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Abstract

We extend the concept of internal mode to envelope solitons and show that this mode is responsible for long-lived, weakly
damped periodic oscillations of the soliton amplitude observed in numerical simulations. We present analytical and numerical
results for solitons of the generalized nonlinear Schrödinger equation and analyze the example of the cubic–quintic nonlinearity
in more detail. We obtain also analytical criteria for the existence and bifurcations of the soliton internal mode and calculate
the rate of the radiation-induced damping of the soliton oscillations induced by excitation of the internal mode. Copyright ©
1998 Elsevier Science B.V.

PACS:42.65.Tg; 63.20.Pw; 52.35.Mw; 03.40.Kf
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1. Introduction

Integrable models of nonlinear physics are known to possess stable soliton solutions–spatially localized structures
that interact elastically retaining their identity [1]. However, the integrable systems appear as a limit of more general
physical models; they describe the physical systems only with a certain approximation, and very often one needs to
account for the effects produced by nonintegrability to nonlinear equations and their solutions for solitary waves. It
is generally believed that inelastic interaction between solitary waves due to emission of radiation is major property
which differs from nonlinear waves in integrable and nonintegrable models with respect to physical applications (see,
e.g., the review [2] and references therein). However, as has been already observed forkinks, which are topological
solitary waves of the Klein–Gordon type models, soliton interactions may differ drastically when the colliding kinks
possess the so-calledinternal modes[3]. In respect to applications in solid state physics, the kink’s internal mode
can be treated as ‘phonons’ coupled to the localized state, e.g., phonons localized at a dislocation in a generalized
version of the Frenkel–Kontorova model [4].
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The internal modes of kinks, usually called ‘shape modes’, have been analyzed for different models and their
role is understood (see, e.g., [3,5]). Indeed, if one considers the models described by the equations which deviate
from the exactly integrable sine-Gordon equation, the small disturbances around the kink soliton include usually
a zero-frequency localized mode, which is the Goldstone mode associated with the translational invariance, and
the linear (continuous) modes associated with the waves scattered by the kink. Additionally, the spectrum may be
modified essentially by the appearance of novel localized modes, orkink’s shape modes, which have the frequencies
below the lowest phonon frequency. The existence of these localized modes has important consequences on the kink
dynamics because they can temporarily store energy taken away from the kink kinetic energy which can later be
restored giving rise to resonant structures in the kink–antikink collisions [3,5]. The similar effect have been predicted
for the resonant kink–impurity interactions when the impurity supports localized oscillation at the impurity site [6].

In the physical models we find solitary waves of different types and structure [1,2]. In particular, solitary waves
discussed in nonlinear optics areenvelope solitonswhich are characterized by spatially localized solutions for the
slowly varying envelope of the electric field (see, e.g., [7,8]). In systems with weak nonlinearity, such solitary waves
are described by the integrable cubic nonlinear Schrödinger (NLS) equation, and its solitonsdo not possess any
internal modes. This certainly is a proper model for temporal solitons propagating along optical fibers [8], but the
model is inappropriate for spatial solitons (sometimes calledself-guided beams) propagating in waveguides or bulk
materials where much higher powers are required. In particular, as has been recently demonstrated theoretically and
experimentally, self-guided beams can be observed in materials with a strong photorefractive effect [9], in vapors
with a strong saturation of the effective index [10], and also they can exist due to the phase-matched two- and
three-wave parametric interactions in diffractiveχ(2) nonlinear crystals [11,12]. In all these cases, propagation of
envelope solitary waves is observed innon-Kerr materialswhich are described by more general models than the
cubic NLS equation.

Then the natural question arises:Do envelope solitons possess internal modes for these general nonintegrable
NLS-type models, and if it is so, what are their properties?The importance of this question follows from the results
of numerical simulations of the dynamics of optical solitons in the systems withχ(2) nonlinearities [13,14] where
solitary waves are known to display long-lived oscillations of their amplitude, similar to those observed earlier
in numerical simulations of the self-focusing effects in a medium with nonlinearity saturation [15]. The problem
of the existence of the soliton internal modes can also be approached from the other side, considering the cubic
nonlinearity but modified dispersive properties of the system, e.g., due to discreteness. For example, it is well
established that discrete models can support highly localized nonlinear modes, the so-calleddiscrete breathers
[16,17]. Such localized modes resemble the envelope solitons but excited on a few lattice cites, and sometimes
they can be approximated by the discrete NLS equation [18]. Numerical simulations of such nonlinear modes
in one-dimensional and two-dimensional discrete lattice [19] reveal many features resembling the dynamics of
the solitary waves of continuous NLS-type models of the generalized nonlinearities, including the excitation of
long-lived periodic oscillations.

Therefore, in many models describing envelope solitary waves,continuous and discrete, numerical simulations
of the nonstationary dynamics of spatially localized structures display the existence of long-lived oscillations of the
soliton amplitude that arepractically undamped and persist for a long time. We show in this paper on the example
of the generalized NLS equation that this effect can be naturally associated with the existence of localized modes of
envelope solitons (often calledinternal modes), similar to the case of the topological solitons of the Klein–Gordon
models. From the physical point of view, similar to the case of kinks, the internal mode of an envelope solitary wave
can be treated as a localized linear excitation associated with the existence of a bound state, e.g.,bound or trapped
photonsof a self-guided optical beam. From the mathematical point of view, the internal mode is described by a
nontrivial discrete eigenvalue of the associated scattering problem which can appear due to nonintegrability of the
nonlinear model. The frequency of this mode is in the gap of linear spectrum band and therefore the oscillations
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with this mode are localized near the soliton. Therefore, having the frequency different from the soliton frequency,
the mode manifests itself as a periodic beating of the soliton amplitude, similar to the ‘wobbling’ oscillation of the
kink shape in the Klein–Gordon models [3,5].

The paper is organized as follows. In Section 2 we introduce the model described by the generalized NLS equation
and consider, in more details, the particular example of the cubic–quintic nonlinearity where solitary waves can be
found in an explicit analytical form. Section 3 presents the analysis of an eigenvalue problem which describes linear
excitations upon the envelope solitary wave. Existence of the soliton internal modes is discussed in Section 4 where
we employ the so-called Evan’s function and study its analytical properties to analyze bifurcations associated with
the soliton internal mode which can emerge from either the edge of the continuous-spectrum band or the instability
domain. In Section 5 we calculate the radiation-induced damping of the initially excited oscillations of the soliton
amplitude associated with the existence of the soliton internal mode. This radiative damping is a direct consequence
of nonintegrability of the physical system (i.e. no exact solutions periodic in time exist) and it is accounted by a
generation of higher-order harmonics. At last, Section 6 concludes the paper.

