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Abstract
A continuous family of singular solitary waves exists in a prototypical system
with intensity-dependent dispersion. The family has a cusped soliton as the lim-
iting lowest energy state and is formed by the solitary waves with bell-shaped
heads of different lengths. We show that this family can be obtained variation-
ally by minimization of mass at fixed energy and fixed length of the bell-shaped
head. We develop a weak formulation for the singular solitary waves and prove
that they are stable under perturbations which do not change the length of the
bell-shaped head. Numerical simulations confirm the stability of the singular
solitary waves.
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dispersion, variational characterization, Lyapunov stability
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1. Introduction

Dispersive nonlinear systems typically feature the interplay of dispersion and nonlinearity
that is prototypically represented through the well-known model of the nonlinear Schrödinger
(NLS) equation [1, 2]. This interplay is responsible for the formation of smooth solitary waves
in a wide class of dispersive nonlinear systems. Nevertheless, some physical systems fea-
ture intensity-dependent dispersion (IDD); relevant examples include the femtosecond pulse
propagation in quantum well waveguides [3], the electromagnetically induced transparency in
coherently prepared multistate atoms [4], and fiber-optics communication systems [5]. Such
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features have been discussed in the context of both photonic and phononic (acoustic) crystals
[6] and have even been argued to arise at the quantum-mechanical level (between Fock states)
in the work of [7].

Our focus here is in addressing the NLS model with the prototypical IDD introduced in the
context of nonlinear optics in [5]:

iψt + (1 − |ψ|2)ψxx = 0, (1)

where ψ = ψ(x, t) is the complex wave function. The dispersion coefficient in the prototyp-
ical IDD model (1) is linearly proportional to the intensity I := |ψ|2 and changes sign at the
normalized unit intensity.

It was shown in [5] that the NLS equation (1) admits formally two conserved quantities:

Q(ψ) = −
∫
R

log |1 − |ψ|2| dx, E(ψ) =
∫
R

|ψx|2 dx. (2)

The two conserved quantities have the meaning of the mass and energy of the optical system.
The conserved quantities (2) are defined in the subspace of H1 functions given by

X =

{
u ∈ H1(R) :

∣∣∣∣
∫
R

log |1 − |ψ|2| dx

∣∣∣∣ < ∞
}

, (3)

which is the energy space of the NLS equation (1).
Existence and stability of solitary waves in dispersive nonlinear models are subjects that

attract much attention due to their importance in understanding the global nonlinear dynam-
ics of such models. For instance, soliton and multi-soliton solutions were investigated in the
NLS equation under Wick-type stochastic effects [8]. Higher-order (e.g., with the fourth order
dispersion) variants of the NLS model were examined as regards their breather solutions and
their applications in birefringent fibers [9]. Analytical solutions for the modified NLS equation
were derived and studied in the context of quantum waves on lattices [10].

Solitary waves of the NLS equation (1) were first considered in [5] where existence of a
single bell-shaped soliton was shown by qualitative approximations. In our previous work [11],
we showed that this bell-shaped soliton is a member of a continuous family of singular solitary
waves which are different from each other as concerns the length of the bell-shaped heads. The
limiting solution of this family is the cusped soliton with zero length of the bell-shaped head.

Solitary waves of the NLS equation (1) are the standing wave solutions of the formψ(x, t) =
eiωt u(x) with real ω and u(x) (without loss of generality) satisfying formally the nonlinear
differential equation

ωu = (1 − u2)u′′(x) (4)

subject to the decay to zero at infinity. Since the classical solutions to the differential
equation (4) are singular at the points of x where u(x) = ±1, solitary waves have to be defined
in a weak formulation. One definition of weak solutions was used in [11] (see definition 1
below); however, this definition was not useful for the proof of orbital stability of the solitary
waves in the NLS equation (1).

