invariant (9) with C = 0:

|x− x0| =
∫ 1

u

dξ√
− log(1− ξ2)

, u ∈ (0, 1), (14)

where x0 ∈ R is arbitrary due to the translational symmetry. Without loss of generality,

we place the cusped soliton ucusp at the origin by selecting x0 = 0 in (14).

Let ubell denote the bell-shaped soliton defined piecewise as follows:

ubell(x) =

{
uhead(x), x ∈ [−�, �],

ucusp(|x| − �), |x| > �,
(15)

where � is uniquely defined by

� :=

∫ √
2

1

du√
| log(u2 − 1)|

(16)

and uhead(x) ∈ [1,
√
2] for x ∈ [−�, �] is defined implicitly by

�− |x| =
∫ u

1

dξ√
− log(ξ2 − 1)

, u ∈ (1,
√
2]. (17)

Finally, the one-parameter family of solitary wave solutions in Proposition 2 is defined

piecewise as follows:

uC(x) =

{
uhead,C(x), x ∈ [−�C , �C ],

ucusp(|x| − �C), |x| > �C ,
(18)
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where �C is uniquely defined by

�C :=

∫ √
1+e2C

1

du√
2C − log(u2 − 1)

(19)

and uhead,C(x) for x ∈ [−�C , �C ] is defined implicitly by

�C − |x| =
∫ u

1

dξ√
2C − log(ξ2 − 1)

, u ∈ (1,
√
1 + e2C ]. (20)

If C = 0, then uC=0 ≡ ubell with �C=0 ≡ �. If C = −∞, then uC=−∞ ≡ ucusp with

�C=−∞ ≡ 0.

The following proposition gives the asymptotic behavior of ucusp near the logarithmic

singularity at u = 1. The proof follows closely the proof of Lemma 2.4 in [15].

Proposition 3. Let ucusp be the cusped soliton given by the implicit equation (14) with

x0 = 0. Then,

ucusp(x) = 1− |x|
√
log(1/|x|)

[
1 +O

(
log log(1/|x|)
log(1/|x|)

)]
, as |x| → 0, (21)

where O(v) denotes a C1 function of v near v = 0+.

Proof. We make the substitution u = 1−v and expand the integral in (14) with x0 = 0

as follows:

|x| =
∫ v

0

dη√
| log(η)|

(
1 + log(2−η)

log(η)

)

=

∫ v

0

dη√
| log(η)|

[
1 +O

(
1

| log(η)|

)]
as v → 0+. (22)

Since
d

dv

[
v√

| log(v)|

]
=

1√
| log(v)|

+
1

2
√
| log(v)|3

, v ∈ (0, 1),

we obtain from (22) by integration by parts:

|x| = v√
| log(v)|

[
1 +O

(
1

| log(v)|

)]
as v → 0+. (23)

Setting v(x) = |x|
√

| log |x||w(x) into (23) yields the nonlinear equation

w(x) =

√
1 +

log | log |x||+ 2 log(w)

2 log |x|

[
1 +O

(
1

| log(x)|

)]
as x → 0, (24)

from which the existence and uniqueness of the root w(x) = 1+O( log | log |x||
| log |x|| ) as x → 0 is

proved with the implicit function theorem since all correction terms are C1 functions of

x and w. Substituting all transformations back gives the asymptotic expansion (21). �
Remark 4. With a similar transformation for the integral in (17), one can show that

the bell-shaped soliton ubell given by (15), (16), and (17) admits the behavior

ubell(x) = 1 + (�− |x|)
√
| log |�− |x|||

[
1 +O

(
log | log |�− |x|||
| log |�− |x|||

)]
, as |x| → �. (25)
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Fig. 8. The leading-order approximations given by (21) and (25) su-

perposed with the numerically detected cusped (left) and bell-shaped
(right) solitary waves.

Similarly, the one-parameter family uC of solitary wave solutions given by (18), (19),

and (20) admits the behavior

uC(x) = 1 + (�C − |x|)
√
| log |�C − |x|||

[
1 +O

(
log | log |�C − |x|||
| log |�C − |x|||

)

+OC

(
1

| log |�C − |x|||

)]
, as |x| → �C , (26)

where OC denotes remainder terms that depend on parameter C ∈ R for x ∈ [−�C , �C ].

Figure 8 shows a very good agreement of the two solutions ucusp and ubell with their

leading order approximations given by (21) and (25).

