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Abstract

The dynamics of wave groups is studied for long waves, using the framework of the extended Korteweg–de Vries equation.
It is shown that the dynamics is much richer than the corresponding results obtained just from the Korteweg–de Vries equation.
First, a reduction to a nonlinear Schrödinger equation is obtained for weakly nonlinear wave packets, and it is demonstrated
that either the focussing or the defocussing case can be obtained. This is in contrast to the corresponding reduction for the
Korteweg–de Vries equation, where only the defocussing case is obtained. Next, the condition for modulational instability is
obtained. It is shown that wave packets are unstable only for a positive sign of the coefficient of the cubic nonlinear term in the
extended Korteweg–de Vries equation, and for a high carrier frequency. At the boundary of this parameter space, a modified
nonlinear Schr̈odinger equation is derived, and its steady-state solutions, including an algebraic soliton, are found. The exact
breather solution of the extended Korteweg–de Vries equation is analysed. It is shown that in the limit of weak nonlinearity
it transforms to a wave group with an envelope described by soliton solutions of the nonlinear Schrödinger equation and its
modification as described above. Numerical simulations demonstrate the main features of wave group evolution and show
some differences in the behaviour of the solutions of the extended Korteweg–de Vries equation, compared with those of the
nonlinear Schr̈odinger equation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Wave groups are now usually studied within a framework of the nonlinear Schrödinger equation, or a related
model equation. Usually, this framework is developed in a context where the waves themselves are short waves,
and the envelope is then described by the nonlinear Schrödinger equation, or a similar model (see, for instance,
[2]). This is the situation for water waves for instance, and there the modelling of wave groups in deep water is well
developed (see, for instance, [5]). On the other hand, the study of water wave groups in shallow water is much less
well developed, and it is this issue, amongst others, which has motivated us here to consider the behaviour of wave
groups in a long-wave environment. We hasten to point out, however, that this present study is not directly related
to the water wave case, which remains a very challenging area of research.
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Long-wave weakly nonlinear models are well-known in many physical fields, notably for the dynamics of stratified
flows in the ocean and atmosphere. Here they have been derived for various environmental conditions of the density
and shear flow stratification (see, for instance, [7]). The famous Korteweg–de Vries equation is the basic model
obtained at the leading order of a perturbation theory based on the small parameters of nonlinearity (amplitude
is less than a characteristic depth scale) and linear dispersion (wavelength is more than this depth scale). For
certain environmental conditions, the coefficient of the quadratic nonlinear term is close to zero (for instance,
in the aforementioned case of oceanic and atmospheric flow, when the pycnocline lies near the middle depth in
a two-layer model of the density stratification). In such cases a cubic nonlinear term should be included in the
perturbation scheme, so that the extended Korteweg–de Vries equation is obtained. It contains both quadratic and
cubic nonlinearity, and is given by

∂u

∂t
+ µu

∂u

∂x
+ νu2∂u

∂x
+ λ

∂3u

∂x3
= 0, (1)

whereu(x, t) is the amplitude of the relevant wave mode (e.g.umay be the vertical displacement of the pycnocline),
x a horizontal coordinate in a frame of reference moving with the appropriate linear long-wave speed, andt is time.
The coefficients of this equation are obtained from the environmental density and shear flow stratification. It is
important to note that the dispersion coefficientλ is always positive, but that the nonlinear coefficients,µ andν,
can have either sign. The review paper by Grimshaw [7] discusses the derivation of the extended Korteweg–de
Vries equation (1) from the governing equations of the fluid motion, and also gives the expressions for all these
coefficients.

For the case of the Korteweg–de Vries equation, it is well-known that wave groups are described to leading
order by the defocussing nonlinear Schrödinger equation (see [22]). Further, they showed that a wave group should
demodulate. Numerical simulation of wind wave groups in shallow water, based on the Korteweg–de Vries equation,
demonstrate the demodulation of wave groups for various amplitudes [19,21]. It was shown that the envelope of a
wave packet of moderate amplitude varies significantly, becomes asymmetric and the wave packet splits into several
groups with different carrier frequencies. Interesting examples of nonlinear wave focusing in shallow water are
presented by Pelinovsky et al. [17] with application to the “freak” wave phenomenon.

