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We consider a chain of coupled pendula pairs, where each pendulum is connected to the nearest 
neighbors in the longitudinal and transverse directions. The common strings in each pair are modulated 
periodically by an external force. In the limit of small coupling and near the 1 : 2 parametric resonance, 
we derive a novel system of coupled PT -symmetric discrete nonlinear Schrödinger equations, which 
has Hamiltonian symmetry but has no phase invariance. By using the conserved energy, we find the 
parameter range for the linear and nonlinear stability of the zero equilibrium. Numerical experiments 
illustrate how destabilization of the zero equilibrium takes place when the stability constraints are not 
satisfied. The central pendulum excites nearest pendula and this process continues until a dynamical 
equilibrium is reached where each pendulum in the chain oscillates at a finite amplitude.
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1. Introduction

Coupled pendula models are fundamental in the theoretical 
physics as they can be used for modelling of many interesting 
physical phenomena, ranging from DNA dynamics to crystal struc-
ture of solid states [7]. Synchronization of coupled pendula and 
destabilization of their dynamics due to various parametric forces 
have been studied in much detail [17]. A recent progress towards 
analytical studies of such models complemented with robust nu-
merical methods was achieved by reducing the second-order New-
ton’s equations to the amplitude equations of the discrete nonlin-
ear Schrödinger (dNLS) type [11].

Parametric resonance in a chain of coupled pendula due to a 
horizontally shaken pendulum chain was studied experimentally 
and analytically in [10,13,22]. Numerical approximations were em-
ployed in these papers in order to characterize dynamics of cou-
pled pendula in the presence of bistability. Another example of 
recent studies of parametrically driven chains of coupled pendula 
can be found in [20,21], where existence and stability of discrete 
breathers have been addressed numerically.

It was realized in [3,4] that the parametrically driven coupled 
pendula can be analytically studied by using Hamiltonian systems 
of the dNLS type in the presence of gains and losses. Such sys-
tems are simultaneously Hamiltonian and PT -symmetric, where 
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Fig. 1. A graphical illustration for the chain of coupled pendula connected by tor-
sional springs, where each pair is hung on a common horizontal string.

the parity (P) and time-reversal (T ) symmetries were used first 
to characterize the non-Hermitian Hamiltonians [5] and have now 
been widely observed in many physical experiments [6,19]. In the 
recent study [8,9], the presence of Hamiltonian formulation for 
a class of PT -symmetric dNLS equations was used to employ 
methods of Hamiltonian dynamics in order to characterize stability 
and long-time dynamics of breathers in the parametrically driven 
chains of coupled pendula.

The main goal of this work is to derive and to study a novel 
model of the coupled PT -symmetric dNLS equations which de-
scribes parametrically driven chains of the coupled pendula pairs 
connected to the nearest neighbors in the longitudinal and trans-
verse directions. Fig. 1 gives a graphical illustration of the coupled 
pendula chain. Compared to the recent work in [8], we consider 
different couplings between the two pendula in a pair. This cou-
pling describes interactions between the two pendula connected 
to each other by a common horizontal string.
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The new feature of the coupled PT -symmetric dNLS model 
derived here is that the model is Hamiltonian but not phase-
invariant, compared to the previously considered class of PT -
symmetric models [4,8]. As a result, the model admits only one 
integral of motion, given by the conserved energy of the system. 
Nevertheless, existence of this integral of motion allows us to char-
acterize analytically the linear and nonlinear stability of the zero 
equilibrium in the system. In the stability region, the chain of cou-
pled pendula perform stable oscillations which are determined by 
the initial deviations of the pendula from the equilibrium.

In order to characterize the destabilization of the coupled pen-
dula chain in the instability region, we employ numerical experi-
ments. We will show numerically that the central pendulum ex-
cites nearest pendula and this process continues until a dynamical 
equilibrium is reached where each pendulum in the chain oscil-
lates at a finite amplitude. While the �∞ norm of the oscillation 
amplitudes remains finite at the dynamical equilibrium, we show 
numerically that the �2 norm of the oscillation amplitudes diverges 
in an unbounded chain of coupled pendula as the time goes to 
infinity. The question of whether the oscillation amplitudes can di-
verge to infinity in the PT -symmetric dNLS models have been a 
subject of active research, see, e.g., [12,15,16,18].