The solutions ucusp and ubell in Figures 1 and 8 are obtained numerically as follows.

Since the cusped and bell-shaped solitons are even, we solve the implicit equations (14)

and (17) for x > 0 and obtain the other half by the symmetry. To solve the integral

equations, we discretize the computational domain [0, L], and approximate the relevant

integrals by the midpoint rule on the grid. This yields a nonlinear system of equations for

the values of the solution u at grid points, which is then solved using Newton’s method.

For the cusped soliton, we solve (14) with the method described above. For the bell-

shaped soliton, we first obtain the solution on [0, �], by solving (17) for uhead(x) in the

same way. The constant � is computed from the integral (16) as � ≈ 0.6862. Then, we

construct the entire bell-shaped soliton according to (15). For |x| > �, the solution is

defined using the shifted cusped soliton, so we use the cusped soliton already obtained

from solving (14).

We are now ready to prove Theorem 1. By Proposition 2, a one-parameter family

of positive and single-humped solitary wave solutions of the second-order equation (13)

exists. The solutions are continuous and decay to zero as |x| → ∞ exponentially fast.

By Proposition 3, u′(x) has infinite jump singularities but the singularities are weak so

that ucusp, ubell, uC ∈ H1(R). Moreover, ucusp, ubell, uC ∈ X ⊂ H1(R). Each smooth

part of the solution in ucusp, ubell, and uC satisfies the weak formulation in (6) for c = 1
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and b = 1 with compactly supported test functions ϕ in appropriate regions of R. The

weak formulation in Definition 1 does not impose any jump conditions on derivatives of

u at the breaking points where u = 1. The proof of Theorem 1 is complete.

4. Numerical methods for solitary wave solutions. Here we study convergence

of the three numerical methods used to obtain solitary wave solutions in the differential

equation (5) with b = c = 1, which is also written as (13).

4.1. Bell-shaped soliton via regularization. A natural regularization of the singular

second-order equation (13) is given by

u′′
ε =

uε(1− u2
ε)

(1− u2
ε)

2 + ε2
, (27)

where ε > 0 is a small parameter. The formal limit ε → 0 recovers (13). The first-order

invariant for the regularized equation (27) is given by

1

2

(
duε

dx

)2

+ Vε(uε) = C (28)

with the potential Vε(u) given by

Vε(u) =
1

2
log

[√
(1− u2)2 + ε2√

1 + ε2

]
, (29)

where the denominator ensures that the critical point (0, 0) still corresponds to the level

C = 0. Figure 9 shows the level curves of the regularized first-order invariant (28).

Figure 10 shows the profiles of the bell-shaped soliton for different values of ε > 0 (left)

and illustrates the convergence uε → ubell in the H1(R) norm as ε → 0 (right). The

following proposition justifies these numerical results analytically.

Proposition 4. For every ε > 0, there exists only one smooth positive solitary wave

solution uε of the second-order equation (27) such that 0 < uε(x) ≤
√
2. Moreover,

‖uε − ubell‖H1 → 0 as ε → 0.

Proof. The second-order equation (27) and its first-order invariant (28) are smooth

for every u ∈ R if ε > 0. The positive solitary wave solution corresponds to the level

C = 0, for which the turning point is located at u =
√
2 for every ε > 0. The positive

solitary wave solution is defined up to the translation in x by the implicit equation:

|x| =
∫ √

2

u

dξ√
−2Vε(ξ)

, u ∈ (0,
√
2), (30)

where the integrand has a weak singularity at ξ =
√
2 and is smooth for any ξ ∈ (u,

√
2).

This gives uε ∈ C∞(R) satisfying 0 < uε(x) ≤
√
2. Since Vε(x) → V (x) as ε → 0

for every x ∈ R and |V |−1/2, |Vε|−1/2 ∈ L1(u,
√
2) for every u ∈ (0,

√
2], Lebesgue’s

dominated convergence theorem implies that uε(x) → ubell(x) as ε → 0 for every x ∈ R.