The aim of this paper is to study the dynamics of modulated wave groups in the framework of the extended
Korteweg–de Vries equation. We shall demonstrate that the dynamics of wave groups in the context of Eq. (1) is
much richer than that for the Korteweg–de Vries equation and in particular the reduction to the nonlinear Schrödinger
equation can produce either the focussing or the defocussing case. The nonlinear Schrödinger equation was also
derived from the extended Korteweg–de Vries equation by Parkes [14], but the dynamics of the wave packets in
this case was not investigated.

The extended Korteweg–de Vries equation is a fully integrable model. A simple shift in the wave variableu

transforms it to the modified Korteweg–de Vries equation

∂v

∂t
+ νv2∂v

∂y
+ λ

∂3v

∂y3
= 0, (2)

wherev = u + µ/2ν, y = x + µ2t/2ν2. Its dynamics is determined by the sign ofν (assuming thatλ > 0).
If ν < 0, the modified Korteweg–de Vries equation can be reduced to the Korteweg–de Vries equation through
the Miura transformation [13]. No soliton solution (vanishing at infinity) exists in this case, but they can exist on
a pedestal. Taking into account that the transformation from (1) to (2) also contains a pedestal, soliton solutions
which vanish at infinity, exist in the framework of the extended Korteweg–de Vries equation. The polarity of this
soliton is determined by the sign of the coefficientµ of the quadratic nonlinear term. The amplitude is bounded by
Alim = −µ/ν and in this limiting case, the soliton becomes “thick”, i.e. its width tends to infinity. Recently, the
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interaction of “thick” and “thin” solitons was studied by Slyunyaev and Pelinovsky [20]; a small soliton moving
through a soliton of limiting amplitude changes its polarity.

If ν > 0, the wave dynamics is completely different. In particular, the soliton of the extended Korteweg–de Vries
equation can have either polarity, but the soliton amplitude whose polarity is opposite in sign to the coefficientµ of
the quadratic nonlinear term, should exceed (in modulus) the minimal valueAal = −2µ/ν. The last case corresponds
to an algebraic standing soliton. Additionally, the extended Korteweg–de Vries equation, with a positive coefficientν

of the cubic nonlinear term, has solutions in the form of oscillating packets (breathers), whose analytical expressions
were found by Pelinovsky and Grimshaw [16]. They showed also that the algebraic soliton is unstable transforming
into a breather due to structural instability. The generation of solitons and breathers from an initial disturbance
for the caseµ = 0 recently was studied by Clarke et al. [4]. If the extended Korteweg–de Vries equation is
weakly perturbed (for instance, through variable coefficients), the soliton can transform into a breather and vice
versa [9].

The dynamics of quasi-periodic disturbances in the framework of this long-wave model (1) is much less well
understood, and hence this is the topic of this paper. Importantly, both signs of the coefficientν of the cubic nonlinear
term are taken into account. For the limiting case of weakly nonlinear waves a nonlinear Schrödinger equation for the
wave envelope is derived from the extended Korteweg–de Vries equation (Section 2). The condition for modulational
instability is found, and the wave group is unstable only when the coefficient of the cubic nonlinear term,ν, is positive
and the carrier wavenumber is large. If the wavenumber is less thankcr (kcr =

√
µ2/6λν) the wave packet is stable.

A modified Schr̈odinger equation is derived for wave parameters at the boundary of this parameter space (Section
3). Steady-state solutions of this equation describing envelope solitons are found. It is shown that if the carrier
wavenumber is less thankcr, the soliton exists only when its amplitude exceeds the minimal value corresponding
to the algebraic soliton. The exact breather solution of the extended Korteweg–de Vries equation is analysed in the
weakly nonlinear limit (Section 4). It is shown that this breather describes a wave group with an envelope of the form
of the soliton of the modified nonlinear Schrödinger equation. Numerical simulations of the extended Korteweg–de
Vries equation and the nonlinear Schrödinger equation are described in Section 5. These simulations demonstrate
the main features of wave group dynamics: demodulation of the wave packet, or its self-modulation with formation
of envelope solitons and breathers. However, the dynamics of wave groups within the extended Korteweg–de Vries
equation is “richer”, and in particular, wave packets develop asymmetry of the wave envelope during the evolution
process. Further, wave packets may separate out.

