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Discrete solitons in PT -symmetric lattices
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Abstract – We prove the existence of discrete solitons in infinite parity-time (PT ) symmetric
lattices by means of analytical continuation from the anticontinuum limit. The energy balance
between dissipation and gain implies that in the anticontinuum limit the solitons are constructed
from elementary PT -symmetric blocks such as dimers, quadrimers, or more general oligomers.
We consider in detail a chain of coupled dimers, analyze bifurcations of discrete solitons from
the anticontinuum limit and show that the solitons are stable in a sufficiently large region of the
lattice parameters. The generalization of the approach is illustrated on two examples of networks
of quadrimers, for which stable discrete solitons are also found.
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Introduction. – Energy localization in lattices is a
fundamental topic. It received particular attention after
the prediction of the intrinsic localized modes [1] and
the subsequent rigorous proof of the existence of such
modes [2] by analytical continuation from the anticon-
tinuum limit when the coupling of the nearest neigh-
bors is weak. Nowadays the topic is very well elaborated
and numerous physical applications, including nonlinear
optics [3] and Bose-Einstein condensates [4], have been
thoroughly studied. One of the most popular models
appearing in the description of these physical phenomena,
which is also a widely accepted testbed for mathematical
analysis of the anticoninuum limit, is the discrete nonlin-
ear Schrödinger (DNLS) equation [5], also known as the
discrete self-trapping equation [6].
More recently, particular attention was paid to the

DNLS equation with gain and losses. Such models natu-
rally appear in the optical context of arrays of ampli-
fying and absorbing waveguides [7]. If gain and losses
are adjusted to create the refractive-index profile having
symmetric real and anti-symmetric imaginary parts [8],
such systems have parity-time (PT ) symmetry and may
have a pure real spectrum. Originally the idea about the
existence of a pure real spectrum of complex potentials
obeying the PT symmetry was introduced in [9] ques-
tioning the fundamentals of the quantum mechanics. It
turned out, however, that the most direct applications of
the PT symmetry today can be found in the discrete
optics. Namely, in such systems, and more specifically

in two coupled waveguides (one with dissipation and
another with gain), the phenomenon was implemented
experimentally [10].
Many detailed studies of PT -symmetric DNLS equation

were already developed for lattices with a finite number of
sites. In particular, the following topics have been consid-
ered: periodic oscillations in a system of two oscillators (a
dimer) [11]; stationary nonlinear modes for four oscilla-
tors (a quadrimer) [12,13]; the relation between one- and
two-dimensional finite PT -symmetric networks [13], and
the detailed analysis of two-dimensional plaquettes [14].
The transition to the limit of an infinite number of sites
was investigated in [15]. It was shown that in this limit
the PT symmetry breaking occurs at gain-loss coeffi-
cient approaching zero. Stable discrete solitons in the
infinite chain of PT -symmetric DNLS oscillators with
alternating coupling were discovered numerically in [16].
However, the solitons obtained in [16], displayed oscilla-
tions and neither analytical proof of the existence nor
the number of possible families of solutions were clarified,
so far.
In this letter, we give an analytical proof of the exis-

tence of discrete solitons in PT -symmetric DNLS lattices
with alternating coupling coefficients and classify different
solution families and their stability near the anticontin-
uum limit. In particular, we report multistability of local-
ized modes, that is, the existence of two or more stable
solutions with the same energy and the same lattice para-
meters (but having different shapes).
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Fig. 1: Schematic presentation of the PT -symmetric array of
waveguides with gain (“+”), and losses (“−”), and with the
notations used in the text.

The DNLS equation with alternating coefficients of gain
and loss can be viewed is a discrete (tight-binding) limit of
a continuous PT -symmetric lattice. Stable solitons in such
systems have been found in the presence of only linear [17],
only nonlinear [18], and both linear and nonlinear [19]
PT lattices. The solutions considered in this letter can be
viewed as discrete counterparts of the mentioned solitons.
We consider the PT -symmetric DNLS equation

i
dqn
dt
+ cn(qn+1− qn)+ cn+1(qn−1− qn)− g|qn|

2qn

+i(−1)n+1γqn = 0, (1)

where the positive constants cn = κ0 for n= 2p and cn =
κ1 for n= 2p+1 describe the two alternating couplings
(κ0 and κ1, with κ0,1 > 0) between neighbor sites, and
it is assumed that all odd (even) sites have loss (gain)
which is characterized by the factor γ > 0 (see fig. 1). In
the context of optical applications our model describes an
array of waveguides with gain and losses. Then qn is a
dimensionless field in the waveguide n, and t stands for
the propagation coordinate.
Let us first briefly address the most important features

of the underlying linear problem, which can be formally
obtained from eq. (1) by setting g= 0. Identifying the
solutions of the linear problem in the form of Floquet-
Bloch modes (q2n, q2n+1) = (u, v)e

ikn−i(κ0+κ1+µ)t, one can
recover that PT symmetry is unbroken on the infinite
lattice if [16]

