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Abstract
We generalize a finite parity-time (PT )-symmetric network of the discrete
nonlinear Schrödinger type and obtain general results on linear stability of the
zero equilibrium, on the nonlinear dynamics of the dimer model, as well as on
the existence and stability of large-amplitude stationary nonlinear modes. A
result of particular importance and novelty is the classification of all possible
stationary modes in the limit of large amplitudes. We also discover a new
integrable configuration of a PT -symmetric dimer.
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1. Introduction

In the present work we consider a generalized finite network of the discrete nonlinear
Schrödinger (dNLS) type with gain and dissipation terms:

i
dqn

dt
= qn+1 + qn−1 + iγnqn + [(1 − χn)|qn|2 + χn|q1−n|2]qn. (1)

Here t is the evolution variable, n is the integer site number between −N + 1 and N, and the
real-valued coefficients satisfy

γn = −γ1−n, χn = χ1−n. (2)
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The network is closed with the boundary conditions q−N = qN+1 = 0, which correspond to an
isolated array of 2N nonlinear oscillators. The array is PT symmetric with respect to the parity
transformation P about the center point in [−N + 1, N] and the time reversion T . Introducing
the column-vector q = (q−N+1, . . . , qN )T (hereafter T stands for the matrix transpose), we
rewrite equation (1) in the vectorial form

i
dq
dt

= [H + iG + F(q)]q, (3)

where the real valued 2N × 2N matrices are given by their entries as follows:

Hnm = δn,m+1 + δn,m−1, Gnm = γnδn,m, (4)

and

[F(q)]n,m = [(1 − χn)|qn|2 + χn|q1−n|2]δn,m, (5)

with δn,m being the Kronecker symbol and n running from −N + 1 to N.
The P operator is defined as a 2N ×2N anti-diagonal matrix with the only nonzero entries

Pk j = δ j,2N+1−k (with k and j running from 1 to 2N). The T operator is defined as complex
conjugation. These definitions ensure

[P, H] = {P, G} = 0, [PT , H + iG] = 0, (6)

where [·, ·] and {·, ·} stand for commutator and anti-commutator, respectively. The conditions
(6) formalize the definition of the PT -symmetric linear lattice. If all the eigenvalues of the
operator H+iG are real then the linear system is said to belong to the unbrokenPT -symmetric
phase (this situation obviously corresponds to linear stability of the zero equilibrium of the
full nonlinear problem). Phases of broken PT symmetry arise when the linear operator has a
pair (or several pairs) of complex conjugated eigenvalues.

Motivation for the study of nonlinear system (1) stems from the recently growing interest
in nonlinear dynamics of the PT -symmetric networks of the dNLS type which can be viewed
as particular limits of the network (1). The simplest case of N = 1 with χ1 = 0 corresponds to
the nonlinear PT -symmetric dimer with the on-site (Kerr-type) nonlinearity. The latter model
was shown [1] to be a fully integrable system, and its dynamics was thoroughly investigated
in [2–5]. Setting N = 2 one arrives at a nonlinear PT -symmetric quadrimer, which has been
considered for γ1 = γ2 in [6, 7], as well as for γ1 �= γ2 in [7, 8]. A peculiarity of the latter case
consists of the existence of multiple points (like triple points) corresponding to the system
parameters at which more than two (e.g. one unbroken and two broken PT -symmetric) phases
of the zero equilibrium co-exist.

In a more general case of a network of arbitrary finite size (N < ∞) the linear stability of
the zero equilibrium was investigated in [9–14] for the following particular configurations:

(1) a chain with a PT -symmetric defect, i.e. having two ‘defect’ nodes γd = −γ1−d = γ at
some d = 1, 2, . . . , N (with all other sites having no dissipation or gain);

(2) an alternating chain with γn = γ (−1)n (where the sites with equal dissipation and gain
alternate);

(3) a clustered chain with γn = γ sign
(
n − 1

2

)
(thus having two intervals of sites: one with

gain and another one with dissipation).

Stability of the zero equilibrium in unbounded PT -symmetric dNLS chains (both alternating
and clustered) was studied in [15, 16].

Stationary nonlinear modes can be represented as q(t) = w e−iEt , where w =
(w1−N, . . . , wN )T is the time-independent column-vector, satisfying the system of the
nonlinear equations

Ewn = wn+1 + wn−1 + iγnwn + [(1 − χn)|wn|2 + χn|w1−n|2]wn. (7)
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The spectral parameter E will be termed energy (in optical applications it corresponds to
the propagation constant). Focusing on the PT -invariant stationary modes, i.e. the modes
satisfying PT w = w (see [17] for the discussion of relevance of this requirement), we have
the reduction wn = w̄1−n (hereafter an overbar stands for the complex conjugation), which
reduces equation (7) to the system of N algebraic equations

Ewn = wn+1 + wn−1 + iγnwn + |wn|2wn, 1 � n � N, (8)

subject to the boundary condition w0 = w̄1 and wN+1 = 0. We note that the parameters χn are
eliminated in the stationary system (8). The PT -invariant nonlinear modes obeying system
(8) have been found to bifurcate from the eigenstates of the underlying linear operator H + iG
[7, 13]. Nonlinear modes bifurcating from exceptional points of the underlying linear operator
were considered in [8].

If all γn and χn are zero, the nonlinear system (1) is reduced to a chain of coupled
conservative oscillators with on-site nonlinearity. Triggered by the work [18], this model
(known as the dNLS equation) has been extensively studied during the last 30 years [19, 20].
A powerful analytical tool in this study, introduced in [18], is the analytical continuation of the
localized modes from the anti-continuum limit, i.e. from the limit E → ∞, allowed to prove
the existence of discrete breathers [21]. The approach allows for classification of the nonlinear
modes [18, 22, 23] and systematic study of their stability [24–26]. Recently, it was shown in
[27], that the approach based on the anti-continuum limit can be extended to PT -symmetric
networks, and in particular, to the alternating chain with γn = (−1)nγ . Further studies of this
model were performed in [13] where the nonlinear modes were described both for an isolated
PT -symmetric network and for an embedded PT -symmetric chain as a defect in an infinite
dNLS equation.

In the present work, we elaborate the anti-continuum limit, which correspond to the limit
of large energies, E → ∞, for the generalized PT -symmetric dNLS network (1) and offer a
complete classification of stationary nonlinear modes in the system of algebraic equation (8).
We prove that large-amplitude stationary modes exist only if the large-amplitude sites are all
grouped together near the center point in [−N +1, N] and no other stationary modes exist. We
classify the stationary modes according to the binary roots of the phase equations and consider
stability of the corresponding configurations. The outcome of stability computations is similar
to the stability theorem in [25] but fewer configurations are stable in the PT -symmetric case
because of the amplitude growth of the small-amplitude sites with gains.

Another goal of our study is to make a step toward description of the dynamical properties
of the nonlinear system (1). We consider the dynamics of the dimer model (N = 1) and, in
particular, show that for χ1 = 1

2 all the time-dependent solutions are bounded for sufficiently
small values of γ1 that ensure that the PT symmetry of the underlying linear problem is
unbroken. We also show that the model with χ1 = 1

2 admits two integrals of motions and
hence is an integrable model, similarly to its counterpart with χ1 = 0 considered in [1]. On
the other hand, we show that for any χ1 �= 1

2 the dimer model always has unbounded solutions
for any arbitrarily small but nonzero γ1.

