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We show analytically and numerically that the generation of long-lasting soliton oscillations in resonant � (2)

optical materials possesses a threshold for the amplitude of a fundamental wave. The persistent oscillations of
solitary waves reported by Etrich et al. �Phys. Rev. E 54, 4321 �1996�� are found to appear for finite values of
the wave amplitude. �S1063-651X�99�06506-X�

PACS number�s�: 42.65.Tg, 42.60.Rn, 42.65.Sf

There have recently been a host of theoretical and experi-
mental studies dealing with the mutual locking of fundamen-
tal and second harmonic beams in optical waveguides. Many
of them have considered the existence, stability, and propa-
gation of soliton excitations. In particular, nonlinear self-
modulation of plane �harmonic� waves was shown �1� to lead
to modulational instability and the breakup of a wave back-
ground into chains of coupled solitons �2�. The solitons exist
due to the nonlinear coupling between the resonant harmon-
ics, and they were generated numerically �3� and experimen-
tally �4� from a small-intensity beam at a fundamental fre-
quency. The coupled solitons were proved to be unstable in a
narrow domain of their existence �5� and stable otherwise
�6�. The dynamics of stable solitary waves, including their
generation and interaction, were observed to be complicated
�7,8�, involving a range of persistent oscillations, unlike the
nonresonant case governed by a one-dimensional nonlinear
Schrödinger �NLS� equation. Studies of these oscillations
showed �9� that the spectrum of an associated linear eigen-
value problem possesses discrete internal modes that cause
the oscillatory excitations of the coupled solitary waves in
nonlinear quadratic optical materials.

In this Brief Report we study the conditions under which
these internal oscillations can be excited. We find surpris-
ingly that, for fixed wave vector mismatch between the two
harmonics, the small intensities of the fundamental wave do
not support internal oscillations of solitons. This conclusion
implies that pumping of a small fundamental wave weakly
coupled to the second harmonics in the � (2) optical materials
leads basically to the same dynamics as can be expected in a
nonresonant system, i.e., the wave background splits into
solitons without persistent oscillations or nontrivial soliton
interactions.

Our analysis relies on a conventional system of coupled
equations,

iwz�wxx�w*v�0, �1�

i�vz�vxx��v�
1

2
w2�0, �2�

where w and v stand for envelope functions of a fundamental
and second harmonics, respectively, � is proportional to the
wave vector mismatch between the harmonics, and � de-

scribes either the ratio of the wave vectors in the case of
spatial solitons �when ��2) or the ratio of the group-
velocity dispersions in the case of temporal solitons.

The continuous wave background is taken to be a station-
ary solution of this system,

w�Wse
i�z, v�Vse

2i�z,

where

Vs�
Ws

2

2���2���

and the dependence ���(�Ws�2,�) is given by

�����
1

4�
����2�4��Ws�2��� . �3�

This stationary solution describes two branches of the plane
waves that are weakly coupled in the limit of small intensi-
ties, i.e., for �Ws�2→0. In this limit, the branch with �
��� represents the fundamental wave for ��0, when
�Vs���Ws�, while that with ���� represents the second
harmonics, when �Ws���Vs�. The experiments on soliton
generation �4� involve typically the incident fundamental
small-intensity beams, where essentially only the first branch
is excited. Since the wave background is modulationally un-
stable, the plane wave leads to the formation of soliton
spikes. The problem at the center of our analysis is to deter-
mine whether the soliton spike supported by a fundamental
beam displays the oscillatory dynamics for small and finite
intensities Ws of the fundamental wave.

In the small-intensity limit, when ��0 and ����

	�Ws�2/2� as �Ws�2→0, the underlying system �1� and �2�
reduces to the NLS equation at the leading order approxima-
tion. In order to analyze this limit and extend its applicabil-
ity, we assume the following scaling transformation:

w�
W�X ,Z �, v�
2V�X ,Z �, �4�

where X�
x , Z�
2z , and 
�1. The complex functions
W(X ,Z) and V(X ,Z) satisfy the coupled system,

iWZ�WXX�W*V�0, �5�
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2� i�VZ�VXX���V�
1

2
W2�0. �6�

The NLS equation follows from this system in negligence of
the O(
2) terms. The soliton solutions have no internal �os-
cillatory� modes within the framework of the NLS equation.
However, for a perturbed NLS equation �10,11� it was re-
cently shown that a certain class of perturbations can deform
the spectrum of linear excitations of solitons and lead to the
appearance of an internal �oscillatory� eigenmode from the
edge of the wave continuum. It was assumed in numerical
studies of the model �1� and �2� �9� that this bifurcation does
take place for the coupled solitons. But the analytic criterion
for this bifurcation was not checked, and the numerical data
did not confirm its appearance. Here we recover the bifurca-
tion criterion by extending the underlying NLS equation into
the next-order approximation,