Note that divergence of the �2 norm of the oscillation ampli-
tudes does not contradict the energy conservation as the conserved 
energy may not be coercive with respect to the oscillation ampli-
tudes. Depending on the parameters of the model, we find condi-
tions when the conserved energy is coercive and this guarantees 
that the �2 norm of the oscillation amplitudes does not grow in 
such parameter configurations. However, coercivity is lost for the 
other parameter configurations, for which we observe unbounded 
growth of the �2 norm of the oscillation amplitudes with bounded 
�∞ norm of the oscillation amplitudes.

The paper is organized as follows. Section 2 describes New-
ton’s equations of motion for the chain of coupled pendula and 
the derivation of the PT -symmetric dNLS model. Section 3 ad-
dresses linear stability of the zero equilibrium. Section 4 contains 
the main analytical results on nonlinear stability of the coupled 
pendula. Section 5 reports outcomes of the numerical experiments. 
Section 6 concludes the paper.

We use the following standard notations. For a sequence 
{an}n∈Z , we define the �p norm with p > 0 by

‖a‖�p =
(∑

n∈Z
|an|p

)1/p

.

In the limit p → ∞, the �∞ norm becomes the supremum norm 
‖a‖�∞ = sup

n∈Z
|an|.

2. Derivation of the PT -symmetric dNLS model

We consider a chain of coupled pendula displayed on Fig. 1, 
where each pendulum is connected to the nearest neighbors in 
the longitudinal and transverse directions. Newton’s equations of 
motion are given by{

ẍn + sin(xn) = C (xn+1 − 2xn + xn−1) + D(yn − xn),

ÿn + sin(yn) = C (yn+1 − 2yn + yn−1) + D(xn − yn),

n ∈ Z, t ∈R, (1)

where (xn, yn) correspond to the angles in each pair of the two 
pendula, dots denote derivatives with respect to time t , and the 
positive parameters C and D describe couplings between the near-
est pendula in the longitudinal and transverse directions, respec-
tively. Newton’s equations (1) are related to the energy function
E(x, y) =
∑
n∈Z

1

2
(ẋ2

n + ẏ2
n) + 2 − cos(xn) − cos(yn)

+ 1

2
C(xn+1 − xn)

2 + 1

2
C(yn+1 − yn)

2

+ 1

2
D(xn − yn)

2. (2)

Dynamics of coupled pendula is considered under the following 
simplifying assumptions:

(A1) The coupling parameters C and D are small.
(A2) A uniform periodic force is applied to the common strings 

for each pair of coupled pendula and the frequency of the 
periodic force is picked at the 1 : 2 resonance with the linear 
frequency of each pendulum.

According to (A1), we introduce a small parameter μ such that 
both C and D are proportional to μ2. According to (A2), we con-
sider D to be proportional to cos(2ωt), where |ω − 1| is propor-
tional to μ2. We denote the proportionality coefficients by ε , γ , 
and �, respectively, hence parameters C and D are given by

C = εμ2, D(t) = 2γμ2 cos(2ωt), ω2 = 1 + μ2�, (3)

where γ , ε, � are μ-independent parameters. In the formal limit 
μ → 0, the pendula are uncoupled, and their small-amplitude os-
cillations can be studied with the asymptotic multi-scale expan-
sion{

xn(t) = μ
[

An(μ
2t)eiωt + Ān(μ

2t)e−iωt
] + μ3 Xn(t;μ),

yn(t) = μ
[

Bn(μ
2t)eiωt + B̄n(μ

2t)e−iωt
] + μ3Yn(t;μ),

(4)

where (An, Bn) are amplitudes for nearly harmonic oscillations and 
(Xn, Yn) are remainder terms. Rigorous justification of the asymp-
totic expansions (4) in a similar context has been developed in 
[14], see also [4,8] for similar expansions.