∣

∣κ0−κ1
∣

∣� γ. (2)

In this case for any real k the corresponding eigenvalue μ
is real. More precisely μ2 lies in the interval

(κ0−κ1)
2− γ2 <μ2 < (κ0+κ1)

2− γ2, (3)

i.e., μ belongs either to a positive or to a negative
spectrum band. If inequality (2) does not hold, we say
that PT symmetry is broken as there exist eigenvalues μ
with nonzero imaginary parts.
Returning to the nonlinear problem, without loss of

generality we impose g=±1. Furthermore, by analogy
with the conservative DNLS equation (see, e.g., [20]),
one can verify that there exists the symmetry reduction
as follows. If qn is a solution of (1) for g= 1, then
(−1)nq̄ne

−2i(κ0+κ1)t is a solution of (1) for g=−1. This
reduction allows us to restrict further considerations to
the case of g= 1 only.

Anticontinuum limit. – We are concerned with the
stationary solutions, i.e., solutions whose dependence on

time is given by qn(t)∼ e
−iEt, where E is a constant which

is termed an energy (or a propagation constant in optical
applications). Then, in the case of the conservative DNLS
equation, the anticontinuum limit corresponds either to a
coupling between the two neighbor sites tending to zero
or to the energy tending to the infinity, the two limits
being equivalent, i.e., mapped to each other by simple
transformation (see, e.g., [20]). The same is true for the
model (1), however with two important changes.
First, in the presence of the dissipative term i(−1)nγqn

the elementary cell of the DNLS equation (1) is composed
of two sites, one with gain and the other one with loss
(even if κ0 = κ1). Therefore, the anticontinuum limit must
be formulated in terms of dimers, rather than single sites.
Thus, the anticontinuum limits can be identified as either
κ0 or κ1 to be small enough. Without loss of generality,
we fix κ0 = 1. Then the anticontinuum limit corresponds
to κ1 = 0.
In physical applications, both coupling constants κ0 and
κ1 are usually fixed. Then the anticontinuum limit can
be realized at the limit of large energy E. However, and
this is the second distinction from the conservative DNLS
equation, although the small parameter can be obtained
in the limit of large energy, E cannot be scaled out from
the main equations if γ �= 0.
Using the above considerations, it is convenient to

rewrite the main model (1) in terms of variables
(

q2n(t)
q2n+1(t)

)

=

(

un
vn

)

e−i(κ0+κ1+µ)t, (4)

where μ is a constant and we assume that un and vn do
not depend on t and satisfy zero boundary conditions:
un, vn→ 0 as n→±∞. Then for κ0 = 1, κ1 = ǫ, and g= 1,
the main model can be rewritten in the matrix form for
wn = (un, vn)

T (“T” stands for the matrix transposition):

Hwn+ ǫ (σ−wn−1+σ+wn+1) = F (wn)wn, (5)

where

H =

(

μ− iγ 1
1 μ+ iγ

)

,

σ− =

(

0 1
0 0

)

, σ+ =

(

0 0
1 0

)

,

and F (wn) = diag(|un|
2, |vn|

2).

Single-dimer state. – First, we address the simplest
case in which only one central dimer is excited in the
anticontinuum limit ǫ= 0, i.e., w0 �= 0, whereas wn = 0
for n �= 0. Then for any n �= 0 eq. (5) is automatically
satisfied. For the central dimer, i.e., at n= 0, we assume
that the following PT symmetry reduction holds: u0 = v̄0
and arrive at the following equation [11]:

(μ− iγ)u0+ ū0 = |u0|
2u0. (6)

The latter equation has two branches of solutions, which
exist for all γ ∈ [0, 1):

u±0 =A±e
iϕ± , (7)
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where A2± = μ±
√

1− γ2, sin(2ϕ±) =−γ, and cos(2ϕ±) =

±
√

1− γ2. The branches u±0 exist for μ> μ± where μ± =

±
√

1− γ2. The physical difference between these branches
becomes evident if we introduce the linear momentum
pn = 2Re (q̄nqn+1) and the current jn = 2Im (q̄nqn+1)
per unit cell; respectively, p=