In the present work, we revisit this problem and propose a weak formulation which enables
us to establish a notion of Lyapunov stability of the singular solitary waves in the NLS
equation (1). The theoretical results are corroborated with the direct numerical simulations of
the NLS equation (1). The methods and results obtained in this work are similar to the recent
studies of compactons in the degenerate NLS equation [12] and in the sublinear KdV equation
[13].
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Figure 1. The spatial profiles of four single-humped solitary wave solutions of the
second-order equation (4) for ω = 1. From left to right: C = −∞ (cusped soliton),
C = −1, C = 0, and C = 1.

Our presentation is structured as follows. In section 2, we present the mathematical back-
ground, basic definitions of the problem, and state the main theorems. In section 3, we prove
the main results, while in section 4, we illustrate them with numerical simulations. Finally, in
section 5, we briefly summarize our findings.

2. Mathematical setup and main results

We start with the definition of weak solutions of the differential equation (4) which was
introduced in [11].

Definition 1. We say that u ∈ H1(R) is a weak solution of the differential equation (4) if it
satisfies the following equation

ω〈u,ϕ〉+ 〈(1 − u2)u′,ϕ′〉 − 2〈u(u′)2,ϕ〉 = 0, for every ϕ ∈ H1(R), (5)

where 〈·, ·〉 is the standard inner product in L2(R).

The weak solutions are obtained as parts of the smooth orbits of the second-order differential
equation (4). The smooth orbits satisfy the first-order invariant in the form

1
2

(
du
dx

)2

+
ω

2
log |1 − u2| = C, (6)

where the value of C is constant along every smooth orbit. It was proven in [11] that a con-
tinuous family of weak solutions exists for each ω > 0. The family describes positive and
single-humped solitary waves shown on figure 1. The phase portrait computed from the energy
levels C is shown on figure 2. None of the solitary wave solutions on figure 1 exist in the exact
analytic form. Their construction is achieved by using the smooth orbits on the phase plane
shown on figure 2 and glued together.

The exponentially decaying tails of the solitary waves correspond to the level C = 0,
whereas the head of the bell-shaped solitary waves corresponds to an arbitrarily fixed value
of C. The limiting cusped soliton satisfying 0 < u(x) � 1 represents the lowest energy state in
the family and corresponds formally to the limit C →−∞. The bell-shaped solitary wave for
different values of C ∈ R has the head located in the interval [−�C, �C], where 1 < u(x) �√

1 + e2C for x ∈ (−�C, �C). The tails and the head of the bell-shaped solitary waves are
connected at the points x = ±�C, where u(±�C) = 1 and u′(±�C) diverge.

With the precise analysis of the asymptotic behavior of the solutions near the singularities
(similar to [14]), we have proven in [11] that the solutions satisfy the weak formulation in
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Figure 2. The phase portrait computed from the level curves (6).

definition 1 and belong to the energy space X. The following theorem gives the summary of
results obtained in [11] under the normalization ω = 1.

Theorem 1. Fix ω = 1. There exists a continuous family of weak, positive, and single-
humped solutions of definition 1 parametrized by C ∈ R such that

uC(x) =

{
uhead,C(x), x ∈ [−�C, �C],

ucusp(|x| − �C), |x| > �C,
(7)

where �C is uniquely defined by

�C :=
∫ √

1+e2C

1

du√
2C − log(u2 − 1)

, (8)

uhead,C(x) for x ∈ [−�C, �C] is defined implicitly by

�C − |x| =
∫ u

1

dξ√
2C − log(ξ2 − 1)

, u ∈ (1,
√

1 + e2C], (9)

and ucusp(x) for x ∈ R is defined implicitly by

|x| =
∫ 1

u

dξ√
− log(1 − ξ2)

, u ∈ (0, 1). (10)

Moreover, uC ∈ X ⊂ H1(R) with the following singular behavior as |x| → �C:

uC(x) = 1 + (�C − |x|)
√
| log | �C − |x‖|

[
1 +O

(
log | log | �C − |x‖|
| log | �C − |x‖|

)]
, (11)

where O(v) denotes a C1 function of v at either side of v = 0.
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The purpose of this work is to develop the variational characterization of the solitary wave
solutions of theorem 1 in order to prove their Lyapunov stability with respect to small pertur-
bations. In order to place the solutions in the variational context and to deal with the singularity
of the solitary wave solutions, we have to use a new definition of weak solutions.