From the conditions that the remainder terms (Xn, Yn) remain 
bounded as the system evolves, it can be shown by straightforward 
computations that the amplitudes (An, Bn) satisfy the discrete 
nonlinear Schrödinger (dNLS) equations in the following form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i dAn
dτ = ε (An+1 − 2An + An−1) + �An

+ γ (B̄n − Ān) + 1
2 |An|2 An,

i dBn
dτ = ε (Bn+1 − 2Bn + Bn−1) + �Bn

+ γ ( Ān − B̄n) + 1
2 |Bn|2 Bn,

n ∈ Z, (5)

where τ = 1
2 μ2t . The system (5) takes the form of coupled para-

metrically driven dNLS equations. There exists an invariant reduc-
tion of system (5) to the scalar dNLS equation [11] if

An = Bn, n ∈ Z. (6)

The reduction (6) corresponds to the synchronization in each pair 
of coupled pendula with

xn = yn, n ∈ Z, (7)

when the periodic driving force does not affect the dynamics of 
the coupled pendula chain.

Unless the reduction (6) is imposed, the system of coupled 
dNLS equations (5) is not invariant with respect to transforma-
tion of the phases of (A, B). It is however invariant with respect 
to the exchange A ↔ B . The system can be written in a complex 
Hamiltonian form:

i
dAn = ∂ H

¯ , i
dBn = ∂ H

¯ , n ∈ Z, (8)

dτ ∂ An dτ ∂ Bn
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associated with the conserved energy function

H(A, B) =
∑
n∈Z

1

4
(|An|4 + |Bn|4) + �(|An|2 + |Bn|2)

+ γ (An Bn + Ān B̄n) − 1

2
γ (A2

n + A
2
n + B2

n + B
2
n)

− ε|An+1 − An|2 − ε|Bn+1 − Bn|2. (9)

The Hamiltonian structure (8) and the conserved energy function 
(9) are inherited from the energy function (2) of the Newton’s 
equations (1) after the substitution of the asymptotic expansion 
(4) and its truncation. If the coupling parameter D depends on 
time, the energy function E(x, y) is not conserved in (2). However, 
the asymptotic expansion (4) simplifies equations of motion near 
the 1 : 2 resonance so that the leading-order system (5) is now au-
tonomous with the conserved energy function H(A, B) in (9). Such 
simplifications of equations of motion are generally used in stud-
ies of coupled oscillators under parametric driving force, see, e.g., 
[1,2].

The system (5) can be cast to the form of the parity–time re-
versal (PT ) dNLS equations [4,8]. Using the variables

un := 1

4

(
An − i B̄n

)
, vn := 1

4

(
An + i B̄n

)
, (10)

the system of coupled dNLS equations (5) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i dun
dτ = ε (vn+1 − 2vn + vn−1) + �vn + iγ un − γ ūn

+ 2
[(

2|un|2 + |vn|2
)

vn + u2
n v̄n

]
,

i dvn
dτ = ε (un+1 − 2un + un−1) + �un − iγ vn − γ v̄n

+ 2
[(|un|2 + 2|vn|2

)
un + ūn v2

n

]
,

(11)

which is invariant with respect to the action of the parity P and 
time-reversal T operators given by

P
[

u
v

]
=

[
v
u

]
, T

[
u(t)
v(t)

]
=

[
ū(−t)
v̄(−t)

]
. (12)

Therefore, the system (11) can be referred to as the PT -symmetric 
dNLS equation. The system (11) is still Hamiltonian with a cross-
gradient Hamiltonian structure,

i
dun

dτ
= ∂ H̃

∂ v̄n
, i

dvn

dτ
= ∂ H̃

∂ ūn
, n ∈ Z, (13)

associated with the modified energy functional

H̃(u, v) =
∑
n∈Z

(|un|2 + |vn|2)2 + (un v̄n + ūn vn)
2

+ �(|un|2 + |vn|2) − ε|un+1 − un|2 − ε|vn+1 − vn|2
+ iγ (un v̄n − ūn vn) − γ (un vn + ūn v̄n). (14)

The Hamiltonian system (11) is not phase-invariant, so that it does 
not have the mass conserved quantity. We note that the breaking 
of the phase invariance by the parametric driving is common to 
many parametrically driven chains of pendula and so is the energy 
conservation in the reduced amplitude equations [1,2].