Because uε(x), ubell(x) → 0 as |x| → ∞ exponentially fast with the same rate, the

pointwise convergence implies that ‖uε − ubell‖L2 → 0 as ε → 0. Since u′
ε, u

′
bell ∈ L2(R),

the first-order invariant (28) with C = 0 implies ‖u′
ε‖L2 → ‖u′

bell‖L2 as ε → 0, which

yields ‖u′
ε − u′

bell‖L2 → 0 as ε → 0. Hence ‖uε − ubell‖H1 → 0 as ε → 0. �
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Fig. 9. Phase portrait for the regularized equation (27) with ε = 0.1.
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Fig. 10. The spatial profile of the bell-shaped soliton uε(x) of the
regularized equation (27) for ε = 2, 1, 0 (left). Convergence of uε to
ubell in the H1(R) norm as ε → 0 (right).

Remark 5. The implicit equation (30) was solved numerically with Newton’s method

for some x ∈ R in order to obtain the bell-shaped soliton uε shown on Fig. 10.

4.2. Cusped soliton via Petviashvili’s method. We rewrite the differential equation (13)

into the following equivalent form:

u = (1− u2)u′′ ⇒ u− u′′ = −u2u′′. (31)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

OPTICAL SYSTEMS WITH AN INTENSITY-DEPENDENT DISPERSION 655

A solution u ∈ H1(R) is a fixed point u = T (u) of the nonlinear operator

T (u) := −(1− ∂2
x)

−1u2∂2
xu. (32)

Furthermore, if u ∈ H1(R) is a solution to (31), then it satisfies the equality∫
R

(u2 + (u′)2)dx = 3

∫
R

u2(u′)2dx, (33)

which follows from the weak formulation (6) with ϕ = u and b = c = 1.

Let us define the iterative method for {wn}n∈N ∈ H1(R) by

wn+1 = −λ3/2
n (1− ∂2

x)
−1w2

n∂
2
xwn, (34)

starting from an initial guess w0, where λn := λ(wn) is the normalization constant defined

by

λ(w) =

∫
R
(w2 + w2

x)dx

3
∫
R
w2w2

xdx
. (35)

The special power of λn is introduced in such a way that if wn = anu, where u ∈ H1(R)

is a solution to (31) satisfying the equality (33), then the iterative method (34)–(35)

yields λn = a−2
n and an+1 = 1, so iterations converge after the first step independently

of a0 �= 0.

As the method proceeds, λn is supposed to converge to 1 and the sequence {wn} is

supposed to converge to u, a solution to (31). Hence, we measure convergence of the

iterations by |1− λn| and ‖en‖L∞ , where en(x) = (1− wn(x)
2)w′′

n(x)− wn(x). We stop

the iterations at step N when the convergence criterion ‖eN‖L∞ < 10−10 is reached.

To compute all spatial derivatives, we use Fourier spectral differentiation matrices as

follows, see, e.g., [20]. For the normalized interval [0, 2π], we work on the grid

xj = jh, j ∈ {1, . . . , N} (36)

where N is a pre-chosen (large) even integer and h = 2π
N is the grid spacing. The left

endpoint 0 is removed so that the grid has exactly N points.

For the truncated interval [−L,L], we need to translate and rescale the starting interval

[0, 2π] by using the transformation

x �→ y =
L

π
(x− π) (37)

First and second order differentiation for functions on [−L,L] on the grid points with

grid spacing Lh/π is performed using the circulant matrices from [20].

Fig. 11 (left) shows how |1 − λn| and ‖en‖L∞ converge in n for the iterations of the

method (34)–(35) with the initial guess w0(x) = sech(x) and c = 1. The algorithm was

terminated after N = 287 iterations when the aforementioned tolerance was reached.

Fig. 11 (right) shows that the iterations converged to the cusped soliton. The graph

of the error shows that the error is maximal at the point of singularity at x = 0 with

maxx∈R |eN (x)| < 10−10.

Trying the initial guess w0(x) =
√
2 sech(x) in an attempt to converge to the bell-

shaped soliton, we can see clearly in Fig. 12 that the method still converges to the

cusped soliton. This computation suggests that the bell-shaped soliton is unstable in the

iterations of the Petviashvili method (34)–(35). .
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Fig. 11. Left: Convergence of |1− λn| and ‖en‖L∞ (defined in the
text) vs. the iteration index n. The former quantity converges faster
than the latter one. Right: The cusped soliton obtained by the
iterative method (34)–(35) after N iterations and the approximation

error eN vs x.
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Fig. 12. The same as Fig. 11 but for the initial guess w0(x) =√
2 sech(x). The Petviashvili method still converges to the cusped

soliton.

