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Abstract. We prove spectral instability of peakons in the b-family of Camassa–Holm equations
that includes the integrable cases of b = 2 and b = 3. We start with a linearized operator defined on
functions in H1(R)∩W 1,∞(R) and extend it to a linearized operator defined on weaker functions in
L2(R). For b ̸= 5

2
, the spectrum of the linearized operator in L2(R) is proved to cover a closed vertical

strip of the complex plane. For b = 5
2
, the strip shrinks to the imaginary axis, but an additional pair

of real eigenvalues exists due to projections to the peakon and its spatial translation. The spectral
instability results agree with the linear instability results in the case of the Camassa–Holm equation
for b = 2.
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solutions
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1. Introduction. We consider the following b-family of Camassa–Holm equa-
tions (which we call b-CH):

(1) ut − uxxt + (b+ 1)uux = buxuxx + uuxxx.

The family generalizes the classical cases of the Camassa–Holm (CH) equation for
b = 2 and the Degasperis–Procesi (DP) equation for b = 3.

The CH equation has first appeared in the study of bi-Hamiltonian structure of the
Korteweg–de Vries (KdV) equation [13]. It was later introduced by Camassa and Holm
[2] in hydrodynamical applications as a model for unidirectional wave propagation on
shallow water. The hydrodynamical relevance of the CH equation as a model for
shallow water waves was discussed in [3, 5, 21].

The DP equation can also be regarded as a model for nonlinear shallow water
dynamics with its asymptotic accuracy equal to the CH equation [10]. The b-CH
family of equations was introduced in [9,11] by using transformations of the integrable
KdV equation within the same asymptotic accuracy.

One of the most intriguing properties of the b-CH equations is the occurrence of
wave breaking when the solutions stay bounded, but their gradients develop singular-
ities in a finite time. Related to the wave breaking is the existence of peaked traveling
waves called peakons. The exact peakon solution is given by

(2) u(x, t) = ce−|x−ct| x ∈ R.
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SPECTRAL INSTABILITY OF PEAKONS 4573

This solution is related to the reformulation of the b-CH equation (1) in the weaker
form

ut + uux +
1

4
ϕ′ ∗

[
bu2 + (3− b)u2

x

]
= 0,(3)

where ∗ denotes convolution and ϕ(x) = e−|x| is Green’s function satisfying (1−∂2
x)ϕ =

2δ0 with δ0 being the Dirac delta distribution centered at x = 0.
According to (2), the exact peakon solution in the form u(x, t) = cϕ(x − ct)

satisfies the integral equation (3). We can assume without loss of generality that
c = 1 because the scaling transformation u(x, t) → au(x, at) with arbitrary a ∈ R
leaves (3) invariant. It can then be checked directly that ϕ(x) = e−|x| satisfies the
integral equation

−ϕ+
1

2
ϕ2 +

1

4
ϕ ∗

[
bϕ2 + (3− b)(ϕ′)2

]
= 0(4)

piecewisely on both sides from the peak at x = 0. The integral equation (4) arises after
substituting the traveling wave reduction to the b-CH equation (3) and integrating in
x with zero conditions at infinity.

Stability of peakons has been considered in the literature. Numerical simulations
in [18,19] showed that the peakons of the b-CH equation are likely to be unstable for
b < 1. This conjecture was recently illustrated in [4] with the analysis of the linearized
operator at the peakon solution and additional numerical experiments. In the case of
b < −1, the numerical results of [18,19] suggested that arbitrary initial data moves to
the left and asymptotically separates out into a number of smooth time-independent
solitary waves. Smooth time-independent solitary wave solutions were shown to be
orbitally stable for b < −1 in [20]. Smooth traveling solitary wave solutions in a
regularized version of the b-CH equation were shown to be orbitally stable for b = 2
in [8] and for b = 3 in [22].

For b > 1, numerical simulations in [18, 19] showed that arbitrary initial data
asymptotically resolves into a number of peakons. Orbital stability of peakons in
the energy space H1(R) was shown for the CH equation (b = 2) in [6, 7] by using
conservation of two energy integrals. This method was extended in [23], where the
authors showed orbital stability of peakons for the DP equation (b = 3) in L2(R).
Since solutions of the initial-value problem for the b-CH equation with b > 1 are
ill-posed in Hs(R) for s < 3

2 [17] (and in H
3
2 (R) for 1 < b ≤ 3 [16]) due to the lack

of continuous dependence and norm inflation, smooth solutions to the CH and DP
equations were considered in [7] and [23] close to the peakons in the energy space.

The largest class of initial data for which the initial-value problem is well-posed
for the b-CH equation is given by H1(R)∩W 1,∞(R) [24]. It was recently shown in [26]
for the CH equation (b = 2) that, although the peakons are orbitally stable in H1(R),
they are unstable with respect to perturbations in W 1,∞(R) in the sense that the
W 1,∞ norm of the peaked perturbations may grow in time and may reach infinity in
a finite time leading to the wave breaking of the solution. This analysis was performed
by using the method of characteristics in the nonlinear evolution of the CH equation.

Previous studies of stability avoid the question of the linearized stability of peakons
because it was believed that “the nonlinearity plays a dominant role rather than be-
ing a higher-order correction” and that “the passage from the linear to the nonlinear
theory is not an easy task, and may even be false” [6]. The first study of the linearized
evolution of peaked perturbations in [26] gave valid evidence to this concern since it
was found that the H1 norm of the peaked perturbations grows within the linearized
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4574 STÉPHANE LAFORTUNE AND DMITRY E. PELINOVSKY

approximation exponentially as e
1
2 t, while it does not grow in the full nonlinear evo-

lution. It was recently clarified in [25] in the setting of peaked periodic waves of the
CH equation (b = 2) that both the growth of the H1 norm of perturbations in the
linearized approximation and its boundedness in the full nonlinear evolution of the
CH equation are related to the same two energy integrals.

These preliminary results raised an open question of whether the stability of the
peakons can be understood from the spectral stability theory, where the instability of
traveling waves follows from the presence of the spectrum of a linearized operator in
the right half plane of the complex plane. The main purpose of this work is to give
a definitive answer to this question with rigorous analysis of the spectral instability of
peakons in the b-CH equation for any b.

We now explain the main results and organization of this paper.
Since the local well-posedness of the initial-value problem for the b-CH equation

(3) holds in the space H1(R) ∩ W 1,∞(R) which includes peakons and their peaked
perturbations [24, 26], we first introduce the linearized operator acting on functions
in this space. However, this space is restrictive for the spectral stability theory;
hence we use projections to the peakon and its spatial translation in order to extend
the linearized operator in L2(R) with a suitable defined domain, similarly to the
recent studies of peaked periodic waves in the reduced Ostrovsky equation [14, 15].
Transformation of the linearized operator relies on Lemmas 2.3 and 2.5.

We then analyze the spectrum of the linearized operator in L2(R). The main
result given by Theorem 2.9 states that, for b ̸= 5

2 , the spectrum covers a closed
vertical strip of the complex plane. The half-width of the strip is exactly 1

2 for b = 2

which coincides with the exponential growth e
1
2 t of the H1 norm of the perturbations

obtained in [26]. We also note that the half-width of the strip for b < 5
2 agrees with

the observation made in Remark 3.6 in [4] in their analysis of the differential operator
linearized at the peakon of the b-CH equation.