The previous works [8,9] explore a different version of the 
PT -symmetric dNLS equation, which is related to the Newton’s 
equation with a different coupling between xn and yn pendula. The 
PT -symmetric dNLS equation in [8,9] has both energy and mass 
conservation. Cross-gradient models considered in the classifica-
tion work [4] also assumed conservation of both energy and mass. 
In the present work, we address the PT -symmetric dNLS equation 
with conserved energy but no phase-invariance. In this context, we 
prefer to work with the dNLS system (5) without transforming it 
to the PT -symmetric dNLS equation (11).
3. Linear stability of zero equilibrium

Parametrically driving forces can destabilize the zero equilib-
rium state in the coupled pendula chain. We shall first clarify 
conditions for the linear stability of the zero equilibrium. The fol-
lowing lemma provides a sharp bound on the parameter γ of the 
driving force which ensures that the zero equilibrium is linearly 
stable.

Lemma 1. The zero equilibrium of the system (5) with ε > 0 is linearly 
stable if |γ | < γ0 , where

γ0 :=
{

1
2 (� − 4ε), � > 4ε,

1
2 |�|, � < 0.

(15)

The zero equilibrium is linearly unstable if |γ | ≥ γ0 or if � ∈ [0, 4ε] and 
γ 	= 0.

Proof. Truncating the system (5) at the linear terms and using the 
Fourier transform

An = 1

2π

π∫
−π

Âeinθdθ, n ∈ Z, (16)

we obtain the following system of differential equations for Â and 
B̂ parameterized by θ :⎧⎨
⎩

i d Â
dτ + κ Â = γ ( ˆ̄B − ˆ̄A),

i dB̂
dτ + κ B̂ = γ ( ˆ̄A − ˆ̄B),

(17)

where κ := 4ε sin2(θ/2) − �. Separating the time variable like in 
Â(τ ) = âeiωτ yields the linear homogeneous system

⎡
⎢⎢⎣

κ − ω γ 0 −γ
γ κ + ω −γ 0
0 −γ κ − ω γ

−γ 0 γ κ + ω

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

â

â
b̂

b̂

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

with the characteristic equation factorized in the form

(ω2 − κ2)(ω2 − κ2 + 4γ 2) = 0. (18)

The first pair of roots is always real:

ω±
1 = ±|κ | = ±

∣∣∣4ε sin2(θ/2) − �

∣∣∣ .
The second pair of roots is real if |κ | > 2|γ |:

ω±
2 = ±

√
κ2 − 4γ 2 = ±

√
(4ε sin2(θ/2) − �)2 − 4γ 2.

This happens for 2|γ | < � − 4ε if � > 4ε and for 2|γ | < |�| if 
� < 0. In both cases, the zero equilibrium is linearly stable.

On the other hand, for any |γ | > γ0, the values of ω±
2 are purely 

imaginary either near θ = ±π if � > 4ε or near θ = 0 if � < 0. In 
these cases, the zero equilibrium is linearly unstable with expo-
nentially growing perturbations. For |γ | = γ0, the values of ω±

2 are 
zero either at θ = ±π if � > 4ε or at θ = 0 if � < 0. The zero 
equilibrium is linearly unstable with polynomially growing pertur-
bations.