The following proposition justifies these numerical results analytically.

Proposition 5. The iterative method (34)–(35) diverges from the solitary wave solution

uC for any fixed C ∈ R.

Proof. We substitute wn = u + vn ∈ H1(R) and linearize the iterative method (34)–

(35) with respect to vn. For the normalization constant (35), we obtain

λ(u+ v) = 1 +
2

3
∫
R
u2(u′)2dx

∫
R

(uv + u′vx − 3u(u′)2v − 3u2u′vx)dx+O(‖v‖2H1). (38)
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Writing λ(u+ v) = 1+ μ(v) +O(‖v‖2H1) and substituting it to (34) yields the linearized

iterative method:

vn+1 =
3

2
μ(vn)u+Mvn, (39)

where

μ(v) :=
2

3
∫
R
u2(u′)2dx

∫
R

(uv + u′vx − 3u(u′)2v − 3u2u′vx)dx (40)

and

M := −(1− ∂2
x)

−1(2uu′′ + u2∂2
x) (41)

is the linearized operator. Since Mu = 3u, M is not a contraction in H1(R); however it

may become a contraction after a constraint imposed by λ. In order to add the constraint,

we introduce the decomposition vn = αnu+ ξn, where αn is uniquely defined under the

orthogonality condition

∫
R

(uξn + u′∂xξn − 3u(u′)2ξn − 3u2u′∂xξn)dx = 0, (42)

which yields μ(αnu+ ξn) = −2αn. Hence, αn+1 = 0 and ξn+1 = Mξn.

The linearized operator (39) is a contraction in H1(R) if the spectrum of M in H1(R)

belongs to the unit disk except for the simple eigenvalue 3, for which the eigenvector u

is removed by the orthogonality condition (42). By Proposition 6 below, the continuous

spectrum of M is given by image(u2). Since image(u2) = [0, 1 + e2C ] for the solitary

wave solution uC with 1+e2C > 1, M is not contractive for any fixed C ∈ R. Hence, the

iterative method (34)–(35) diverges from uC due to the continuous spectrum of M. �

Proposition 6. Let u be the solitary wave solution uC . The continuous spectrum of

the linear operator M in H1(R) is given by image(u2) = [0, 1 + e2C ].

Proof. Let us consider the spectral problem

Mv = μv, v ∈ H1(R). (43)

For simplicity, we work with the cusped soliton ucusp, for which the singularity is placed

at one point, x = 0. By Theorem 4 in [21, p. 1438], the continuous spectrum of M is

given by the union of the continuous spectra of M+ and M− restricted on R± subject

to the Dirichlet condition at x = 0:

M± := (1− ∂2
x)

−1

[
−u2∂2

x − 2u2

1− u2

]
: H1

0 (R±) �→ H1
0 (R±), (44)

where H1
0 (R±) denote the Sobolev space of H1(R±) functions vanishing at x = 0. By

the symmetry of u, the spectrum of M+ is identical to the spectrum of M−. Hence, we

consider the spectral problem for the operator M+ only.
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The Green’s function G(x, y) for (1− ∂2
x)G(x, y) = δ(y) in H1

0 (R+) is given by

G(x, y) = sinh(x)e−yU(y − x), x, y ∈ R+, (45)

where U is the unit step function. Using elementary operations, we can rewrite the

spectral problem M+v = λv for v ∈ H1
0 (R+) in the following integral form:

v(x) =

∫ ∞

x

G(x, y)
u(y)2[3− u(y)2]

[u(y)2 − λ][1− u(y)2]
v(y)dy, x ∈ R+. (46)

The proof that σc(M+) = image(u2) = [0, 1] is standard. Indeed, if λ ∈ image(u2),

then the integral in the right-hand-side of (46) diverges unless v(xλ) = 0 at xλ given by

u2(xλ) = λ, hence the resolvent operator (M+ − λI)−1 is unbounded in H1
0 (R+). Thus,

σc(M) = σc(M+) ∪ σc(M−) = image(u2) = [0, 1].

