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We consider the nonlinear Schrodinger equation with the nonlinearity management which describes
Bose-Einstein condensates under Feshbach resonance. By using an averaging theory, we derive the
Hamiltonian averaged equation and compare it with other averaging methods developed for this
problem. The averaged equation is used for analytical approximations of nonlinearity-managed
solitons. © 2005 American Institute of Physics. [DOL: 10.1063/1.1922660]

We have systematically categorized the averaging proce-
dure for the nonlinear Schrodinger (NLS) equation with
nonlinearity management. We have derived an averaged
equation by using four equivalent methods: (i) near-
identity canonical transformations, (ii) asymptotic multi-
scale expansion methods based on local transformations,
(iii) asymptotic multi-scale expansion methods based on
nonlocal transformations, and (iv) direct perturbation se-
ries expansions. Stationary solutions of the averaged
equation are used to approximate time-dependent solu-
tions of the full NLS equation. Two families of stationary
solutions include bright and dark solitons. We show that
these solutions exist in an open quadrant of the param-
eter plane (y,,®), where v, is the averaged nonlinearity
coefficient and w is the frequency of the stationary
solutions.

I. INTRODUCTION

In atomic physics, the Feshbach resonance of the scat-
tering length of interatomic interactions is used for control of
Bose—Einstein condensates."” The periodic variation of the
scattering length by means of an external magnetic field pro-
vides an experimentally realizable protocol for generation of
solitary waves in harmonic traps,‘%f5 control of periodic
waves in optical lattices,® and persistence of nonlinear
structures  against collapse phenomena in  higher
dimensions.'®"!

We consider the main model for Feshbach resonance
given by the NLS equation with the variable nonlinearity
coefficient (which we call the nonlinearity management).
The averaging theory of nonlinearity-managed pulses can be
developed for the NLS equation in the space of any dimen-
sion and with an external trapping potential. We simplify
details of the paper by considering the model in the space of
one dimension and without the external potential:
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where xe R, teR,, ueC, y, is parameter, and y(7) is a
continuous function, such that

1
Y7+ 1) =9, f Y7dr=0, max|y7)|=T.
0 -

(1.2)

The NLS equation (1.1) has the standard Hamiltonian form
with the time-dependent Hamiltonian:
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When €<1 and I'=0(1), the nonlinearity management is
referred to as strong. When e<1 and I'=0(e), the nonlin-
earity management is referred to as weak.

Two recent publicationsz"10 addressed averaging proce-
dures for the NLS equation (1.1) in the asymptotic limit €
<1. In Ref 4 [(Eq. (9)], a local (differential) equation was
derived in the strong management case by using a nonlocal
(integral) transformation. The nonlocal transformation de-
stroys the Hamiltonian form (1.3) of the NLS equation (1.1).
In Ref. 10 [Eq.(22)], another local differential equation was
derived in the weak management case by using the perturba-
tion series expansions. The local averaged equation has a
“quasi”’-Hamiltonian form with a nonlinear symplectic struc-
ture (see Eq. (23) in Ref. 10). More important, the two av-
eraged equations in Refs. 4 and 10 do not match each other
in the limit of common validity.

These preliminary publications call for systematic analy-
sis of the averaging procedure for the NLS equation with the
nonlinearity management (1.1). The main objective of our
paper is to exploit the Hamiltonian form of the NLS equation
(1.1) and to derive the following averaged NLS equation:
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iw,=—w,, — 70|w|2w - 02((|w|)26)2 + 2|w|2|w|)2(x)w, (1.4)

where x € R, 7€ R, w e C, the notations |w|?,|w|?_stand for

(WP, (w]*),y, and

1
02 = f ’yzl(T)dT’
0

T 1 T
7_1(T)=J ?’(T')dT'—f J W7')dr dr.
0 0 J0

The averaged NLS equation (1.4) can be cast to the standard
Hamiltonian form with the averaged Hamiltonian:

(1.5)

1
1= [ (= Sl ol .
R

(1.6)

The Hamiltonian averaged NLS equation (1.4) covers both
cases of the strong and weak nonlinearity managements, but
the parameter o2 is small in the latter case. Since the aver-
aged equation (1.4) is different from both previously derived
averaged equations in Refs. 4 and 10, it is important to
clarify the validity of all three averaging methods for the
NLS equation with the nonlinearity management (1.1). This
problem is considered in our paper, where we show that the
Hamiltonian averaged equation (1.4) is the unique equation
in all three averaged methods. The nonlinear bound states in
the NLS equation (1.1) are approximated asymptotically by
the stationary solutions in the averaged NLS equation (1.4).
A short version of this paper is published in Ref. 5.