∑

n pn and j =
∑

n jn are
the total momentum and current carried out by the
solution. Then, branch u+0 (branch u

−

0 ) corresponds to
the linear momentum and current, between the two sites
of the dimer, having the same (opposite) directions.
Note that eq. (6) coincides with the equation for the
stationary solutions of the parametrically driven NLS
equation [21,22].
Looking for continuation of the solution (7) from the

anticontinuum limit (i.e., from ǫ= 0 to ǫ > 0) it is natural
to suppose that for ǫ > 0 the solitons also obey the
symmetry reduction on the whole infinite lattice, i.e.,

un = v̄−n, vn = ū−n, n= 0,±1,±2, . . . . (8)

It allows one to restrict the consideration only to n�
0. At the central dimer, w0, one can introduce the
real coordinates (a0, b0) such that u0 = v̄0 = a0+ ib0 and
rewrite (5) for n= 0 as follows:

{

μa0+ γb0+ a0+ ǫRe(u1) = (a
2
0+ b

2
0)a0,

μb0− γa0− b0− ǫIm(u1) = (a
2
0+ b

2
0)b0.

(9)

For n� 1, we still use the complex-valued coordinates:

{

(μ− iγ)un+ vn+ ǫvn−1 = |un|
2un,

(μ+ iγ)vn+un+ ǫun+1 = |vn|
2vn.

(10)

Now the system (9), (10) is smooth with respect to
parameter ǫ and the solution vector. At ǫ= 0, we have the
limiting solution: un = vn = 0 for all n= 1, 2, . . . , while a0
and b0 are given by one of the two possible solutions (7)
for γ ∈ [0, 1) and μ> μ±. To apply the implicit function
theorem arguments, we need to show that the Jacobian
operator of the system (9), (10) at ǫ= 0 is invertible at
the limiting solution. Furthermore, the solution can be
analytically continued from the anticontinuum limit until
a critical value ǫcr > 0 for which the Jacobian operator
becomes non-invertible.
In the case of the conservative DNLS equation (γ = 0)

analytical estimates for ǫcr can be obtained [2,20]. While
such estimates require elaborated analytical study, due to
mathematical constraints they are typically lower than the
practically achievable values of ǫ for which the localized
solutions exist. Therefore, here we restrict the considera-
tion only to the proof that the analytical continuation is
possible and study the continuation numerically.
For ǫ= 0, the lattice consists of a set of uncoupled

dimers. For n= 1, 2, . . . , the limiting Jacobian operator
of the system (10) is nothing but H and thus is invertible
for μ �= μ± since det(H) = μ

2+ γ2− 1.

At the central dimer n= 0, the limiting Jacobian oper-
ator of the system (9) is given by the 2× 2 matrix:

J0 =

(

−2a20− γb0/a0 γ− 2a0b0

−γ− 2a0b0 −2b20+ γa0/b0

)

, (11)

where eq. (6) has been used. The matrix J0 is invert-
ible if a0b0 �= 0 and a

2
0 �= b

2
0. This gives the constraints

A± �= 0 and cos(2ϕ±) �= 0 in the limiting solution (7), or
equivalently, A2± �= {0, μ}. The constraints are satisfied for
any γ ∈ [0, 1) and μ �= μ±. Hence, for any γ and μ that
satisfy the found invertibility conditions, solutions u±0 of
the dimer problem give birth to two branches of local-
ized discrete solitons on the infinite PT -symmetric lattice.
These branches, which will be respectively denoted as Γ(±)

(see fig. 2), are parameterized by ǫ, they persist at least for
all small ǫ, and for small ǫ the solitons from the branches
Γ(±) are nearly localized at the central dimer w0.