2. Dynamics of weakly nonlinear wave packets

First, the dynamics of very weak disturbances should be considered. In this case, the nonlinear terms in Eq. (1) are
of less importance than the dispersive term. Such a situation typically produces the nonlinear Schrödinger equation
for the envelope of quasi-sinusoidal waves. The applicability of the nonlinear Schrödinger equation in this context is
well known (see, for instance, [2]). In particular, the link between the classical Korteweg–de Vries equation, as well
as the extended Korteweg–de Vries equation, and the nonlinear Schrödinger equation was studied by Zakharov and
Kuznetsov [22] and Parkes [14], respectively. Here we derive the nonlinear Schrödinger equation from the extended
Korteweg–de Vries equation (1) using a slightly different asymptotic procedure to that of [14].

A solution of the extended Korteweg–de Vries equation is sought in the form

u(x, t) = εA(X, T )exp(iΘ)+ ε2A2(X, T )exp(2iΘ)+ c.c + ε2A0(X, T )+ · · · , (3)

whereΘ = kx − ωt , ω = −λk3, X = εx, T = εt , ε � 1 and c.c. is the complex conjugate. After sub-
stitution of (3) into (1), we obtain a set of equations corresponded to the different carrier harmonics. For the
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first harmonic it is

ε2
(
∂A

∂T
+ cg

∂A

∂X

)
+ ε3

(
i3λk

∂2A

∂X2
+ iµk(A2A

∗ + A0A)+ iνk|A|2A
)

+ · · · = 0, (4)

wherecg = −3λk2 is the group velocity of the basic wave. Introducing the system of coordinates moving with
group velocity,ξ = X − cgT andτ = εT , Eq. (4) becomes, to an accuracy of 0(ε4) as

∂A

∂τ
+ i3λk

∂2A

∂ξ2
+ ikµ(A2A

∗ + A0A)+ ikν|A|2A = 0. (5)

For the second harmonic we obtain

ε2((−2iω − 8iλk3)A2 + ikµA2)+ · · · = 0, (6)

and with the same accuracy

A2 = µ

6λk2
A2. (7)

For the mean wave component we similarly obtain

ε3
(
∂A0

∂T
+ µ

∂|A|2
∂X

)
+ · · · = 0. (8)

Taking into account that∂/∂T = −cg∂/∂X at the leading order, Eq. (8) may be solved with the same accuracy to
give

A0 = µ

cg
|A|2 = − µ

3λk2
|A|2. (9)

Consequently, Eq. (5) becomes the classical nonlinear Schrödinger equation,

i
∂A

∂τ
= 3λk

∂2A

∂ξ2
+ kδ|A|2A, (10)

where

δ = ν − µ2

6λk2
. (11)

The nonlinear Schrödinger equation is a well-known model for the evolution of weakly nonlinear quasi-harmonic
wave packet. The character of the wave dynamics, as is well known, depends on the sign of the Lighthill parameter,

L = 3λδk. (12)

If it is negative, the wave packet is stable and demodulates; if it is positive, a plane wave is unstable and modulational
instability (the Benjamin–Feir instability) develops. For surface and internal wavesλ > 0, and the sign of the
Lighthill parameter depends on the sign of nonlinear coefficients. In particular, the classic Korteweg–de Vries
equation with no cubic nonlinear term(ν = 0) has no modulational instability for any sign ofµ [22]. The same
result can be obtained for shallow water waves from the full hydrodynamic equations, see for instance [2]. A
negative coefficient of the cubic nonlinear term(ν < 0) leads to negative values of the nonlinear coefficientδ in
(10) and waves are stable. The coefficient,ν is negative for internal waves in a two-layer fluid [11], and, thus weakly
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nonlinear interfacial waves are always stable. A positive sign of the coefficientν may appear for internal waves in
a three-layer fluid [8], and the modulational instability is possible when

k >
|µ|√
6νλ

. (13)

In particular, when Eq. (1) reduces to the modified Korteweg–de Vries equation(µ = 0), the stability criterion
does not contain the wavenumber, and plane waves of any carrier wavelength are stable ifν < 0 and unstable, if
ν > 0. When the coefficient of the quadratic nonlinear term differs from zero, modulational instability exists only
for high-frequency wave packets, see (13).