The paper is structured as follows. Section II is devoted
to derivation of the averaged NLS equation (1.4) with the
Hamiltonian averaging and the asymptotic multiscale expan-
sion methods. Problems in the other two averaging methods
in Refs. 4 and 10 are reviewed and resolved in Sec. III. The
local existence of solutions of the averaged equation (1.4) is
discussed in Sec. IV. Section V describes stationary solutions
of the averaged NLS equation (1.4) and the asymptotic ap-
proximations of the bound states of the full NLS equation

(L.1).

II. DERIVATION OF THE HAMILTONIAN AVERAGED
EQUATION (1.4)

We shall derive the averaged NLS equation (1.4) with
two equivalent methods. The first method is based on canoni-
cal transformations of the Hamiltonian (1.3). The second
method is based on the asymptotic multiscale expansions of
the NLS equation (1.1).

A. Hamiltonian formalism

Since the periodic term in the Hamiltonian (1.3) is sin-
gular as e—0 and I'=0(1), it is natural to remove the peri-
odic term with a canonical transformation. Let us define new
dependent variable v(x,?) by
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. t
u(x,r) = 6’7-1(T>‘”|2(X”>v(x,t), T="-, (2.1)
€

where y_;(7) is the mean-zero antiderivative of y(7), defined
by Eq. (1.5). The canonical transformation from (u,u) to
(v,0) is given by the generating functional,

! ] 2(U>d
og”| — |dx.
2y.4(7) )y u

The symplectic form is preserved by S[u,v, 7], while the
new Hamiltonian is computed as follows:

S[u,v,7] = (2.2)

_ a8
H[v,0,7]=Hlu,i, 7]+ E[u,v,f]

1
=f (va+i7_1(r)|v|§u|2—Eyo|u|4>dx. (2.3)
R

The averaged method for the Hamiltonian H[v,0,7] is based
on the sequence of near-identity canonical transformations:'?

N+1
F[U,W,T]=f (UW+ > S"F,l(U,W,T)+0(6N+2)>dx.
R

n=1

(2.4)

The generating functional defines v and w by variational de-
rivatives in v and w, while correction terms F,(v,w,7) are
periodic, mean-zero functions of 7. The new averaged
Hamiltonian takes the form:

~ oF
Hyew[w:w.7]= Hv,0, 7]+ i— 0.1, 7]

= Hy[w,w]+ O(é"), (2.5)

where Hy[w,w] is the Nth order averaged Hamiltonian.
Since 7y_;(7) has zero mean, the leading-order averaged
Hamiltonian is found immediately in the form (1.6), where

1
HO[W,W]=J Hlw,w,7ldr. (2.6)
0

The first-order correction term F;(w,w,7) is then found ex-
plicitly as

Fi(w,w,7)=(y_1)_1(7) |w|§(v?wx—v7xw)dx
R

+xﬁm—fukwwwyw, 27)

where the notation a_;(7) stands for the mean-zero an-
tiderivative of the mean-zero periodic function a(7). The se-
quence of near-identity canonical transformations can be
continued to any order of O(€¥*'), N=0 in a formal algo-
rithmic procedure.12 Similar Hamiltonian averaging method
is applied to the harmonically driven pendulum (the Kapitza
pendulum) and its infinite-dimensional counterpart (the sine-
Gordon equation)13 (see also the review in Ref. 14).
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B. Asymptotic multiscale expansion method

Using the transformation (2.1), we replace the NLS
equation (1.1) with the equivalent equation:

iUt - 7—1|U|12U == Uy~ ‘)/()|U|ZU - i7—l(2|v|)2cvx + |U ixv)
+ 1) (2.8)
It follows from Eq. (2.8) that
|U|z2= i(ﬁvx_ljxv)x_27—](|U|2|v|)2c))r (29)

As a result, the transformed equation (2.8) is written in the
standard NLS form,
E

iU, == Un~ ’}/()|U v- 2i7—1(vzl7xx + 2|UX|2U + U)zcﬁ)

= V(o2 + 2Pl JoPo.