The paper is organized as follows. Section 2 gives sufficient conditions for existence of
unbroken and broken PT -symmetric phases obtained from the linear stability analysis of
the zero equilibrium. Section 3 characterizes the nonlinear dynamics of the dimer model for
N = 1. Conserved quantities of the generalized dimer model with χ1 = 1

2 are also discussed.
Section 4 describes the existence and classification of the stationary nonlinear modes in the
case of arbitrary finite N. Section 5 outlines the stability computations for the most important
configurations of the stationary nonlinear modes. Section 6 concludes the paper with a summary
of results.
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2. Linear stability of the zero equilibrium

While the present work is devoted to the nonlinear problem (1), the underlying linear model
itself makes a particular physical meaning if it describes stable propagation of linear waves.
Such waves are obtained from the linear eigenvalue problem

Ẽw̃ = Jw̃, J := H + iG (9)

with H and G being the matrices defined by (4). Hereafter we use tildes in order to distinguish
eigenvectors w̃ and eigenvalues Ẽ of the underlying linear problem. In this section we formulate
the sufficient conditions for existence of the propagating linear modes and recover some of
the known relevant results of the linear theory.

For G = 0, matrix J becomes Hermitian and its spectrum is real. One can also expect that
if all γn are sufficiently small, then the spectrum of J remains real. In this situation, J is said
to have unbroken PT symmetry. On the other hand, if γn are large enough, then the spectrum
enters the complex domain, i.e. PT symmetry becomes broken. In following theorems 2.1 and
2.2 we substantiate the above informal discussion by finding (possibly not optimal) estimates
for domains of unbroken and broken PT symmetries for arbitrary finite N. Before passing to
theorems 2.1 and 2.2, let us prove the following auxiliary result.

Proposition 2.1. The characteristic polynomial of the matrix J

P(λ) = λ2N − p1λ
2N−1 − p2λ

2N−2 − · · · − p2N

has real coefficients pn. All the coefficients associated with odd powers of λ are zero:

p1 = p3 = · · · = p2N−1 = 0.

Additionally one has

p2 = 2N − 1 −
N∑

n=1

γ 2
n . (10)

Proof. Reality of coefficients of the characteristic polynomial P(λ) for a general PT -
symmetric matrix follows from the fact that any eigenvalue of the PT -symmetric matrix is
either real or belongs to a complex–conjugate pair [28]. In order to show that the characteristic
polynomial P(λ) does not contain odd powers of λ, we notice that matrices J and −J are
related by the similarity transformation

−J = Z−1JZ,

where Z is a matrix with only nonzero entries Zn j = (−1) j−1δ j,2N+1−n for j, n = 1, 2, . . . , 2N.
Notice that det Z = 1 and Z−1 = −Z. Therefore, matrices J and −J share the same
characteristic polynomial P(λ). The latter implies that P(λ) is an even function.

In order to prove (10), we first notice that matrix J is traceless: tr J = 0. In this case, the
coefficient p2 is given by p2 = 1

2 tr J2 [29]. Using a simple straightforward computation, one
finds that tr J2 = 2(2N − 1 − ∑N

n=1 γ 2
n ), which yields (10). �

Theorem 2.1 (on unbroken PT symmetry). Define � := max
1�n�N

|γn|. If

� � 1

2N
sin2

(
π

2(2N + 1)

)
, (11)

then all eigenvalues of matrix J are real.
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Proof. We recall that the spectrum of the matrix H is well known. It consists of 2N distinct
eigenvalues which can be listed in the descending order as follows:

Ẽn = 2 cos

(
nπ

2N + 1

)
, 1 � n � 2N.

This allows us to estimate the smallest distance between the adjacent eigenvalues:

min
1�n�2N−1

|Ẽn+1 − Ẽn| = 4 min
1�n�2N−1

∣∣∣∣sin

(
2n + 1

2N + 1

π

2

)∣∣∣∣ sin

(
π

2(2N + 1)

)

= 4 sin

(
3π

2(2N + 1)

)
sin

(
π

2(2N + 1)

)

� 4 sin2

(
π

2(2N + 1)

)
=: 2rN . (12)

Next we introduce the diagonal matrix of the eigenvalues: Ê = diag(Ẽ1, . . . , Ẽ2N ) and the
matrix S whose columns are the eigenvectors of H:

Snm = sin

(
nmπ

2N + 1

)
, 1 � n, m � 2N

(i.e. S is the matrix of discrete sine transform). The inverse matrix is given as

S−1 = 2

2N + 1
S. (13)

Thus there exists the similarity transformation: S−1HS = Ê.
Let us now apply transformation S to the matrix J:

Ĵ := S−1JS = Ê + iĜ, (14)

where Ĝ := S−1GS. Obviously, all the entries of matrix Ĝ are real. It is also easy to estimate

|Ĝnm| � 2

2N + 1
max

1�n�N
|γn|

2N∑
k=1

∣∣∣∣sin

(
πkn

2N + 1

)
sin

(
πmk

2N + 1

)∣∣∣∣ < 2�. (15)

Let us now estimate location of the eigenvalues of J by applying Gershgorin’s circle
theorem [30] to the similar matrix Ĵ. Radii Rn and centers Cn of Gershgorin’s discs for the
matrix Ĵ are given as

Rn =
2N∑

m=1,m�=n

|(Ĝ)nm|, Cn = Ẽn + i(Ĝ)nn, 1 � n � 2N.

Real parts of the disc centers Cn equal to Ẽn. Therefore, in the complex z-plane the nth disc
belongs to a strip Ẽn − Rn � Re z � Ẽn + Rn. From equations (11) and (15) we observe that
Rn < 4N� < rN , where rN is the lower boundary of the half-distance between the eigenvalues
defined in (12). Therefore, all the 2N strips are disjoint. According to Gershgorin’s circle
theorem [30], in this situation each disc contains exactly one eigenvalue. Since the real parts of
all the eigenvalues are different, the spectrum does not contain complex-conjugated eigenvalues
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and hence is purely real because complex eigenvalues in the spectrum of the PT -symmetric
matrix J (if any) always come in complex–conjugate pairs [28]. �

Theorem 2.2 (on broken PT symmetry). Consider the eigenvalue problem (9).

(1) If
∑N

n=1 γ 2
n > 2N − 1, then there exist at least two eigenvalues with nonzero imaginary

part.
(2) If |γN | > 1 and |γn| > 2 for each n ∈ {1, 2, . . . , N − 1}, then there exists no pure real

eigenvalues Ẽ of the matrix J.

Proof. The first claim follows from proposition 2.1. Indeed, we can introduce ξ := λ2 and
rewrite the characteristic equation as

P(λ) = ξN − p2ξ
N−1 − · · · − p2N = 0.

Then p2 is sum of all the roots of the latter equation. The condition of the theorem implies
that p2 < 0. Then there must exist at least one root ξ0 with negative real part. This would
correspond to two eigenvalues λ = ±√

ξ0 with nonzero imaginary part.
In order to prove the second claim, we compute the radii Rn = ∑

m�=n |Jnm| of Gershgorin’s
discs corresponding to the diagonal elements Jnn = iγn, n = −N + 1,−N + 2, . . . , N. For the
first (n = −N + 1) and the last (n = N) radii, we obtain R−N+1 = RN = 1, while for the other
radii (n = −N + 2, . . . , N − 1) we have Rn = 2. Then it follows from Gershgorin’s circle
theorem [30] that if the condition (ii) of the theorem is satisfied, then there is no intersection
of Gershgorin’s discs centered at iγn with the real axis and hence no eigenvalues lies on the
real axis. �

Let us now consider a parameter space {γ1, . . . , γM}, where M (1 � M � N) is a number of
independent parameters γn. As a consequence of theorem 2.1, there exists a non-empty domain
D0 where the spectrum is entirely real. Obviously, D0 contains the origin of the parameter
space. The boundary of the domain D0 consists of the points at which PT symmetry breaking
occurs. On the other hand, it follows from theorem 2.2 that there exists a non-empty unbounded
domain D∞, where the spectrum contains complex eigenvalues.