2. Model and stationary localized solutions

We consider the generalized NLS equation which describes, in particular, propagation of a self-guided beam of
the fundamental frequency in a dielectric optical waveguide. In the dimensionless case this equation reads

i
∂Ψ

∂t
+ ∂2Ψ

∂x2
+ F(|Ψ |2)Ψ = 0, (1)

where, in the case of spatial optical solitons propagating in a slab waveguide,t andx are the longitudinal and
transverse coordinates, respectively. The functionΨ describes a complex (normalized) envelope amplitude of the
fundamental wave andF(I) is proportional to the nonlinearity-induced change in the material refractive index
which depends on the wave intensityI = |Ψ |2. It is natural to assume the conditionF(0) = 0, i.e., this nonlinear
correction vanishes for small intensities.

Self-guided beams (bright spatial solitons) are described by localized stationary solutions of Eq. (1) of the form
Ψ (x, t) = Φ(x; ω)eiωt , whereω is the nonlinearity-induced correction to the carrier frequency of the fundamental
wave. In application to the theory of spatial solitions, this parameter is referred to as the soliton propagation constant.
FunctionΦ(x; ω) satisfies the following differential equation.

d2Φ

dx2
− ωΦ + F(Φ2)Φ = 0. (2)

A simple analysis reveals that a localized solution of Eq. (2) exists forω > 0 provided there is at least one root,
I = Im(ω) of the equation

∫ Im

0 F(I)dI −ωIm = 0. Under this condition, a bright soliton solution is described by an
even, positive, single-humpedfunctionΦ(x; ω) with the amplitude proportional to

√
Im(ω). In the limit x → ±∞

the functionΦ(x; ω) vanishes exponentially:

Φ(x; ω) → χ(ω)e−√
ω|x| asx → ±∞, (3)

whereχ(ω) is a constant coefficient.
Although our analysis of the solitary waves of model (1) is general, throughout the paper we demonstrate our

results for the particular case of the nonlinear functionF(I) corresponding to the cubic–quintic nonlinearity. Without
loss of generality, this function can be rescaled to the following form.

F(I) = 4I + 3σI2, (4)
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whereσ = ±1. This function takes into account a quintic-nonlinearity correction to the cubic (or Kerr) nonlinearity
which should be taken into account for larger light intensities. This correction may be either focusing(σ = +1) or
defocusing(σ = −1). The generalized NLS equation with the nonlinearity (4) allows to find an explicit solution
for a solitary wave:

Φ(x; ω) =
{

ω

1 + √
1 + σω cosh(2

√
ωx)

}1/2

. (5)

In the limit of small amplitudes, whenω � 1, the solitary wave (5) transforms into the conventional soliton of the
NLS equation

Φ(x; ω) →
√

ω√
2 cosh(

√
ωx)

asω → 0. (6)

For larger intensities the quintic nonlinearity distorts the shape of the NLS soliton. For the defocusing case when
σ = −1, the existence of a solitary wave is limited by the critical valueω = 1 which defines the critical soliton
amplitude,Im(ω) → 1. Therefore, forσ = −1 the solution (5) exists only for any positiveω, and in the limit of
large amplitudes whenω � 1, its shape becomes closer to that described by the critical (quintic) NLS equation:

Φ(x; ω) →
{ √

ω

cosh(2
√

ωx)

}1/2

asω → ∞. (7)

3. Linear excitations of an envelope soliton

3.1. Linear eigenvalue problem

Here we analyze small (linear) perturbations excited upon the soliton solution. To do this, we linearize the
generalized NLS equation (1) around the solitary waveΦ(x; ω) by applying the following substitution for the linear
perturbation [20]:

Ψ (x, t) = [Φ(x; ω) + (U − W)eiΩt + (U∗ + W ∗)eiΩt ]e−iωt , (8)

whereU = U(x; ω, Ω) andW = W(x; ω, Ω) are generally complex functions,Ω is a complex eigenvalue and the
asterisk stands for the complex conjugation. The substitution (8), after neglecting nonlinear terms, reduces Eq. (1)
to the linear eigenvalue problem which can be written in the following matrix form:

LY = ΩY, (9)

where

Y =
(

U

W

)
, L =

(
0 L0

L1 0

)
,

and the linear operatorsL0 andL1 are associated with the soliton solutionΦ(x; ω):

L0 = − ∂2

∂x2
+ ω − F(Φ2), (10)

L1 = − ∂2

∂x2
+ ω − F(Φ2) − 2Φ2F ′(Φ2). (11)
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Besides the eigenfunctionY we consider also an adjoint eigenfunctionZ = (Ua, Wa), whereUa andWa satisfy
the same linear eigenvalue problem (9). Then, the following Wronskian-type quantity,

W(Z,Y) = Z ∂Y
∂x

− ∂Z
∂x

,Y = Ua ∂U

∂x
+ Wa ∂W

∂x
− ∂Ua

∂x
U − ∂Wa

∂x
W, (12)

does not depend onx, and hence, it plays an important role in the analysis of the linear eigenvalue problem (9).
We define four linearly independent fundamental solutions to the problem (9) by imposing the following boundary

conditions:

Yj → yj eµj x asx → +∞, (13)

Zj → zj e−µj x asx → −∞, (14)

wherej = 1, 4, µ1 = −µ3 = −√
ω − Ω, µ2 = −µ4 = −√

ω + Ω,

y1 = y3 = e+ =
(

1
1

)
, y2 = y4 = e− =

(
1

−1

)
,

andzj = (1/4µj )yt
j with “t” standing for transposed matrices. These boundary conditions follow from the asymp-

totic solutions to Eq. (9) in the limitsx → ±∞. In the opposite limits, the fundamental eigenfunctions can be
superposed through the set of asymptotic solutions as follows:

Yj →
4∑

k=1

Djk(Ω)ykeµkx asx → −∞, (15)

Zj →
4∑

k=1

Dkj (Ω)zke−µkx asx → +∞. (16)

The coefficientsDjk(Ω), referred to asscattering coefficients, can be expressed through the Wronskians (12),

Djk(Ω) = W(Zk,Yj ). (17)

The detailed analysis of the scattering coefficients should be carried out independently in different regions of the
spectral parameterΩ. However, there are general relations between these coefficients following from the symmetries
of the linear problem (9). Indeed, because the functionΦ(x; ω) is even inx, the eigenfunctionsYj (−x; ω, Ω) also
satisfy Eq. (9), and therefore, we can constructZj as follows:

Zj (x; ω, Ω) = 1

4µj

Y t
j (−x; ω, Ω). (18)

This property leads to the symmetry relations

Djk

Dkj

= µj

µk

. (19)

3.2. Scattering problem and continuous-wave spectrum

Continuous-wave (nonvanishing) solutions of Eq. (9) exist for realΩ such that|Ω| ≥ ω. The continuous-wave
spectrum is shown schematically in Fig. 1 by shaded regions. In the regionΩ > ω we construct a uniform continuous-
wave eigenfunctionY+(x, k), wherek is a real parameter specifying the spectral eigenvalue,Ω = ω + k2, from
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Fig. 1. Schematic structure of the spectrum of linear eigenvalue problem (9)–(11) in the case of a single internal mode of a solitary wave,
e.g., for the cubic–quintic NLS equation (1) and (4) atσ = +1. Shaded regions correspond to the continuous-wave spectrum|Ω| > ω.
The symmetric eigenvaluesΩ = ±Ω0 define the frequency of the soliton internal mode.

the fundamental solutionsY1, or alternativelyY3 = Y∗
1 , andY2 by removing the exponentially growing term in

Eq. (15) proportional to eµ2x . For example, for negative values of the parameterk, the continuous-wave eigenfunction
Y+(x, k) is defined by

Y+(x, k) = Y1(x; Ω, ω) − D12(Ω)

D22(Ω)
Y2(x; Ω, ω) for Ω > ω.