Finally, if � ∈ [0, 4ε], there exists θ0 ∈ [−π, π ] such that κ = 0. 
Then, for any γ 	= 0, the values of ω±

2 are purely imaginary and the 
zero equilibrium is linearly unstable with exponentially growing 
perturbations. �
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4. Nonlinear stability of coupled pendula

The Cauchy problem for the system of coupled dNLS equa-
tions (5) can be posed in sequence space �2(Z). Local existence 
of solutions to the Cauchy problem in �2(Z) follows from an easy 
application of Picard’s method. Combining local existence with en-
ergy estimates yields global existence of solutions. The following 
lemma states the global well-posedness result.

Lemma 2. For every (A(0), B(0)) ∈ �2(Z), there exists a unique solution 
(A, B)(τ ) ∈ C1(R, �2(Z)) of the system of coupled dNLS equations (5)
such that (A, B)(0) = (A(0), B(0)). The unique solution depends contin-
uously on initial data (A(0), B(0)) ∈ �2(Z).

Proof. The Cauchy problem for the system of coupled dNLS equa-
tions (5) can be posed by using the system of integral equations{

A(τ ) = A(0) − i
∫ τ

0 F A(A(τ ′), B(τ ′))dτ ′,

B(τ ) = B(0) − i
∫ τ

0 F B(A(τ ′), B(τ ′))dτ ′,
(19)

where (F A, F B) stand for the right-hand sides of the system (5). 
Since the discrete Laplacian is a bounded operator in �2(Z) with 
the bound∑
n∈Z

|An+1 − An|2 ≤ 4‖A‖2
�2 , A ∈ �2(Z), (20)

and the sequence space �2(Z) forms a Banach algebra with respect 
to pointwise multiplication with the bound

‖AB‖�2 ≤ ‖A‖�2‖B‖�2 , A, B ∈ �2(Z), (21)

there is a sufficiently small τ0 > 0 such that the integral equa-
tions (19) admit a unique solution (A, B)(τ ) ∈ C0([−τ0, τ0], �2(Z))

with (A, B)(0) = (A(0), B(0)). This follows by the contraction map-
ping method, which also ensures that the solution depends con-
tinuously on initial data (A(0), B(0)) ∈ �2(Z). Thanks again to the 
boundedness of the discrete Laplacian operator in �2(Z), bootstrap 
arguments extend this solution in C1([−τ0, τ0], �2(Z)).

The local solution is continued globally by using the energy 
method. The following balance equation is obtained from system 
(5) for any solution (A, B)(τ ) in C1([−τ0, τ0], �2(Z)):

d

dτ

∑
n∈Z

(|An|2 + |Bn|2)

= iγ
∑
n∈Z

(
2An Bn − 2 Ān B̄n + Ā2

n + B̄2
n − A2

n − B2
n

)
.

By integrating this equation in time and estimating the integral 
with the triangle inequality, we obtain

‖A(τ )‖2
l2 + ‖B(τ )‖2

l2 ≤
(
‖A(0)‖2

l2 + ‖B(0)‖2
l2

)

+ 4|γ |
|τ |∫

0

(
‖A(τ ′)‖2

l2 + ‖B(τ ′)‖2
l2

)
dτ ′.

Gronwall’s inequality yields

‖A(τ )‖2
l2 + ‖B(τ )‖2

l2 ≤
(
‖A(0)‖2

l2 + ‖B(0)‖2
l2

)
e4|γ τ |,

τ ∈ [−τ0, τ0]. (22)

Therefore ‖A(τ )‖l2 and ‖B(τ )‖l2 cannot blow up in a finite time 
and so cannot their derivatives in τ . Therefore, the local solution 
(A, B)(τ ) ∈ C1([−τ0, τ0], �2(Z)) is continued for every τ0. �

The bound (22) does not exclude a possible exponential growth 
of the �2(Z) norms of the global solution (A, B)(τ ) as τ → ∞. 
However, thanks to coercivity of the energy function (9) near the 
zero equilibrium, we can still obtain a time-independent bound on 
the �2(Z) norm of the solution near the zero equilibrium, provided 
it is linearly stable. Moreover, for � > (2|γ | +4ε), the global bound 
holds for arbitrary initial data. The following three theorems rep-
resent the corresponding results. For simplicity, we can restrict our 
attention to γ > 0.