It is convenient to introduce new variables,

A1 =
√

|δ|
6|λ|A, η = −3λkτ (14)

as that the nonlinear Schrödinger equation (10) reduces to the canonical form

i
∂A1

∂η
+ ∂2A1

∂ξ2
± 2|A1|2A1 = 0, (15)

where the sign in front of the nonlinear cubic term coincides with the sign ofδλ.
The case of a positive nonlinear term in Eq. (15) is the more interesting from a physical point of view due to

the modulational instability mentioned above. The characteristic scales of this instability are the width�K of the
unstable domain in the envelope wavenumber space, the optimal wavenumberK and the maximum valueΨ for
increment of the Benjamin–Feir instability, given by

�K = 2A10, K =
√

2A10, Ψ = 2A2
10, (16)

whereA10 is the amplitude of plane unperturbed wave (see, e.g. (14)). Also, we give here the expression for the
envelope soliton

A1(ξ, η) = D sech(Dξ) (17)

with arbitrary amplitude,D. It is important to mention that on the boundary in parameter space of the modulational
instability,δ → 0, the soliton amplitude in the physical variables tends to infinity asδ−1/2, see (14), and the wave
group collapses.

The nonlinear Schrödinger equation may be solved exactly using the inverse scattering method [2,13]. We give
here only a few important exact solutions; these are the rational breather [18],

A1(ξ, η) =
(

1 − 4(1 + 4iη)

1 + 4ξ2 + 16η2

)
exp(2iη), (18)

the time periodical breather [12],

A1(ξ, η) = cos(Ωη − 2iϕ)− cosh(ϕ) cosh(pξ)

cos(Ωη)− cosh(ϕ) cosh(pξ)
exp(2iη), (19)

wherep = 2 sinh(ϕ),Ω = 2 sinh(2ϕ) andϕ is free real parameter, and the space periodical breather [3],

A1(ξ, η) = cosh(Ωη − 2iϕ)− cos(ϕ) cos(pξ)

cosh(Ωη)− cos(ϕ) cos(pξ)
exp(2iη), (20)

wherep = 2 sin(ϕ),Ω = 2 sin(2ϕ) andϕ is again a free real parameter. In fact, (19) and (20) are equivalent and are
special cases of a more general solution in whichϕ is allowed to be complex in either expression, while the rational
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breather can be obtained in the limitϕ → 0. The breather solutions of the nonlinear Schrödinger equation have
been cited as relevant to understanding the nonlinear origin of the “freak” wave phenomenon on the sea surface
where the wave amplitude can be amplified up to three times [6,10]. All these solutions can be used to test numerical
solutions of the extended Korteweg–de Vries equation.

3. Modification of the nonlinear Schrödinger equation in the transition zone

The case when the coefficientδ of the cubic nonlinear term in (10) is close to zero, i.e.k ≈ |µ|/√6νλ, needs
special consideration. A general approach to obtain a modified nonlinear Schrödinger equation is described in [14].
Here we use a slightly different asymptotic method to produce the modified nonlinear Schrödinger equation and
obtain its solutions. When we continue the series (3) up to 0(ε3), including the third harmonic terms, introduce the
re-scaled coordinates,ξ = ε(X − cgT ), τ = ε3T , and replaceδ with ε2δ, then Eq. (4) for amplitude of the first
harmonic transforms to

∂A

∂τ
+ 3iλk

∂2A

∂ξ2
+ ik

ε2
[µ(AA0 + A∗A2)+ ν|A|2A]

+ ik[µA∗
2A3 + ν(A2

0A+ A∗2A3 + 2A0A
∗A2 + 2A|A2|2)] = 0, (21)

where the amplitudes of the zero, second and third harmonics can be found from the counterparts of Eqs. (6) and
(8)

3λk2∂A0

∂ξ
+ ε2∂A0

∂τ
+ ∂

∂ξ

{
µ|A|2 + ε2

[µ
2
(A2

0 + 2|A2|2)+ ν(2A0|A|2 + A∗2A2 + A2A∗
2)

]}
= 0, (22)

−ik(6λk2A2 − µA2)+ ε2 ∂

∂ξ

[
−9λk2A2 + µ

2
A2

]
+2ikε2[µ(A0A2 + A∗A3)+ ν(A0A

2 + 2|A|2A2)] = 0, (23)