Definition 2. Fix L > 0 and define

XL := {u ∈ X : u(x) > 1, x ∈ (−L, L) and u(x) � 1, |x| � L} . (12)

Pick uL ∈ XL satisfying

lim
|x|→L

uL(x) − 1

(L − |x|)
√
| log | L − |x‖|

= 1.

We say that u ∈ XL ⊂ H1(R) is a weak solution of the differential equation (4) if it satisfies the
following equation

〈u′,ϕ′〉+ ω〈(1 − u2)−1u,ϕ〉 = 0, for every ϕ ∈ H1
L, (13)

where H1
L :=

{
ϕ ∈ H1(R) : (1 − u2

L)−1ϕ ∈ L2(R) ∩ L∞(R)
}

.

The standard way to characterize smooth solitary waves in the NLS equation is to look for
minimizers of energy E(u) at fixed mass Q(u) [15]. However, lemmas 1–3 (proven by using
methods developed in [16, 17]) show that the mappings C 
→ �C and C 
→ E(uC) are monotone
whereas the mapping C 
→ Q(uC) is non-monotone. As a result, we develop a novel variational
characterization of the singular solitary waves by looking at minimizers of mass Q(u) at fixed
energy E(u).

The stationary equation (4) is the Euler–Lagrange equation for the action functional

Λω(u) = Q(u) + ω−1E(u), (14)

where Q(u) and E(u) are the conserved mass and energy of the NLS equation (1) given by (2).
Expanding of Λω(u) at u ∈ XL with the test function ϕ ∈ H1

L yields

Λω(u + ϕ) − Λω(u) = 2〈(1 − u2)−1u,ϕ〉+ 2ω−1〈u′,ϕ′〉

+O(‖ϕ′‖2
L2 + ‖(1 − u2)−1ϕ‖2

L2∩L∞). (15)

The first variation of Λω vanishes if u ∈ XL is the weak solution of definition 2, hence the
corresponding weak solution is a critical point of Λω(u) in XL. In order to characterize this
critical point, we consider the constrained minimization problem

Qμ,L := inf
u∈XL

{Q(u) : E(u) = μ}. (16)

If u is the minimizer of the constrained problem (16), then the Lyapunov stability theory implies
that it is orbitally stable in the time evolution of the NLS equation (1).

In the context of the variational problem (16), the parameter ω > 0 serves as the Lagrange
multiplier and the parameter L > 0 defines the support of the head of the solitary wave as in
definition 2. The solitary wave is weakly singular at x = ±L.

The following theorem formulates the main result of the paper. The proof of this theorem
relies on the monotonicity of the mappings C 
→ �C and C 
→ E(uC) (lemmas 1 and 2), an
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elementary scaling argument (lemma 4), and convexity of the second variation of the action
functional Λω(u) (lemma 5).

Theorem 2. For every μ > 0 and L > 0, there exists a ground state, that is, the minimizer
of the constrained variational problem (16) in XL. The minimizer coincides with a rescaled
version of uC in theorem 1 for some C = Cμ,L.

Remark 1. The result of theorem 2 implies the Lyapunov stability of the solitary wave solu-
tions of theorem 1 under perturbations which do not change the length of the bell-shaped head.
Stability of the solitary waves is confirmed in the numerical simulations of the time-dependent
NLS equation (1) reported in section 4.

Remark 2. The cusped soliton ucusp can be included in the statement of theorem 2 in the
formal limit L → 0 and Cμ,L →−∞. It is also a minimizer of mass at fixed E in the class of
functions

X0 := {u ∈ X : u(0) = 1 and u(x) < 1, x �= 0}. (17)

This implies Lyapunov stability of the cusped soliton under perturbations in X0.