The NLS equation (2.10) is related to the Hamiltonian
(2.3) by the standard Hamiltonian form. We look for the
solution v(x,#) with the asymptotic multiscale expansion se-
ries:

(2.10)

N+1

() =wx,T) + > €v,(x,7,T) + O(e?),

n=1

(2.11)

where 7 is fast time and 7 is the vector of slow time scales,
needed for continuation of the multiscale series (2.11):

t
r=—, T=(etét,...). (2.12)
€
The leading-order equation for w(x,7) and v,(x, 7,7) is de-
rived from Eq. (2.10) by truncating the order of O(€?) in Eq.
(2.11). The averaged NLS equation (1.4) removes secularly
growing terms from v,(x, 7,), which can then be found ex-

plicitly as
B

vy == 2072 ) (WP + 2|w,Pw + wiw)

—i(Y2y = A (WD + 2wl wlPHw, (2.13)

such that v, is related to the negative variational derivative
of Fi(w,w,7) in w. The formal asymptotic multiscale expan-
sion series (2.11) can be continued to any power order of
1 N=0, in full correspondence with the near-identity ca-
nonical transformations (2.4) and (2.5).

lll. ALTERNATIVE AVERAGING METHODS FOR THE
NLS EQUATION (1.1)

We shall review two alternative averaging methods for
the NLS equation (1.1), which were used recently in Refs. 4
and 10. In both cases, we shall outline the problems in the
computations of the formal asymptotic multiscale expansion
series. Resolving these problems, we will show that the same
Hamiltonian averaged NLS equation (1.4) gives the leading-
order averaged equation in both the methods.
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A. Averaging method based on the nonlocal
transformation

A local transformation (2.1) is used in Sec. II to remove
the large periodic term of the NLS equation (1.1). There
exists an equivalent nonlocal transformation, which serves
the same purpose:

1

t,
7<—>|v|2(x,t’)dt’.
€

(3.1)

u(x,1) = ei¢(x,t)v(x,t), P(x,1) = EJ

0

By using the nonlocal transformation (3.1), one can reduce
the NLS equation (1.1) to the system:

ivt == Upn— 2i¢xvx - i¢xxv + (¢x)zv P

1 ([t
b= _'}’(_)|U
€' \e

In Ref. 4, the variable ¢(x,7) was eliminated from the
system (3.2) and (3.3) and the solution v(x,?) of a nonlocal
(integral) scalar equation was sought to be the asymptotic
multiscale expansion series (2.11). The leading-order equa-
tion for w(x,#) and v,(x, 7,7) can be derived from Eq. (3.2)
by truncating the order of O(€?). The secularly growing
terms for v,(x,7,r) are removed if w(x,r) satisfies the
leading-order averaged equation:

(3.2)

2 #(x,0)=0. (3.3)

iwy = = wy = yolwPw = i Iwliw, + [wliw)
+ (17 + ) (w)w,
where o is introduced in Eq. (1.5) and

1 T
V1=f f (7' )d7 dT.
0 Jo

It can be checked that the averaged equation (3.4) has no
Hamiltonian form (1.3) and cannot be reduced to the Hamil-
tonian averaged NLS equation (1.4). We will show that, al-
though the averaged equation (3.4) gives the necessary and
sufficient condition for existence of the bounded function
v,(x, 7,1), a continuation of the asymptotic multiscale expan-
sion series (2.11) to the next order O(€?) is not yet possible.

The correction term v,(x,7,7) can be found in the ex-
plicit form:

(3.4)

01 (67 == (yo) -y 2wl 2w, + w2 w)

—i(72) = )y ([w)w, (3.5)
such that
1
f ) (w(x,0)v,(x,7,1) + w(x,0)0,(x, 7,1))dT
0
=202(|w]w]?), # 0. (3.6)

As a result, the right-hand side of the inhomogeneous equa-
tion for v,(x, 7, T) contains terms with the linear growth in 7,
which cannot be removed by constraints on w(x,T). We con-
clude that the averaging procedure with the asymptotic mul-
tiscale expansion series fail for differential equations with
nonlocal (integral) terms.
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In order to resolve this obstacle, we shall work with the
system of differential equations, avoiding any nonlocal (in-
tegral) terms and extending artificially the second-order
time-evolution problem (1.1) to the third-order time-
evolution system (3.2) and (3.3). We look for the asymptotic
multiscale expansion series for the functions v(x,7) and