Multi-dimer states. – One can also consider the case
in which the solution in the anticontinuum limit consists
of several excited dimers. Say, for the case of two dimers,
one can consider branches Γ(+,+) or Γ(−,−), which at
ǫ= 0 correspond to two dimers occupying two consecu-
tive central cells n= 0 and n= 1. More complex configu-
rations consisting of N excited dimers can also be contin-
ued from the anticontinuum limit. Even more generally,
there exist branches like Γ(+,0,+), Γ(−,0,−), which in the
anticontinuum limit correspond to two dimers placed at
n=−1 and n= 1 separated with an “empty” dimer at
n= 0 (i.e., w0 = 0 for ǫ= 0). However, the continuation
is not possible for arbitrary choice of N central dimers.
If we consider the sequence α= (α1, α2, . . . , αN ) consist-
ing of N symbols α1,...,N ∈ {+,−, 0}, then existence of the
branch Γα is only possible provided that αp = αN+1−p
for p= 1, . . . N . The latter requirement ensures that the
configuration, which is chosen to be continued from ǫ= 0
to ǫ > 0, obeys a PT symmetry reduction (8). For example,
for N = 3, the family Γ(−,+,+) can not be continued from
the anticontinuum limit. However the family Γ(−,+,−) does
persist for small ǫ. Invertibility of the Jacobian operators
corresponding to such multi-dimer solutions can be proven
using similar technique as for the case N = 1 considered
above. We note that the relevance of the symmetry prop-
erties for possibilities of continuation of the branches of
soliton solutions is similar to the case of parametrically
driven NLS systems [22].

Stability in the anticontinuum limit. – We shall
also address linear stability of solitons belonging to the
branches Γ(±) bifurcating from the one-dimer states in
the anticontinuum limit. For ǫ= 0 and n �= 0, the dimers
are decoupled and the stability of the zero solution is
determined by the spectrum of the matrix H which has
real eigenvalues if γ < 1. Hence the zero solution for n �= 0
is stable. Passing from ǫ= 0 to ǫ > 0, eigenvalues λ group
together into bands of continuous spectrum. For small
positive ǫ, these bands are situated in the neutrally stable
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imaginary axis, and they are separated from each other
and from zero if γ ∈ [0, 1), μ �= μ±, and μ �= 0.
Thus, to ensure stability of the single-dimer soliton, we

have to address only the stability of the central dimer w0.
Considering a perturbed solution w0+ψ0e

λt+ψ1e
λ̄t and

linearizing the equation with respect to ψ0,1, for ǫ= 0 we
obtain the eigenvalue problem

(

L0 L1
−L̄1 −L̄0

)(

ψ0
ψ1

)

= iλ

(

ψ0
ψ1

)

, (12)

where L0 = 2diag(|u
±

0 |
2, |u±0 |

2)−H and L1 =
diag((u±0 )

2, (ū±0 )
2), where u±0 are defined by eq. (7)

for branches Γ(±). Because the nonlinear system (5)
admits gauge invariance, λ= 0 is a double eigenvalue of
the eigenvalue problem (12). As a result, the characteristic
polynomial D(λ) can be factorized by λ2 and reads as (see

also [12]): D(λ) = λ2
(

λ2+8
√

1− γ2(
√

1− γ2±μ/2)
)

,

where eq. (7) has been used. This expression shows that
for ǫ= 0 and ǫ≪ 1 the solitons from branch Γ(+) are
stable for any μ> μ− and γ ∈ [0, 1). Solitons of the branch
Γ(−) are stable for ǫ= 0 and ǫ≪ 1 only if μ+ <μ< 2μ+
and unstable with a positive eigenvalue for μ> 2μ+.

Numerical results. – Turning now to the numerical
study of the discrete solitons in the infinite lattice, we
have computed bifurcations of families Γ(±) from the
anticontinuum limit ǫ= 0, considered their continuations
to the domain ǫ > 0, and examined stability of the found
solitons. The results are conveniently visualized in the
plane (P, ǫ), where P =

∑

n(|un|
2+ |vn|

2), which in optics
corresponds to the total energy flow. In fig. 2 we show the
results for different μ and γ. We recall that the branch
Γ(+) (Γ(−)) is found by means of continuation starting
from the dimer solution u+0 (u

−

0 ) given by eq. (7). We
tested several values of μ and γ and in all cases numerical
results for stability of the families Γ± for small ǫ were
in agreement with the above linear stability analysis. For
example, branch Γ(−) is stable for μ= 1 and γ = 0.1, but
is unstable for any other considered values of μ and γ in
fig. 2.
At a certain value of ǫ= ǫ0, the norm of the solitons

belonging to the branch Γ(−) vanishes, i.e., P → 0. Since
this is the linear limit, at the point P = 0 the parameters
obey the relation μ2 = (1+ ǫ0)

2− γ2, which means that
the solution branch ends up at (or bifurcates from) the
edge of the linear spectrum (see eq. (3)). Respectively,

ǫ0 =
√

μ2+ γ2− 1.
Bifurcation of the discrete solitons from the edge of the

linear spectrum becomes particularly evident if we employ
representation on the plane (P, μ), which is to be obtained
for fixed γ and ǫ. Then, as shown in fig. 3, the found
discrete solitons constitute continuous families, which is a
frequent feature of nonlinear PT -symmetric systems [13].
We notice that in the context of a parametrically driven
NLS system, the connection of the soliton branch with the
continuous spectrum was reported in [21].