3. Proof of theorem 2

The following three lemmas address monotonicity of the mappings C 
→ �C, C 
→ E(uC), and
C 
→ Q(uC). The proofs are based on the following standard property from vector calculus. If
W(u, v) is a C1 function in an open region of R2, then the differential of W is defined by

dW(u, v) =
∂W
∂u

du +
∂W
∂v

dv

and the line integral of dW(u, v) along any C1 contour γ connecting two points (u0, v0) and
(u1, v1) does not depend on γ and is evaluated as∫

γ

dW(u, v) = W(u1, v1) − W(u0, v0).

A similar study of the monotonicity of the period function in the context of differential
equations on quantum graphs was recently developed in [16, 17].

Lemma 1. Fix ω = 1 and consider the solitary wave solutions of theorem 1 parametrized
by C ∈ R. The mapping C 
→ �C is C1 and monotonically increasing such that �C → 0 as
C →−∞ and �C →∞ as C →+∞.

Proof. In order to show that the mapping C 
→ �C is C1 and to compute d�C
dC , we regularize

the integral formula (8) by using the first-order invariant (6) with ω = 1:

C�C =

∫ √
1+e2C

1

C du√
2C − log(u2 − 1)

=
1
2

∫ √
1+e2C

1

[√
2C − log(u2 − 1) +

log(u2 − 1)√
2C − log(u2 − 1)

]
du.

6
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Denote A(u) := log(u2 − 1) and write v2 + A(u) = 2C for the integral curve at the constant
level C. Since A′(u) �= 0 for u > 1, we have

d

[
A(u)v
A′(u)

]
=

(
1 − A(u)A′′(u)

[A′(u)]2

)
v du +

A(u)
A′(u)

dv

=

(
1 − A(u)A′′(u)

[A′(u)]2

)
v du − A(u)

2v
du.

Therefore, the expression for C�C can be written in the non-singular form

2C�C =

∫ √
1+e2C

1

[
3 − 2A(u)A′′(u)

[A′(u)]2

]
v du

=

∫ √
1+e2C

1

[
3 +

1 + u2

u2
log(u2 − 1)

]
v du,

where we have used that v = 0 at u =
√

1 + e2C and lim
u→1

(u2 − 1)| log(u2 − 1)|3/2 = 0. Since

the right-hand side is a C1 function of C, it follows that the mapping C 
→ �C is C1 so that
differentiation in C yields

2C
d�C

dC
=

∫ √
1+e2C

1

[
1 +

1 + u2

u2
log(u2 − 1)

]
du
v

,

where we have used that 1 = v ∂v
∂C at fixed u. Let us now integrate by parts with the use of

d
du

[
u2 − 1

u

√
2C − log(u2 − 1)

]
= − 1√

2C − log(u2 − 1)

+
1 + u2

u2

√
2C − log(u2 − 1).

Substituting it to the formula for 2C d�C
dC and canceling 2C on both sides of equation yields the

final expression

d�C

dC
=

∫ √
1+e2C

1

(1 + u2)du

u2
√

2C − log(u2 − 1)
, (18)

which shows that d�C
dC > 0. The limit �C → 0 as C →−∞ follows from the fact that both the

integrand and the length of integration in (8) converge to zero as C →−∞. On the other hand,
the length of integration in (8) diverges as eC whereas the integrand converges to zero as C−1/2

if C →∞, so that �C →∞ as C →∞. �

Lemma 2. In the setting of lemma 1, the mapping C 
→ E(uC) is C1 and monotonically
increasing such that E(uC) → E(ucusp) as C →−∞ and E(uC) →∞ as C →+∞.