For b = 5
2 , the strip shrinks to the imaginary axis, but we show in Corollary 2.6

that the projections to the peakon and its spatial translation also grow exponentially
according to a system of two first-order differential equations. With the growth of
perturbations for b ̸= 5

2 in Corollary 2.10, these results suggest that the peakons of
the b-CH equation (3) are linearly unstable in L2(R) for every b.

Section 2 explains the derivation of the linearized operator acting on functions in
H1(R) ∩ W 1,∞(R) and its extension to L2(R) with a suitable defined domain, after
which the main result is formulated. Section 3 gives the proof of the main result
with the analysis of spectral properties of the linearized operator in L2(R). Section
4 explains how the time evolution of the linearized equation is related to the spectral
properties of the linearized operator in L2(R). Section 5 concludes the paper with a
summary and discussion of further directions.

2. Linearized evolution. We recall from [26] that if u ∈ C([0, T ), H1(R) ∩
W 1,∞(R)) is a weak solution to the b-CH equation (3) such that u(t, · + ξ(t)) ∈
C1(−∞, 0) ∩ C1(0,∞) for t ∈ [0, T ), then the single peak at x = ξ(t) moves along
the local characteristic curve with ξ′(t) = u(t, ξ(t)). Therefore, we decompose the
solution near the peakon ϕ(x) = e−|x| traveling with the unit speed into the following
sum:

u(t, x) = ϕ(x− t− a(t)) + v(t, x− t− a(t)),(5)

where v(t, ·) ∈ H1(R) ∩ W 1,∞(R) is the peaked perturbation such that v(t, ·) ∈
C1(−∞, 0)∩C1(0,∞) and a(t) is the deviation of the peak position of the perturbed
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SPECTRAL INSTABILITY OF PEAKONS 4575

peakon from its unperturbed position satisfying a′(t) = v(t, 0). Substituting (5) into
(3) and using the stationary equation (4) yield the following linearized equation:

(6) vt = (1− ϕ)vξ + (v0 − v)ϕ′ − 1

2
ϕ′ ∗ [bϕv + (3− b)ϕ′vξ] ,

where v0(t) := v(t, 0) and ξ := x − t − a(t). By using an elementary identity proven
in [26],

ϕ′ ∗ (ϕ′v′) = ϕ ∗ (ϕ′v)− ϕ′ ∗ (ϕv) + 2(v0 − v)ϕ′ ∀v ∈ H1(R),

the linearized equation (6) can be cast in the equivalent form:

(7) vt = (1− ϕ)vξ + (b− 2)(v0 − v)ϕ′ +Q(v),

where

(8) Q(v) :=
1

2
(b− 3)ϕ ∗ (ϕ′v)− 1

2
(2b− 3)ϕ′ ∗ (ϕv).

Using another elementary identity from [26],

ϕ ∗ (ϕ′v) + ϕ′ ∗ (ϕv) + 2ϕv−1 = 0 ∀v ∈ H1(R), v−1(ξ) :=

∫ ξ

0

v(ξ′)dξ,

Q(v) can be rewritten into the following two equivalent forms:

(9) Q(v) =
3

2
(b− 2)ϕ ∗ (ϕ′v) + (2b− 3)ϕv−1 = −3

2
(b− 2)ϕ′ ∗ (ϕv) + (3− b)ϕv−1.

The following lemma ensures compactness of the linear operator Q in L2(R).
Lemma 2.1. The linear operator Q : L2(R) 7→ L2(R) is compact.

Proof. Each term in either (8) or (9) can be written as an integral operator of
the form ∫ ∞

−∞
K(ξ, ξ′)v(ξ′) dξ′

for some kernel K ∈ L2(R2). As such, each of those terms defines a Hilbert–Schmidt
integral operator, known to be compact (see [27], p. 262). To be more specific, ϕ∗(ϕ′v)
corresponds to the kernel

K1 = −sgn(ξ′) e−|ξ−ξ′|−|ξ′|,

while ϕv−1 corresponds to

K2 =

{
sgn(ξ) e−|ξ| for 0 ≤ |ξ′| ≤ |ξ|,
0 otherwise,

for which we obtain∫ ∞

−∞

∫ ∞

−∞
|K1(ξ, ξ

′)|2dξdξ′ =
∫ ∞

−∞

(
|ξ|+ 1

2

)
e−2|ξ|dξ = 1

and ∫ ∞

−∞

∫ ∞

−∞
|K2(ξ, ξ

′)|2dξdξ′ =
∫ ∞

−∞
|ξ|e−2|ξ|dξ =

1

2
.

Hence, K ∈ L2(R2), and Q is the compact Hilbert–Schmidt operator in L2(R).
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4576 STÉPHANE LAFORTUNE AND DMITRY E. PELINOVSKY

The linearized equation (7) with Q(v) given by either (8) or (9) is well defined
in v(t, ·) ∈ H1(R) ∩ W 1,∞(R). This can be shown by using either the local well-
posedness theory [24] or the method of characteristic curves [26]. The linearized
evolution depends on the value v0(t) = v(t, 0) which is well defined due to Sobolev
embedding of H1(R) into the space of bounded and continuous functions.

Next, we extend the linearized equation to the larger space Dom(L) ⊂ L2(R)
associated with the linearized operator

(10) L := (1− ϕ)∂ξ + (2− b)ϕ′ +Q.

Since Q is a compact operator in L2(R) by Lemma 2.1 and ϕ ∈ W 1,∞(R), the domain
of L in L2(R) is defined by

(11) Dom(L) =
{
v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)

}
.

It follows from the bound ∥(1−ϕ)v′∥L2 ≤ ∥v′∥L2 thatH1(R) is continuously embedded
into Dom(L). However, H1(R) is not equivalent to Dom(L) because ϕ′ ∈ Dom(L) but
ϕ′ /∈ H1(R) since ξδ0(ξ) ∈ L2(R) but ϕ /∈ C1(R). Generally, functions in Dom(L) do
not have to be continuous across the peak at ξ = 0; therefore, v0 may not be defined
if v ∈ Dom(L) but v /∈ H1(R).

In order to extend the linearized equation (7) in Dom(L), we are going to use
another equivalent reformulation of the linearized equation (7) for v(t, ·) ∈ H1(R) ∩
W 1,∞(R). This is described in Lemma 2.3 after the proof of the following elementary
property of L.

Lemma 2.2. For L : Dom(L) ⊂ L2(R) 7→ L2(R), it is true for every b that

(12) Lϕ = (2− b)ϕ′ and Lϕ′ = 0.

Proof. By using the first expression in (9), we obtain for every ξ ̸= 0

Q(ϕ) =
3

2
(b− 2)ϕ ∗ (ϕϕ′) + (2b− 3)ϕ

∫ ξ

0

ϕ(ξ′)dξ′ = (1− b)(ϕ′ − ϕϕ′)

and

Q(ϕ′) =
3

2
(b− 2)ϕ ∗ (ϕ′ϕ′) + (2b− 3)ϕ

∫ ξ

0

ϕ′(ξ′)dξ′ = −ϕ+ (b− 1)ϕ2,

which yields (12) after substituting into (10). Note that ϕ, ϕ′ ∈ Dom(L) and ξδ0(ξ) =
0 in L2(R).