We also notice the dependence of the bound (11) in theorem 2.1 on N, i.e. the importance
of the length of the chain for the sufficient condition of unbroken PT symmetry.

For the three examples of defect, alternating, and clustered chains listed in the introduction,
there exists a single gain and loss parameter γ (i.e. now M = 1), which can be assumed to
be non-negative without loss of generality. In this case, the boundary of D0 degenerates in a
single point γPT , which is termed as a PT symmetry breaking threshold. The results of the
previous studies can be summarized as follows.

(1) The defect chain was considered in [10, 11], where it was reported that γPT = 1 if either
d = 1 or d = N; and γPT ∝ N−1 if d = 2, 3, . . . , N − 1 (recall that d is the defect
position in the chain).

(2) The alternating chain was considered in [13, 14], where it was found that

γPT = 2 cos

(
πN

1 + 2N

)
= 2 sin

(
π

2(1 + 2N)

)
∝ N−1.

(3) The clustered chain was also considered in [14] using both analytical and graphical
arguments. It was found that γPT ∝ N−2. Note that for sufficiently large N the clustered
PT -chain has a narrower stability interval compared to the other two examples.

Note that the condition (11) in theorem 2.1 is not sharp for any of the examples above because
the upper bound in (11) behaves like N−3 as N → ∞.

6



J. Phys. A: Math. Theor. 47 (2014) 085204 D E Pelinovsky et al

3. The dimer model

Here we consider the simplest case, N = 1, of the PT -symmetric network (1). This case is
usually referred as to the dimer model. Setting γ1 = −γ0 = γ and χ0 = χ1 = χ , we rewrite
the dimer model explicitly:{

iq̇0 = q1 − iγ q0 + [(1 − χ)|q0|2 + χ |q1|2]q0,

iq̇1 = q0 + iγ q1 + [χ |q0|2 + (1 − χ)|q1|2]q1,
(16)

where the overdot denotes the derivative with respect to t. Without loss of generality, we
assume that γ � 0. Our aim is to understand the long-term dynamics of the nonlinear dimer
model (16). In particular, we are interested in checking whether the dimer model (16) is
integrable and if there exist solutions that grow to infinity.

We note that the case χ = 0 is well studied (see e.g. [1–5] and references therein). It is
known that a convenient way of treating the system is to pass to the Stokes variables (used for
the dNLS equation for the first time in [31]):

S0 = |q0|2 + |q1|2, S1 = q0q̄1 + q̄0q1, S2 = i(q0q̄1 − q̄0q1), S3 = |q1|2 − |q0|2, (17)

which satisfy the relation S2
0 = S2

1 +S2
2 +S2

3. By means of straightforward algebra, from system
(16) we obtain the following set of equations

Ṡ0 = 2γ S3, (18)

Ṡ1 = (1 − 2χ)S2S3, (19)

Ṡ2 = 2S3−(1 − 2χ)S1S3, (20)

Ṡ3 = 2γ S0−2S2. (21)

Global existence of solutions of the dimer model (16) follows from equation (18) because
Gronwall’s inequality implies that

S0(t) � S0(0) e2γ |t|, t ∈ R. (22)

Therefore the question we address is if S0 = |q0|2 + |q1|2 remains bounded as t → ∞. To this
end, we shall separate the cases χ �= 1

2 and χ = 1
2 .

3.1. The case χ �= 1
2

We shall prove that for any arbitrarily small but nonzero γ the dimer equations (16) do have
solutions which become unbounded as t → ∞.

Theorem 3.1. Let χ �= 1
2 and γ > 0. Then system (16) has an unbounded solution as t → ∞.

Proof. Equations (19) and (20) can be reduced to the harmonic oscillator equation in the new
temporal variable

s(t) :=
∫ t

0
S3(t

′) dt ′. (23)

Note that the variable s(t) is well defined for all t ∈ R, since the solution of the system
(16) exists globally for all t ∈ R. Using the auxiliary variable s(t), we obtain an equivalent
representation of solutions of equations (19) and (20):⎧⎨

⎩S1(t) = 2

1 − 2χ
+ C1 cos[(1 − 2χ)s(t)] + C2 sin[(1 − 2χ)s(t)],

S2(t) = −C1 sin[(1 − 2χ)s(t)] + C2 cos[(1 − 2χ)s(t)],
(24)
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where C1 and C2 are constants, which are uniquely defined by the initial conditions:

C1 = S1(0) − 2

1 − 2χ
, C2 = S2(0). (25)

Using equations (24) and (25), one can easily find constants D and E independent on q0(0)

and q1(0) such that

|q0(t)q1(t)| � 1

|1 − 2χ | + |C1| + |C2| < D|q0(0)q1(0)| + E, (26)

hence |q0(t)q1(t)| is a bounded function of t for all times.
To complete the proof, we multiply the second equation of system (16) by q̄1, and add its

complex conjugate equation to obtain

d|q1|2
dt

= 2γ |q1|2 − i(q̄1q0 − q1q̄0) > 2γ |q1|2 − 2(D|q0(0)q1(0)| + E ), (27)

where the latter inequality follows from equation (26). Let us now introduce the lower solution
|qL(t)|2 that satisfies the differential equation

d|qL|2
dt

= 2γ |qL|2 − 2(D|q0(0)q1(0)| + E ). (28)

Then using (27) we have

0 = d|qL|2
dt

− 2γ |qL|2 + 2(D|q0(0)q1(0)| + E )

<
d|q1|2

dt
− 2γ |q1|2 + 2(D|q0(0)q1(0)| + E ). (29)

Let us choose the initial data q1(0) to be sufficiently large and q0(0) to be sufficiently small
such that

D|q0(0)q1(0)| + E

γ
< |qL(0)|2 � |q1(0)|2. (30)

The first inequality in equation (30) (together with equation (28)) implies that the lower
solution grows like e2γ t for positive t. Using the second inequality in equation (30) as well as
inequality in equation (29), we apply the comparison theorem for differential equation [32]
and prove that |qL(t)|2 � |q1(t)|2 for all t > 0. Therefore, |q1(t)|2 grows at least exponentially
as t → ∞. �

3.2. The case χ = 1
2

It follows from (19) that now Ṡ1 = 0, i.e. S1 is an integral of motion. Moreover, from equations
(18) and (20) we obtain that

Q := S0 − γ S2 (31)

is also an integral of motion: Q̇ = 0. This allows us to prove the following result.

Theorem 3.2. Let χ = 1
2 . Then for γ ∈ [0, 1) all solutions of (1) are bounded. If γ � 1 then

there exist unbounded solutions.

Proof. From equations (18), (21), and (31) we obtain that

S̈0 + 4(1 − γ 2)S0 = 4Q. (32)

If γ ∈ [0, 1) then all solutions of the harmonic oscillator equation (32) with constant Q are
bounded for all times. If γ � 1, then there exist growing solution of the linear equation (32)
with the polynomial growth if γ = 1 and the exponential growth if γ > 1. �

8
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The existence of two integrals of motion (S1 and Q) is an indication of full integrability
of the dimer model (16) with χ = 1

2 . Note that the dimer model (16) with χ = 0 also has
two conserved quantities [1] but these quantities are different from S1 and Q. In particular, the
two conserved quantities for χ = 0 do not prevent the solutions of the dimer model to grow
unboundedly [3–5] as in theorem 3.1.

