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Abstract

A new evolution equation is derived by means of an asymptotic multi-scale technique for quasi-harmonic internal waves
in a fluid of finite depth. This equation is shown to generalize the nonlinear Schrodinger equation which appears in the
small-depth limit. Soliton solutions to the equation are found in an explicit form and describe the localized dips propagating

along a modulationally stable wave background.

1. Self-modulation of quasi-harmonic wave packets
propagating in nonlinear dispersive media is a classi-
cal problem which has been investigated thoroughly
enough (see, e.g., Ref. [1]). It is well known that
the nonlinear Schrédinger (NLS) equation which can
be integrated by means of the inverse scattering trans-
form [2,3] is used as a general evolution equation for
a slowly varying amplitude of one-dimensional wave
packets. The NLS equation appears in the greatest ma-
jority of physical problems as a result of asymptotic
multi-scale reduction of the original equations [4].
However, in some cases the coefficient of the non-
linear (or dispersive) term in the NLS equation is
vanishing and it is necessary to calculate higher-order
nonlinear-dispersive terms for a correct description
of wave packet evolution. For example, the so-called
derivative nonlinear Schrédinger (DNLS) equation
was found for magneto-hydrodynamic waves propa-
gating along the magnetic field [5] and was shown to
be integrable [6].

Another situation occurs for internal waves (in-
terfacial waves) in a two-layer stratified fluid when
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one layer (for instance, the upper one) is thin and
the other (the lower one) is deep [7]. The analysis
which was developed for this case in the framework
of the Benjamin-Ono (BO) model reveals an evolu-
tion equation which is a modification of the DNLS
equation [8]. However, some consequences of the de-
rived equation seem to be paradoxical. First of all, as
it follows from results of Ref. [9] this equation is not
integrable although it was derived from the integrable
BO equation [10]. Besides, the single-soliton solu-
tion which was also found in Ref. [8] is localized in
space exponentially, while the soliton solution of the
BO equation is localized algebraically [10]. These
facts contradict the conventional opinion [4] that the
equation obtained by means of an asymptotic multi-
scale expansion inherits both the properties of integra-
bility of the original equation and the construction of
its explicit solutions.

This paper is devoted to solution of these paradoxes
and to revision of Ref. [8]. Using a modification of
the asymptotic multi-scale technique we shall derive
a new evolution equation which we call the interme-
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diate nonlinear Schrodinger (INLS) equation. This
equation generalizes the NLS equation and differs
from that found in Ref. [8]. The N-soliton solution
of the INLS equation allows us to suppose that it
belongs to the class of integrable equations.

2. In order to describe the waves propagating along
the interface between two fluids of different densities
so that the wave scales greatly exceed the characteristic
depth of the upper layer and are comparable with the
depth of the lower layer, we can use the intermediate
long-wave (ILW) equation (see, e.g., Refs. [11,12])
which may be written in the following form,

e+ 8 e + 2uuy + T(uyy) =0, (1)
where

+oo
T(u) = (28) 'p.v. / coth[7(z — x) /28 u(z) dz

and the dimensionless parameter & stands for total fluid
depth.

The same equation was found for shear-flow
waves of vorticity which are long compared to the
depth of the boundary layer (where the velocity
of the main flow changes essentially) [13]. For
shallow water (6 — 0), Eq. (1) transforms to the
Korteweg-de Vries (KdV) equation and for deep
water (6 — 00), it transforms to the BO equation
also containing a nonlocal Hilbert operator H(u) =
7'pv. [T u(z) dz/(z — x) [11,12).

As is well known [14], the ILW equation can be
solved by means of a modification of the inverse
scattering transform, namely the nonlocal Riemann-
Hilbert problem. Moreover, this technique generalized
to the matrix case (but for a local problem) allowed
one to find a broad class of integrable nonlocal non-
linear equations with singular kernels including an
exotic generalization of the NLS equation [15,16].
Nevertheless, physical applications of the constructed
nonlocal equations remain scanty. Here we derive
a new nonlocal generalization of the NLS equation
which is an asymptotic reduction of the ILW equation
and describes a wave packet dynamics in a fluid of
finite depth.