Lemma 2.3. Consider the class of functions in

X := C(R, H1(R) ∩W 1,∞(R)) ∩ C1(R, L2(R) ∩ L∞(R)).

Then, v ∈ X is a solution to the linearized equation (7) if and only if ṽ := v−v0ϕ ∈ X
satisfying ṽ(t, 0) = 0 is a solution of the linearized equation

(13) ṽt = Lṽ − 3

2
(b− 2)⟨ϕϕ′, ṽ⟩ϕ,

where the inner product ⟨·, ·⟩ is defined in L2(R).
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SPECTRAL INSTABILITY OF PEAKONS 4577

Proof. Substituting v(t, ξ) = ṽ(t, ξ) + v0(t)ϕ(ξ) into (7) yields

ṽt + v′0(t)ϕ = Lṽ + v0Lϕ+ (b− 2)v0ϕ
′.

The last two terms cancel out due to the first identity (12) in Lemma 2.2. On the
other hand, taking the limit ξ → 0 into (7) in the class of functions v ∈ X yields

v′0(t) = lim
ξ→0

Q(v)(ξ) =
3

2
(b− 2)⟨ϕϕ′, v⟩,

where either representation in (9) can be used together with the spatial symmetry
of ϕ. Since ⟨ϕϕ′, ϕ⟩ = 0, it follows that ⟨ϕϕ′, v⟩ = ⟨ϕϕ′, ṽ⟩ so that the two equations
above yield (13). Since v0(t) = v(t, 0), it is true that ṽ(t, 0) = 0. This constraint is
preserved in the time evolution of (13) since limξ→0 Lṽ = 3

2 (b− 2)⟨ϕϕ′, ṽ⟩ for ṽ ∈ X.
The proof in the opposite direction from (13) to (7) is identical.

The equivalent evolution equation (13) is still defined for ṽ(t, ·) ∈ H1(R) ∩
W 1,∞(R). However, the right-hand side is now well defined if ṽ(t, ·) ∈ Dom(L) ⊂
L2(R). This enables us to define linear stability of the peakons as follows.

Definition 2.4. The peakon solution u(t, x) = ϕ(x− t) of the b-CH equation (3)
is said to be linearly stable if, for every ṽ0 ∈ Dom(L) ⊂ L2(R), there exists a positive
constant C and a unique solution ṽ ∈ C(R,Dom(L)) to the linearized equation (13)
with ṽ(0, ξ) = ṽ0(ξ) such that

∥ṽ(t, ·)∥L2 ≤ C∥v0∥L2 , t > 0.

Otherwise, it is said to be linearly unstable.

In order to prove that the peakons are linearly unstable in the sense of Definition
2.4 for every b, we split the linearized equation (13) in Dom(L) ⊂ L2(R) into two parts,
where one is defined by the linearized operator L in (10)–(11) and the other one is
defined by a system of two first-order differential equations. This task is achieved
with the secondary decomposition described in the following lemma.

Lemma 2.5. Consider the class of functions in

Y := C(R,Dom(L)) ∩ C1(R, L2(R)).

Then, ṽ ∈ Y is a solution to the linearized equation (13) if w := ṽ − αϕ− βϕ′ ∈ Y is
a solution of the linearized equation

dw

dt
= Lw,(14)

with α and β satisfying the system

(15)
dα

dt
= (2− b)β +

3

2
(2− b)⟨ϕϕ′, w⟩, dβ

dt
= (2− b)α.

Proof. Substituting ṽ(t, ξ) = α(t)ϕ(ξ) + β(t)ϕ′(ξ) + w(t, ξ) into (13) yields

α′(t)ϕ+ β′(t)ϕ′ + wt = (2− b)αϕ′ + Lw + (2− b)βϕ+
3

2
(2− b)⟨ϕϕ′, w⟩ϕ,

where we have used ⟨ϕ, (ϕ′)2⟩ = 2
3 , ⟨ϕϕ

′, ϕ⟩ = 0, and the identities (12) in Lemma 2.2.
Separating ϕ, ϕ′, and the rest yields (14) and (15).
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Corollary 2.6. The peakon is linearly unstable in the sense of Definition 2.4
for every b ̸= 2.

Proof. Setting w = 0 in (14) and (15) gives the second-order homogeneous system

dα

dt
= (2− b)β,

dβ

dt
= (2− b)α,

where the linear instability with the exponential growth e|2−b|t exists for every
b ̸= 2.

Remark 2.7. In order to ensure the uniqueness of the decomposition ṽ(t, ξ) =
α(t)ϕ(ξ) + β(t)ϕ′(ξ) + w(t, ξ), we compute the adjoint operator L∗ : Dom(L) ⊂
L2(R) 7→ L2(R) with respect to ⟨·, ·⟩:

(16) L∗v := (ϕ− 1)vξ + (3− b)ϕ′v +
1

2
(b− 3)ϕ′(ϕ ∗ v) + 1

2
(2b− 3)ϕ(ϕ′ ∗ v).

With straightforward computations, we obtain

L∗1 = 0,

L∗sgn = 3(b− 2)ϕ2,

L∗ϕ2 = 2(b− 3)ϕϕ′ +
8

3
(3− b)ϕ2ϕ′,

L∗(ϕϕ′) = (b− 4)ϕ2 +
8

3
(3− b)ϕ3,

where sgn(ξ) = 1 if ξ > 0 and sgn(ξ) = −1 if ξ < 0.
If b = 2, the constraints ⟨1, w⟩ and ⟨sgn, w⟩ are preserved in the time evolution

of w ∈ Y ∩ C(R, L1(R)). One can uniquely define α(t) and β(t) by the orthogonality
conditions ⟨1, w⟩ = 0 and ⟨sgn, w⟩ = 0 so that α = 1

2 ⟨1, ṽ⟩ and β = − 1
2 ⟨sgn, ṽ⟩, where

we have used ⟨1, ϕ⟩ = −⟨sgn, ϕ′⟩ = 2 and ⟨1, ϕ′⟩ = ⟨sgn, ϕ⟩ = 0.
If b = 3, the constraints ⟨ϕ2, w⟩ and ⟨sgn+3ϕϕ′, w⟩ are preserved in the time evo-

lution of w ∈ Y ∩C(R, L1(R)). One can uniquely define α(t) and β(t) by the orthog-
onality conditions ⟨ϕ2, w⟩ = ⟨sgn + 3ϕϕ′, w⟩ = 0 since ⟨ϕ2, ϕ′⟩ = ⟨sgn + 3ϕϕ′, ϕ⟩ = 0.

In Appendix A, we derive an antisymmetric function vb that satisfies L∗vb = 0
and that is bounded at infinity and locally square integrable for every b > 5

2 . This
also provides a way to uniquely define α(t) and β(t) by the orthogonality conditions
⟨1, w⟩ = ⟨vb, w⟩ = 0 since ⟨1, ϕ′⟩ = ⟨vb, ϕ⟩ = 0.