Proof. It follows from (7) that

E(uC) = E(ucusp) + 2
∫ √

1+e2C

1

√
2C − log(u2 − 1)du, (19)

7
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Figure 3. Dependencies of �C (left), E(uC) (middle), and Q(uC) (right) versus C.

where the right-hand side is C1 in C. Differentiating of (19) in C yields

dE(uC)
dC

= 2
∫ √

1+e2C

1

du√
2C − log(u2 − 1)

= 2�C, (20)

which shows that dE(uC)
dC > 0. The length of integration in the second integral in (19) for E(uC)

converges to 0 as e2C as C →−∞ whereas the integrand grows like |C|1/2 as C →−∞. Hence
the second integral in (19) converges to 0 and E(uC) → E(ucusp) as C →−∞. On the other hand,
both the length of integration and the integrand in (19) grow as C →+∞ so that E(uC) →∞
as C →∞. �

Lemma 3. In the setting of lemma 1, the mapping C 
→ Q(uC) is C1 and there exist
C1 � C2 < 0 such that

d
dC

Q(uC) > 0, C ∈ (−∞, C1) and
d

dC
Q(uC) < 0, C ∈ (C2,∞). (21)

Proof. It follows from (7) that

Q(uC) = Q(ucusp) − 2
∫ √

1+e2C

1

log(u2 − 1)√
2C − log(u2 − 1)

du, (22)

By using (6), this expression can be rewritten as

Q(uC) = Q(ucusp) − 4C�C + E(uC) − E(ucusp), (23)

where the right-hand side is C1 in C due to lemmas 1 and 2. Differentiating of (23) in C and
using (20) yield

dQ(uC)
dC

= −2�C − 4C
d�C

dC
. (24)

It follows from positivity of (18) that dQ(uC)
dC < 0 for C � 0. On the other hand, it follows from

(22) that Q(uC) > Q(ucusp) for sufficiently large negative C. Hence, there exist C1 � C2 < 0
such that the signs in (21) hold. �

Remark 3. Figure 3 shows all three mappings as functions of C. It suggests that the mapping
C 
→ Q(uC) has exactly one critical point, that is, C1 = C2 in the statement of lemma 3. We
were not able to prove this property from the analysis of (24).
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The following lemma uses the scaling transformation to obtain a critical point of the
constrained variational problem (16).

Lemma 4. For every μ > 0 and L > 0, there exists a unique value of C = Cμ,L such that
a critical point of the constrained variational problem (16) is defined by the solution uC of
theorem 1.

Proof. Let uC be the solitary wave solution of the normalized equation

u = (1 − u2) u′′(x). (25)

The scaled function uω(x) = uC(
√
ωx) is a solution of the second-order equation (4) for ω > 0

and is the critical point of the action functional Λω(u) given by (14) in XL. Using the scaling
transformation in the conserved mass and energy in (2) gives

Q(uω) =
1√
ω

Q(uC), E(uω) =
√
ωE(uC).

The singularities of uω are located at

L =
1√
ω
�C.

The Lagrange multiplier ω is selected from the condition μ = E(uω) =
√
ωE(uC). Computing

the Jacobian of the transformation (ω, C) 
→ (μ, L) by∣∣∣∣∣∣∣∣
∂μ

∂ω

∂μ

∂C
∂L
∂ω

∂L
∂C

∣∣∣∣∣∣∣∣
=

1
2ω

[
E(uC)

d�C

dC
+ �C

dE(uC)
dC

]
, (26)

it follows by lemmas 1 and 2 that the Jacobian is positive for every C ∈ R. Hence the
mapping (ω, C) 
→ (μ, L) is invertible and there exists a unique C = Cμ,L for every μ > 0
and L > 0. �

Remark 4. If L = 0, then �C = 0 in the formal limit C →−∞. This yields the cusped soliton
ucusp with

√
ω = μ

E(ucusp) for every μ > 0. Hence the limiting value L = 0 can be included in
the statement of lemma 4 with limL→0 Cμ,L = −∞ for fixed μ > 0.