Then, neglecting exponentially small terms in the limitsx → ±∞ we find the following boundary conditions for
the continuous-wave eigenfunction:

Y+(x, k) →
{

e+eikx, x → +∞,

A(k)e+eikx + B(k)e+e−ikx, x → −∞,
(20)

where the coefficientsA(k) andB(k) are given for negativek by the formulas

A(k) = D11(Ω)D22(Ω) − D12(Ω)D21(Ω)

D22(Ω)
, (21)

B(k) = D13(Ω)D22(Ω) − D12(Ω)D23(Ω)

D22(Ω)
. (22)

To find the continuous-wave eigenfunctions and the coefficientsA(k) andB(k) for positivek we use the symmetry
relations

Y+(x, −k) = Y+∗(x, k), A(−k) = A∗(k), B(−k) = B∗(k). (23)

In addition, it follows from the Wronskian relations (see, e.g., [21]) that the coefficientsA(k) andB(k) satisfy the
following scattering relation:

|A(k)|2 = 1 + |B(k)|2. (24)

It is clear from Eqs. (21) and (22) that zeros of the functionD22(Ω) for |Ω| ≥ ω are poles of the coefficients
A(k) B(k). Themain assumptionof this paper is the conditionD22(Ω) > 0 for Ω ≥ ω. Under this restriction, the
coefficientsA(k) andB(k) are not singular for realk and the localized eigenmodes embedded into the continuous-
wave spectrum are absent (for an example of such an eigenmode see [14]).

The other branch of the continuous spectrum located for negativeΩ could be constructed by using an obvious
symmetry of Eq. (9) (see e.g., [20]),Ω → −Ω, U → U , andW → −W . For convenience, we define the other
continuous-wave eigenfunctionY− by the following boundary conditions:
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Y−(x, k) →



e−e−ikx, x → +∞,

A∗(k)e−e−ikx + B∗(k)e−eikx, x → −∞.
(25)

The real parameterk specifies now the eigenvalue asΩ = −(ω + k2).
The continuous-wave eigenfunctions could be explicitly found for the integrable cubic NLS equation which

follows from Eq. (1) for the normalized functionF(I) = 4I . In this case, the soliton solutions are given by the
asymptotic expression (6) while the continuous-wave eigenfunctionsY±(x, k) have the form

Y±(x; k) = e±ikx

(k ± i
√

ω)2
{[k2 − ω ± 2ik

√
ω tanh(

√
ωx)]e± + ω sech2(

√
ωx)(e+ + e−)}. (26)

For this particular case, we find from Eq. (26) thatB(k) = 0 and

A(k) =
(

k − i
√

ω

k + i
√

ω

)2

. (27)

3.3. Discrete spectrum and neutral modes

The neutral modes of the discrete eigenvalue spectrum are localized solutions of Eq. (9) atΩ = 0, and they are
related to the infinitesimal spatial translation and gauge transformation of the solitonΦ(x; ω). They are explicitly
expressed through the functionΦ(x; ω) as

Yd1(x) =
(

1
0

)
∂Φ

∂x
(x; ω), Yd2(x) =

(
0
1

)
Φ(x; ω). (28)

Besides these neutral modes, we need to introduce the associated discrete-spectrum modesYaj , wherej = 1, 2,
which satisfy the inhomogeneous equations,LYaj = Ydj . These associated modes correspond to an infinitesimal
change of the soliton velocity and propagation constant, and they can be found in the explicit form

Ya1 =
(

0
−1

)
x

2
Φ(x; ω), Ya2 =

(−1
0

)
∂Φ

∂ω
(x; ω). (29)

3.4. Internal modes and soliton stability

For the cubic NLS equation, i.e., Eq. (1) with the nonlinearityF(I) = 4I , the system of linear eigenfunctions
defined by Eqs. (26)–(29) is complete (see, e.g., [22]), so that other localized solutions to Eq. (9), different from the
neutral modes defined in Section 3.3, are absent. However, for a more general (non-Kerr) nonlinearity, additional
discrete-spectrum modes may appear for some nonzero values of the eigenvalueΩ, and these localized modes
are associated with the internal dynamics of a solitary wave. In particular, the soliton dynamics may display the
linear (exponential-type) instability if the eigenvalueΩ has a negative imaginary part; or the periodic long-term
oscillations ifΩ is real. We call the localized eigenfunctionsYin(x) corresponding to real values ofΩ thesoliton
internal modes.It is clear that the internal modes may exist only inside the gap of the continuum spectrum, i.e., for
|Ω| < ω.

According to the general analysis of the linear problem (9) and its generalizations [23,24], there exists at most
one eigenvalueΩ with negative (or, alternatively, positive) imaginary part. This result follows from Theorem 5.8 of
Grillakis et al. [23] and Theorem 3.1 of Pego and Weinstein [24] provided by the condition that the linear operator
L0 (see Eq. (10)) has no negative eigenvalues while the operatorL1 (see Eq. (11)) has strictly one such mode. The
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unique eigenvalue to the linear problem (9) with a negative imaginary part exists only inside the instability domain
which is defined by the inequality

dNs(ω)

dω
< 0, (30)

where

Ns(ω) = 1

2

+∞∫
−∞

Φ2(x; ω)dx (31)

is the power invariant calculated for the solitary wave solution. In our previous paper [25] we have shown different
regimes of the instability development of envelope solitons occurring within the instability domain (30). In the
present paper we study general features of dynamics of stable bright solitons when system (9) does not admit any
complex eigenvaluesΩ. It has been shown (see e.g., [26]) that all possible eigenvalues of Eq. (9) are real inside the
stability domain defined by the condition opposite to that in Eq. (30),

dNs(ω)

dω
> 0, (32)

although neither a number of real eigenvalues nor the general features of the dynamics of solitary waves which
possess internal modes can be predicted or studied by the methods of the previous papers. Below, we present the
general approach for constructing the internal modes and also derive the analytical criterion for their existence.