4. Existence and classification of stationary nonlinear modes

In this section we consider existence and classification of stationary nonlinear modes of the
system of algebraic equation (8) with arbitrary N in the limit of large E. Let us first recall
that small-amplitude nonlinear modes bifurcating from linear modes of the linear eigenvalue
equation (9) were considered in [7] for simple eigenvalues and in [8] for semi-simple and double
eigenvalues. The arguments of [7] were rigorously justified with the method of Lyapunov–
Schmidt reductions in [13]. We shall now consider the opposite limit of large amplitudes (also
referred to as the anti-continuum limit), where all possible stationary nonlinear modes can be
fully classified.

First in theorem 4.1, we specify a particular result on the existence of stationary modes
when the amplitudes of all 2N sites are large in the limit of E → ∞. Then in theorem 4.2, we
give a general result on existence of stationary modes when some amplitudes become zero in
this limit. At last, in proposition 4.1, we rule out existence of any other stationary modes for
sufficiently large E. This allows us to find in proposition 4.2 the exact number of unique (up
to a gauge transformation) nonlinear modes existing in the limit of large E.

To enable the consideration of the limit E → ∞, we rescale the variables E = 1/δ and
w = W/δ1/2 with small positive δ and rewrite the system of algebraic equation (8) in the form

(1 − |Wn|2)Wn = δ(Wn+1 + Wn−1 + iγnWn), 1 � n � N, (33)

subject to the boundary conditions W0 = W̄1 and WN+1 = 0.

Theorem 4.1. For any given N ∈ N, let coefficients γ1, γ2, . . . γN satisfy the constraints∣∣∣∣∣
N∑

n=K

γn

∣∣∣∣∣ < 1 for each K = 1, 2, . . . , N. (34)

Then the nonlinear stationary equation (8) admit 2N PT -invariant, i.e. satisfying w = Pw̄,
solutions (unique up to a gauge transformation) in the limit of large positive E such that,
for sufficiently large E, the map E → w is C∞ at each solution and there is a positive
E-independent constant C such that

||wn|2 − E| � C for each n = 1, 2, . . . , N. (35)

Proof. Separating the amplitude and phase variables in the rescaled system (33),

Wn =
⎛
⎝ n∏

j=1

A1/2
j

⎞
⎠ ei

∑n
j=1 ϕ j , for each n = 1, 2, . . . , N, (36)

we obtain N equations for phases⎧⎪⎨
⎪⎩

A1/2
2 sin(ϕ2) − sin(2ϕ1) + γ1 = 0,

A1/2
n+1 sin(ϕn+1) − A−1/2

n sin(ϕn) + γn = 0, 2 � n � N − 1,

−A−1/2
N sin(ϕN ) + γN = 0,

(37)

9
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and N equations for amplitudes⎧⎪⎪⎨
⎪⎪⎩

1 − A1 = δ
(
A1/2

2 cos(ϕ2) + cos(2ϕ1)
)
,

1 − ∏n
j=1 Aj = δ

(
A1/2

n+1 cos(ϕn+1) + A−1/2
n cos(ϕn)

)
, 2 � n � N − 1,

1 − ∏N
j=1 Aj = δA−1/2

N cos(ϕN ).

(38)

By the implicit function theorem, for small δ and any (ϕ1, ϕ2, . . . , ϕN ), there exists a
unique solution of system (38) for the amplitude variables with An = 1 + O(δ) for each
n = 1, 2, . . . , N. Substituting this solution to system (37), we obtain at the leading order⎧⎨

⎩
sin(ϕ2) − sin(2ϕ1) + γ1 = 0,

sin(ϕn+1) − sin(ϕn) + γn = 0, 2 � n � N − 1,

− sin(ϕN ) + γN = 0.

(39)

Solving the system backward, we obtain⎧⎪⎨
⎪⎩

sin(ϕN ) = γN,

sin(ϕN−n) = ∑N
j=N−n γ j, 1 � n � N − 2,

sin(2ϕ1) = ∑N
j=1 γ j.

(40)

There exists 2N solutions of equations (40) for the phase variables ϕN , ϕN−1, . . ., ϕ2, and 2ϕ1

in the interval
(−π

2 , 3π
2

)
, provided the constraints (34) are satisfied. Note that the found 2N

solutions have ϕ1 ∈ ( − π
4 , 3π

4

)
. There exist other 2N solutions with ϕ1 ∈ (

3π
4 , 7π

4

)
. However,

the latter 2N solutions can be obtained by the gauge transformation: if W is a solution, then
−W is also a solution of the nonlinear system (33).

Each of the 2N solutions of the system (39) is non-degenerate in the sense that the Jacobian
matrix is upper-triangular and non-singular under the same constraints (34). Therefore, each
solution is uniquely continued with respect to small parameter δ. Hence, we have the existence
of 2N finite-amplitude solutions of the stationary equation (33). Substituting the scaling
transformation, we obtain bound (35) for solutions of the stationary equation (8). �

Theorem 4.2. For any given N ∈ {2, 3, . . .}, fix M ∈ {1, 2, . . . , N − 1}. Let coefficients
γ1, γ2, . . . γM satisfy the constraints∣∣∣∣∣

M∑
n=K

γn

∣∣∣∣∣ < 1 for each K = 1, 2, . . . , M. (41)

Then the nonlinear stationary equation (8) admit 2M PT -invariant solutions w = Pw̄ (unique
up to a gauge transformation) in the limit of large positive E such that, for sufficiently large
E, the map E → w is C∞ at each solution and there is a positive E-independent constant C
such that

||wn|2 − E| � C for each n = 1, 2, . . . , M,

|wn|2 � CE−1 for each n = M + 1, M + 2, . . . , N.
(42)

Proof. Compared to the proof of theorem 4.1, we modify the decomposition (36) in the form

Wn =
⎛
⎝ n∏

j=1

A1/2
j

⎞
⎠ ei

∑n
j=1 ϕ j , for each n = 1, 2, . . . , M, (43)

and leave the variables {WM+1, . . . ,WN} unaffected. Then, equation (33) are rewritten in phase
and amplitude variables for 1 � n � M and left unchanged for M + 1 � n � N. Variables
{Wn}N

M+1 are considered in the neighborhood of the zero equilibrium for small values of δ.

10
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By the implicit function theorem, for small δ and any given WM , there exists a unique solution
of system (33) for M + 1 � n � N such that

|Wn| � Cδ|WM|, M + 1 � n � N, (44)

for some positive (δ,WM )-independent constant C. The nonlinear systems (37) and (38) are
now written in the form⎧⎪⎪⎨

⎪⎪⎩
A1/2

2 sin(ϕ2) − sin(2ϕ1) + γ1 = 0,

A1/2
n+1 sin(ϕn+1) − A−1/2

n sin(ϕn) + γn = 0, 2 � n � M − 1,

Im
(
WM+1

(∏M
j=1 Aj

)−1/2
e−i

∑M
j=1 ϕ j

) − A−1/2
M sin(ϕM ) + γM = 0,

and ⎧⎪⎪⎨
⎪⎪⎩

1 − A1 = δ
(
A1/2

2 cos(ϕ2) + cos(2ϕ1)
)
,

1 − ∏n
j=1 Aj = δ

(
A1/2

n+1 cos(ϕn+1) + A−1/2
n cos(ϕn)

)
, 2 � n � M − 1,

1 − ∏M
j=1 Aj = δ

(
Re

(
WM+1

( ∏M
j=1 Aj

)−1/2
e−i

∑M
j=1 ϕ j

) + A−1/2
M cos(ϕM )

)
.