V�
1

2�
W2�


2

�2 � �1���WWXX�WX
2 �

�

2�
�W�2W2�

�O�
4�. �7�

The function U�(2��)�1W(X ,Z) satisfies the perturbed
NLS equation in the form

iUZ�UXX�2�U�2U�4���1����U�2UXX�UX
2 U*

�2��U�4U��O��2��0, �8�

where ��
2/��1. Following to Pelinovsky et al. �11�, we
extend the stationary soliton solutions in the asymptotic se-
ries,

U����X �eiZ, ����0�X ����1�X ��O��2�,

where �0�sech X and

�1����2 �sech X�2 sech3X .

Perturbations to the soliton solutions can be written in the
form

U�����X ��„a�X ��b�X �…ei
Z�„a*�X �

�b*�X �…e�i
*Z�eiZ,

where 
 is an eigenvalue and a(X) and b(X) satisfy the
linear eigenvalue problem,

L1a�
b�4��L1a ,

L0b�
a�4��L0b .

Here L0���X
2 �1�2 sech2X , L1���X

2 �1�6 sech2X and
the operators of the perturbative terms are given by

�L0��0�1�2��0
4��0X

2 �2�0�0X�X��1����0
2�X

2 ,

�L1�3�0�1�10��0
4�2�1����0�0XX��0X

2

�2�0�0X�X��1����0
2�X

2 .

According to the bifurcation criterion derived in Ref. �11�,
the internal mode detaches from the wave continuum for �
�0 and has the oscillation frequency 
�
osc�1��2�2, if
the parameter � is positive, where

���
��

�

dX�a0�X ��L1a0�X ��b0�X ��L0b0�X �� . �9�

Here a0(X) and b0(X) are limiting �nonsecular� eigenfunc-
tions for the edge of the wave continuum at 
�1 for the
unperturbed problem,

a0�1�2 sech2x , b0�1.

Calculating the integral �9�, we find the simple result, ��
� 4

3 (1��), which is negative for ���1. Therefore, the
bifurcation of an internal mode does not occur for ���1.
Although the relaxation oscillations of solitons induced by
linear dispersive wave packets are still possible for interme-
diate time intervals, as in the NLS case �12�, we conclude
that the amplitude of the fundamental wave Ws must exceed
a certain threshold for persistent oscillations of solitons to be
supported by the existence of an internal mode. In the re-
mainder of this paper, we find this threshold numerically.

The solitary waves of the model �1� and �2� have the form

w�w0�x �wi�z, v�v0�x �e2i�z, �10�

which exist for �2������ �3�. We employ a rescaling
of variables

w̄�w/� , v̄�v/� , �̄��/� , x̄���x , z̄��z ,
�11�

and drop the bars. Then the system �1� and �2� remains the
same, but � in Eq. �10� is normalized to be 1. The functions
w0(x) and v0(x) are real and single-humped for the funda-
mental solitons. They can be calculated by means of the
shooting method �3�. We reproduce in Fig. 1�a� the profile of
the soliton solutions at ��2 and ��1/2. The limit �→�
corresponds to the solitons supported solely by the funda-
mental wave, when v0(0)�w0(0). According to the results
above, this limit does not support the persistent oscillations
of solitons. Therefore, we expect that the soliton oscillations
may exist only for finite values of the wave speed mismatch
��� thr(�)�� , when the amplitudes v(0) and w(0) are
comparable.

In order to study the internal modes of the solitary waves
„w0(x),v0(x)…, we impose the linear perturbation in the form

w��w0�x ��„wr�x ��wi�x �…ei
z�„wr*�x �

�wi*�x �…e�i
*z�eiz,

v��v0�x ��„vr�x ��v i�x �…ei
z�„vr*�x �

�v i*�x �…e�i
*z�e2iz,

where wr(x), wi(x), vr(x), and v i(x) satisfy the linear prob-
lem
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L�� wr

vr
� �
� wi

�v i
� , L�� wi

v i
� �
� wr

�vr
� . �12�

Here,

L��� ��x
2�1�v0�x � �w0�x �

�w0�x � ��x
2���2�

� .

The linear system �12� has four neutral localized eigenmodes
for 
�0 associated to symmetries of soliton solutions and
four branches of the continuous spectrum located for �
�
�1 and �
��2��/� �5�. The internal mode can exist at 

�
osc , where

�
osc��min� 1,2�
�

� � .