For the case of the solitary wave solution uC with fixed C ∈ R, the singularities are

placed at two points x = ±�C . Partitioning R into (−∞,−�C ] ∪ [−�C , �C ] ∪ [�C ,∞)

subject to the Dirichlet boundary conditions at x = ±�C gives the same result σc(M) =

image(u2) = [0, 1 + e2C ] but the Green’s functions in (46) are expressed differently from

(45). �
Remark 6. Since image(u2) = [0, 1] for the cusped soliton ucusp, M is not a strict

contraction for the cusped soliton ucusp. Our numerical results on Fig. 13 suggest

that σ(M)\{3} ⊂ [−1, 1] in H1(R), hence M is a contraction for the cusped soliton

ucusp under the orthogonality condition (42). Despite the lack of strict contraction, the

iterative method (34)–(35) converges to the cusped soliton due to discretization and

truncation, in agreement with the numerical results shown in Fig. 11 and 12.

Fig. 13 shows the numerical approximation of the spectrum of M in H1(R) at the

cusped soliton ucusp (left) and the bell-shaped soliton ubell (right). The numerical approx-

imations are obtained with the Fourier spectral method. The location of the spectrum

of M agrees with Proposition 6 and Remark 6.
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Fig. 13. Numerical approximation of the spectrum of M in H1(R)
at the cusped soliton (left) and the bell-shaped soliton (right).
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Remark 7. The cusped soliton ucusp represents the lowest energy state in the contin-

uous family of the solitary wave solutions uC . Indeed, it follows from (18) with �C > 0

for every fixed C ∈ R that E(ucusp) ≤ E(uC). Petviashvili’s method is hence useful to

approximate numerically the lowest energy state of the NLS equation.

4.3. Bell-shaped and cusped solitons via Newton method. We represent solutions of

the second-order equation (13) as the roots of the nonlinear equation F (u) = 0, where

F (u) := −(1− u2)∂2
xu+ u (47)

If u is a root of F , then performing a linearization of F (u+ v) with respect to v leads to

the linearized operator

F (u+ v) = Lv +O(‖v‖2H1), L := −(1− u2)∂2
x +

1 + u2

1− u2
. (48)

Roots of the nonlinear equation F (u) = 0 in H1(R) can be approximated by using the

Newton iterations:

un+1 = un − L−1F (un), n ∈ N, (49)

starting with any u1 ∈ H1(R) provided that L−1 : H−1(R) �→ H1(R) exists. Note the

correspondence M = 1− (1− ∂2
x)

−1L between linearized operators of the two methods.

The following proposition shows that L is invertible for the cusped soliton ucusp.

Proposition 7. Let u be the cusped soliton ucusp. Then, σ(L) = [1,∞) in L2(R).

Proof. Let us consider the spectral problem

Lv = λv, v ∈ Dom(L) ⊂ L2(R). (50)

Because (1 − u2)−1 is not integrable near x = 0 due to singular behavior (21), we have

v(0) = 0 if v ∈ Dom(L). Multiplying (50) by v and integrating by parts under the

condition v(0) = 0 yields

λ

∫
R

v2dx = −
∫
R

(1− u2)vv′′dx+

∫
R

1 + u2

1− u2
v2dx

=

∫
R

(1− u2)(v′)2dx+

∫
R

(uu′)′v2dx+

∫
R

1 + u2

1− u2
v2dx

=

∫
R

(1− u2)(v′)2dx+

∫
R

[
1 + 2u2

1− u2
+ (u′)2

]
v2dx.

Since u ∈ [0, 1], we have λ ≥ 1. Since u(x) → 0 as |x| → ∞ exponentially fast,

Weyl’s theory implies that [1,∞) ⊂ σc(L). Hence, σ(L) = [1,∞) for the cusped soliton

ucusp. �
Remark 8. For the solitary wave solution uC of Proposition 2 with fixed C ∈ R, the

weight (1− u2) is no longer positive. As a result, σ(L) is expected to be sign-indefinite,

in agreement with the numerical approximation on Fig. 14 (right).

We study invertibility of L numerically by rewriting the spectral problem Lv = λv as

the generalized eigenvalue problem

Av = λBv, A := −(1− u2)2∂2
x + (1 + u2), B := (1− u2). (51)
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Fig. 14. The spectrum of L approximated numerically at the cusped
soliton (left) and bell-shaped soliton (right).

In the form (51), the singularity of the potential (1+u2)
(1−u2) in L is avoided. The generalized

eigenvalue problem (51) can be solved numerically even when B is not invertible.