Remark 5. If μ = 0, then E(uω) = 0 with the only solution uω(x) being a constant. If the
constant is nonzero, then uω /∈ H1(R). If the constant is zero, then L is not defined. In either
case, the limiting value μ = 0 cannot be included in the statement of lemma 4.

Remark 6. The inverse transformation of the mapping (ω, C) 
→ (μ, L) in the proof of lemma
4 can be made explicit. Since

√
ω = �C

L and μ =
√
ωE(uC), C is uniquely found from the

equation �CE(uC) = Lμ. Hence, Cμ,L ≡ CμL depends on one parameter μL. This dependence
is shown in figure 4.

The following lemma states that the critical point of lemma 4 is in fact a strict local
minimizer of the constrained variational problem (16).

Lemma 5. Fix ω = 1 and C ∈ R. The solution uC of theorem 1 is a strict local minimizer
of the action functional Λω=1(u) in XL=�C .

9
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Figure 4. Dependence of CμL from lemma 4 on the parameter μL.

Proof. Let uC ∈ X�C ⊂ H1(R) be a solitary wave solution of the normalized equation (25).
Let v + iw with real v,w ∈ H1

�C
⊂ H1(R) be a perturbation to uC. Since uC satisfies (11) in

theorem 1, we have (1 − u2
C)−1v, (1 − u2

C)−1w ∈ L∞(R) and uC(±�C) = 1 so that v(±�C) =
w(±�C) = 0.

Expanding Λω=1(uC + v + iw) in powers of (v,w) and integrating by parts for∫
R

u′
C(x)v′(x)dx with v(±�C) = 0 and (1 − u2

C)−1v ∈ L∞(R) yields a vanishing linear term in
(v,w) because uC is the critical point of the action functional Λω=1(u), see expansion (15).
Continuing the expansion to the quadratic and higher orders in (v,w) yields the following
expansion

Λω=1(uC + v + iw) = Λω=1(uC) + Q+(v) + Q−(w) + R(v,w), (27)

where Q+ and Q− are the quadratic forms given by

Q+(v) =
∫
R

[
(vx)2 +

(1 + u2
C)v2

(1 − u2
C)2

]
dx

and

Q−(w) =
∫
R

[
(wx)2 +

w2

1 − u2
C

]
dx,

whereas R(v,w) is the remainder term given by

R(v,w) = −
∫
R

[
log

(
1 − 2uCv + v2 + w2

1 − u2
C

)
+

2uCv

1 − u2
C

+
(1 + u2

C)v2

(1 − u2
C)2

+
w2

1 − u2
C

]
dx.

The quadratic forms Q± and the remainder term R(v,w) are bounded since v,w ∈ H1(R) and
(1 − u2

C)−1v, (1 − u2
C)−1w ∈ L2(R) ∩ L∞(R) are small for the perturbation terms v,w. In par-

ticular, it follows from Taylor’s expansion of the logarithmic function that there exists a positive
constant C such that

10
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|R(v,w)| � C‖(1 − u2
C)−1v‖3

L2∩L∞ + C‖(1 − u2
C)−1w‖3

L2∩L∞ ,

so that the remainder term is cubic with respect to the small perturbation terms v,w ∈ H1
�C

.
We claim that there exist C± > 0 such that

Q±(v) � C±‖v‖2
H1 , v ∈ H1

�C
⊂ H1(R), (28)

hence the quadratic forms are strictly positive and uC is a strict local minimizer of the action
functional Λω=1(u) in XL=�C by the second derivative test.

It remains to prove the bounds (28). Since v(±�C) = w(±�C) = 0, the domain R is parti-
tioned to (−∞,−�C) ∪ (−�C, �C) ∪ (�C,∞) and each quadratic form is considered separately
in each interval subject to the Dirichlet boundary condition at x = ±�C.