Theorem 1. For every � > 2γ + 4ε and every initial data (A(0), B(0)) ∈
�2(Z), there is a positive constant C such that the unique solution 
(A, B)(τ ) ∈ C1(R, �2(Z)) of the system of coupled dNLS equations (5)
satisfies

‖A(τ )‖2
�2 + ‖B(τ )‖2

�2 ≤ C, for every τ ∈R. (23)

Proof. If � > 2γ + 4ε , the following lower bound for the energy 
function H is positive:

H ≥ (� − 2γ − 4ε)
(
‖A(τ )‖2

�2 + ‖B(τ )‖2
�2

)
, τ ∈ R, (24)

where we have used the Cauchy–Schwarz inequality and the 
bound (20) and we have dropped the positive quartic terms from 
the lower bound. Since H is constant in τ and is bounded for any 
(A, B)(τ ) ∈ C1(R, �2(Z)) due to the continuous embedding

‖A‖�4 ≤ ‖A‖�2 , A ∈ �2(Z), (25)

the time-independent bound (23) follows from the lower bound 
(24) for any � > 2γ + 4ε . �
Theorem 2. For every � < −2γ , there exist δ0 > 0 and C0 > 0 such 
that for every initial data (A(0), B(0)) ∈ �2(Z) satisfying

δ := ‖A(0)‖2
�2 + ‖B(0)‖2

�2 ≤ δ0, (26)

the unique solution (A, B)(τ ) ∈ C1(R, �2(Z)) of the system of coupled 
dNLS equations (5) satisfies

‖A(τ )‖2
�2 + ‖B(τ )‖2

�2 ≤ C0δ, for every τ ∈R. (27)

Proof. If � < −2γ , the following lower bound for the energy func-
tion −H holds:

−H ≥ (|�| − 2γ )
(
‖A(τ )‖2

�2 + ‖B(τ )‖2
�2

)
− 1

4

(
‖A(τ )‖2

�2 + ‖B(τ )‖2
�2

)2
, τ ∈R, (28)

where we have used the Cauchy–Schwarz inequality and the 
bound (25) and we have dropped the positive discrete Laplacian 
terms from the lower bound. Since −H > 0 is constant in τ and 
the initial data in (26) is small, there exists a constant C > 0 in-
dependently of δ, such that |H | ≤ Cδ. The lower bound (28) yields 
the upper bound (27) with the choice of constant C0 > 0 to satisfy

Cδ

|�| − 2γ − 1
4 C0δ

≤ C0δ. (29)

It is always possible to satisfy the inequality (29) since C and C0
are δ-independent and δ ≤ δ0 with sufficiently small δ0. �
Theorem 3. If the lattice is truncated on finitely many (N) sites, de-
noted by ZN , then for every �, γ , ε and every initial data (A(0), B(0)) ∈
�2(ZN ), there is a positive constant CN such that the unique solution 
(A, B)(τ ) ∈ C1(R, �2(ZN )) of the system of coupled dNLS equations (5)
on the truncated lattice ZN satisfies

‖A(τ )‖2
�2 + ‖B(τ )‖2

�2 ≤ CN , for every τ ∈ R, (30)

with CN → ∞ as N → ∞.
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Fig. 2. �∞ (left) and �2 (right) norms of the solution for A (red solid) and B (blue dotted) for � = 8: upper panels for (A0, B0) = (1, 0.1) and lower panels for (A0, B0) = (5, 1). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Proof. If the lattice is truncated on N sites, one can use the bound

‖A‖�2 ≤ N1/4‖A‖�4 , A ∈ �4(ZN), (31)

and obtain a different lower bound for the energy function H :

H ≥ 1

4

(
‖A(τ )‖4

�4 + ‖B(τ )‖4
�4

)
− (|�| + γ + 4ε)N1/2

(
‖A(τ )‖2

�4 + ‖B(τ )‖2
�4

)
, τ ∈ R.