4. Existence and properties of soliton internal modes

4.1. The Evans’ function and internal modes

We consider the linear eigenvalue problem (9) for realΩ located in the gap of the continuous spectrum,|Ω| < ω.
Because of the obvious symmetry we confine ourselves by the caseΩ > 0. The fundamental solutionsY1 andY2

vanish exponentially asx → +∞ (see Eq. (13)) while two other solutions,Y3 andY4, are exponentially diverging.
Therefore, the only possible localized solutionYin to Eq. (9) can be superposed through the fundamental solutions
as follows:

Yin(x) = α1Y1(x; ω, Ω) + α2Y2(x; ω, Ω) (33)

for certain constantsα1 andα2. However, in the limitx → −∞ both the fundamental functions are generally
diverging because the exponential terms are proportional to eµ1x and eµ2x . Only if the following determinant of the
scattering coefficients (15) and (16),

D(Ω) = D11(Ω)D22(Ω) − D12(Ω)D21(Ω), (34)

vanishes for a certain value ofΩ, the linear superposition (33) can be chosenexponentially decaying at both the
infinities.Thus, the eigenvalues for the internal modes are determined by zeros of the functionD(Ω) which is called
Evans’ function(see [27] and references therein). As a matter of fact, similar arguments leading to the idea of using
the function (34) have been recently used by Malkin and Shapiro [20] for analyzing the spectrum of linear soliton
excitations in the two-dimensional NLS equation.
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As can be easily shown, the Evan’s function (34) is a continuous and real function for real values ofΩ such
that |Ω| < ω. As a result, the existence of internal modes inside the spectrum gap|Ω| < ω could be studied by
analyzing the asymptotic behavior of this function in the limitsΩ → 0 andΩ → ω−.

In order to deal with the limitΩ → 0, it is useful to find an integral formula for the derivatives ofDjk(Ω). We
follow the general technique described by Pego and Weinstein [24,27] and obtain the following final result:

D′
jk(Ω) =

+∞∫
−∞

{
Ua

k Wj + Wa
k Uj + 1

2
Djk(Ω)[µ′

j (Ω) + µ′
k(Ω)]

}
dx

+ 1

2
Djk(Ω)

{
1

µj

µ′
j (Ω) − 1

µk

µ′
k(Ω)

}
, j, k = 1, 2, (35)

where the primes stand for derivatives with respect toΩ.
Now we construct the eigenfunctionsY1 andY2 atΩ = 0 with the boundary conditions (13) by superposing the

neutral discrete-spectrum modes (28):

Y1

∣∣∣∣
Ω=0

= − 1

χ
√

ω
Yd1 + 1

χ
Yd2, (36)

Y2

∣∣∣∣
Ω=0

= − 1

χ
√

ω
Yd1 − 1

χ
Yd2 (37)

where the boundary condition (3) has been used. The adjoint functionsZj are given by Eq. (18). Then from Eqs. (15)
and (35) we find thatDjk(0) = D′

jk(0) = 0 for j, k = 1, 2. Further, we define the derivatives∂Yj /∂Ω = 0 by the
same formulas (36) and (37) but withYdj replaced byYaj (see Eq. (29)). By differentiating formula (35) we finally
obtain

D′′
11(0) =D′′

22(0) = 1

4χ2ω3/2
Ns(ω) + 1

2χ2
√

ω

dNs(ω)

dω
,

D′′
12(0) =D′′

21(0) = 1

4χ2ω3/2
Ns(ω) − 1

2χ2
√

ω

dNs(ω)

dω
,

whereNs(ω) is defined by Eq. (31). As a result, the asymptotic behavior of the Evans’ function (34) forΩ → 0 is
defined by the following expresion:

D(Ω) = 1

24
DIV (0)Ω4 + O(Ω6), DIV (0) = 3

χ4ω2
Ns(ω)

dNs(ω)

dω
. (38)

Thus, we come to the conclusion that inside the stability domain (32) the Evans’ functionD(Ω) is always positive
for smallΩ.

Now we consider the asymptotic behavior ofD(Ω) asΩ → ω−. To do this, we first analyze the behavior of the
coefficientsA(k) andB(k) for the continuous-wave eigenfunctionY+(x, k) (see Eq. (20)) ask → 0. In this limit,
the boundary conditions (20) transform as follows:

Y+(x, k)

∣∣∣∣
k→0

→
{

e+, x → +∞,

[A(k) + B(k)]e+ + ik[A(k) − B(k)]xe+, x → −∞.
(39)

In a generic case, the secular term (i.e., that growing linearily inx asx → −∞) is generated by the linear eigenvalue
problem (9) atΩ = ω according to the formula

∂U+(x, 0)

∂x

∣∣∣∣
x→−∞

+ ∂W+(x, 0)

∂x

∣∣∣∣
x→−∞

= 4b−1, (40)



130 D.E. Pelinovsky et al. / Physica D 116 (1998) 121–142

where

b−1 = 1

4

+∞∫
−∞

dx{F(Φ2)[U+(x, 0) + W+(x, 0)] + 2Φ2F ′(Φ2)U+(x, 0)}. (41)

It follows from Eqs. (39) and (40) that ifb−1 6= 0 the coefficientsA(k) andB(k) are diverging ask → 0 and they
can be found from the asymptotic formula

A(k) = −B(k) = − i

k
b−1 ask → 0. (42)

Now, employing the same analysis to the functionD(Ω) in the limitΩ → ω−, i.e., inside the gap of the continuous-
wave spectrum, we find the asymptotic formula (cf. Eqs. (21) and (42)),

D(Ω) → −b−1D22(Ω)√
ω − Ω

asΩ → ω−. (43)

We apply here the assumption that the coefficientD22(Ω) is positive forΩ ≥ ω. In this case, the coefficientb−1

defines the sign of the functionD(Ω) in the limit Ω → ω−, and hence determines the existence of an internal
mode inside the gap of the continuous-wave spectrum. Ifb−1 > 0, the Evans’ functionD(Ω) changes its sign from
positive for smallΩ to negative forΩ → ω−. Therefore, there existsat least one rootof the equationD(Ω) = 0
in the internal 0< Ω < ω which is associated with the soliton internal mode. Ifb−1 < 0, then the function
D(Ω) either has no roots (and associated soliton internal modes) being positive everywhere for 0< Ω < ω or
even number of roots are expected. Thus, the singular behavior of the coefficientsA(k) andB(k) at the edge of the
continuous spectrum given by Eq. (42) determinesthe sufficient conditionb−1 > 0 for the existence of the internal
mode of an envelope soliton.

In the special case, whenb−1 = 0, the coefficientsA(k) andB(k) are not singular ask → 0. Moreover, it can be
shown from Eqs. (23), (24) and (39) thatB(0) = 0 andA(0) = 1. In this case, the Evans’ function is not singular
as well and it has the asymptotic representation

D(Ω) → D22(Ω) asΩ → ω−.

In particular, this special situationappears alwaysfor integrable models because soliton solutions are associated with
the reflectionless potentials of the corresponding linear eigenvalue problems for whichB(k) vanishes identically
for all k. For example, for the cubic NLS equation we can find from Eq. (27) that the Evans’ functionD(Ω) tends
to the following limit:

D(Ω) →
(√

2 − 1√
2 + 1

)2

asΩ → ω−.

Therefore, the internal mode is absent for the soliton of the integrable cubic NLS equation, but it can be induced
by a perturbation which would lead to a positive value ofb−1. We note that this positiveb−1 might be generated
by both a correction to the cubic NLS equation and by a perturbation of the solitary wave profile within the cubic
NLS equation.