−8λk2A3 + µAA2 + 1
3νA

3 = 0. (24)

Using the condition that in the transition zoneν ≈ µ2/6λk2 with an accuracy ofε2, the solutions of the last three
equations have the following form:

A3 = ν2

µ2
A3, (25)

A2 = µ

6λk2
A2 − ε2

[
2
ν3

µ3
A2|A|2 + ν

ikµ

∂

∂ξ
A2

]
, (26)

A0 = − µ

3λk2
|A|2 + ε2

(
−2ν3

µ3
|A|4 + Â0

)
, (27)

where

∂Â0

∂ξ
= 4ν2

µ3

∂

∂τ
|A|2. (28)
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As a result, Eq. (21) becomes

∂A

∂τ
+ 3ikλ

∂2A

∂ξ2
+ ikδ|A|2A− νA∗ ∂

∂ξ
A2 + ikµAÂ0 = 0. (29)

Calculating∂|A|2/∂τ from (29) and substituting into (28), we find that

Â0 = 4ν3

µ3
|A|4 − 12ikλν2

µ3

(
A∗ ∂A

∂ξ
− A

∂A∗

∂ξ

)
. (30)

Hence Eq. (29) becomes the modified nonlinear Schrödinger equation,

∂A

∂τ
+ 3iλk

∂2A

∂ξ2
+ ikδ|A|2A+ 4ik

ν3

µ2
|A|4A− 2νA2∂A

∗

∂ξ
= 0. (31)

It is convenient to transform (31) into

i
∂A

∂η
= ∂2A

∂ξ2
+ α|A|2A+ β|A|4A+ iγA2∂A

∗

∂ξ
(32)

using the following transformation

η = 3λkτ, α = δ

3λ
, β = 2ν2

9λ2k2
, γ = 2ν

3λk
. (33)

Equations of the form (32) have been derived in several physical context (e.g. [14]). Note that sincek2 = µ2/6νλ to
leading order,β = 1

2γ
2 which is the condition needed to ensure that (32) is an integrable equation (see, for instance,

[1]). Further, the gauge transformationA(ξ, η) = B(ξ ′, η)exp(imξ + im2η) with ξ ′ = ξ + 2mη can be used to
eliminate the cubic detuning term with coefficientα provided thatm = −α/γ . However, it is useful to retain this
term explicitly here.

The two additional nonlinear terms in the modified nonlinear Schrödinger equation change the dynamics of
large-amplitude wave groups. In particular, presenting the complex wave amplitude in the formA = (B0 +
b)exp(i(Φ0 +Φ)), whereΦ0 = −(αB2

0 + βB4
0)η, we obtain the dispersion relation for a weak perturbation of the

nonlinear plane wave(b,Φ ∼ exp(i(Ωη −Kξ))

Ω2 = −2(αB2
0 + βB4

0)K
2 +K4. (34)

Here, and in the sequel, we have used the relation thatβ = 1
2γ

2 to simplify formulas. Modulational instability
occurs if

α + βB2
0 > 0. (35)

Hereβ > 0 (see (33)) and hence modulational instability can only occur for any amplitude ifα > 0 (i.e.δ > 0).
But if α < 0 (δ < 0) modulational instability can only occur if the wave amplitude exceeds the critical value

|A| > Acr =
√

|α|
β

=
√

|δ|µ2

4ν3
. (36)

Soliton solutions of Eq. (32) can be found analytically. The complex functionA should be presented in the form

A(ξ, η) = B(ξ)exp i[Θ(ξ)−Q2η]. (37)
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After substitution in (32), we readily obtain the following relation between the amplitude and phase,

Θ = −γ
4

∫
B2 dξ, (38)

while the amplitudeB is given by the ordinary differential equation

d2B

dξ2
−Q2B + αB3 + χB5 = 0, (39)

where

χ = 3β

8
= ν3

2λµ2
> 0. (40)

The solution of (39) gives the soliton,

B = 2Q√
α + (α2 + (16χQ2/3) cosh(2Qξ))1/2

. (41)

If α > 0 the soliton amplitude varies from zero to infinity. In the small-amplitude limit, the expression (41)
transforms to the envelope soliton (17), and for large amplitudes the soliton reduces to

B =
√ √

3/χQ

cosh(2Qξ)
. (42)

The same expression is obtained exactly whenα = 0 (the boundary of the Benjamin–Feir instability domain). The
energy (momentum) of this soliton does not depend on the wave amplitude. Usually, such solutions are sensitive to
external perturbation terms to (31) and structurally unstable [15], but this analysis is beyond the scope of this paper.