We find the internal eigenmode by solving Eq. �12� numeri-
cally and display the profile „wr(x),wi(x),vr(x),v i(x)… in
Fig. 1�b� for ��2 and ��1/2. In this case, the eigenvalue

osc�0.9989. In Fig. 2, we present the dependence of 
osc
versus � for a fixed value of ��2. It is clear that the internal
mode merges the continuous spectrum at 
�1 when �
→� thr�1.1446. This result should be compared with the
previous numerical analysis of Etrich et al. �9�, where the
threshold on internal modes was overlooked. Revising Fig. 5
of those authors �9�, we conclude that the internal mode does
not exist for �	2.5723, or in our notations, for ��2��4
	1.1446. The internal mode disappears for �→�stab	

�3.7887 �Fig. 2�. This bifurcation leads to the instability of
the coupled soliton, as was shown earlier �5�.

In order to find the threshold � thr(�) for various � val-
ues, we solve Eq. �12� numerically for 
�1 and look for a
bounded eigenfunction. Generally, this limiting eigenfunc-
tion is secular since

lim
x→�

�wr�wi�x� lim
x→��

�wr�wi�x�Q�0,

where

Q��
1

2���

�

dx�w0�vr�v i��v0�wr�wi�� .

When the quantity Q vanishes, the bifurcation of a new ei-
genvalue 
�
osc�1 may occur from the edge of the con-
tinuous spectrum. This criterion is satisfied in the asymptotic
limit of the integrable NLS equation, when �→� ,

v0→
1

2�
w0

2 , vr→
1

�
w0wr , v i→

1

�
w0wi , �13�

and

Q→��
��

� „3a0�x ��b0�x �…sech2x dx�0.

However, as we have checked above, the integrable NLS
limit does not support a bifurcation of an internal mode.
Therefore, we are looking for the bifurcation to occur in the
non-integrable limit for a finite value of ��� thr(�). We use
the shooting method to find the bounded eigenfunction of
Eq. �12� at 
�1, when Q(� ,�)�0. The dependence
� thr(�) is identified by this method and shown in Fig. 3. We
notice that the coupled solitons supported by the two-wave
interaction at an exact resonance (��0) also have an oscil-
latory mode except for a narrow range 0.4207���0.5492,
where � thr�0. The condition ��0 for the exact resonance
can be achieved alternatively by a very large intensity Ws of
the fundamental wave, when �Vs���Ws�
1. This can be
seen from the rescaling of variables �11� by letting �→� .
Thus, the solitons supported by the large-intensity funda-
mental wave Ws display the persistent oscillations if �
�0.4207 or ��0.5492. In conclusion, we have proved the
existence of a threshold on the amplitude Ws of the funda-

FIG. 1. The solitary wave (w0 ,v0) �a� and its internal mode �b�
for ��2 and ��0.5.

FIG. 2. The dependence of the internal eigenvalue 
osc on � for
��2.
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mental wave to support the internal soliton’s oscillations in
resonant � (2) materials. For fixed wave vector mismatch � ,
small-intensity solitons do not display complicated oscilla-
tory dynamics, while the large-intensity solitons do except in
a narrow parameter window.

Lastly, we would like to make connections of our work to
two recent results. In a similar problem of excitations of
coupled solitons �13�, a resonance of perturbations of two

branches of the continuous spectrum can result in an oscilla-
tory destabilization of a solitary wave. However, the reso-
nance takes place only if the Hamiltonian of a system has
sign-indefinite metrics at the continuous spectrum’s eigen-
functions �13�. In the problem �1� and �2� under consider-
ation, the Hamiltonian is sign-definite for small perturbations
as it follows from the explicit representation,

H��
��

�

dx„�wx�2��vx�2���v�2� 1
2 �w2v*�w*2v �….

This feature implies that the solitary wave solutions may lose
their stability only through a bifurcation of an internal mode
at the origin of 
 which occurs for ���stab(�)�0 �5�. The
solitary wave solutions are stable for �stab(�)���� �6�.
In another problem involving vector solitons in birefringent
optical fibers, a similar pattern of internal oscillations was
demonstrated �14�. In that case too, the region of existence of
the internal mode does not cover the whole region of exis-
tence of the vector solitons, and the internal oscillations ap-
pear from the non-integrable limit at a special �threshold�
value of the soliton parameters.
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FIG. 3. The boundary curve � thr of internal modes for arbitrary
� values.
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