Fig. 2: (Colour on-line) P vs. ǫ. Panels in the top (bottom) rows
correspond to µ= 1 (µ= 10). Panels in the left (right) column
correspond to γ = 0.1 (γ = 0.9). Stable (unstable) solitons are
shown by solid blue (dotted red) lines. Notice that panel (a) has
a logarithmic scale in the horizontal axis and broken vertical
axis. The vertical dotted line in panel (c) corresponds to ǫ= 0.8;
see also fig. 3.

Fig. 3: (Colour on-line) P vs. µ for γ = 0.1 and different ǫ.
Vertical shadowed domains show the bands of the linear
spectrum. The vertical dotted line in the left panel corresponds
to µ= 10; see also fig. 2.

The branch Γ(+) is stable for sufficiently small ǫ for
all considered μ and γ (in agreement with the linear
stability analysis). For μ= 10 (see fig. 2(c), (d)) solitons of
the family Γ(+) lose stability (the part of the continuous
spectrum leaves the imaginary axis and becomes unstable)
at ǫ= 1− γ, i.e., at the PT symmetry breaking bifurcation
(see eq. (2)). At ǫ= 1+ γ, the PT symmetry is restored
(see eq. (2)), but the branch Γ(+) does not become
stable, because isolated unstable eigenvalues persist in
the spectrum of linearization. Altogether, the branch Γ(+)

displays “snaking” behavior and has several alternating
domains of stability and instability. Finally, branch Γ(+)

returns to the anticontinuum limit by means of coalescing
with the branch Γ(−,+,−) bifurcating from the three-dimer
state in the anticontinuum limit.
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Fig. 4: Amplitude and currents for the unstable soliton at
ǫ= 1, P ≈ 22 (panel (a)) and for stable soliton at ǫ= 3.32,
P ≈ 56 (panel (b)). For both shown solitons µ= 10 and γ = 0.1.
Filled and empty circles correspond to sites with gain (i.e., un)
and losses (i.e., vn), respectively. Arrows show directions and
amplitudes of the largest currents in the system.

For large μ, e.g., μ= 10 in fig. 2(c), (d), branches Γ(±)

can be continued into the region ǫ∈ (1− γ, 1+ γ), where
PT symmetry is broken. In particular, solitons exist at
ǫ= 1, i.e., κ0 = κ1, (fig. 4(a)); such solitons, however, are
unstable. A stable soliton is shown in fig. 4(b).

Generalizations. – The developed approach can be
applied to the case when the elementary cell of a network
is a more complex PT -symmetric cluster (than the dimer).
To illustrate this, we now briefly address the anticontin-
uum limit for two networks of quadrimers, i.e., clusters

of four siteswn = (w
(1)
n , w

(2)
n , w

(3)
n , w

(4)
n )T , whose examples

are shown in fig. 5. To describe the network in fig. 5(a),
we can still adopt eq. (5), where

H =

⎛

⎜

⎜

⎝

μ− iγ 1 0 0
1 μ− iγ 1 0
0 1 μ+ iγ 1
0 0 1 μ+ iγ

⎞

⎟

⎟

⎠

, (13)

the nonlinearity is given by

F (wn) = diag
(

|w(1)n |
2, |w(2)n |

2, |w(3)n |
2, |w(4)n |

2
)

,

and σ± are now 4× 4 matrices whose only nonzero
elements are (σ−)14 = (σ+)41 = ǫ. The matrix H is invert-

ible unless μ2 = 32 − γ
2± 12

√

5− 16γ2.
In the anticontinuum limit, defined by ǫ= 0, the

network shown in fig. 5(a) consists of a set of discon-
nected PT -symmetric quadrimers. Here we consider the
simplest case, when at ǫ= 0 only one central quadrimer is
excited, i.e., wn = 0 for n �= 0, and look for continuation
of this solution to ǫ > 0.
To prove the possibility of analytical continuation as

above, we concentrate on PT -symmetric solutions (i.e.,

obeying the symmetry w
(1)
n = w̄

(4)
−n and w

(2)
n = w̄

(3)
−n). This

allows us to restrict the consideration to the semi-infinite
matrices with n� 0. Moreover the invertibility of H
for μ2 �= 32 − γ

2± 12
√

5− 16γ2 ensures the continuation
provided the Jacobian matrix for the central quadrimer
is invertible.