Numerical approximations of the spectrum of L at the cusped and bell-shaped solitons

are shown in Fig. 14. The spatial derivatives are replaced by the same Fourier differenti-

ation matrices as in Section 4.2. The numerical results suggest that σ(L) = [1,∞) for the

cusped soliton ucusp in agreement with Proposition 7 and σ(L) = (−∞, λ0]∪ [1,∞) with

λ0 < 0 for the bell-shaped soliton ubell. In both cases, L is invertible and the Newton

iterative method (49) can be used unconditionally.

For solutions from the continuous family uC , numerical results indicate that σ(L+) =

(−∞, λC ] ∪ [1,∞), where λC < 0 depends on C. Figure 15 shows the location of λC

with varying C. In agreement with Proposition 7, the results suggest that λC → −∞ as

C → −∞, so that the spectrum of L for the cusped soliton ucusp reduces to just [1,∞).

Fig. 15. The dependence of λC on C in the spectrum of L.

Figures 16 and 17 show the convergence of the Newton method (49) to the cusped

and bell-shaped soliton respectively. A key advantage of this method is its enabling to

converge from suitable (distinct) initial guesses to both the solitons. Moreover, it also

converges to an arbitrary member uC of the continuous family of solitary wave solutions.

At each step of the iteration, we measure convergence using the distance between suc-

cessive iterates ‖un+1−un‖L∞ , and also the approximation error en = |F (un)|. We stop

iterations at step N where the tolerance ‖eN‖L∞ < 10−10 is reached.
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Fig. 16. Convergence of the Newton method to the cusped soliton is
quantified similarly to Fig. 11, starting from the initial guess u1(x) =

e−|x|.
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Fig. 17. Convergence of the Newton method to the bell-shaped soli-
ton starting from the initial guess u1(x) =

√
2sech(x).

5. Spectral stability. In order to derive the spectral stability problem, we use the

ansatz

ψ(x, t) = eit[u(x) + eλt(v(x) + iw(x)) + eλ̄t(v̄(x) + iw̄(x))] (52)

where u is the solitary wave solution, v + iw is a small perturbation, λ is the spectral

parameter, and the bar denotes complex conjugation. Substituting (52) into the NLS

equation (1) and linearizing in v and w gives the spectral stability problem[
0 L−

−L+ 0

] [
v

w

]
= λ

[
v

w

]
, (53)

where

L+ := −(1− u2)∂2
x +

1 + u2

1− u2
, L− :=− (1− u2)∂2

x + 1.
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Note that L+ ≡ L is the linearized operator in the Newton method. We consider the

spectral problem (53) in L2(R) so that the differential operators L± are defined on the

domains D± ⊂ L2(R) given by

D− = {v ∈ L2(R), (1− u2)v′′ ∈ L2(R)},
D+ = {v ∈ L2(R), (1− u2)v′′ ∈ L2(R), (1− u2)−1v ∈ L2(R)}.

The following proposition characterizes the zero eigenvalue of the spectral problem (53)

for the cusped soliton.

Proposition 8. Let u be the cusped soliton ucusp. The spectral problem (53) has a

double zero eigenvalue λ = 0 in L2(R).

Proof. Due to the phase rotation symmetry of the NLS equation (1), we have

L−u = −(1− u2)u′′ + u = 0, (54)

where u ∈ H1(R) and (1 − u2)u′′ ∈ H1(R). Hence (v, w) = (0, u)T is the eigenvector of

the spectral problem (53) for λ = 0.

Due to the translation symmetry of the NLS equation (1), we also have

L+u
′ = −(1− u2)u′′′ +

1 + u2

1− u2
u′ = 0, (55)

with u′ ∈ L2(R), however, (1− u2)u′′′ /∈ L2(R) due to the singular behavior (21). Hence

(v, w) = (u′, 0) is not in the domain of the spectral problem (53) and the geometric

multiplicity of λ = 0 is one.

It remains to check the Jordan blocks associated with the eigenvector (v, w) = (0, u).

The first generalized eigenvector satisfies the nonhomogeneous equation

L+v = −u. (56)

Since the kernel of L+ is trivial in D+ ⊂ L2(R), Fredholm’s alternative theorem implies

that there exists v ∈ D+ ⊂ L2(R) that solves the nonhomogeneous equation (56). For

the cusped soliton, the solution can be found in the explicit form:

v =
1

2
xu′, (57)

since xu′ ∈ H1(R) and (1− u2)(xu′)′′ ∈ L2(R) due to the singular behavior (21).