Let us consider the packet of quasi-harmonic waves
which are short-wave compared to the fluid depth &,

u=e'[A(x,1,7) exp(if) + c.c.]

oo
+> € un(x, 1,7, X,T), (2)

n=2

where € < 1 is a formal small parameter, v =
t/e2,X = x/e’,T = t/e*, 0 = KX — *w(K/e)T,
and the dispersion dependence w(k) for linear per-
turbations of Eq. (1) has the form

w(k) =8 'k — K% coth(8k). (3)

The introduction of different scales of wave packet
variations implies that the high-frequency terms,
which are proportional to exp(i®), exp(2if) and so
on, lie in the region of BO dispersion, where w (k) ~
—k|k|. At the same time, the low-frequency modu-
lation of the wave packet as well as the mean flow
induced by nonlinear effects lie in the intermediate
region, where w(k) is expressed by Eq. (3).

We would like to emphasize that such a modifica-
tion of an asymptotic multi-scale expansion is differ-
ent from a conventional one [1]. The standard multi-
scale expansion, when the high-frequency terms lie in
the intermediate region and the low-frequency terms
lie in the region of the KdV dispersion (where w(k) =~
- %5k3 ), leads to the ordinary NLS equation [7]. The
difference between these expansions is depicted in Fig.
1.

Direct substitution of expansion (2) into Eq. (1)
enables us to find the first terms of the asymptotic
series

2 2
uy=n— AL, (é_ exp(2i6) + c.c.) : (42)
[l ||
A3
Uz = <ﬁ exp(3if) +c.c.) ) (4b)
. [i(AY), .
g =i+ ( 2KK] exp(2if) + c.c.)
At :

+ (Wkl exp(4i6) +C-C-> ) (4c)

where we introduce a long-wave field n(x, t) which
obeys the original equation (1) and an induced long-
wave flow #( x, t, 7) related to A(x, t, 7). Because the
secular terms appear at the first and zero harmonics
when we are looking for higher-order terms of the se-
ries (2) [1] our asymptotic expansion becomes di-
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Fig. 1. Scheme of the standard and novel asymptotic expansions leading to the ordinary and the intermediate NLS equations (LFF:

low-frequency field; HFF: high-frequency field).

verging. In order to avoid such divergences we need to
remove the secular terms specifying the induced mean
flow

[Al* 1

i
iz ——(AAL— A A*) — = 4 =T (|A|2
i 2k|k|( x ) k2|k|+2k2T(lAlx) (5)

and evolution equations for the amplitude A(x,t,7),

i(A; — 2|k|Ay) — 2kA[n+ (26)~'] =0, (6a)
2

i[A467"A,4+2(nA) ] —0Ag— 7

AP,(|A]3) =0,
(6b)

where o = sign(k) and P, = %(l —ioT) is a nonlocal
operator determining the analytical function in a strip
of the complex extension of x (which we designate
through z) between Im(z) = 0 and Im(z) = 206
[14].

Eq. (6a) is easily integrated,

X t
A= 2/k|r, i X T,
a(x + 2|k|r t)exp[1a-(/ndx+26 482)]
(7

and, finally, we find the nonlinear equation for the
amplitude a(x,t) of the high-frequency wave packet
interacting with the given low-frequency field n(x, ¢),

. ) laf?
ia; — oay, +2iaP, {n—— ) =0. (8)
k| /

In the limit & — 0, the operator P, has the form P, =
iof( )dx/28 4+ O(1) so that Eq. (8) becomes an

ordinary NLS equation with an inhomogeneous, non-
stationary potential n(x, t) obeying the KdV equation.
It should be noted that the limit § — O needs rescaling
the variables n, x, ¢t according to Eq. (7).