For α < 0 (outside of the Benjamin–Feir instability zone) the soliton exists only if its amplitude exceeds the
critical value

Bmin =
√

3|α|
2χ

=
√

|δ|µ2

ν3
. (43)

This condition can be expressed through�k = k − kcr(kcr = µ2/6λν)

Bmin = µ

ν

√
2|�k|
kcr

. (44)

It is important to note that this minimal soliton amplitude exceeds twice the critical value for the Benjamin–Feir
instability. In this limit the soliton transforms into the algebraic form

B =
√

6|α|
4χ + 3α2ξ2

. (45)

For large amplitudes the soliton is again given by (42). When|α| is large, the soliton amplitude is also large and the
weak-amplitude approximation falls.
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4. The breather solution of the extended Korteweg–de Vries equation

The asymptotic analysis of wave group dynamics in the weakly nonlinear limit described in the previous two
sections can be compared with exact solutions of the extended Korteweg–de Vries equation (1) representing nonlinear
wave groups (i.e. breathers). In the framework of the canonical modified Korteweg–de Vries equation it has been
shown that breathers exist only for a positive sign of the coefficientν of the cubic nonlinear term. Taking into
account that the extended Korteweg–de Vries equation can be reduced to the modified Korteweg–de Vries equation,
breathers should also exist only forν > 0. The expected solutions for breathers in the framework of (1) were
obtained by Pelinovsky and Grimshaw [16] for this case and for any value of the coefficientµ of the quadratic
nonlinear term. It has the following form (for simplicity,λ = 1,µ = 12q, ν = 6, whereq is arbitrary),

u = 2
∂

∂x
tan−1 l cosh(Ψ ) cos(θ)− k cos(Φ) sinh(κ)

l sinh(Ψ ) sin(θ)+ k sin(Φ) cosh(κ)
, (46)

whereθ andκ are “travelling” phases,

θ = k(x − wt)+ θ0, κ = l(x − vt)+ κ0, (47)

propagating with the velocities,

w = −k2 + 3l2, v = −3k2 + l2. (48)

This solution has four free parameters, two initial phases (θ0 andκ0) and two “energetic” parameters:

Φ + iΨ = tan−1
[
l + ik

2q

]
. (49)

It is convenient to express the “local” wavenumbers,k andl, through these parameters,Φ andΨ ,

k = q
sinh(2Ψ )

cos2(Φ) cosh2(Ψ )+ sin2(Φ) sinh2(Ψ )
, (50)

l = q
sin(2Φ)

cos2(Φ) cosh2(Ψ )+ sin2(Φ) sinh2(Ψ )
. (51)

The relationship between the wavenumbers of the carrier and envelope waves can vary widely. We investigate here
only slowly modulated wave groups which can be obtained from this breather solution whenl � k. This limit
follows whenΦ → π/2, andΨ is fixed. In this casew andv are the linear phase and group velocities,cp andcg,
respectively, we can omit the term withl in the denominator of (46) and replace tan−1(z) with z. As a result, the
expression (46) reduces to

u = 2l√
1 − 4q2/k2

sech[l(x − cgt)] sin [k(x − cpt)], (52)

which coincides with (17) on taking into account the values of the coefficients. Also, from (50) it follows that

k = 2q cothΨ, (53)

and, thereforek > 2q, as it should be from the criterion (13) for modulational instability. It is important to mention
that in the vicinity of the boundary of the modulational instability domain, the breather amplitude grows indefinitely
(Ψ → ∞), and our approximation is not valid.

Thus, the weakly nonlinear breather is an envelope soliton, and its parameters satisfy the modulational instability
criterion. If the coefficient of the quadratic nonlinear term in the extended Korteweg–de Vries equation is zero, the
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wavenumber of a weakly nonlinear breather can have any value according to the modulational instability criterion
(13) of the modified Korteweg–de Vries equation.