If b ≤ 5
2 and b ̸= 2, the decomposition ṽ(t, ξ) = α(t)ϕ(ξ)+β(t)ϕ′(ξ)+w(t, ξ) is not

uniquely defined so that the proof of Lemma 2.5 in the opposite direction from (14)
and (15) to (13) is incomplete. For instance, w(t, ξ) = ϕ(ξ) + (2 − b)tϕ′(ξ) is a valid
solution of the linearized equation (14) due to Lemma 2.2, although it is redundant
because system (15) gives α(t) = −1 and β(t) = −(2− b)t that generates ṽ(t, ξ) = 0
as a solution of (13).

With the transformations of Lemmas 2.3 and 2.5, we have reduced the linearized
evolution (7) defined in X to the linearized evolution (14) defined in Y . As a result,
the spectral properties of the operator L in (10)–(11) determine the linear stability
of the peakons in addition to the result of Corollary 2.6. The operator L is defined
according to the following standard definition (see Definition 6.1.9 in [1]).

Definition 2.8. Let A be a linear operator on a Banach space X with Dom(A) ⊂
X. The complex plane C is decomposed into the following two sets:
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SPECTRAL INSTABILITY OF PEAKONS 4579

1. the resolvent set

ρ(A) = {λ ∈ C : Ker(A− λI) = {0}, Ran(A− λI) = X,

(A− λI)−1 : X → X is bounded
}
;

2. the spectrum
σ(A) = C \ ρ(A),

which is further decomposed into the following three disjoint sets:
(a) the point spectrum

σp(A) = {λ ∈ σ(A) : Ker(A− λI) ̸= {0}},

(b) the residual spectrum

σr(A) = {λ ∈ σ(A) : Ker(A− λI) = {0}, Ran(A− λI) ̸= X},

(c) the continuous spectrum

σc(A) = {λ ∈ σ(A) : Ker(A− λI) = {0}, Ran(A− λI) = X,

(A− λI)−1 : X → X is unbounded
}
.

The following theorem represents the main result of this paper.

Theorem 2.9. The spectrum of the linear operator L defined by (10)–(11) is given
by

σ(L) =

{
λ ∈ C : |Re(λ) | ≤

∣∣∣∣52 − b

∣∣∣∣} .

Moreover, the point spectrum is located for 0 < |Re(λ) | < 5
2 − b if b < 5

2 , and the
residual spectrum is located for 0 < |Re(λ) | < b− 5

2 if b > 5
2 , whereas the continuous

spectrum is located for Re(λ) = 0, except λ = 0, and Re(λ) = ±| 52 − b| in both cases.
Additionally, λ = 0 is the eigenvalue of the point spectrum of algebraic multiplicity 2
embedded into the continuous spectrum for every b.

Corollary 2.10. The peakon is linearly unstable in the sense of Definition 2.4
for every b ̸= 5

2 .

Proof. If λ0 ∈ (0, 5
2 − b) is a real eigenvalue for the point spectrum of L for b < 5

2
and w0 ∈ Dom(L) ⊂ L2(R) is the corresponding eigenfunction of L, then the linearized
equation (14) has the exact solution w(t, ξ) = eλ0tw0(ξ) with the exponential growth
of ∥w(t, ·)∥L2 .

If λ0 ∈ (0, b − 5
2 ) is a real eigenvalue for the residual spectrum of L for b > 5

2 ,
then λ0 is the eigenvalue for the point spectrum of L∗ since σr(L) ⊆ σp(L

∗) by
Lemma 6.2.6 in [1]. Let w0 ∈ Dom(L∗) ⊂ L2(R) be an eigenfunction of L∗ for the
eigenvalue λ0. Since Dom(L∗) = Dom(L), we consider the decomposition w(t, ξ) =
a(t)w0(ξ) + w̃(t, ξ), where a(t) is uniquely determined by the orthogonality condition
⟨w0, w̃(t, ·)⟩ = 0. Both a(t) and w̃(t, ξ) are found from

da

dt
w0 +

dw̃

dt
= aLw0 + Lw̃.

Projecting to w0 yields da
dt = λ0a with the exponential growth of a(t) if λ0 >

0. This also gives the exponential growth of ∥w(t, ·)∥L2 due to the orthogonality
⟨w0, w̃(t, ·)⟩ = 0.

In both cases, the linear evolution of w ∈ Y grows exponentially in the L2 norm
if b ̸= 5

2 . By Definition 2.4, the peakon is linearly unstable in Y .
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4580 STÉPHANE LAFORTUNE AND DMITRY E. PELINOVSKY

Remark 2.11. Since linear instabilities of Corollaries 2.6 and 2.10 vanish at dif-
ferent values of b, the peakon is linearly unstable in Y for every b.

Remark 2.12. For each exponentially growing solution w ∈ Y of the linearized
equation (14), one can find the unique solution of the second-order system (15) which
grows either exponentially with the same rate if |b− 2| > | 52 − b| (or b > 9

4 ) (when the
unstable eigenvalue |b− 2| is outside the strip in Theorem 2.9) or exponentially times
polynomially if |b − 2| ≤ | 52 − b| (or b ≤ 9

4 ) (when the unstable eigenvalue |b − 2| is
inside the strip in Theorem 2.9).

3. Spectrum of L. We decompose L given by (10)–(11) as L = L0 +Q, where
L0 : Dom(L) ⊂ L2(R) 7→ L2(R) is given by

(17) L0 := (1− ϕ)∂ξ + (2− b)ϕ′

and Q : L2(R) 7→ L2(R) is the compact operator by Lemma 2.1. By Theorem 1 in [15],
if the intersections σp(L0) ∩ ρ(L) and σp(L) ∩ ρ(L0) are empty, then σ(L) = σ(L0).
The proof of Theorem 2.9 is achieved by computing the spectrum of L0, the point
spectrum L, and the residual spectrum of L.

3.1. Spectrum of L0. The spectrum of L0 is described by the following theo-
rem.

Theorem 3.1. The spectrum of the linear operator L0 : Dom(L) ⊂ L2(R) 7→
L2(R) defined by ( 17) is given by

σ(L0) =

{
λ ∈ C : |Re(λ) | ≤

∣∣∣∣52 − b

∣∣∣∣} .

Moreover, the point spectrum is located for 0 < |Re(λ) | < 5
2 − b if b < 5

2 , and the
residual spectrum is located for 0 < |Re(λ) | < b− 5

2 if b > 5
2 , whereas the continuous

spectrum is located for Re(λ) = 0 and Re(λ) = ±| 52 − b| in both cases.

Proof. Given simplicity of the definition of L0, the proof is obtained by computing
the point, residual, and continuous spectrum of L0 explicitly.

Point spectrum of L0. We solve the differential equation

(18) (1− ϕ)
dv

dξ
+ (2− b)ϕ′v = λv, ξ ∈ R.

The differential equation (18) is solved separately for ξ > 0 and ξ < 0 with the
following general solution:

(19) v(ξ) =

{
v+e

λξ(1− e−ξ)2+λ−b, ξ > 0,
v−e

λξ(1− eξ)2−λ−b, ξ < 0,

where v+ and v− are arbitrary constants.
The differential equation (18) has the following symmetry: if λ = λ0 is an ei-

genvalue with the eigenfunction v = v0(ξ), then λ = −λ0 is an eigenvalue with the
eigenfunction v = v0(−ξ). Therefore, it is sufficient to consider the case of Re(λ) ≥ 0.