P(x,1):

N+1

v(x,t) =w(x,T)+ E €'v,(x,7,T) + 0(€"?),

n=1

(3.7)

N+1

Bx.1) = Y (DI + o0, T) + 2 €'¢,(x, 7. T) + O(€'?),
n=1

(3.8)

where 7 and T are the same as in (2.12). The leading-order
functions w(x,T) and ¢(x,T) are yet to be defined from con-
tinuations of the asymptotic series (3.7) and (3.8). By trun-
cating the order of O(€?), we have the system of equations:

th + ivlrz Wi — 2i¢xwx - i@xxw + ((Px)2w
. 2 2 2
- 17—1(|W|xwx + |W|xxw) + 2’}/_1(,DX|W|XW

+ yzl(|w|)2c)2w (3.9)

and

@+ bir=— v+ Yo, +woy). (3.10)

Terms with the nonzero mean lead to secular growth of so-
lutions v(x, 7,7) and ¢,(x, 7,7) in 7. The leading-order func-
tions w(x,) and ¢(x,r) are defined by removing secular
terms from the system (3.9) and (3.10). Removing secular
terms in the first equation (3.9), we derive an averaged equa-
tion for w(x,?):

iW, =T Wi — ZiQDxWx - i(lexW + ((Px)2w + 0'2(|W|;25)2W
(3.11)

This equation recovers the previous result (3.4) for ¢(x,?)
=0 and »;=0. However, it is clear that the constraint
¢(x,1)=0 cannot be set arbitrarily, since the second equation
(3.10) also has secular terms. In order to identify these terms,
we find explicitly

016,70 == (v ) RIwiw, + [wlEw + 2ie wliw)
- i(?’i - 02)—1(|W|§)2W~

Removing the secular terms in the second equation (3.10),
we derive an averaged equation for ¢(x,?):

¢ =207 (WP Iwl).

(3.12)

(3.13)

Under the condition (3.13), a bounded solution can be
found for ¢,(x, 7,t) from Eq. (3.10). Thus, an obstacle (3.6)
in the nonlocal averaging procedure is removed in the local
averaging procedure by using the renormalization of ¢(x, 1)
in the series (3.8). Similarly, the asymptotic multiscale ex-
pansion series (3.7) and (3.8) can be continued algorithmi-
cally to any power order of €"*!, N=0.

The leading-order averaging theory for the NLS equa-
tion (1.1) with the nonlocal transformation (3.1) is given by
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the third-order time-evolution system (3.11) and (3.13). We
will show that this system is equivalent to the Hamiltonian
averaged NLS equation (1.4) by using the gauge transforma-
tion:

Wwix, 1) = wix,1)e' ). (3.14)

The transformation (3.14) establishes a complete equivalence
between the nonlocal solution (3.1), (3.7), and (3.8) at the
leading order and the local solution (2.1) and (2.11) at the
leading order. In order to prove the gauge transformation
(3.14), we use the polar form w=pe'?, where p(x,f) and
6(x,1) are real functions, and we rewrite the system (3.11)
and (3.13) as follows:

pr==2p{0+ @)= p(O+ @), (3.15)
—pb,=—pu+p(0+ @)’ — yp' +407pps, (3.16)
@, =40%(p’py);. (3.17)

The third-order system (3.15)—(3.17) reduces in the vari-
ables p and =6+ ¢ to the second-order system:

pt=_2pxlsz_p¢xx» (318)

— P == P+ PP — Yo’ —807p’p; —407p'p,. (3.19)

It is easy to show that if p(x,7) and ¢(x,7) solve the system
(3.18) and (3.19), then the complex-valued function Ww
=pe'” solves the Hamiltonian averaged NLS equation (1.4),
such that the gauge transformation (3.14) is proved. The
gauge transformation reduces the system of averaged equa-
tions (3.11) and (3.13) to the Hamiltonian averaged equation
(1.4). Thus, the averaged method based on the nonlocal
transformation represents the same result as the Hamiltonian
averaged method developed in Sec. II. Another averaging
method for nonlocal Maxwell equations based on the local
differential system of equations was developed recently in
Ref. 15 for justification of the NLS approximation for optical
pulses.