The system of equations for phase and amplitude variables can be studied similarly to the
system (37) and (38), where the additional terms with the variable WM+1 are found to be O(δ)

small as δ → 0. Substituting the scaling transformation, we obtain bound (42) for solutions
of the stationary equation (8). �

Proposition 4.1. For any given N ∈ N, let coefficients γ1, γ2, . . . γN satisfy the constraints
(34) and additional constraints

M∑
n=K

γn �= 0, for each K = 2, 3, . . . , M and each M = 2, 3, . . . , N. (45)

Then, besides stationary solutions of theorems 4.1 and 4.2, no other stationary solutions of
system (8) exist for sufficiently large E.

Proof. All stationary solutions of theorems 4.1 and 4.2 are characterized by a nonzero limit
of Wn for any 1 � n � M and zero limit of Wn for any M + 1 � n � N as δ → 0, where
M = 1, 2, . . . , N. For any other possible solution, there must exist K in 1 � K � M − 1 for
M � 2 such that WK → 0 as δ → 0. We will now show that this solution cannot be continued
in δ under the conditions (45). Indeed, the persistence analysis of theorems 4.1 and 4.2 would
result in the following set of bifurcation equations at δ = 0:⎧⎨

⎩
sin(ϕK+2) + γK+1 = 0,

sin(ϕn+1) − sin(ϕn) + γn = 0, K + 2 � n � M − 1,

− sin(ϕM ) + γM = 0,

(46)

from which we realize that we have one equation more than the number of phase variables.
No solution exists under the condition (45). �

Proposition 4.2. Under the conditions of proposition 4.1, system (8) has exactly 2N+1 −
2 PT -invariant stationary solutions (unique up to a gauge transformation) for sufficiently
large E.

Proof. We note that all the 2N solutions of theorem 4.1 extend the 2M solutions of theorem 4.2
for M = N. Therefore, theorems 4.1 and 4.2 yield

∑N
M=1 2M = 2N+1−2 distinct solutions of the

algebraic equation (8) for sufficiently large E. No other solution exists due to proposition 4.1.
�

11
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In the context of proposition 4.1, we should remark that even if the conditions (45) are
not satisfied for some K and M, that is, if

∑M
n=K γn = 0, we do not generally anticipate

bifurcations of additional stationary solutions because the Jacobian of the system of nonlinear
equations (46) is singular and the implicit function theorem cannot be used to continue phase
variables in δ. Nevertheless, there may exist special configurations of the dNLS-type network
(1), where conditions (45) are not satisfied and additional degenerate branches of stationary
modes exist in the system of nonlinear algebraic equation (33) for small δ.

For the three examples of defect, alternating, and clustered PT -symmetric chains listed
in the introduction, the constraints (34) acquire a much simpler form. In particular, for the
defect and alternating chains, the constraints yield |γ | < 1, whereas for the clustered chain,
they yield |γ | < N−1.

For the defect and alternating chains, all solutions of theorems 4.1 and 4.2 exist uniformly
for |γ | < 1 and disappear if |γ | > 1. For the clustered chain on the other hand, we observe
that the interval (−N−1, N−1) converge to zero as N → ∞ but it converges much slower
than the stability interval (−γPT , γPT ) of the zero equilibrium with γPT ∝ N−2. Therefore,
even if some families of the stationary solutions do not exist in the small-amplitude limit if
N−2 < |γ | < N−1, there exist at least 2N families of theorem 4.1 in the large-amplitude limit.
For |γ | > N−1, all these 2N families disappear in the large-amplitude limit. Additional 2M

branches of theorem 4.2 exist if N−1 < |γ | < M−1 for M ∈ {1, 2, . . . , N − 1}.

5. Stability of stationary nonlinear modes

To consider stability of the stationary nonlinear modes, we employ the substitution

q(t) = e−iEt (w + U(t))

and linearize the nonlinear PT -dNLS equation (1) at the PT -invariant modes w with
w1−n = w̄n. As a result, we obtain the linearized time-evolution problem

i
dUn

dt
+ EUn = Un+1 + Un−1 + iγnUn + (2 − χn)|wn|2Un + (1 − χn)w

2
nŪn

+χnw
2
nU1−n + χn|wn|2Ū1−n. (47)

Then, singling out the spectral parameter in the system of two equations for

U(t) = φ e−λt and Ū(t) = ψ e−λt,

we arrive at the spectral problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(E − iλ)φn = φn+1 + φn−1 + iγnφn

+ (2 − χn)|wn|2φn + (1 − χn)w
2
nψn + χnw

2
nφ1−n + χn|wn|2ψ1−n,

(E + iλ)ψn = ψn+1 + ψn−1 − iγnψn + (1 − χn)w̄
2
nφn

+ (2 − χn)|wn|2ψn + χnw̄
2
nψ1−n + χn|wn|2φ1−n.

(48)

The system is truncated at the sites n ∈ {−N + 1, . . . , N} subject to the Dirichlet boundary
conditions at n = −N and n = N+1. Therefore, we have exactly 4N eigenvalues in the spectral
problem (48). We emphasize that unless λ is real, φn and ψn are not complex-conjugate to
each other.

We say that the stationary nonlinear mode is spectrally stable if the spectral problem (48)
has no eigenvalues λ with Re(λ) > 0. By the PT symmetry of the stationary mode w and
the related symmetry of the eigenvectors (φ,ψ) in the linear system (48), all eigenvalues λ

are symmetric about the origin and with respect to the complex conjugation. As a result, all
eigenvalues have Re(λ) = 0 in the case of spectral stability of the stationary mode w.

12
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5.1. Analytical results

Here we obtain classification of stability of the stationary nonlinear modes constructed in
section 4 in the limit of large E. Theorem 5.1 addresses stability of the stationary modes in
theorem 4.1, whereas theorem 5.2 elaborates stability of a particular dimer-type (M = 1)
stationary modes in theorem 4.2. A more general result for the stationary solutions of
theorem 4.2 with M between 2 and N − 1 can be obtained based on the count of eigenvalues
in theorems 5.1 and 5.2 but we do not formulate the general result. Thanks to the symmetry
of the PT -symmetric lattice (1) in the case when all χn = 1

2 , there are more spectrally stable
stationary modes in this case, compared to the case when all χn �= 1

2 . Again, the case when
some χn = 1

2 and some other χn �= 1
2 can be considered separately but we avoid a lengthy

formulation of the general result.

Theorem 5.1. Consider 2N stationary solutions of theorem 4.1 under the constraints (34). If
χn < 1

2 for all n, then there exists exactly one spectrally stable stationary mode among the 2N

solutions for sufficiently large E. If χn = 1
2 for all n, then there exist exactly two spectrally

stable stationary modes among the 2N solutions for sufficiently large E.

Proof. Using the rescaling E = 1/δ, w = W/δ1/2, and λ = �/δ with small positive δ, we
rewrite the spectral problem (48) in the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − (2 − χn)|Wn|2)φn − (1 − χn)W 2
n ψn − χnW 2

n φ1−n − χn|Wn|2ψ1−n

= i�φn + δ(φn+1 + φn−1 + iγnφn),

−(1 − χn)W̄ 2
n φn + (1 − (2 − χn)|Wn|2)ψn − χn|Wn|2φ1−n − χnW̄ 2

n ψ1−n

= −i�ψn + δ(ψn+1 + ψn−1 − iγnψn).