As a particular example, we study numerically the Evans’ function (34) for the generalized NLS equation with
the cubic–quintic nonlinearity (4). The results are presented in Figs. 2(a) and (b) for two possible signs ofσ . For
σ = +1 the Evans’ functionD(Ω) tends to−∞ asΩ → ω− and there always exists only one zero of this function
at Ω = Ω0(ω) (see Fig. 2(a)) located inside the gap of the continuous-wave spectrum|Ω| < ω. The complete
spectrum of the linear problem (9) corresponding to this case is shown schematically in Fig. 1. In the caseσ = −1
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Fig. 2. The Evans’ functionD(Ω) calculated numerically for the soliton of the cubic–quintic NLS equation (1) and (4) in the case: (a)
σ = +1 and (b)σ = −1. A single zeroD(Ω0) = 0 in the case of (a) corresponds to the soliton internal mode.

the Evans’ function tends to+∞ asΩ → ω− and, therefore, there are no zeros of this function within the gap of
the continuous-wave spectrum (see Fig. 2(b)). The profilesUin(x) andWin(x) of the internal mode corresponding
to the eigenvalueΩ0 atσ = +1 have been calculated from Eq. (9) with the help of the numerical shooting method.
We present these eigenfunctions, together with the soliton profileΦ(x; ω), in Fig. 3 for ω = 5. Thus, for both
focusing cubic and quintic nonlinearity (4) a stable bright soliton of a finite amplitudealways has a unique internal
modewhich determines the long-term oscillatory dynamics of the solitary wave. Dependence of the frequencyΩ0

of this mode vs. the soliton frequency (or propagation constant)ω has been obtained numerically and it is shown
in Fig. 4(a). It is clear that the frequency of the internal mode is always inside the gap between the continuous- and
discrete-spectrum modes, i.e., in the internal 0< Ω0 < ω.

We mention that the existence of several internal modes of different spatial symmetries within the interval
0 < Ω < ω is not generally prohibited by the properties of the linear system (9) unlike that happen for complexΩ

[23,24]. However, we confine our analysis only to thefundamental internalmode, i.e., that having the smallest value
of Ω and the profile of the componentUin(x) with two symmetric nodes (see Fig. 3). For the considered example
of the cubic–quintic nonlinearity, this fundamental internal mode turns out to be unique and it appears only due to
rather universal bifurcations at the edges of the interval 0< Ω < ω. The bifurcation in the limitΩ → 0 can occur
at the edge of the stability domain (32) when a pair of real eigenvalues merges and moves to the imaginary axis. On
the other hand, a bifurcation in the limitΩ → ω− can occur when the generalized NLS equation (1) reduces to the
integrable cubic NLS equation withB(k) = 0. Both these bifurcations are analyzed below.
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Fig. 3. Examples of the soliton profileΦ(x; ω) (thick solid) and the functionsUin(x) (thin solid) andWin(x) (dashed) describing a
localized eigenmode of the discrete spectrum for the cubic–quintic NLS equation (1) and (4) atσ = +1 andω = 5.

4.2. An eigenvalue emerging from the edge of the continuous spectrum

In Section 4.1 we have shown that the bifurcation of the internal mode may take place in the vicinity of the
integrable case, whereB(k) = 0 (see the definition in Eq. (20)), and the Evans’ function (34) is not diverging in the
limit Ω → ω− for this case. Here we analyze this bifurcation in a general form and consider the nonlinear function
F(I) in Eq. (1) of the form

F(I) = 4I + εf (I ), (44)

whereε is a small positive parameter which scales the amplitude of the perturbation of the cubic (Kerr) nonlinearity
described by the functionf (I). The soliton profileΦ(x; ω) can be found from Eqs. (2) and (44) as the perturbation
expansion,

Φ(x; ω) = Φ0(x; ω) + εΦ1(x; ω) + O(ε2), (45)

where the NLS solitonΦ0(x; ω) is given by Eq. (6) whileΦ1(x; ω) satisfies the inhomogeneous linear equation,
L0

1Φ1 = f (Φ2
0)Φ0. We denote the linear operators (10) and (11) in the zero-order (NLS) approximation asL0

0 and
L0

1 which are

L0
0 = − ∂2

∂x2
+ ω − 2ω sech2(

√
ωx), L0

1 = − ∂2

∂x2
+ ω − 6ω sech2(

√
ωx).

Substituting expansions (44) and (45) into Eq. (9) we find a linear perturbed eigenvalue problem of the first-order
approximation,

(L0 + εL1)Y = ΩY, (46)
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Fig. 4. (a)–(c) Dependence of the internal mode frequencyΩ0 on the soliton frequencyω for the solitary wave of the cubic–quintic NLS
equation (1) and (4) atσ = +1. Solid curve shows the numerical result, dashed curves in (b) and (c) show the asymptotic results (58)
and (68), respectively. Note different scales in (a)–(c).

where

L0 =
(

0 L0
0

L0
1 0

)
, L1 =

(
0 L1

0
L1

1 0

)
,

and

L1
0 = −f (Φ2

0) − 8Φ0Φ1, L1
1 = −f (Φ2

0) − 2Φ2
0f ′(Φ2

0) − 24Φ0Φ1.

In the leading-order approximation(ε = 0), a complete set of eigenfunctions consists of two branches of the
continuous spectrum (26) and also the neutral and associated discrete-spectrum eigenmodes (28) and (29). Therefore,
we seek a solution to the perturbed problem (46) by expanding the functionY through this complete set as follows:

Y(x) =
+∞∫

−∞
dk[α+(k)Y+(x, k) + α−(k)Y−(x, k)] +

∑
n=1,2

(αnYdn + βnYan), (47)

whereα±(k), αn andβn are coefficients of this expansion. It is clear that the discrete spectrum located atΩ = 0
is not relevant to the problem of bifurcation atΩ = ω. Henceforth, we neglect all components of the discrete
spectrum in the subsequent calculations. A dangerous role of the discrete-spectrum modes in a variational analysis
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of oscillations of bright solitons supported by the dynamics of the continuous-wave packets has been recently
discussed by Kaup and Lakoba [21].

Following the standard analysis (see, e.g., [22]) we define an inner product for the continuous-wave eigenfunctions
Y±(x, k) according to the formula

〈Y(k′),Y(k)〉 = 1

2

+∞∫
−∞

{U(−x, k′)W(x, k) + W(−x, k′)U(x, k)}dx. (48)

Then we use the Wronskian relations (12) and the boundary conditions (20) and (25) forB(k) = 0 to find that the
cross-product ofY±(x, k) are zero, while the self-products are given by

〈Y+(k′),Y+(k)〉 = 2πA(k)δ(k − k′), (49)

〈Y−(k′),Y−(k)〉 = −2πA∗(k)δ(k − k′), (50)

whereA(k) is defined by Eq. (27). Using these formulas for the inner products, we substitute expansion (47) into
Eq. (46) and reduce the linear problem to the system of linear integral equations

a±(k) = ± ε

2π

+∞∫
−∞

dk′
{

K±
+ (k, k′)a+(k′)

A(k′)(Ω − Ωk′)
+ K±

− (k, k′)a−(k′)
A∗(k′)(Ω + Ωk′)

}
, (51)

wherea+(k) = A(k)(Ω − Ωk)α
+(k), a−(k) = A∗(k)(Ω + Ωk)α

−(k), Ωk = (ω + k2), and

K±
∓ (k, k′) = 1

2

+∞∫
−∞

{U±(−x, k)L1
1U

∓(x, k′) + W±(−x, k)L1
0W

∓(x, k′)}dx.