B. Averaging method based on the perturbation
series

When the nonlinearity management is weak, such that I"
is order of € in Eq. (1.2), the asymptotic multiscale expan-
sion method can be applied directly to the NLS equation
(1.1) without removing the periodic term by either local or
nonlocal transformations (2.1) and (3.1). This method was
pioneered in Ref. 16 and was applied in Ref. 10 to the NLS
equation with the nonlinearity management (1.1). We will
show that an accurate application of this averaging method
results in the same Hamiltonian averaged equation (1.4).

We rescale y(7)— €y(7) in the case of the weak nonlin-
earity management and rewrite the NLS equation (1.1) in the
form:

. t
i, = =y, — yolu|?u — y(D|ulPu, 7= = (3.20)
The solution is sought to be the asymptotic multiscale expan-
sion series:
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N+1
u(,d) =wx,T) + >, €u,(x,7,7) + O(€?). (3.21)
n=1

By truncating the order of O(€?), the leading-order averaged
equation is

iw, == Wy = Yol ww (3.22)
and the first-order correction term is
uy(x, 7,0) = iy_y (D) w]*w. (3.23)

By truncating the order of O(€’), we have the inhomoge-
neous equation:

iwg + ity + iy, = = = (v + UD) 2wy + W),
(3.24)

where T, = et. Since the right-hand side of Eq. (3.24) has zero
mean, we set wy =0 and find the second-order correction
term:

a5 7.0) = = () (Do) [l + i),
=37 @wlw. (3.25)

By truncating the order of O(e*), we have the following in-
homogeneous equation:

inz + ity + iUz, = = Uy — (70 + Y(T))(2|W|2u2 + Wzﬁz

+2uy|Pw + 1), (3.26)

where T,=é€’. Removing the terms with the nonzero mean
and using the explicit forms (3.23) and (3.25), and the
leading-order averaged equation (3.22), we simplify the
second-order averaged equation to the form:

in2=— 02((|w|)2€)2+2|w|2|w|)2“)w. (3.27)

Combined together w, and eszz, the averaged equations
(3.22) and (3.27) recover the same Hamiltonian averaged
NLS equation (1.4) with the scaling transformation:
o> €0’

A different averaged equation was derived with the same
method in Ref. 10 [see their Eq. (22)]. The different averaged
equation has a nonlinear symplectic structure with a different
averaged Hamiltonian [see Egs. (23)-(24) in Refs. 10]. How-
ever, there exists a near-identity transformation,

w=A+3E07AI*A + 0(€h), (3.28)

that transforms Eq. (22) for A in Ref. 10 to our main equa-
tions (3.22) and (3.27) for w, when the terms of the order of
O(€") are truncated. The asymptotic transformation (3.28)
was used in Ref. 8 in a similar content of weak nonlinearity
management in discrete NLS lattices. The main averaged
equation was transformed there to the Lagrangian form [see
Egs. (21) and (22) in Ref. 8]. If the Legendre transformation
is employed, the Lagrangian form in Ref. 8 produces Hamil-
tonian of the discrete averaged NLS equation, which is a
spatial discretization of the Hamiltonian (1.6) of the continu-
ous averaged NLS equation. We note that, in contrast to the
asymptotic transformation (3.28) truncated at the order of
O(€"), the averaged Hamiltonian (1.6) is valid uniformly

Chaos 15, 037105 (2005)

both for weak and strong nonlinearity managements.

The explicit solutions (3.23) and (3.25) can be simplified
with the use of the local transformation (2.1), which is valid
for any magnitude of I". When I' is of the order of e, the
complex exponential factor in the transformation (2.1) is ex-
panded into the Taylor series, which increases the number of
correction terms in the asymptotic solution u(x,7), compared
to the asymptotic solution v(x,7). Besides this complication,
the asymptotic multiscale expansion method here repeats the
same algorithm as the one used in Sec. II.

IV. LOCAL EXISTENCE OF SOLUTIONS

We shall analyze local existence of solutions of the av-
eraged equation (1.4), which is of quasilinear type. The local
existence theory for this class of equations has been devel-
oped by a number of authors (see Ref. 17 for an extensive
list of references). We use the result by Poppenberg,18 which
states the conditions under which the PDE of the class

i, ==+ V)u+ Gu,u,u,)u (4.1)

possesses a unique solution u(x,?) € C'([0,T],H”) starting
with u(x,0)=¢ e H” for some T>0, where H*=N,- H".
The averaged equation (1.4) satisfies the conditions in Ref.
18 and therefore we obtain a local well-posedness result.