(49)

Recall from the construction of theorem 4.1 that Wn = eiθn (1 + O(δ)) for 1 � n � N as
δ → 0, where θ1 = ϕ1 and θn − θn−1 = ϕn for 2 � n � N. We also recognize from the system
(40) for the phase variables that 2ϕ1 and each ϕn for 2 � n � N is taken either in the interval(−π

2 , π
2

)
or in the interval

(
π
2 , 3π

2

)
by the binary solution of the equations for the sine-functions

provided the condition (34) is satisfied. We say that the adjacent (n − 1)th and nth nodes of
the dNLS lattice are in-phase if ϕn ∈ (−π

2 , π
2

)
or out-of-phase if ϕn ∈ (

π
2 , 3π

2

)
. Taking into

account that W−n+1 = W̄n, we say that the 0th and 1st nodes of the dNLS lattice are in-phase
if 2ϕ1 ∈ (−π

2 , π
2

)
or out-of-phase if 2ϕ1 ∈ (

π
2 , 3π

2

)
.

Case χn < 1
2 for all n. We will show that the only spectrally stable configuration

of the stationary nonlinear modes is the one with all adjacent nodes being out-of-phase.
This conclusion fully agrees with the stability theorem for discrete solitons in the focusing
dNLS equation [25]. In fact, we intend to show that the proof of theorem 5.1 reduces to
the computations of the first-order perturbation theory from the previous analysis in [25].
Justification of the first-order perturbation theory can be found in chapter 4.3 of the monograph
[20].

For δ = 0, there exists only one eigenvalue � = 0 in the spectral problem (49). If all
χn �= 1

2 , then the zero eigenvalue has geometric multiplicity 2N with the kernel spanned by
the eigenvectors[

φn

ψn

]
= i

[
eiθn

−e−iθn

]
, −N + 1 � n � N, (50)
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where θ−n+1 = −θn for 1 � n � N, thanks to the PT symmetry of the stationary mode. For
each eigenvector in (50), there exists a generalized eigenvector⎡

⎢⎢⎣
φn

ψn

φ1−n

ψ1−n

⎤
⎥⎥⎦ = 1

2(1 − 2χn)

⎡
⎢⎢⎣

(1 − χn) eiθn

(1 − χn) e−iθn

−χn e−iθn

−χn eiθn

⎤
⎥⎥⎦ , −N + 1 � n � N, (51)

which satisfies a derivative of the spectral problem (49) in �.
For the first-order perturbation theory, we construct the perturbation expansion � =

μδ1/2 + O(δ3/2) and a linear superposition of the eigenvectors (50) and the generalized
eigenvectors (51),⎡
⎢⎢⎣

φn

ψn

φ1−n

ψ1−n

⎤
⎥⎥⎦ = icn

⎡
⎢⎢⎣

eiθn

−e−iθn

0
0

⎤
⎥⎥⎦ + ic1−n

⎡
⎢⎢⎣

0
0
e−iθn

−eiθn

⎤
⎥⎥⎦ + μδ1/2cn

2(1 − 2χn)

⎡
⎢⎢⎣

(1 − χn) eiθn

(1 − χn) e−iθn

−χn e−iθn

−χn eiθn

⎤
⎥⎥⎦

+ μδ1/2c1−n

2(1 − 2χn)

⎡
⎢⎢⎣

−χn eiθn

−χn e−iθn

(1 − χn) e−iθn

(1 − χn) eiθn

⎤
⎥⎥⎦ + δ

⎡
⎢⎢⎣

φ(1)
n

ψ(1)
n

φ
(1)

1−n

ψ
(1)

1−n

⎤
⎥⎥⎦ + O(δ3/2), (52)

where μ is a new eigenvalue and {cn}N
−N+1 are components of the eigenvector.

To derive equations at the first order that uniquely determine all 4N small eigenvalues �,
we represent Wn = eiθn a1/2

n , where an is expanded from the system of amplitude equations (38)
as an = 1 − δa(1)

n + O(δ2), where⎧⎪⎨
⎪⎩

a(1)

1 = cos(ϕ2) + cos(2ϕ1),

a(1)
n = cos(ϕn+1) + cos(ϕn), 2 � n � N − 1,

a(1)
N = cos(ϕN ).

Note that due to the definition of θn, these equations can be written in the form

a(1)
n = cos(θn+1 − θn) + cos(θn − θn−1), 1 � n � N, (53)

subject to the boundary conditions θ0 = −θ1 and θN+1 = θN + π
2 . This representation

is independent of the choice for the coefficients γn and χn. Moreover, we can extend this
representation to −N+1 � n � 0 by a(1)

1−n = a(1)
n with the natural definition θ−N = θ−N+1 − π

2 .
Substituting equation (52) to the spectral problem (49), we obtain the system of difference

equations:

(χn − 1)
(
e−iθnφ(1)

n + eiθnψ(1)
n

) − χn
(
e−iθnψ

(1)

1−n + eiθnφ
(1)

1−n

) = −γncn − ia(1)
n cn

+ iμ2

2(1 − 2χn)
[(1 − χn)cn − χnc1−n] + i(cn+1ei(θn+1−θn) + cn−1ei(θn−1−θn)),

(χn − 1)
(
e−iθnφ(1)

n + eiθnψ(1)
n

) − χn
(
eiθnφ

(1)

1−n + e−iθnψ
(1)

1−n

) = −γncn + ia(1)
n cn

− iμ2

2(1 − 2χn)
[(1 − χn)cn − χnc1−n] − i(cn+1e−i(θn+1−θn ) + cn−1e−i(θn−1−θn)).

Note that derivation of these equations is independent from the fact that the phase variable θn

depends on δ as the same phase variables are included in the first two terms of the decomposition
(52). Eliminating the first-order correction terms and using (53) for a(1)

n , we obtain the reduced
eigenvalue problem

μ2(1 − 2χn)
−1[(1 − χn)cn − χnc1−n]

= 2 cos(θn+1 − θn)(cn − cn+1) + 2 cos(θn−1 − θn)(cn − cn−1), (54)
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where −N + 1 � n � N. Recall that the linear system (54) is closed at 2N equations since
θN+1 = θN + π

2 and θ−N = θ−N+1 − π
2 . We can rewrite the reduced eigenvalue problem in the

matrix form,

μ2B(χ1, χ2, . . . , χN )c = A(θ1, θ2, . . . , θN )c, (55)

where A and B are 2N × 2N matrices.
The symmetric matrix A(θ1, θ2, . . . , θN ) coincides with the one considered in [25] for a

finite dNLS chain of 2N nodes. Although the phase variables (θ1, θ2, . . . , θN ) depend on γ , the
sign of eigenvalues of A(θ1, θ2, . . . , θN ) does not depend on γ , because of the binary choice
for the roots of the sine-function and our definition of the in-phase and out-of-phase stationary
solutions. In particular, all but one eigenvalue of A(θ1, θ2, . . . , θN ) are strictly negative for
the out-of-phase configuration with 2ϕ1 and each ϕn for 2 � n � N taken in the interval(

π
2 , 3π

2

)
. (The last eigenvalue of A(θ1, θ2, . . . , θN ) is always zero.) More generally, the number

of positive eigenvalues of A(θ1, θ2, . . . , θN ) coincides with the number of in-phase differences
in the sequence θn+1 − θn for −N + 2 � n � N − 1.