Fig. 5: Two examples of PT -symmetric networks, which consist
of a set of disconnected quadrimers in the anticontinuum limit.

For n= 0 and ǫ= 0, the central quadrimer obeys the
system of four equations (see eq. (5)),

Hw0 = F (w0)w0, (14)

under the symmetry w
(1)
0 = w̄

(4)
0 and w

(2)
0 = w̄

(3)
0 . While

the nonlinear system (14) generally does not admit an
explicit analytical solution (in contrast to the dimer
case (7)), its properties are well studied. In particular,
families of its nonlinear modes, bifurcation diagrams, and
some exact solutions have been reported [12–14].
The network in fig. 5(a) is characterized by two types

of the PT symmetry, the local and global ones. We say
that the lattice is locally PT -symmetric if the system (14)
is PT -symmetric in the limit ǫ= 0. On the other hand,
we say that the lattice is globally PT -symmetric if the
infinite network (5) with the matrix H in (13) is PT -
symmetric for ǫ �= 0. The network in fig. 5(a) consists of
quadrimers which have unbroken local PT symmetry, at
least for small γ. For ǫ > 0 the infinite system has unbroken
global PT symmetry allowing for stable discrete solitons.
An example of a stable discrete soliton for this network is
shown in fig. 6(a).
We shall now consider the network, which consists of

clusters whose local PT symmetry is broken. However,
proper choice of the coupling ǫ > 0 makes the infinite
network possess unbroken global PT symmetry. An exam-
ple of such network is presented in fig. 5(b). For this
network, we can still work with eq. (5), where

H =

⎛

⎜

⎜

⎝

μ− iγ 0 1/2 1/2
0 μ− iγ −1/2 −1/2
1/2 −1/2 μ+ iγ 0
1/2 −1/2 0 μ+ iγ

⎞

⎟

⎟

⎠

. (15)

Local PT symmetry is broken for any γ because eigenval-
ues of H are complex for any γ > 0. (We notice that the
local PT symmetry can be fixed if we add the diagonal
matrix diag(1,−1, 1,−1) to H. In this case, both networks
shown in fig. 5 have equal spectra [13]).
The operator H is invertible unless μ=±

√

1/2− γ2 or
μ= γ = 0. The existence of analytical continuation of the
one-quadrimer state from ǫ= 0 can be shown using the
same ideas as the presented above. The only essential
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Fig. 6: (a) Stable soliton for the network in fig. 5(a) at ǫ= 0.5,
γ = 0.25 and µ= 2. (b) Stable soliton for the network in fig. 5(b)
at ǫ= 1.6, γ = 0.1 and µ= 10. Filled (empty) circles correspond
to sites with gain (losses).

difference is that PT -symmetric reduction is now given

as follows: at the central quadrimer, we set w
(1)
0 =−w̄

(4)
0

and w
(2)
0 = w̄

(3)
0 , while for n �= 0, we set w

(1)
n =−w̄

(4)
−n and

w
(2)
n = w̄

(3)
−n.

Because local PT symmetry is broken for any γ, the
global PT symmetry of the infinite network is also broken
for small ǫ. Therefore, all the solitons bifurcating from the
anticontinuum limit are unstable at least for sufficiently
small ǫ. However, by increasing the coupling parameter
ǫ, the global PT symmetry is restored and the network
in fig. 5(b) may possess stable solitons. An example of a
stable discrete soliton for this network is shown in fig. 6(b).

Conclusion. – In this letter we have shown that the
idea of analytical continuation from the anticontinuum
limit can be extended to the networks of PT -symmetric
clusters, offering the analytical proof of the existence of
localized discrete solitons. Such solitons obey the PT -
symmetric shape and can be found stable. As particular
examples, we considered in detail the chains of PT -
symmetric dimers and the networks of PT -symmetric
quadrimers.
The considered systems allow for further straightfor-

ward generalizations, say to chains of clusters where there
exists more than one link among the neighbor ones, like the
chain of dimers with pairwise coupling considered in [23]
or the chain of oligomers, i.e., clusters with more than four

sites. Furthermore, the approach of continuation from the
anticontinuum limit can be used for developing a classifi-
cation of intrinsic localized modes, as well as an analytical
theory of the nonlinear stability of such modes.
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