Since v(ξ) ∼ v+e
λξ as ξ → +∞, then v ∈ L2(R) for Re(λ) ≥ 0 is satisfied by the

only choice of v+ = 0. Since v(ξ) ∼ v−e
λξ as ξ → −∞, then v ∈ L2(R) is satisfied

for arbitrary v− if and only if Re(λ) > 0. Since v(ξ) ∼ v−|ξ|2−b−λ as ξ → 0−, then
v ∈ L2(R) is satisfied for arbitrary v− if and only if Re(λ) + b − 2 < 1

2 , that is, for
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Re(λ) < 5
2 − b. In all other cases, we have to set v− = 0 for v ∈ L2(R) so that the zero

function is the only solution of (18) in L2(R). Summarizing and using the symmetry
above, σp(L0) exists if b <

5
2 and is located for 0 < |Re(λ) | < 5

2 − b.

Residual spectrum of L0. By Lemma 6.2.6 in [1], if σp(L0) is an empty set, then
σr(L0) = σp(L

∗
0), where

L∗
0 = −∂ξ(1− ϕ) + (2− b)ϕ′ = −(1− ϕ)∂ξ + (3− b)ϕ′

is the adjoint operator to L0 in L2(R). The differential equation

(20) − (1− ϕ)
dv

dξ
+ (3− b)ϕ′v = λv, ξ ∈ R,

becomes (18) after the transformation: λ 7→ −λ and b − 2 7→ 3 − b. Therefore, we
obtain the following general solution by applying this transformation to (19):

(21) v(ξ) =

{
v+e

−λξ(1− e−ξ)b−λ−3, ξ > 0,
v−e

−λξ(1− eξ)b+λ−3, ξ < 0,

where v+ and v− are arbitrary constants. Proceeding similarly with the limits ξ →
±∞ and ξ → 0± shows that nonzero solutions of (20) exist in L2(R) if and only if
v− = 0, b > 5

2 , and 0 < |Re(λ) | < 5
2 − b. This yields σr(L0) since σp(L0) is an empty

set for b > 5
2 .

Resolvent set of L0. Let us consider the resolvent equation

(22) L0v − λv = f,

where f ∈ L2(R) is arbitrary and Re(λ) ≥ 0 is assumed without loss of generality.
We multiply both sides of (22) by v̄ and integrate over R. Using the definition of L0

given in (17), one finds〈
((1− ϕ)v)

′
, v

〉
+ (3− b) ⟨ϕ′v, v⟩ − λ∥v∥2 = ⟨f, v⟩ .(23)

By integration by parts, since limξ→±∞ v(ξ) = 0 for v ∈ Dom(L), we have that〈
((1− ϕ)v)

′
, v

〉
= −

〈
v, ((1− ϕ)v)

′〉− ⟨ϕ′v, v⟩ ;

thus

Re(⟨((1− ϕ)v)′, v⟩) = −1

2
⟨ϕ′v, v̄⟩ .(24)

Taking the real part of (23), multiplying by -1, and using (24), we get

(25)

(
b− 5

2

)
⟨ϕ′v, v⟩+ Re(λ) ∥v∥2 = −Re(⟨f, v⟩) ,

where

(26) − ∥v∥2 ≤ ⟨ϕ′v, v⟩ ≤ ∥v∥2.

Using the upper bound of (26) in (25) in the case b ≤ 5
2 , we find that(

Re(λ) + b− 5

2

)
∥v∥2 ≤ |Re(⟨f, v⟩)| ≤ ∥f∥∥v∥;
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4582 STÉPHANE LAFORTUNE AND DMITRY E. PELINOVSKY

where the Cauchy–Schwarz inequality has been used. Hence, for every Re(λ) > 5
2 − b,

there exists Cλ such that ∥v∥ ≤ Cλ∥f∥ so that this λ belongs to ρ(L0).
In a very similar way, using the lower bound of (26) in (25) in the case b ≥ 5

2 , we
find that (

Re(λ)− b+
5

2

)
∥v∥2 ≤ |Re(⟨f, v⟩)| ≤ ∥f∥∥v∥,

hence Re(λ) > b− 5
2 belongs to ρ(L0).

Continuous spectrum of L0. By Theorem 4 in [12, p. 1438], if L0 is a differential
operator on R = (−∞, 0)∪(0,∞) and L±

0 are restrictions of L0 on (−∞, 0) and (0,∞),
then σc(L0) = σc(L

+
0 ) ∪ σc(L

−
0 ). Therefore, we can represent the resolvent equation

(22) separately for ξ > 0 and ξ < 0.
For ξ > 0, we use the transformation (0,∞) ∋ ξ 7→ z ∈ R by z = log(eξ − 1).

Then, v(z) := v(ξ) satisfies the resolvent equation

L+
0 v− λv = f,

where L+
0 := ∂z + (b− 2)(1 + ez)−1 and f(z) := f(ξ). Since∫ ∞

0

v(ξ)2dξ =

∫ 0

−∞
ez

v(z)2dz

1 + ez
+

∫ ∞

0

v(z)2dz

1 + e−z
,

σc(L
+
0 ) is the union of σc(L

+
0 ) in L2(R+) and L2(R−; e

z), where ez is the exponential
weighted L2 space. Since L+

0 = ∂z + e−z(b − 2)(1 + e−z)−1 and e−z(1 + e−z)−1 is
bounded and decaying exponentially to 0 as z → +∞, σc(L

+
0 ) in L2(R+) is located at

Re(λ) = 0. Since L+
0 = ∂z +(b− 2)− (b− 2)ez(1+ ez)−1 and ez(1+ ez)−1 is bounded

and decaying exponentially to 0 as z → −∞, σc(L
+
0 ) in L2(R−; e

z) is located at
Re(λ) = b− 5

2 .
Similarly, for ξ < 0, we use the transformation (−∞, 0) ∋ ξ 7→ z ∈ R by z =

− log(e−ξ − 1) and obtain the resolvent equation for v(z) := v(ξ):

L−
0 v− λv = f,

where L−
0 := ∂z + (2− b)(1 + e−z)−1 and f(z) := f(ξ). Since∫ 0

−∞
v(ξ)2dξ =

∫ 0

−∞

v(z)2dz

1 + ez
+

∫ ∞

0

e−z v(z)
2dz

1 + e−z
,

σc(L
−
0 ) is the union of σc(L

−
0 ) in L2(R−) and L2(R+; e

−z). Similar to the previous
arguments, the continuous spectrum of L−

0 = ∂z + ez(2 − b)(1 + ez)−1 in L2(R−)
is located at Re(λ) = 0, and the continuous spectrum of L−

0 = ∂z + (2 − b) − (2 −
b)e−z(1 + e−z)−1 in L2(R+; e

−z) is located at Re(λ) = 5
2 − b.

By Theorem 4 in [12], σc(L0) is located for Re(λ) = 0 and Re(λ) = ±| 52 − b|.

3.2. Point spectrum of L. For the point spectrum of L, we consider the spec-
tral problem

(27) Lv − λv = 0, v ∈ Dom(L) ⊂ L2(R).