Now if χn < 1
2 for all n, the symmetric matrix B(χ1, χ2, . . . , χN ) is strictly positive

definite because each Gershgorin’s circle is bounded from zero in the positive domain.
By Sylvester’s inertial law theorem [30], the numbers of positive, negative, and zero
eigenvalues of μ2 in the reduced eigenvalue problem (55) coincides with those of the
matrix A(θ1, θ2, . . . , θN ). Therefore, the only spectrally stable stationary solution must have
the out-of-phase configuration for all phase differences in the sequence θn+1 − θn for
−N + 2 � n � N − 1.

Case χn = 1
2 for all n. For δ = 0, the zero eigenvalue � = 0 of the spectral problem (49)

has geometric multiplicity 3N with the kernel spanned by the eigenvectors⎡
⎢⎢⎣

φn

ψn

φ1−n

ψ1−n

⎤
⎥⎥⎦ = icn

⎡
⎢⎢⎣

eiθn

−e−iθn

e−iθn

−eiθn

⎤
⎥⎥⎦ + ian

⎡
⎢⎢⎣

eiθn

0
−e−iθn

0

⎤
⎥⎥⎦ + ibn

⎡
⎢⎢⎣

0
−e−iθn

0
eiθn

⎤
⎥⎥⎦ , 1 � n � N. (56)

Only the first eigenvector in (56) generates a generalized eigenvector⎡
⎢⎢⎣

φn

ψn

φ1−n

ψ1−n

⎤
⎥⎥⎦ = 1

2
cn

⎡
⎢⎢⎣

eiθn

e−iθn

e−iθn

eiθn

⎤
⎥⎥⎦ , 1 � n � N, (57)

which satisfies a derivative of the spectral problem (49) in �, hence N generalized eigenvectors
exist. Note that the other two eigenvectors in (56) are related to the symmetry of the dNLS
chain (1) when χn = 1

2 for all n and they are preserved in the spectral problem (49) for � = 0
and any δ. Therefore, we set an = bn = 0 in the perturbation expansions below.

For the first-order perturbation theory, we construct the perturbation expansion
� = μδ1/2 + O(δ3/2) and a linear superposition of the first eigenvectors in (56) and the
generalized eigenvectors (57). Proceeding similarly as in the previous case, we obtain the
system of difference equations:

− 1
2

(
e−iθnφ(1)

n + eiθnψ(1)
n + e−iθnψ

(1)

1−n + eiθnφ
(1)

1−n

) = i
2μ2cn

−γncn − ia(1)
n cn + i(cn+1ei(θn+1−θn) + cn−1ei(θn−1−θn )),

− 1
2

(
e−iθnφ(1)

n + eiθnψ(1)
n + eiθnφ

(1)

1−n + e−iθnψ
(1)

1−n

) = − i
2μ2cn

−γncn + ia(1)
n cn − i(cn+1e−i(θn+1−θn) + cn−1e−i(θn−1−θn )),

which yields the reduced eigenvalue problem

μ2cn = 2 cos(θn+1 − θn)(cn − cn+1) + 2 cos(θn−1 − θn)(cn − cn−1). (58)
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This eigenvalue problem is closed for 1 � n � N subject to the boundary conditions c0 = c1

and cN+1 = cN . It corresponds to the system of linear equation (54) with χn = 0 but the
number of equations is N instead of 2N. In other words, we obtained the same reduced
eigenvalue problem as in [25] but for a finite dNLS chain of N nodes. The phase difference
θ1 − θ0 = 2ϕ1 becomes irrelevant for stability computations and hence two spectrally stable
stationary solutions exist and have the out-of-phase phase differences in the sequence θn+1 −θn

for 1 � n � N−1. For these two stable stationary solutions, the phase difference θ1−θ0 = 2ϕ1

can be either in phase or out of phase. �

Theorem 5.2. Consider the two stationary solutions of theorem 4.2 for M = 1 under the
condition |γ1| < 1. If χ1 < 1

2 , the in-phase stationary mode is spectrally unstable, whereas
the out-of-phase stationary mode is spectrally stable if and only if the zero equilibrium for
the two disjoint isolated sets −N + 1 � n � −1 and 2 � n � N in the dNLS equation (1) is
spectrally stable. If χ1 = 1

2 , both stationary modes are spectrally stable if and only if the zero
equilibrium for the two disjoint isolated sets −N + 1 � n � −1 and 2 � n � N in the dNLS
equation (1) is spectrally stable.

Proof. We still consider the spectral problem (49) but the stationary solution is now expanded
as

Wn = eiϕ1δn,1 + e−iϕ1δn,0 + O(δ), (59)

where δn, j is the Kronecker symbol and sin(2ϕ1) = γ1. Because of this expansion, the spectral
problem (49) for δ = 0 has eigenvalue � = 0 of algebraic multiplicity 4 and the pair of
semi-simple eigenvalues � = ±i of multiplicity 2N − 2. The double zero eigenvalue splits
according to the first-order perturbation theory described in the proof of theorem 5.1.

If χ1 �= 1
2 , then only two eigenvectors (50) exist for n = 0 and n = 1 and the matrix

eigenvalue problem (54) takes the form{
μ2(1 − 2χ1)

−1[(1 − χ1)c1 − χ1c0] = 2 cos(2ϕ1)(c1 − c0),

μ2(1 − 2χ1)
−1[(1 − χ1)c0 − χ1c1] = 2 cos(2ϕ1)(c0 − c1).

(60)

Therefore, a pair of simple nonzero eigenvalues exists at μ2 = 4(1−2χ1) cos(2ϕ1). If χ1 < 1
2 ,

the in-phase stationary mode with 2ϕ1 ∈ (−π
2 , π

2

)
has a real eigenvalue and is hence unstable

right away. The out-of-phase stationary mode with 2ϕ1 ∈ (
π
2 , 3π

2

)
has a pair of imaginary

eigenvalues.
If χ1 = 1

2 , the zero eigenvalue � = 0 of multiplicity 4 persists in the spectral problem (49)
for any small δ with three eigenvectors (56) and one generalized eigenvector (57). Therefore,
the zero eigenvalue does not split for δ �= 0, both for in-phase and out-of-phase stationary
modes.

To clarify stability of the stationary modes with respect to the semi-simple eigenvalues
� = ±i, we again consider the first-order perturbation theory. For definiteness, we will
consider the point � = −i. Recall (59), denote � = −i + μδ +O(δ2), and use the expansion[

φn

ψn

]
= cn

[
1
0

]
+ δ

[
φ(1)

n
ψ(1)

n

]
+ O(δ2), (61)

for 2 � n � N and −N + 1 � n � −1, where μ is a new eigenvalue. Substituting (61) to the
spectral problem (49) for these n, we obtain the difference equations at the O(δ) order:

0 = i(μ + γn)cn + cn+1 + cn−1,

2φ(1)
n = 0,
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where the boundary conditions are c1 = cN+1 = 0 and c−N = c0 = 0. Because of these
boundary conditions, we actually have two uncoupled eigenvalue problems for two disjoint
sets

S− = {n : −N + 1 � n � −1} and S+ = {n : 2 � n � N}.
For μ = iẼ, we arrive to the same linear eigenvalue problem

Ẽcn = cn+1 + cn−1 + iγncn, n ∈ S±, (62)

as the one that occurs in the linear dNLS equation for S+ and S− subject to the Dirichlet
boundary conditions at the end points. This yields the assertion of the theorem. �

Note that the stability conclusions of theorem 5.1 change if χn > 1
2 for at least some

n. In this case, the matrix B(χ1, χ2, . . . , χN ) in the reduced eigenvalue problem (55) is not
positive definite and the signs of eigenvalues μ2 do not coincide any longer with the signs
of eigenvalues of the matrix A(θ1, θ2, . . . , θN ). Nevertheless, it is easy to adjust the stability
conclusions of theorem 5.2 for the stationary mode with M = 1. It follows from the eigenvalue
μ2 = 4(1 − 2χ1) cos(2ϕ1) of the reduced eigenvalue problem (60) for χ1 > 1

2 that the out-
phase stationary mode with 2ϕ1 ∈ (

π
2 , 3π

2

)
is unstable, whereas the in-phase stationary mode

with 2ϕ1 ∈ (−π
2 , π

2

)
is spectrally stable if and only if the zero equilibrium for the two disjoint

isolated sets −N + 1 � n � −1 and 2 � n � N in the dNLS equation (1) is spectrally stable.
For the clustered chain, we have γn = ±γ for n ∈ S± and the linear eigenvalue problems

(62) have N − 1 pairs of complex eigenvalues Ẽ with Im(Ẽ ) = ±γ . Hence the two stationary
modes with M = 1 are spectrally unstable in the clustered chain with any N � 2.

For the alternating chain, we have γn = (−1)nγ and the linear eigenvalue problems (62)
have N − 1 pairs of real eigenvalues Ẽ if N is odd and |γ | < γPT because the numbers
of oscillators with gain and dissipation are equal to each other. Hence the out-of-phase
stationary mode is spectrally stable in the alternating chain with odd N if χn < 1

2 for all
n and |γ | < |γPT |. If N is even, however, there exists always one pair of purely imaginary
eigenvalues with Im(Ẽ ) = ±γ because the number of oscillators with gain and dissipation do
not match each other by one. Therefore, the two stationary modes with M = 1 are spectrally
unstable in the alternating chain with even N.

For the defect chain, the defects have to be located at the central sites n = 0 and n = 1
by the construction of the PT -invariant stationary solutions. In this case, all γn = 0, hence
all eigenvalues Ẽ of the linear eigenvalue problem (62) are real. Therefore, the out-of-phase
stationary mode is spectrally stable in the defect chain if χn < 1

2 for all n.

5.2. Numerical illustration

Let us illustrate the analytical predictions of theorems 4.1, 4.2, 5.1, and 5.2 using as a particular
example the quadrimer model (N = 2). We have numerically identified its stationary modes
of the stationary dNLS equation (8) with γ1 = 1

2 and γ2 = − 1
4 for different E and computed

the stability of the stationary modes by means of the direct computation of the spectrum of the
linearized problem (48). The results are summarized in figure 1.

In figure 1(a) and (b) for χ1,2 = 0 and χ1,2 = 1
2 respectively, the computed nonlinear

modes are visualized in the plane P versus E, where the quantity P is defined as

P = 1

2N

N∑
n=−N+1

|wn|2, (63)

and hence is associated with the norm of a stationary solution. In agreement with
proposition 4.2, the numerical approach has indicated exactly six nonlinear modes existing for
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(a) (b)

(c) (d )

Figure 1. Top panels show nonlinear modes of the quadrimer visualized on the plane P
versus E. Stable (unstable) modes are shown with blue solid (red dashed) fragments of
the curves. Arrows show the family that is unstable for large E in the left-hand panel
(which corresponds to χ1 = χ2 = 0), but becomes stable for large E in the right-hand
panel (which corresponds to χ1 = χ2 = 1

2 ). Dynamics of a particular stationary mode
belonging to this family (at E = 13) is shown in the bottom panels (c) and (d), which
also correspond to χ1 = χ2 = 0 and χ1 = χ2 = 1

2 , respectively. Dynamics of the chosen
stationary mode is unstable in the first case and is stable in the second case. A small
perturbation was added to the initial data. For all panels γ1 = 1

2 and γ2 = − 1
4 .

sufficiently large E. These modes correspond to the six curves going to E → ∞ on figure 1(a)
and (b). Four solutions covered by theorem 4.1 correspond to the four upper curves, while the
other two solutions (described by theorem 4.2 with N = 2 and M = 1) correspond to the two
lower curves.

The most important difference between panels (a) and (b) of figure 1 (i.e. between the
cases with χ1,2 = 0 and χ1,2 = 1

2 ) stems from the stability of the modes. In the former case,
there exists exactly one stable solution for sufficiently large E, while in the latter case, there
are exactly two stable solutions. The observed stability features are in the full agreement with
theorems 5.1 and 5.2. Indeed, theorem 5.1 ensures that for large E the system with χ1,2 = 0
admits exactly one stable solution among the four solutions described by theorem 4.1, while the
other two solutions (which correspond to N = 2 and M = 1) are unstable due to theorem 5.2.
On the other hand, for χ1,2 = 1

2 theorem 5.1 predicts exactly two stable solutions among
the four solutions described by theorem 4.1, while the other two solutions are unstable by
theorem 5.2.

We note that all four stationary solutions bifurcating from the four linear modes of the
linear dNLS equation as P → 0 are spectrally stable, according to the standard local bifurcation
theory. Nevertheless, all but one or two modes loss their stability for larger values of P.

The observed difference in the spectral stability was also confirmed by direct evolutional
simulations of the nonlinear mode, for which the phase differences between sites −1 and 0
and sites 1 and 2 are out-of-phase and the phase difference between sites 0 and 1 is in phase.
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This mode is unstable for χ1,2 = 0 but becomes stable for χ1,2 = 1
2 , see panels (c) and (d)

of figure 1, where the same initial data (subjected to a small perturbation) display different
evolution depending on χ1,2.

6. Conclusion

In the present work we analyzed the existence and dynamics of solutions for the generalized
PT -symmetric dNLS network consisting of a finite number of sites. The main outcomes of
our work can be summarized as follows.

First, we have revisited the linear case and established the sufficient conditions for stability
or instability of the zero equilibrium. In particular, we have provided sufficient conditions of
the unbroken and broken PT symmetry which hold for arbitrary finite number of sites in the
network.

Turning to the full nonlinear model and starting with the simplest model of a PT -
symmetric dimer, we have proven the existence of unbounded solutions in a generic case.
However, for a specific choice of the nonlinearity, corresponding to an integrable model, all
solutions stay bounded, provided thePT symmetry of the underlying linear dimer is unbroken.

Further we have shown that a finite PT -symmetric network of dNLS equations
possesses stationary solutions. These solutions were analytically constructed by means of
the continuation from the anti-continuum limit (i.e. from the limit of large amplitudes or
large energy or propagation constant). A result of particular importance and novelty is the
classification of all possible stationary modes in the limit of large energies. More specifically,
we have shown that under certain conditions a PT -symmetric network consisting of 2N sites
admits exactly 2N+1 − 2 stationary modes (unique up to a gauge transform) in the large-
amplitude limit. We have also described the shape of the stationary modes and found that
when approaching the anti-continuum limit the amplitudes of the network sites either become
large or vanish. Moreover, the large-amplitude sites are all grouped together around the center
of the network.

Finally, we have examined stability of the found stationary modes counting the number
of modes that are stable in the large-amplitude limit. The obtained analytical results have also
been numerically illustrated for the quadrimer case. The presented numerical results serve as
an independent checkup for the analytical predictions and allow us to show persistence of
these stability predictions far from the large-amplitude limit.
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