In the other limit 8 — oo, Eq. (8) has the same
form but the operator P, = %( 1 —ioH) is a projective
operator determining a function which is analytical in
the upper (for o = +1) and in the lower (foro = —1)
half-planes of the complex extension of x. Here the
field n(x,t) obeys the BO equation.

Thus, by analogy with Eq. (1), Eq. (8) is referred
to as the intermediate nonlinear Schrédinger (INLS)
equation. Note that the nonlocal term was missing in
Ref. [8] where an equation of the DNLS-type was
derived for 6 = oo. Therefore, the properties of the
found evolution equation change essentially.

3. We now consider a problem of wave packet self-
modulation which is described by Eq. (8) for n = 0.
The linearization against the wave background of con-
stant amplitude a = p + (u + iw) expli(xx — £21) ],
where p = const and u, w < p, shows that the wave
background is modulationally stable and the disper-
sion dependence £2( «) for linear perturbations has the
form

(02 + 2ck) = &* + 2¢k coth(«8), (9)
where ¢ = p?/|k|.

The dispersion dependence (9) describes two
branches of acoustic type for the wave disturbances
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propagating along a modulationally stable back-
ground. In the dispersionless limit (x — O but finite
x68), one branch corresponds to the perturbations
propagating to the left with velocity 2¢ and the other
branch corresponds to standing perturbations. In the
shallow water limit 8§ — 0, both the branches become
symmetric so that the waves move to the left and to
the right with equal velocities +(2¢/8)'/2 + O(1).

It is known [ 1] that localized wave packets diverge
due to dispersive effects in a modulationally stable
case. However, in this case there may exist solitary
waves on a wave background and solutions describ-
ing dynamics of such solitons were found for the NLS
equation in Ref. [3]. In order to understand the fea-
tures of wave processes in the framework of the INLS
equation we consider evolution of small-amplitude,
smoothly modulated wave perturbations propagating
along the background of constant amplitude a = p =
const. It follows from Eq. (9) in the limit ¥ — O that
smoothly modulated perturbations decay into a super-
position of weakly interacting waves of both types.
Their evolution occurring due to nonlinear and disper-
sive effects can be described by means of two asymp-
totic expansions,

at =[p+ uR (X, T) + O(u?)]

x exp{i[ST(X.T) +0(u)1}, (10a)
a” = [p+uR (£T) +0(ud)]
x exp{il uS™(£,T) + O 1}, (10b)

where & = u(x + 2ct), X = ux,T = u*t, and g < 1.
The substitution of the expansions (10a), (10b)
into Eq. (8) gives relations for parameters S* and R,

2
S+=——p/R+dX, s—=-ZrR7),
k P
and restricts their variation by the equations
A + 4 _
+RF + ]—k—'R Ry —T(R%y) =0. (12)

The found equations (12) coincide with the ILW
model but are slightly different from the original
equation (1) by the form of their coefficients. Thus,
dynamics of wave perturbations against a modulation-
ally stable background in the framework of the INLS
equation generalizes the dynamics of long waves de-
scribed by the ILW equation and reduces to it in the

small-amplitude limit. At § — 0, the same correspon-
dence between the NLS and KdV equations follows
from Eqs. (8), (12) and is well known [4].

4. The relationships between the INLS and ILW
equations which we discussed above imply a similarity
between their soliton solutions. N-soliton solutions to
the ILW equation were found in Refs. [17,18]. Here
we consider N-soliton solutions to Eq. (8) using the
Hirota bilinear method [ 19]. For this we replace the
dependent variables as follows,

a=pG/F, (13a)
a* = pG/F, (13b)
la? = p* — ik[log(F/F)],. (13c)

Besides, we choose a reference frame propagating to
the left with velocity ¢ by replacing the independent
variables (x,t) — (x +ct,t).