Proposition: Let w(x,0)=¢ e H”. There exists T>0,
such that the averaged equation (1.4) possesses a unique
solution w(x,t) e CY([0,T],H).

The local existence holds in the space H”, rather than in
the energy space H'. If a local existence of solutions in H'
can be established, it would imply immediately the global
existence of solutions in the same space. Indeed, using Sobo-
lev inequality for w € H' with ||w||,2=constant, we have

12
f |w|4dx$C(f |wx|2dx) .
R R

Since the Hamiltonian is constant during the evolution, we
have for y,>0:

(4.2)

1
N e

R
1/2
> |wx|2dx—c%( f |wx|2dx) ,
R R

which implies that ||w]|;1 is uniformly bounded as long as the
solution w(x,) exists. Together with local existence this es-
timate would imply global existence in H'. Analysis of local
well-posedness of solutions of the averaged equation (1.4) in
H' is beyond the scopes of this paper.

V. ASYMPTOTIC APPROXIMATIONS FOR NONLINEAR
BOUND STATES

We approximate nonlinear bound states of the NLS
equation (1.1) with the stationary solutions of the Hamil-
tonian averaged NLS equation (1.4). Using the standard an-
satz for stationary solutions w(x,t)=®(x)e’®, we find the
ODE problem for ®(x):
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— D" + w® — 5@ — 472D} D)2 + D) =0, (5.1)

where x € R and ® € R. Due to the Hamiltonian form of the
averaged NLS equation (1.4), the first integral of the ODE
(5.1) exists in the form:

E=— (D)2 + o®? - 1y, ®* - 40°DHD')?. (5.2)

Stationary solutions of the ODE (5.1) approximate the time-
dependent solutions of the NLS equation (1.1). The leading-
order approximation follows from Egs. (2.1) and (2.11):

u(x,1) = D(x)e -1 NP+ L 0(¢). (5.3)

Two types of the stationary solutions include bright and dark
solitons. In the presence of external potentials (e.g., har-
monic magnetic traps or periodic optical lattices), these so-
lutions correspond to matter-wave solitary waves trapped in
the Bose-Einstein condensates.®’ Stability of stationary so-
lutions of the averaged equation (1.4) is an open problem for
further studies. Numerical computations4 indicate dynamical
stability of time-dependent solutions (5.3) in the original
NLS equation with the nonlinearity management (1.1).

A. Bright solitons

Bright solitons are given by stationary solutions ®(x)
that decay to zero as |x|—c. It follows from the energy
conservation (5.2) that E=0 for bright solitons, such that the
function ®(x) is found from the Gaussian quadrature:

Qo-y®) ,

"2 _
(¢)"2a+4&¢ﬂ

(5.4)
The zero solution ®=0 is a saddle point for w >0, while the
turning point exists for y,>0, such that the solution ®(x) is
a homoclinic orbit with the properties:

2w 1/2
D(x, -x)=d(x —xo), (I)(xo) =max®d(x) = <—) .
xeR Yo

(5.5)
Bright solitons ®(x) exist in the open quadrant w>0 and
'yO>O.
B. Dark solitons

Dark solitons are given by stationary solutions ®(x) that
approach to nonzero boundary conditions as |x| — c:

lim |®(z)| = D.,.

‘z — 00

(5.6)

It follows from the energy conservation (5.2) for dark soli-
tons that
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E=w®Z - 57,5,
such that the function ®(x) is found from the Gaussian

quadrature:

(70<p§c 2w+ ’)’0(132)
2(1 + 407D

(@)= (@7 - D?). (5.7)
The constant solutions ®=+®d, are saddle points if
=,®2 and y,<0. In this case, the solution ®(x) satisfies

the ODE:

@)= g2, (5.8)

(1+40°d%

such that the solution ®(x) is a heteroclinic orbit with the
properties:

Dxg—x)=—D(x—xy), Dlxy) = mi]rR1|<I)(x)| =0,

lim ®(x) = + ...

X—+%0

(5.9)

Dark solitons ®(x) exist in the open quadrant w<<0 and 7,
<0.
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