Since H is constant in τ , the time-independent bound (30) follows 
from the lower bound above with CN < ∞. However, CN → ∞ as 
N → ∞. �
5. Numerical experiments

We present here numerical approximations of dynamics of the 
dNLS system (5). For simplicity, all simulations correspond to the 
choice γ = 1 and ε = 1. The lattice is truncated on N sites 
with an odd choice for N . The resulting finite system of dif-
ferential equations is approximated by the MATLAB solver ode45
with relative tolerance set at 10−7 and absolute tolerance set at 
10−9.

Figs. 2–6 show the dependence of the �∞ (left) and �2 (right) 
norms of the components A (red solid) and B (blue dotted) in the 
chain of N = 61 pendula for three characteristic values of the pa-
rameter �.

For � = 8 > 2γ + 4ε , the result of Theorem 1 provides a global 
bound on the �2(Z) norm of the solution. This is confirmed by 
the numerical simulation on Figs. 2 and 3. The upper panels show 
computations for the initial data which are nonzero on the central 
site with (A0, B0) = (1, 0.1). The lower panels show computations 
with (A0, B0) = (5, 1). As a measure of the numerical error, we 
control conservation of energy H in (9). We have observed that 
the energy is conserved up to the order of 10−6 for smaller initial 
data (upper panels) and up to the order of 10−4 for larger initial 
data (lower panels).

On Figs. 2 and 3, the upper panels show that for smaller ini-
tial conditions, the central pendulum excites other pendula in the 
chain, this process results in the decrease of the oscillation am-
plitude of the central pendulum. While the �2 norm oscillates be-
tween the modes A and B , the �∞ norms of both modes A and B
are comparable and do not change much in the time evolution af-
ter an initial time interval. The lower panels show that for larger 
initial conditions, dynamics of the A mode is effectively separated 
from dynamics of the B modes and the central pendulum does not 
excite large oscillations of other pendula.

For � = −4 < −2γ , the result of Theorem 2 provides a global 
bound on the �2(Z) norm of the solution only in the case of small 
initial conditions. On Figs. 4 and 5, the numerical simulations on 
the upper panels for smaller initial conditions do not show dras-
tic differences compared to the case � = 8 > 2γ + 4ε . The lower 
panels for larger initial conditions show that the A and B modes 
mix up and that the central pendulum excites large oscillations of 
other pendula in the chain. As a result, the �2 norm of the solution 
grows whereas the �∞ norm stays at the same level as the initial 
data.

For � = 0 ∈ (−2γ , 2γ + 4ε), the result of Lemma 1 implies the 
linear instability of the zero equilibrium. Since the energy meth-
ods are not useful to control global dynamics of large solutions 
far from the zero equilibrium, the numerical simulations give us 
the way to explore this phenomenon. Numerical simulation on 
Fig. 6 shows that the growth of oscillation amplitudes stabilizes 
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Fig. 3. Surface plots for |A| (left) and |B| (right) for � = 8: upper panels for (A0, B0) = (1, 0.1) and lower panels for (A0, B0) = (5, 1). (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

Fig. 4. �∞ (left) and �2 (right) norms of the solution for A (red solid) and B (blue dotted) for � = −4: upper panels for (A0, B0) = (1, 0.1) and lower panels for (A0, B0) =
(5, 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Surface plots for |A| (left) and |B| (right) for � = −4: upper panels for (A0, B0) = (1, 0.1) and lower panels for (A0, B0) = (5, 1). (For interpretation of the colors in 
this figure, the reader is referred to the web version of this article.)

Fig. 6. Upper panels: �∞ (left) and �2 (right) norms of the solution for A (red solid) and B (blue dotted) for � = 0 and (A0, B0) = (1, 0.1). Lower panels: surface plots for 
|A| (left) and |B| (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Dependence of the maximal �2 norm (red dots) and the �∞ norm (blue stars) of the solution on the time interval [10, 70] versus M , where N = 2M + 1 is the number 
of oscillators, for � = −4 (left) and � = 0 (right), in the case (A0, B0) = (1, 0.1). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 8. The same as Fig. 7 but for � = 8 (left) and � = −4 (right), in the case (A0, B0) = (5,1).
at a certain level of the �∞ norm and that the �2 norm of the so-
lution is significantly larger than the �∞ norm. This indicates that 
many pendula are excited and oscillate with large and compara-
ble amplitudes with respect to the central pendulum. Very similar 
patterns were observed for larger initial amplitude of the central 
pendulum (not shown).