The second generalized eigenvector, if it exists, satisfies the nonhomogeneous equation

L−w = v, (58)

where v is the solution to the nonhomogeneous equation (56). However, no solution

w ∈ D− ⊂ L2(R) exists by the Fredholm alternative if

〈(1− u2)−1v, u〉 �= 0, (59)

where we have used the fact that (1 − u2)−1L− is a symmetric differential operator.

Using (57) and integrating by parts, we obtain

1

2
〈x(1− u2)−1u′, u〉 = −1

4

∫
R

log(1− u2)dx �= 0, (60)
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where the integration by parts is justified since x log(1− u2) → 0 both as |x| → 0 and as

|x| → ∞. Hence, the algebraic multiplicity of λ = 0 is two. �
Remark 9. The proof of Proposition 8 can be extended to the solution uC with C ∈ R

up to the nonhomogeneous equation (56). However, (1− u2)(xu′)′′ /∈ L2(R) due to the

singular behavior (26), hence v is not available in the closed form. Consequently, it is

not clear how to show that the constraint (59) holds for the solution uC .

Remark 10. Besides the result of Proposition 8, it is not clear how to analyze the

spectral problem (53) and to prove spectral stability of the cusped soliton. Since u(x) → 0

as |x| → ∞ exponentially fast, the continuous spectrum of the problem is located at

λ ∈ i(−∞,−1]∪i[1,∞). However, L± are not symmetric differential operators compared

to the spectral stability problems arising in other NLS-type equations. The case of the

solution uC is even more difficult since 1− u2 is no longer sign-definite.

We approximate the spectral stability problem (53) numerically by using the Fourier

discretization matrices as in Section 4.2. Figure 18 shows the location of the spectrum

in the discretized and truncated system (53) for the cusped (left) and bell-shaped (right)

solitons. The double zero eigenvalue is detached from the continuous spectrum located

on i(−∞,−1]∪ i[1,∞) (see Remark 10). Both solitons appear to be spectrally stable for

perturbations in L2(R).

Fig. 18. Eigenvalues for the spectral stability problem (53) are ap-
proximated for the cusped soliton (left) and bell-shaped soliton
(right). The complex plane for the eigenvalues λ = λr+iλi is shown.
Both solutions are found to be spectrally stable since there are no
eigenvalues with positive real part.

6. Conclusion. We have revisited the prototypical model of the NLS equation with

intensity-dependent dispersion. We have illustrated that the solutions of the model

depend on the interplay between the constant coefficient dispersion and the intensity-

dependent dispersion. We proved that no solitary wave solutions exist when the two

dispersion contributions bear the same sign. On the other hand, the competition between
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the two leads to a continuous family of solitary wave solutions which are singular at the

points of vanishing dispersion, where the constant and intensity-dependent dispersion

prefactors cancel each other.

We analyzed three numerical methods which can be used to approximate the relevant

solitary waves and showed that the Newton method is robust in approximating different

solitary waves of the continuous family, while the regularizing method only converges

to the bell-shaped soliton and the Petviashvili method only converges to the cusped

soliton being the lowest energy state of the family. We illustrated numerically that the

bell-shaped and cusped soliton are spectrally stable in the time-dependent NLS equation.

A number of important outstanding questions remain for further development of the

mathematical analysis, including the rigorous proof of the spectral and orbital stability

of the solitary waves for which our numerical computations suggest that they are stable.

There are also numerous extensions of this class of models that are in their infancy.

First off, it is especially relevant to consider if a cancellation of the cubic local nonlinear

term (as, e.g., is achieved in BECs in the context of the so-called Feshbach resonances [22])

could be engineered to realize the prototypical IDD model studied herein. Also, one

can envision generalizations of the IDD model depending on |ψ|2k and consider the

nature of the emerging solutions as a function of k (as has been done in the context

of the standard NLS equations [4]). In the same spirit one can envision more complex

functional forms of the dispersion coefficient, potentially bearing multiple zero-crossings

and attempt to classify the ensuing nonlinear waveforms. Moreover, one can consider

lattice-based variants, which could potentially be related to waveguides in optics [23] or

associated with optical lattices in BEC [24]. Finally, a natural issue to consider would

be the extension of such models into isotropic or anisotropic generalizations into higher

dimensions and the dynamics of solitary waves that can arise therein.
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