Since 0 < uC(x) �
√

1 + e2C, we have

1 + u2
C

(1 − u2
C)2

� min(1, e−4C),

hence the bound (28) holds for Q+ with C+ :=min(1, e−4C).
Since (1 − u2

C)−1 is sign-indefinite, special treatment is needed for Q−. On each interval of
the partition R = (−∞,−�C) ∪ (−�C, �C) ∪ (�C,∞), the quadratic form Q− can be expressed
in terms of the differential operator L− given by

L− = −∂2
x +

1
1 − u2

C

. (29)

The spectral problem for L− is set on (−∞,−�C), (−�C, �C), and (�C,∞) subject to the Dirich-
let conditions at x = ±�C. This defines the spectrum of L− in L2((−∞,−�C) ∪ (−�C, �C) ∪
(�C,∞)) with the domain H2

0(−∞,−�C) ∩ H2
0(−�C, �C) ∩ H2

0(�C,∞), where the subscript in
H2

0 indicates the Dirichlet conditions at the corresponding points.
On the other hand, L− can also be considered in L2(R) with a suitably defined domain

in L2(R). Since uC(x) → 0 as |x| →∞ exponentially fast, Weyl’s theorem implies that the
essential spectrum of L− in L2(R) is located on [1,∞). Since L−uC = 0 with uC ∈ H1(R) and
uC(x) > 0 for every x ∈ R, Sturm’s theorem implies that the discrete spectrum of L− in L2(R)
is located in [0, 1) and 0 is a simple eigenvalue of L− in L2(R).

When L− is restricted on L2((−∞,−�C) ∪ (−�C, �C) ∪ (�C,∞)) subject to the Dirichlet con-
ditions at x = ±�C, the smallest eigenvalue of L− is no longer zero because uC(±�C) = 1 �= 0.
By Rayleigh–Ritz theorem, the smallest eigenvalue of L− in L2((−∞,−�C) ∪ (−�C, �C) ∪
(�C,∞)) is strictly positive, and it yields C− > 0 in the bound (28) for Q−. �

Remark 7. For the cusped soliton with �C = 0 as C →−∞, the bounds (28) hold with
C± = 1 since 0 < u(x) � 1 for all x ∈ R. Hence it is not necessary to partition R into
(−∞, 0) ∪ (0,∞) for the proof of these bounds for the cusped soliton.

We are now ready to prove theorem 2.
By lemma 4, for every μ > 0 and L > 0, the critical point of the constrained variational

problem (16) is given by uω(x) = uC(
√
ωx) with uniquely defined C = CμL and ω =

[
�CμL

L

]2
.

By lemma 5, this critical point is a local minimizer of the action functional Λω(u). From
theorem 1, no other critical points satisfying the Euler–Lagrange equation (13) exist in XL.
Therefore, the critical point is the global minimizer of mass Q(u) for fixed energy E(u) = μ.
The proof extends to μ > 0 and L = 0 with ucusp replacing uC by remarks 4 and 7.
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Figure 5. Amplitude (left), energies (middle) and masses (right) for the time evolution of
the initial condition (30) with C = 0 (the bell-shaped soliton), where P = 0.9 (top) and
P = 1.1 (bottom). In the amplitude figures, the green dotted line represents the ampli-
tude of the initial condition, while the red dashed one represents the amplitude of the
unperturbed soliton.

Figure 6. The same as figure 5 but for C = 0.5.

4. Time evolution of perturbations

In order to corroborate the results regarding the existence and stability of the minimizer of
the constrained variational problem (16), we investigate the time evolution of perturbations
of the solitary wave with the profile uC for some uniquely selected C = CμL. We consider
perturbations of the singular solitary waves which do not alter the singularity location at ±L
with L = �C, in line with our theoretical analysis, but change the energy level E(uC) = μ. We
do this by perturbing only the head portion of the solitary wave on (−�C, �C), while leaving the

12
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Figure 7. The same as in figure 5 but for C = −0.5.

solution in the outer regions unchanged. The initial condition is given by

uP(x) =

{
PuC,head(x), |x| < �C

ucusp(|x| − �C), |x| � �C

, (30)

where the perturbation factor P is close to 1, both for P > 1, e.g., P = 1.1, and for P < 1, e.g.,
P = 0.9.