By Lemma 2.2, 0 is always a double eigenvalue associated with the two-dimensional
invariant subspace {ϕ, ϕ′}. If b ̸= 2, the double zero eigenvalue is defective with only
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one linearly independent eigenfunction. For b = 2, the double zero eigenvalue is semi-
simple. In what follows, we are looking for other solutions of the spectral problem
(27).

Remark 3.2. The double zero eigenvalue of L is related to the secondary decom-
position ṽ = αϕ+ βϕ′ + w ∈ Y in Lemma 2.5. By Remark 2.7, the decomposition is
not unique in general. It is therefore unclear how to set up a constrained subspace of
L2(R) so that the double zero eigenvalue of L is eliminated by the constraints.

The following lemma characterizes the point spectrum of L.

Lemma 3.3. In addition to the double zero eigenvalue that exists for every b,
the linear operator L : Dom(L) ⊂ L2(R) 7→ L2(R) defined by (10) admits the point
spectrum for 0 < |Re(λ) | < 5

2 − b if b < 5
2 .

Remark 3.4. Some ideas of the proof of Lemma 3.3 are similar to what was done
recently in [4]. However, the space of functions was different, and the direct lineariza-
tion of the b-CH equation was used in [4] without appealing to the decomposition (5).
In addition, we find all the solutions for the spectral problem (27) explicitly.

Proof. The spectral problem (27) has the same symmetry as the differential equa-
tion (18): if λ = λ0 is an eigenvalue with the eigenfunction v = v0(ξ), then λ = −λ0 is
an eigenvalue with the eigenfunction v = v0(−ξ). Therefore, it is sufficient to consider
the case Re(λ) ≥ 0.

Applying the operator 1 − ∂2
ξ to (27) separately for ξ < 0 and ξ > 0 yields the

following differential equation:

(28) λ(v − v′′) = (1− ϕ)(v′ − v′′′)− bϕ′(v − v′′).

Indeed, for ξ < 0, we compute from the representation (9)

(1− ∂2
ξ )ϕ ∗ (ϕ′v)

= (1− ∂2
ξ )

[∫ ξ

−∞
e−ξ+2ηv(η)dη +

∫ 0

ξ

eξv(η)dη +

∫ ∞

0

eξ−2ηv(η)dη

]
= 2eξv

and

(1− ∂2
ξ )ϕv−1 = (1− ∂2

ξ )e
ξ

∫ ξ

0

v(η)dη = −2eξv − eξv′,

which yields (28) for ξ < 0 after adding all terms. Computations for ξ > 0 are similar.
Let m := v − v′′. The differential equation (28) becomes the first-order equation

(29) (1− ϕ)
dm

dξ
− bϕ′m = λm,

which coincides with the differential equation (18) after replacing b by b−2. Therefore,
the exact solution is given by the corresponding transformation of the solution (19),
namely,

(30) m(ξ) =

{
m+e

λξ(1− e−ξ)λ−b, ξ > 0,
m−e

λξ(1− eξ)−λ−b, ξ < 0,

where m+ and m− are arbitrary constants. The eigenfunction v is recovered from
solutions of the second-order equation

(31) v(ξ)− v′′(ξ) =

{
m+e

λξ(1− e−ξ)λ−b, ξ > 0,
m−e

λξ(1− eξ)−λ−b, ξ < 0.
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If v ∈ L2(R), then m ∈ H−2(R), the dual space of H2(R). Since m(ξ) ∼ m+e
λξ

as ξ → +∞, then v ∈ L2(R) for Re(λ) ≥ 0 exists with the only choice m+ = 0
and v(ξ) = c+e

−ξ, where c+ is arbitrary. Similarly, m(ξ) ∼ m−e
λξ as ξ → −∞. If

Re(λ) = 0, then v ∈ L2(R) exists with the only choice m− = 0 and v(ξ) = c−e
ξ, where

c− is arbitrary. In this case, v = c1ϕ+ c2ϕ
′ with c1 ± c2 = c∓, which corresponds to

the double eigenvalue λ = 0 in σp(L).
It remains to consider the case m+ = 0, m− ̸= 0, and Re(λ) > 0. With the

normalization m− = 1, the solution of (31) for ξ < 0 can be written in the form

(32) v(ξ) = eλξf(ξ)(1− eξ)2−λ−b, ξ < 0,

where f(ξ) satisfies the second-order differential equation

(1− eξ)2(f ′′ + 2(2− b)f ′ + (b− 1)(b− 3)f)

+(λ+ b− 2)(1− eξ)(2f ′ + (3− 2b)f) + (λ+ b− 2)(λ+ b− 1)f = −1.(33)

The homogeneous part of the second-order (33) with the regular singular point ξ = 0
is associated with the indicial equation

σ2 + (2λ+ 2b− 5)σ + (λ+ b− 2)(λ+ b− 1) = 0

for power solutions f(ξ) ∼ ξσ. If λ + b ̸= {1, 2}, then 0 is not among the roots
of the indicial equation, whereas if λ + b = {1, 2}, then 0 is a simple root of the
indicial equation. By the Frobenius theory (see, e.g., Chapter 4 in [28]), there exists
a particular solution to the differential equation (33) with the following behavior near
the regular singular point ξ = 0:

(34) fp(ξ) ∼
{

1 +O(|ξ|), λ+ b ̸= {1, 2},
log |ξ|+O(|ξ| log |ξ|), λ+ b = {1, 2} as ξ → 0−,

which yields the corresponding behavior of vp(ξ) from (32),

(35) vp(ξ) ∼

 |ξ|2−b−λ, λ+ b ̸= {1, 2},
log |ξ|, λ+ b = 2,
|ξ| log |ξ|, λ+ b = 1

as ξ → 0−.

Hence, (31) has a solution v ∈ L2(R) if and only if Re(λ) + b− 2 < 1
2 for 0 < Re(λ) <

5
2 − b.

Summarizing and using the symmetry above, σp(L) exists if b <
5
2 and is located

for 0 < |Re(λ) | < 5
2 − b.

Remark 3.5. In the case of CH equation (b = 2), there exists the exact solution
of the differential equation (31) with λ ̸= {−1, 0, 1} in the form

v(ξ) =
1

λ(1− λ2)

{
m+(λ+ e−ξ)(eξ − 1)λ, ξ > 0,

m−(λ− eξ)(e−ξ − 1)−λ, ξ < 0.
(36)

If m− ̸= 0, then v(ξ) ∼ eλξ as ξ → −∞ and v(ξ) ∼ |ξ|−λ as ξ → 0− so that v ∈ L2(R)
if 0 < Re(λ) < 1

2 .

3.3. Residual spectrum of L. By Lemma 6.2.6 in [1], σr(L) ⊆ σp(L
∗). For

the point spectrum of L∗, we consider the spectral problem

L∗v − λv = 0, v ∈ Dom(L) ⊂ L2(R),(37)

where L∗ is defined in (16). The following lemma describes the point spectrum of L∗.
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Lemma 3.6. The linear operator L∗ : Dom(L) ⊂ L2(R) 7→ L2(R) defined by
(16) has a nonempty point spectrum only if b > 5

2 , in which case it is located for
0 < |Re(λ) | < b− 5

2 and λ = 0.