Now we assume that the perturbation leads to a bifurcation of the internal mode into the gap of the continuous
spectrum. This assumption implies that the system of integral equations (51) exhibits bounded solutions fora±(k)

at a certain eigenvalueΩ = Ω0 < ω. According to this, we introduce the parametrization,Ω = ω − ε2κ2, and
notice that the integrands in the first integrals of Eq. (51) have poles atk = ±iεκ providedκ > 0 (ε is supposed to
be positive). These poles lead to a singular behavior of the first integrals asε → 0. In order to evaluate this singular
behavior of the integrals we notice from Eq. (26) that the functionY+(x, k) vanishes exponentially fast as|k| → ∞
for x > 0 and Im(k) > 0, or for x < 0 and Im(k) < 0. Therefore, we close the integration contours in Eq. (51)
through infinity Im(k) > 0 for x > 0, or Im(k) < 0 for x < 0. We suppose that the coefficienta+(k) is normalized
as follows:

|a+(k)| → 1 as Im(k) 6= 0, |k| → ∞. (52)

Besides, we suppose that the coefficientsa±(k) are not singular ask → 0. Of course, these coefficients, as well
as the kernel functionA−1(k)Y+(x, k), might have some poles in the complex plane ofk. but these poles do not
give any singular contribution into the integrals of Eq. (51) asε → 0. Furthermore, the second integral in Eq. (51)
does not lead to a singularity forε → 0 as well. Therefore, we neglect all these terms and obtain finally an explicit
asymptotic solution of system (51) in the limitε → 0:

a±(k) = ∓ 1

2κ
a+(0)K±

+ (k, 0). (53)

This explicit solution is self-consistent provided the parameterκ is determined by the equation
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κ = −1

4

+∞∫
−∞

dx{U+(−x, 0)L1
1U

+(x, 0) + W+(−x, 0)L1
0W

+(x, 0)}, κ > 0. (54)

Thus, the system of integral equations (51) does have a solution for the internal mode with the eigenvalueΩ =
Ω0 = ω − ε2κ2 if the parameterκ defined by Eq. (54) turns out to be positive. It can be shown from Eqs. (46),
(41), and (54) that the following relation is asymptotically valid forε → 0, b−1 = εκ. Therefore, the results
of the bifurcation analysis agree with the criterion of the existence of the fundamental internal mode found in
Section 4.1.

If the internal mode exists, i.e.,κ > 0, then it follows from Eq. (47) forε → 0 that the profile of the internal
mode approaches at infinity to the following shape:

Yin(x) → −
(

a+(0)

2iεκ

)
Y+(x, ∓iεκ) asx → ±∞. (55)

We see that the internal mode is exponentially localized in the limit|x| → ∞, and it coincides with the profiles of
the continuous-spectrum eigenfunctions continued analytically into the complex plane ofk. The limiting behavior
for a+(k) imposed by Eq. (52) provides this exponential localization for the internal mode, and therefore is self-
consistent with the approach developed here.

The results described above can be easily applied to evaluate the asymptotic limit of small soliton amplitudes
for the frequency of the internal mode supported by the cubic–quintic nonlinearity (4). For this case, the first-order
correctionΦ1(x; ω) has the form

Φ1(x; ω) = −σ

√
ω3 cosh(2

√
ωx)

8
√

2 cosh3(
√

ωx)
. (56)

As follows from Eq. (26), the limiting eigenfunctionY+(x, 0) is given by

Y+(x, 0) = e+ − sech2(
√

ωx)(e+ + e−). (57)

Calculating Eq. (54) with Eqs. (56) and (57), we find thatκ = (σ/6)ω3/2. Therefore, the discrete eigenvalue emerges
from the continuous spectrum only forσ = +1, and the approximate analytical expression for the frequency of the
internal modeΩ = Ω0(ω) can be found in an explicit analytic form

Ω0 = ω

[
1 − ω2

36
+ O(ω4)

]
asω → 0. (58)

This result is presented in Fig. 4(b) by a dashed line. The solid line shows the results of numerical simulations
from Fig. 4(a). Thus, the asymptotic expression (58) is approximately valid for relatively smallω such that
ω ≤ 0.3

4.3. An eigenvalue emerging from the instability domain

It follows directly from the linear system (9) that any set of localized solutionsYn(x) for realΩ = Ωn satisfy
the orthogonality conditions

(Ωn − Ωm)

+∞∫
−∞

[UnWm + WnUm]dx = 0 forn 6= m. (59)
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Applying this general condition to the internal modeYn = Yin for ΩmΩ0, and the neutral discrete-spectrum modes
(28),Ym = Ydj for Ωm = 0 andj = 1, 2, we transform the orthogonality conditions (59) to the form

D1(ω, Ω0) = Ω0

+∞∫
−∞

∂Φ(x; ω)

∂x
Win(x; ω, Ω0)dx = 0, (60)

D2(ω, Ω0) = Ω0

+∞∫
−∞

Φ(x; ω)Uin(x; ω, Ω0)dx = 0. (61)

The first condition, Eq. (60), is relevant if the functionWin is odd inx, whereas the second condition, Eq. (61), is
applicable for the even functionUin. Here, we are interested in the bifurcation of the internal mode from the neutral
discrete-spectrum modes (28). It can be easily shown that this bifurcation is only possible for the neutral modeYd2,
and as a result, the functionYin is turned out to be even, see Eq. (28). To find an asymptotic representation for
this function in the limitΩ0 → 0, we follow the analysis of our previous paper [25] and introduce the asymptotic
expression for solutions of Eq. (9),

Yin = Yd2(x; ω) + Ω0Ya2(x; ω) +
∞∑

n=2

Ωn
0Yn(x; ω). (62)

HereYd2 andYa2 are given by Eqs. (28) and (29) while the higher-order correctionsYn have to be found by inverting
the linear inhomogeneous equations,

LYn = Yn−1, n ≥ 2, (63)

and taking into account the orthogonality (solvability) condition (61). For instance, the second-order correction is

Y2 =
(

0
1

)
W2(x; ω),

whereW2(x; ω) satisfies the equationL0W2 = −∂Φ/∂ω, and the solvability condition (61) leads to the relation
dNs(ω)/dω = 0, i.e., to the threshold between the instability (30) and stability (32) domains. Let us define the
marginal value for this threshold asω = ωc, i.e., dNs(ω)/dω|ω=ωc = 0, and extend the solvability condition (61)
to the fourth-order approximation valid for(ω − ωc) ≈ O(ε2). Then the detailed analysis (see [25]) reveals that the
roots ofD2(ω, Ω0) can be approximated as follows:

D2(ω, Ω0) = −Ω2
0

dNs(ω)

dω
+ Ω4

0Ms(ωc) + O(Ω6
0) = 0, (64)

where the positive coefficientMs(ωc) is defined by the expression

Ms(ωc) =
+∞∫

−∞


 1

Φ(x; ω)

x∫
0

Φ(x′; ω)
∂Φ(x′; ω)

∂ω
dx′



2 ∣∣∣∣
ω=ωc

dx. (65)

It follows from this equation that within the stability domain (32), there always exists an internal mode near the
marginal stability threshold, and its frequencyΩ0(ω) is given by

Ω0(ω) =
{

1

Ms(ωc)

dNs(ω)

dω

}1/2

. (66)



D.E. Pelinovsky et al. / Physica D 116 (1998) 121–142 137

Thus, a transition from instability for solitary waves always generates an internal discrete-spectrum mode to the
linear problem (9) which is described by the even eigenfunctionYin (see Eqs. (28), (29) and (62)). The relation
between the stability bifurcation and existence of oscillatory solutions to the linear problem has been recently pointed
out by Malkin and Shapiro [20] who have carried out the similar bifurcation analysis for the two-dimensional NLS
equation.

Let us apply this analysis to the particular case of the cubic–quintic nonlinearity (4) forσ = +1. In this case, the
soliton powerNs(ω) can be found with the help of Eqs. (5) and (31)

Ns(ω) = 1
2 tan−1(

√
ω). (67)

The derivativeN ′
s(ω) vanishes in the limitω → ∞ when the bright soliton approaches the profile (7) of the soliton

solutions of the critical (quintic) NLS equation. The coefficientMs(ωc) (see Eq. (65)) in this limit can be calculated
asMs(ωc) = π3/(512ω3) so that the eigenvalueΩ0(ω) has the following asymptotic representation:

Ω0

ω
= 8

√
2

π3/2ω1/4
+ O(ω−3/4) asω → ∞, (68)

which is shown in Fig. 4(c) as a dashed curve compared with the numerical result (solid curve) from Fig. 4(a).

5. Radiative damping of the soliton oscillations

Being excited, the internal mode oscillation of a finite amplitude generates higher-order harmonics with the
frequencies multiple integer to the frequencyΩ0. Thus, even if the frequencyΩ0 lies in the gap of the continuous
spectrum, as shown in Fig. 1, the multiple frequencies might fall within the continious-spectrum band inducing radi-
ation propagating away from the soliton. This escaping radiation should induce a damping mechanism by which the
amplitude oscillation decays. In this section we evaluate the rate of this radiation-induced damping for different cases.

5.1. Radiation due to generation of a double frequency

First, we consider a simple case when the oscillating internal mode generates linear wave with the double frequency
2Ω0. This situation can be realized providedω/2 < Ω0 < ω. To describe nonlinear effects leading to the radiative
damping, we consider a standard multi-scale asymptotic expansion which assumes that the oscillation amplitude
is a small parameter. Then we introduce a nonlinear generalization of expansion (8) given by the asymptotic
series

Ψ = {Φ + ε[a(Uin − Win)eiΩ0t + a∗(U∗
in + W ∗

in)e−iΩ0t ] + ε2Φ2 + ε3Φ3 + O(ε4)}eiωt , (69)

whereUin andWin are components of the internal mode,a = a(T ) is the oscillation amplitude,T = ε2t is slow
time of the amplitude evolution induced by the nonlinear effects andε is an effective small parameter. Substituting
the asymptotic expansion (69) into Eq. (1), we derive a system of equations forΦ2, Φ3 and higher-order corrections.
Thus, within the second-order approximation we present the formal solution as follows:

Φ2 = |a|2U0 + [a2(U2 − W2)e
2iΩ0t + a∗2(U∗

2 + W ∗
2 )e−2iΩ0t ], (70)

where the functionsU0, U2, andW2 are to be found from the linear inhomogeneous equations
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L1U0 = 2[3ΦF ′(Φ2) + 2Φ3F ′′(Φ2)]U2
in + 2ΦF ′(Φ2)W2

in, (71)

L1U2 − 2Ω0W2 = [3ΦF ′(Φ2) + 2Φ3F ′′(Φ2)]U2
in − ΦF ′(Φ2)W2

in, (72)

L0W2 − 2Ω0U2 = 2ΦF ′(Φ2)UinWin. (73)

Since the eigenfunctions of the homogeneous linear system following from (72) and (73) are nonlocalized, the right-
hand side of this system generates a solution which is not spatially localized as well. From the physical motivation it
is clear that the radiation escaping the perturbed soliton has the form of a wave propagating to the right(x → +∞)

and a wave propagating to the left(x → −∞). Thus, we can introduce the amplitudesa±
2 of the generated waves

according to the following boundary conditions:

(U2, W2) → a±
2 exp[∓i

√
2Ω0 − ωx] asx → ±∞. (74)

The amplitudes of the radiation field can be found from system (72) and (73) as follows:

a+
2 = −B∗(k)a−

2 − 1

4ik

+∞∫
−∞

dx{ΦF ′(Φ2)[3U2
inU+∗(x, k) + 2UinWinW+∗(x, k)

− W2
inU+∗(x, k)] + 2Φ3F ′′(Φ2)U2

inU+∗(x, k)}, (75)

a−
2 = − 1

4ikA(k)

+∞∫
−∞

dx{ΦF ′(Φ2)[3U2
inU+(x, k) + 2UinWinW+(x, k)

− W2
inU+(x, k)] + 2Φ3F ′′(Φ2)U2

inU+(x, k)}, (76)

wherek = −√
2Ω0 − ω while A(k), U+(x, k) andW+(x, k) are the spectral data and the continuous-spectrum

functions defined by Eq. (20).
Next, we analyze the third-order approximationΦ3 and remove an exponentially divergent term at the fundamental

internal mode frequencyΩ0. This procedure leads to the following equation for the slowly varying amplitude
a = a(T ):

2iα
da

dT
+ (β + iγ )|a|2a = 0, (77)

where the coefficientsα, β, andγ are defined by the following expressions:

α =
+∞∫

−∞
UinWin dx = 1

Ω0

+∞∫
−∞

WinL0Win dx > 0, (78)

γ = 4
√

2Ω0 − ω(|a+
2 |2 + |a−

2 |2) > 0, (79)

and



D.E. Pelinovsky et al. / Physica D 116 (1998) 121–142 139

β = −
+∞∫

−∞
dx{2ΦF ′(Φ2)[(3U2

in + W2
in)U0 + (3U2

in − W2
in)ReU2 + 2UinWinReW2]

+ F ′(Φ2)[3U4
in + 2U2

inW2
in + 3W4

in] + 4Φ3F ′′(Φ2)U2
in(U0 + ReU2)

+ 4Φ2F ′′(Φ2)(3U4
in + U2

inW2
in) + 4Φ4F ′′′(Φ2)U4

in}. (80)

The coefficientα given by (78) is the norm for the internal modeYin(x) of the linear problem (9), as it follows from
the orthogonality conditions (59) atΩn = Ωm andYn(x) = Ym(x). This norm is positive because the operatorL0

is positive definite for allW different fromΦ. For example, in the limitΩ0 → 0, the norm can be calculated from
Eqs. (62) and (64) to beα = Ω3

0Ms(ωcr) + O(Ω5
0).