To perform the time evolution of the NLS equation (1), we use a pseudospectral method.
First, we discretize the interval [−500, 500] with N = 2000 points. Next, spatial derivativesψx

and ψxx on the grid are approximated by vectors D1ψ and D2ψ respectively, where D1 and D2

are matrix representations of the first and second derivative operators based on the circulant
matrices from [18]. Finally, time integration is performed using the fourth-order Runge–Kutta
method, with time step Δt = 0.001.

At each time t in the evolution, we compute the energy contained in the inner and outer
portions, given by

Einner(t) =
∫ L

−L
|ψx(x, t)|2 dx, (31)

Eouter(t) =
∫
|x|>L

|ψx(x, t)|2 dx, (32)

as well as the mass

Qinner(t) = −
∫ L

−L
log | 1 − |ψ(x, t)|2| dx, (33)

Qouter(t) = −
∫
|x|>L

log | 1 − |ψ(x, t)|2| dx. (34)

These give insight into how energy and mass may be exchanged between the inner and
outer regions. We also plot the value at the peak |ψ(0, t)|. Figures 5–7 show these diagnostics
for three members of the solitary wave family (i.e. C = 0, C = 0.5 and C = −0.5) with two
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perturbation factors at P = 0.9 and P =1.1 (top and bottom panels in each figure, respectively).
In all the simulations, we observe slowly decaying oscillations around a different solitary wave
near the initial perturbation, suggesting that the singular solitary waves are stable in the time
evolution of the NLS equation (1). This agrees with the Lyapunov stability of the solitary wave
solutions which follow from the result of theorem 2.

A closer inspection of the amplitude of the wave points to a very slow (presumably power
law) decay toward a new solitary wave equilibrium. Additionally, in our (total) energy and
mass conserving simulations, we observe a very weak exchange of energy and mass between
the inner (head) and the outer regions of the solitary wave. The latter may be affected by the
approximate nature of the numerical computations, e.g., by the numerical approximation of
the unit modulus at x = ±�C.

We remark that, due to numerical limitations, we are not able to investigate perturbations
which change the singularity locations at ±L while keeping the same energy level μ. In the-
ory, the location of the singularity for these perturbations may change in time, because ψxx is
infinite when |ψ| = 1, and the term (1 − |ψ|2)ψxx in the NLS equation (1) is indeterminate. In
numerical simulations, however, the derivativeψxx is replaced by a finite approximation, which
results in the term (1 − |ψ|2)ψxx being computed as 0 when |ψ| = 1, in which case the NLS
equation (1) implies that the singularity locations at ±L are preserved in the time evolution.

5. Conclusions

In the present work, we have provided a variational characterization of solitary waves in a
prototypical NLS model with IDD. We have argued that minimization of mass at fixed energy
and fixed length of the bell-shaped head is beneficial from an analytical point of view since it
allows us to establish Lyapunov stability of the singular solitary waves. This expected stability
of the solitary waves was confirmed by direct dynamical simulations of the NLS model. We
have observed in numerical simulations that perturbations of such waveforms lead to a slow
relaxation of perturbed solitary waves to a new solitary wave within the family.

Among further open problems, we mention the rigorous analysis of well-posedness of the
NLS model in the energy space where the solitary waves exist. It is also interesting to inves-
tigate how the singularity locations can change in the time evolution of the solitary waves;
our analytical and numerical results rely on the fixed location of the singularities. Finally, it
is interesting to study Lyapunov stability of other (sign-changing) solitary waves and periodic
solutions discussed both in [5, 11]. It is also worth exploring generalizations of the NLS model
in the settings of the discrete (waveguide) systems, as well as in higher-dimensional systems.
Such studies are deferred to future publications.
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