Proof. It is again sufficient to consider the case of Re(λ) ≥ 0. Like in Appendix
A, by making the substitution v = (1 − ∂2

ξ )k and integrating by parts under the
assumption that k and k′ are bounded and continuous functions, we obtain

(1− ϕ)k′′′ + (b− 3)ϕ′k′′ + (2(b− 1)ϕ− 1)k′ = λ(k − kξξ).(38)

The operator (1− ∂2
ξ ) can be factored out for both cases ξ > 0 and ξ < 0 as follows:

(1− ∂2
ξ ) [(ϕ− 1)k′ + (1− b)ϕ′k − λk] = 0.(39)

The first-order equation

(40) (ϕ− 1)k′ + (1− b)ϕ′k = λk

follows from (29) after the transformation: λ 7→ −λ and b 7→ 1 − b. Therefore, we
obtain the following general solution by applying this transformation to (30):

(41) k(ξ) =

{
k+e

−λξ(1− e−ξ)b−λ−1, ξ > 0,
k−e

−λξ(1− eξ)b+λ−1, ξ < 0,

where k+ and k− are arbitrary constants. Proceeding similarly with the limits ξ →
±∞ and ξ → 0± for Re(λ) > 0 shows that the corresponding nonzero function
v = (1 − ∂2

ξ )k is in L2(R) only if k− = 0 and b − Re(λ) − 1 > 3/2, which gives

0 < Re(λ) < b− 5
2 if b > 5

2 .
In general, it follows from (39) that

(ϕ− 1)k′ + (1− b)ϕ′k − λk =

{
K+e

−ξ +M+e
ξ, ξ > 0,

K−e
ξ +M−e

−ξ, ξ < 0,
(42)

where K± and M± are arbitrary constants. We will show for λ ̸= 0 that these
constants must be set to zero so that the general equation (42) is reduced to (40).

The coefficients M± give unbounded solutions which can be normalized to be
k(ξ) ∼ e|ξ| if λ ̸= 1 and k(ξ) ∼ ξe|ξ| if λ = 1. Since v = (1 − ∂2

ξ )k, we obtain from
(38) for λ ̸= 1 that

lim
|ξ|→∞

(v′ + λv) = lim
|ξ|→∞

e−|ξ| (−k′′′ − (b− 3)sgn(ξ)k′′ + 2(b− 1)k′) = b.(43)

This implies for b ̸= 0 and λ ̸= 0 that v(ξ) → b/λ as |ξ| → ∞; hence v /∈ L2(R). For
b ̸= 0 and λ = 1 (the exceptional case), the limit (43) is unbounded; hence v /∈ L2(R).
For b = 0, (38) is satisfied with k = e|ξ| for which v ≡ 0. Hence, for λ ̸= 0, we have
to set M+ = M− = 0 to ensure that v ∈ L2(R).

It follows from (42) with M+ = M− = 0 that k and k′ are continuous across ξ = 0
if and only if {

K± = (±(b− 1)− λ)k(0),
∓K± = (±(b− 2)− λ)k′(0) + (1− b)k(0),

where we have used ϕ′(0±) = ∓1 and ϕ(0±) = 1. If λ ̸= 0, this system yields
K+ = K− = 0, and hence solution (41) is the only suitable solution of the differential
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equation (38) with λ ̸= 0 such that k and k′ are bounded and continuous and v =
(1− ∂2

ξ )k is in L2(R).
It remains to consider the case of λ = 0. Solutions of the differential equation

(38) are analyzed in Appendix A. By combining the symmetric solution ksym with
the constant solution, we construct the decaying solution for λ = 0:

k = (1− ϕ)b−1 − 1.(44)

This solution gives v = (1 − ∂2
ξ )k in Dom(L) ⊂ L2(R) provided that b > 5

2 . In
addition to the constant solution and the exponentially decaying solution (44), there
exists the third, exponentially growing solution of the third-order equation (38) with
λ = 0. However, as follows from (42) and (43) for λ = 0, the third solution diverges
like k(ξ) ∼ e|ξ| and gives either the divergent solution v(ξ) ∼ bξ as |ξ| → ∞ for b ̸= 0
or the zero solution v ≡ 0 if b = 0. We conclude that the decaying solution (44) is the
only element of Ker(L∗), and it exists only if b > 5

2 .

3.4. Proof of Theorem 2.9. We check assumptions of Theorem 1 in [15] that
the intersections σp(L0) ∩ ρ(L) and σp(L) ∩ ρ(L0) are empty.

For b < 5
2 , σp(L0) in Theorem 3.1 consists of the bands 0 < |Re(λ) | < 5

2 − b,
whereas σp(L) in Lemma 3.3 consists of the same bands and an additional double
zero eigenvalue. Since the resolvent set ρ(L0) in Theorem 3.1 consists of the bands
|Re(λ) | > 5

2 − b, σp(L) ∩ ρ(L0) is an empty set; Since σp(L0) ⊂ σp(L), σp(L0) ∩ ρ(L)
is also an empty set.

For b ≥ 5
2 , σp(L0) in Theorem 3.1 is an empty set, hence σp(L0) ∩ ρ(L) is an

empty set, whereas σp(L) = {0} does not belong to the resolvent set of L0 in the
bands |Re(λ) | > b− 5

2 ; hence σp(L) ∩ ρ(L0) is also an empty set.
Since Q is a compact operator in L2(R) by Lemma 2.1, Theorem 1 in [15] suggests

that σ(L) = σ(L0). The proof of Theorem 2.9 repeats the statement of Theorem 3.1
with additional information about the double zero eigenvalue.

4. Time evolution of the linearized system. Due to the difference in the
spectral properties of the linearized operator L in L2(R) for b < 5

2 and b > 5
2 in

Theorem 2.9, the growth of the L2 norm of the peaked perturbations is different due
to the point spectrum for b < 5

2 and due to the residual spectrum for b > 5
2 , as follows

from the proof of Corollary 2.10. We illustrate this difference here by studying exact
solutions to the initial-value problem

(45)

{
vt = (1− ϕ)vξ + (2− b)ϕ′v, t > 0,
v|t=0 = v0,

where v0 ∈ Dom(L). The initial-value problem coincides with the linearized equation
for the truncated operator L0. By Theorem 3.1, the unstable spectrum of the operator
L0 is the point spectrum for b < 5

2 and the residual spectrum for b > 5
2 .

The initial-value problem (45) can be solved exactly by using the method of
characteristics. The following proposition gives the bounds obtained from the exact
solution.

Proposition 4.1. For every v0 ∈ Dom(L), the initial-value problem (45) admits
the unique solution v ∈ C(R,Dom(L)) satisfying the following properties:

• If b = 5
2 , then ∥v(t, ·)∥L2 = ∥v0∥L2 .

• If b > 5
2 , then ∥v(t, ·)∥L2(−∞,0) ≤ ∥v0∥L2(−∞,0), and there is a positive con-

stant C0 that depends on v0 such that ∥v(t, ·)∥L2(0,∞) ≥ C0(e
t − 1)b−

5
2 .
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• If b < 5
2 , then ∥v(t, ·)∥L2(0,∞) ≤ ∥v0∥L2(0,∞), and there exists v0 ∈ Dom(L)

such that ∥v(t, ·)∥L2(−∞,0) = eλ0t∥v0∥L2(−∞,0) with λ0 ∈ (0, 5
2 − b).