Another limit for a slowly modulated wave packet can be obtained from the breather solution whenΨ → ∞
for fixed 0< Φ < π/2. In this casek � 2q and this corresponds to the boundary of the modulational instability
domain and the consequent applicability of the modified nonlinear Schrödinger equation. Introducing the deviation
K from this boundary byk = 2q +K, |K| � 2q, from (50) and (51) we get

K = −4q cos(2Φ)exp(−2Ψ ), (54)

l = 4q sin(2Φ)exp(−2Ψ ), (55)

and

tan(2Φ) = − l

K
. (56)

In particular, for positiveK (when the coefficientδ of the cubic nonlinear term in the nonlinear Schrödinger equation
is positive) we haveΦ > π/4, and for negativeK (δ < 0)Φ < π/4. If Φ is not close to zero, both terms withl in
(46) are small and with accuracyl/k the solution (46) becomes

u = 2l

1 + cot2(Φ) tanh2(κ)

[− cosh(Ψ ) sin(θ)+ sinh(Ψ ) cot(Φ) tanh(κ) cos(θ)

sin(Φ) cosh(κ)

]
. (57)

Taking into accountΨ → ∞, this transforms to

u = l exp(Ψ )

sin(Φ) cosh(κ)[1 + cot2(Φ) tanh2(κ)]
[− sin(θ)+ cot(Φ) tanh(κ) cos(θ)]. (58)

Rewriting it in the form of (3), the complex amplitude of the first harmonic can be obtained as

A = l exp(Ψ )√
2[ cosh2(κ)− cos2(Φ)]

exp(−iΘ), (59)

where

cot(Θ) = cot(Φ) tanh(κ). (60)

It is convenient to write the modulus of wave amplitude in the form of (41)

B =
√

l2 exp(2Ψ )

2[ cosh(2lξ )− cos(2Φ)]
. (61)

After substitution ofΦ andΨ from (54) and (55), the final version is

B =
√

2ql2

K + √
K2 + l2 cosh(2lξ )

, (62)

which fully coincides with (41).
Whenl → 0, orΦ → 0, we should substitute (54) and (55) into (46) and take the limitl → 0,

u = −2
∂

∂x
tan−1

[√
|K|
2q

cos(θ)− 2q
√

2|K|/q(x − vt)

1 + √|K|/2q sin(θ)

]
. (63)

This “algebraic” breather has an envelope in the form (45) of the algebraic soliton of the modified nonlinear
Schr̈odinger equation.
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Thus, we have full agreement between solutions of the modified Schrödinger equation and the weakly nonlinear
breather solution of the extended Korteweg–de Vries equation. For large negativeK, the carrier wavenumber of the
breather decreases, its amplitude increases and the breather represents solitons of opposite polarity. Because solitons
of different polarity have different amplitudes (for the same value of the propagation speed), and the “negative”
soliton should exceeds the amplitude of the algebraic soliton(2µ/ν), such a breather is a strongly nonlinear wave.

5. Numerical simulations

Our aim here is to compute the evolution of wave packets within the framework of the various models described
in the previous sections. The extended Korteweg–de Vries (eKdV) equation is solved using a finite-difference
scheme, while the nonlinear Schrödinger equation (NLS) is solved with a pseudo-spectral method. The boundary
conditions for both equations are periodic. The length of the domain is 400, the carrier wavenumber isk = 1.0048
(60 wavelengths in domain). The coefficient of the dispersion term in the eKdV equation is set asλ = 1, the
coefficient of the quadratic nonlinear term is set asµ = 4, while the coefficientν of the cubic nonlinear term is
varied from 5 to−1, providing both modulated and demodulated regimes (the coefficient of the cubic nonlinear
term in the NLS is such thatδ = 0 for νcr = 2.641). The initial condition for the eKdV equation is taken in the
form

u(x,0) = A0 exp(−K2x2) sin(kx), (64)

and for the NLS is

A(x) = 1
2A0 exp(−K2x2), (65)

whereA0 = 0.2 andK = 0.0157.
The first simulation is forν = 5 and corresponds to a zone of modulational instability. Our simulations are

presented in Fig. 1 for both models, the eKdV equation (left) and the NLS equation (right); note that for the latter
case we restore the carrier wave to better facilitate the comparison. First, we should point out that Eq. (1) is solved in
fixed coordinates, and a wave packet propagates to the left (in the linear case with the group velocity,cg = −3k2),
but Eq. (10) is written for a system of coordinates propagating with this linear group velocity. The dynamics of
the wave packet in the framework of the NLS equation follows known scenarios: an initial disturbance transforms
into envelope solitons and dispersive tails. The number of solitons can be found from the corresponding eigenvalue
problem (which is written for the “classical” form (15) of the NLS equation)