The conditions of the transition from Eq. (8) to the
Hirota bilinear equations are the following restrictions
imposed on the functions F, F,

F=f(x—io8), F=f(x+i08), (14)

where f(x) is a real function with the zero lying in
the complex plane z outside the strip —6 < Im(z) <
8. In this case, P,(—|a|*/|k]), = io[log(F) ], [11]
and Eq. (8) at n = 0 transforms to the system of
bilinear equations

(iD; +icDy +oD))(F-G) =0, (15a)
(iD; +icD; + oD, ) (G- F) =0, (15b)
iD(F-Fy+co(G-G~F-F)=0. (15¢)

Eqgs. (15a), (15b) are referred to as the bilinear
Bécklund transformation (BBT) between solutions
of the Kadomtsev-Petviashvili (KP) and related
equations [19,20]. On the other hand, it can readily
be shown [21] that Eq. (15c¢) is satisfied if the func-
tions (F,G) and (G, F) are also related by the BBT
equations

(iD; — icD, + oD, )(F - G) =0, (15d)
(iD; — icDy + 0D5,) (G- F) =0. (15¢)

Therefore, Eq. (15¢c) can be replaced by Egs. (15d),
(15e). As aresult, soliton solutions to the INLS equa-
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tion, similarly to the solutions to the ILW equation, are
reductions of the well-known soliton solutions to the
KP equation [20]. Moreover, the functions F, F, G, G
have identical structures in the form of exponential
polynomials,

N
F= Z eXp(EVn(ﬂn+i¢n)

v=(0,1) n=1
+ ijmMQEnm, (16a)
I<n<m<N
F=F(¢), (16b)
G=F(y), (16¢)
G=F(y), (16d)
where

Tn = Kn(X — Upt — Xop),

(Kp — Km)2 + (vp — Um)2

(kn + Km)z + (v — Um.)z‘

The action of bilinear equations (15a), (15b), (15d),

(15e) is merely a shift of the phase constants accord-
ing to the equations

exp( Amm) =

cmam—mnnma@—@n=ﬁ*,

n

cot[ 5 (¢n — Bn) 1 =cot[ 1 (s — )] = UnK+ c

(17)

Obviously, Egs. (17) give only three relations between
four constants ¢, ¢,, ., .. However, in order to
satisfy condition (14) we should specify the param-
eters ¢, and ¢, to be bn = —08Ky, Gp = +0Okp.
Hence the velocity of the nth soliton v, depends on the
parameter k,. Such a dependence can be found from
Egs. (17) and has the form

vﬁ + Kﬁ =c? 4 2cKy cot(«,0). (18)

Besides, it should be noted that the parameters «,
belong to the interval 0 < x,6 < 7 [11].

Simple analysis shows that the N-soliton solution
(16) describes the scattering of N solitons moving
with velocities v,, which results in a sum phase shift
of each soliton caused by a pair collision with the

other solitons (see, e.g., Ref. [1]). Such a dynamics
is well known for one-dimensional exponentially lo-
calized solitons including the solitons of the NLS and
ILW equations [3,14].

As follows from Eq. (13c), each nth soliton is a
dip in the distribution |a|. The profile of such a dip
coincides with the profile of the soliton in the ILW
equation. However, its velocity v, is related to the pa-
rameter «, by Eq. (18) which is different from that
for solitons in the ILW equation (except the limiting
case k, — 0). Obviously, the velocity of the solitons
decreases with the growth of their amplitudes symmet-
rically for both the branches of the dispersion depen-
dence (18) so that for «x, = ., where «. tan( %KCS) =
¢, the branches merge and there appears an immobile
soliton with zero amplitude at the minimum and the
phase jump by 7.

The structure and properties of solitons in the INLS
equation coincide qualitatively with those of dark soli-
tons in the NLS equation [3]. However, their quanti-
tative features are determined by the parameter 8. In
the limit 6 — 00, x,6 — 7 we can obtain from Egs.
(16) the polynomial functions (see, e.g., Ref. [11])
which describe algebraic solitons of Eq. (8) propa-
gating along the wave background of amplitude p.
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