Proof. By using the method of characteristics, we introduce the characteristic
curves ξ = X(t, s) satisfying Xt = ϕ(X) − 1 with X|t=0 = s. The exact solution for
X(t, s) is readily available (see, e.g., [26]):

(46) X(t, s) =

{
log [1 + (es − 1)e−t] , s > 0,
− log [1 + (e−s − 1)et] , s < 0.

Along the characteristic curves, the function V (t, s) := v(t, ξ = X(t, s)) satisfies

(47)

{
Vt = (2− b)ϕ′(X(t, s))V, t > 0,
V |t=0 = v0(s),

which is uniquely solved separately for s > 0 and s < 0 by

(48) V (t, s) = v0(s)

[
∂X

∂s

]2−b

=

{
v0(s) [1 + (et − 1)e−s]

b−2
, s > 0,

v0(s) [1 + (e−t − 1)es]
b−2

, s < 0.

By the chain rule, we obtain

(49) ∥v(t, ·)∥2L2(0,∞) =

∫ ∞

0

|v0(s)|2
[
1 + (et − 1)e−s

]2b−5
ds

and

(50) ∥v(t, ·)∥2L2(−∞,0) =

∫ 0

−∞
|v0(s)|2

[
1 + (e−t − 1)es

]2b−5
ds.

If b = 5
2 , the linear evolution is L2-preserving in time for both s > 0 and s < 0.

If b > 5
2 , then it follows from (49) and (50) that

∥v(t, ·)∥2L2(0,∞) ≥ (et − 1)2b−5

∫ ∞

0

|v0(s)|2e−(2b−5)sds,

and

∥v(t, ·)∥2L2(−∞,0) ≤
∫ 0

−∞
|v0(s)|2ds.

This proves that the L2 norm of the perturbation grows exponentially in time on the
right side of the peak at ξ = 0, while that on the left side of the peak stays bounded
in time.

If b < 5
2 , then it follows from (49) and (50) that

∥v(t, ·)∥2L2(0,∞) ≤
∫ ∞

0

|v0(s)|2ds

so that the L2 norm of the perturbation stays bounded in time on the right side of
the peak at ξ = 0. If v0 is the eigenfunction of the point spectrum of L0 for the
eigenvalue λ0 ∈ (0, 5

2 − b), which follows from (19), that is,

(51) v0(s) =
eλ0s

(1− es)λ0+b−2
, s < 0,

then after elementary transformations, we obtain for s < 0

V (t, s) = v0(s)
[
1 + (e−t − 1)es

]b−2
=

eλ0t+λ0X(t,s)

(1− eX(t,s))λ0+b−2
= v0(X(t, s))eλ0t
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so that ∥v(t, ·)∥L2(−∞,0) = ∥v0∥L2(−∞,0)e
λ0t grows exponentially in time.

Remark 4.2. The results of Proposition 4.1 are clearly related to the spectral
properties of L0 in Theorem 3.1. In more details, we emphasize the following:

• If b = 5
2 , the preservation of the L2 norm of the solution v ∈ C(R,

Dom(L)) is related to σ(L0) = {iR}.
• If b > 5

2 , the growth rate e(b−
5
2 )t of the L2 norm of the solution v ∈ C(R,Dom(L))

agrees with the width of the unstable strip at 0 < |Re(λ) | ≤ b− 5
2 .

• If b < 5
2 , the instability is obtained from the eigenfunction (51) corresponding

to the eigenvalue of the point spectrum in the strip at 0 < |Re(λ) | < 5
2 − b.

Remark 4.3. For b < 5
2 , it may first seem from (50) that the L2 norm on the left

side of the peak stays bounded with the formal limit

(52) lim
t→+∞

∥v(t, ·)∥2L2(−∞,0) =

∫ 0

−∞
|v0(s)|2(1− es)2b−5ds.

However, the limit may not exist if v0(0) ̸= 0. For the eigenfunction in (51), the
integral of |v0(s)|2(1 − es)2b−5 in (52) diverges due to the weak singularity of v0(s)
as s → 0−, which is allowed in Dom(L) ⊂ L2(R). On the other hand, if the initial
condition v0 provides convergence of the integral of |v0(s)|2(1− es)2b−5 in (52), then
the L2 norm of the solution v ∈ C(R,Dom(L)) is bounded for all times.

Remark 4.4. Exact solutions for the initial-value problem associated with the
full linearized operator L can be obtained by the method of characteristics if b =
2 [26]. The growth of perturbations in H1 norm was obtained in [26] by explicit
computations. Since perturbations were considered in H1(R) ∩ W 1,∞(R) with the
additional condition v0(0) = 0, the L2 norm of such perturbations does not grow in
time, and the eigenfunctions (51) are excluded from the choice of the initial condition.

5. Conclusion. We have resolved an open question of whether the stability of
the peakons in the b-CH equation can be understood from the spectral stability theory.
We have proven that the spectrum of a linearized operator at the traveling peakons
includes points in the right half plane of the complex plane for every b. This implies
the exponential growth of perturbations to the peakons in the linearized evolution.

Let us conclude by mentioning open problems which would follow from this re-
search. Since multipeakon solutions are available in the b-CH equation, it is in-
teresting to study how the instability of single peakons affects interactions between
multipeakons. Other peakon-bearing equations are also widely studied, including the
cubic versions and the coupled versions of the b-CH equations. It is worth studying
if similar spectral instability holds for the peakons in other models.

Appendix A. Antisymmetric solution vb to L∗v = 0 in the case b > 5
2
.

We consider the equation

L∗v = 0,

where L∗ is defined in (16). We make the substitution v = k− kξξ and assume that k
and kξ are bounded and continuous functions. By using integration by parts for the
last two terms in (16) applied to kξξ, we obtain the following differential equation:

(1− ϕ)kξξξ + (b− 3)ϕ′kξξ + (2(b− 1)ϕ− 1)kξ = 0.D
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For ξ > 0 and ξ < 0 separately, there exist three linearly independent solutions of the
third-order differential equations. Two bounded solutions are available in the closed
form

k1 = 1, k2 = (1− ϕ)b−1,

whereas the third unbounded solution k3 is not available in a closed form.
By using k2(ξ), we construct two particular solutions on the entire line:

ksym = (1− ϕ)b−1, kanti = sgn(1− ϕ)b−1,

where sgn(ξ) = 1 if ξ > 0 and sgn(ξ) = −1 if ξ < 0. The function kanti and its
first derivative are continuous if b ≥ 2. Applying (1 − ∂2

ξ ) to kanti, we compute the
antisymmetric solution vb to L∗v = 0:

vb = sgn(1− ϕ)b−3
(
b(b− 2)ϕ2 + (3− b)ϕ− 1

)
.

The solution vb is bounded at infinity and locally square integrable if b > 5
2 .

There exists also the symmetric solution to L∗v = 0 obtained by applying (1−∂2
ξ )

to ksym. The solution is not used because L∗v = 0 is also satisfied by the symmetric,
bounded, and continuous function v = 1.
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