By Theorem 3, the solution in the finite chain of N oscilla-
tors cannot grow without bounds as t → ∞. At the same time, 
the growth of the �2 norm of the solution as t → ∞ is not ruled 
out for the unbounded lattice in the case � < 2γ + 4ε . In or-
der to illustrate that this growth does occur, we run numerical 
experiments, in which we compute the maximal �2 norm of the 
solution on the time interval [10, 70] versus M , where N = 2M + 1
is the number of sites. Fig. 7 (right) shows the nearly monotonic 
growth of the �2 norm (red dots) of the solution in M in the case 
� = 0 ∈ (−2γ , 2γ + 4ε), confirming our conjecture on the growth 
of the solution in the unbounded lattice as t → ∞. The �∞ norm 
(blue stars) of the solution saturates to the same level indepen-
dently of M .

Fig. 7 (left) shows a similar computation for � = −4 < −2γ
starting with the smaller initial condition (A0, B0) = (1, 0.1). In 
this case, the �2 norm of the solution decreases in M and ap-
proaches to a certain limiting level. This indicates that the growth 
of the solution on the unbounded lattice does not occur for � <
−2γ in the case of smaller initial amplitude, in agreement with 
Theorem 2. Similar dependence (not shown) exists for � = 8 >
2γ + 4ε , when the energy method excludes growth of the large-
norm solutions (see Theorem 1).
Similar simulations were carried for initial data with larger am-
plitudes (A0, B0) = (5, 1) and they are shown on Fig. 8 for � = 8
(left) and � = −4 (right). The maximal �2 norm does not change 
versus the number of oscillators N in the case � = 8 > 2γ + 4ε , 
in agreement with Theorem 1. At the same time, the maximal �2

norm grows with M (and N) for � = −4 < −2γ and apparently 
diverges as N → ∞. This experiment implies that the limitation of 
Theorem 2 for small initial data is not a technical shortfall, the so-
lution (A, B) can grow as t → ∞ in the unbounded lattice in the 
case � < −2γ .

We note that another numerical solver was also used to ap-
proximate dynamics of the dNLS system (5). The alternative solver 
combines a Crank–Nicolson scheme with the fixed-point iteration 
method to solve the coupled system of differential equations and 
it was implemented in Python and Fortran. The numerical exper-
iments shown on Figs. 2–8 were reproduced on this other solver 
without any significant differences.

6. Conclusion

We have addressed a novel model of the PT -symmetric dNLS 
equation, which admits Hamiltonian formulation but exhibits no 
phase invariance. The model describes dynamics in the chain of 
weakly coupled pendula pairs near the 1 : 2 resonance between 
the parametrically driven force and the linear frequency of each 
pendulum.

In the context of the problem of nonlinear stability of zero equi-
librium, we have obtained sharp bounds on the �2 norms of the 
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oscillation amplitudes in terms of parameters of the model and the 
size of the initial condition. Stable dynamics of the coupled pen-
dula chains is relatively simple, but it becomes more interesting 
when the stability constraints are not satisfied. In the latter cases, 
we show that the central pendulum excites nearest pendula such 
that the �2 norm of the oscillation amplitudes grows while the �∞
norm remains finite.

For future work, it may be interesting to characterize breathers 
(periodic or quasi-periodic solutions) of the model and to see how 
existence and stability of such solutions is related to the non-
linear stability of the zero equilibrium. Another open question is 
to address stable and unstable dynamics in the original Newton’s 
equations for coupled pendula and to compare it with predictions 
of the reduced dNLS model.
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