The coefficientβ in Eq. (77) defined by Eq. (80) determines a nonlinearity-induced correction to the frequency of
the internal mode and this correction is typicallynegative. Thepositivecoefficientγ , defined by Eq. (79), describes
the dissipative effects induced by the generation of the wave packets with the double frequency. As a result of the
dissipative effects, the amplitude of the internal mode decays according to the analytical solution of Eq. (77) written
for Q = |a|2 as follows:

Q = αQ0

α + γQ0T
, (81)

whereQ0 = Q(0). Thus, the generation of the linear waves at the double frequency 2Ω0 by the oscillating internal
mode leads to the inverse linear decay (81) of the mode energyQ. This result has been confirmed by numerical
simulations. Fig. 5 gives an example of the long-term evolution (a) and its view of much shorter timescales (b) of
the solitary wave of the cubic–quintic NLS equation (1) and (4) with an initially excited internal mode. The law of
the oscillation decay observed is given, with a good accuracy, by the analytical result (81).

As was observed in numerical simulations (see, e.g., [28–30]), the evolution of a perturbed soliton is accompanied
by intermediate oscillations even in the case of the cubic NLS equation where the internal mode does not exist.
This means that these intermediate oscillations are induced by wave packets of the continuous spectrum which are
decaying because of the linear (dispersion) properties. Indeed, it was found (see Eqs. (26) and (55) in [29]) that
the dominating frequency of the oscillations varies during the time evolution, approaching the frequencyΩ = ω

of the edge of the continuous spectrum being effectively in the spectrum gap,Ω = ω − 2|α(0)|2/T , whereα(k)

is expressed through the scattering date. In that sense, the existence of the intermediate relaxation oscillation of a
scaled soliton in the integrable cubic NLS equation can be explained by using the concept of a virtual quasi-mode
existing for a finite time interval inside the spectrum gap due to the nonlinearity-induced frequency shift with the
amplitude decaying asT −1/2. We notice that precisely the same decay rate for this virtual quasi-mode follows from
our approach as given by Eq. (81). Thus, the inverse linear decay law is valid for both the radiative loses induced
by the generation of the waves at the double frequency and by linear dispersive effects.

5.2. Radiation due to generation of higher harmonics

Here we generalize the analysis presented above to evaluate the decay rate induced by the generation of then-
multiple-frequency harmonics of the continuous spectrum. Because the direct asymptotic technique becomes very
cumbersome in higher orders of the multiscale expansions, we apply here an equivalent method based on the balance
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Fig. 5. (a) Example of the power law decay of the soliton amplitude oscillations shown for the soliton of the cubic–quintic NLS equation (1)
and (4) atσ = +1 andω = 5. (b) Part of (a) shown in a different scale.

equations (see, e.g., [31]2 ). This method allows us to take into account only the nonlinear dissipative effects which
seem to be more important for describing the long-term evolution of the soliton internal mode while neglecting the
effects caused by the nonlinearity-induced shift of the mode frequency.

The balance equation for the powerN can be written as follows:

dN

dt
= i

2

(
Ψ ∗ ∂Ψ

∂x
− Ψ

∂Ψ ∗

∂x

)∣∣∣∣
x=+∞

x=−∞
, (82)

where

N = 1

2

+∞∫
−∞

|Ψ |2 dx.

Using the asymptotic expansion (69) and also the properties of the linear system (see Eq. (61)), we find the leading-
order of the expansion ofN in the form

2 The same approach was employed in the paper by Buryak and Akhmediev [32], where more details and comparison with numerical
simulations can be found.
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N = Ns(ω) + ε2α|a|2 + O(ε3), (83)

where we have used the relation
+∞∫

−∞
(U2

in + W2
in + ΦU0)dx = α,

which can be proven by comparing the results that follow from the power balance equaion (82) and from the
Hamiltonian balance equation, see [25].

Next, we suppose that the lowest frequency in the admissible interval for the wave generation is thenth multiple
frequency ofΩ0. It implies that the frequencyΩ0 belongs to thenth zone in the gap of the continuous spectrum,

ω

n
< Ω0 ≤ ω

n − 1
. (84)

In this case, the radiative nonlocalized component, that appears in the order of O(εnan) of the asymptotic expansion,
has the asymptotics given by Eq. (74) with 2Ω0 replaced bynΩ0 anda±

2 by a±
n . The balance between the nonlinear

dissipative and evolution terms in Eq. (82) leads to the evolution of the energyQ = |a|2 of the internal mode
oscillations with the slow timeTn = ε2n−2t according to the equation

dQ

dTn

= −γn

α
Qn, (85)

whereγn = 4
√

nΩ0 − ω(|a+
n |2 +|a−

n |2) (cf. Eq. (79)). Finally, we evaluate the decay rate of the internal oscillation
induced by the generation of thenth multiple frequency wave packets

Q = Q0

[1 + (n − 1)α−1γnQ
n−1
0 Tn]1/(n−1)

. (86)

It should be noted that, in the asymptotic limitΩ0 � ω, the analytical theory leading to Eq. (86) becomes invalid,
because the generated radiation is beyond the asymptotic expansions in powers of the small parameterε. In this case,
the radiation is exponentially small inε and this should modify the right-hand side of Eq. (86). A special asymptotic
technique should be applied to find a correct analytical law of the oscillation decay, and the corresponding details
will be published elsewhere.

6. Conclusions

Taking a rather universal model for envelope solitons described by the generalized NLS equation, we have
analyzed the existence and properties of internal modes of solitary waves which may appear when the nonlinear
equation for the wave envelope deviates from the exactly integrable cubic NLS equation. The internal mode of a
solitary wave manifests itself through long-lived periodic oscillation of the soliton amplitude which persists for
many periods. We have shown that there existsno thresholdfor the internal mode to emerge from the edge of
the continuous spectrum, so that any small pertubation of the cubic NLS equation (with an appropriate sign) can
generate a soliton internal mode, and as a result, will modify qualitatively the soliton dynamics. We have calculated
the rate of a weak, radiation-induced relaxation damping of the initially excited amplitude oscillation of a solitary
wave associated with the existence of the internal mode. We have also pointed out that the existence of the soliton
internal modes in nonintegrable models can be naturally linked to the problem of stability of solitary waves.

The approach developed in this paper and the results obtained for the NLS equation with a general nonlinearity
are rather universal to find their applications in other nonlinear problems of different physical context. We believe
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that our study will stimulate the further analysis of the soliton internal modes restricted up to now by a number of
kink-bearing models.
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