dF1

dx
= 6F1 − A1(x)F2,

dF2

dx
= 6F2 + A1(x)F1, (66)

whereA1 = √
δ/6A (see (14)) and6 is the eigenvalue, complex in general. When the initial disturbance (65)

has a single polarity, it is known [13] that all discrete eigenvalues are real and determine the soliton amplitudes as
Asol = 4

√
6/δ6 . Here the discrete levels6 are 0.05 and 0.026. As a result, two envelope solitons should form

with amplitudes 0.33 and 0.16. Because the group velocities are the same, these solitons cannot split in space, and
so interact between themselves. Fig. 1 demonstrates the transformation of an initial Gaussian impulse (65). It is
interesting to compare the wave groups during this process in both models. At the time momentt = 40 an asymmetry
for the eKdV (left) is evident and a small-amplitude second harmonic group leaves the initial group. There is full
symmetry for the NLS (right). The first occurrence of an envelope soliton is att = 100 for both models and
corresponding plots are very similar. As mentioned above, two envelope solitons should form, but att = 100, 140
they have not yet separated, and we see similar large impulses and two adjoining wave groups in both plots. At
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Fig. 1. Simulation of wave packet in the regime of modulational instability (left: eKdV equation, right: NLS equation).
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Fig. 1. (Continued).
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Fig. 2. Simulation of wave packet in the regime of modulational stability (left: eKdV equation, right: NLS equation).
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t = 400 two solitons and a small dispersive tail appear in the eKdV model (left), and a large impulse with two
adjoining small wave groups, and a small symmetric tail are seen in the right-hand side plot (NLS). After this
time, the left-hand side and right-hand side plots are not similar. The NLS model demonstrates a periodic process of
interaction of two solitons with recurrence att = 600. The eKdV model shows a complex interaction and separation
of both solitons. The amplitudes of the envelope solitons are in good agreement with predicted values based on the
inverse scattering method.

The next simulation is forν = −1. This case corresponds to the demodulated NLS equation(δ < 0). Simulations
of a Gaussian wave packet are presented in Fig. 2 (left for the eKdV equation and right for the NLS equation).
As expected, the wave packet disperses, its amplitude decreases, and its length increases. The difference between
the two models is related to the generation of free wave groups for the second and “zero” harmonics as mentioned
above. Similar results are obtained also forν = 0 (Korteweg–de Vries equation), see [19,21].

The modelling of the wave group evolution in the transition zone(δ ≈ 0) presents some technical difficulties
due to an increase in the characteristic spatial and temporal scales, that requires a more accurate numerical scheme.
The length of domain is increased to 1000, the cubic nonlinear coefficient is set atν = 6, the quadratic nonlinear
coefficient is set atµ = 3. For these parameters, the critical value of the carrier wavenumber iskcr = 0.5. First,
we checked the stability and steady-state (for the envelope) propagation of the breather (46), see Fig. 3 forK > 0
(Φ = 0.8, Ψ = 2). It is clear from Fig. 3 that no tail is formed (compare the simulations in Fig. 1), because the
breather is an exact solution of the eKdV equation. Then, this breather solution is multiplied by 1.05 and then used as
the initial condition for (1). Results of these simulations are presented in Fig. 4. As expected, the wave “undresses”
its tail and transforms to a new breather state. In the transition zone, the wave envelope is not symmetric. The same
features occur for the “reduced” breather, where amplitude is 0.9u0(x), see Fig. 5. WhenK > 0 the breather is

Fig. 3. Steady-state propagation of a breather,u0(x) for k = 0.5002> kcr = 0.5.
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Fig. 4. Evolution of the initial disturbance, 1.05u0(x) for k = 0.5002> kcr = 0.5.
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Fig. 5. Evolution of the initial disturbance, 0.9u0(x) for k = 0.5002> kcr = 0.5.

stable, and if an initial disturbance is greater than the breather, it transforms back to the breather with a dispersive
tail, similar to Fig. 4. More interesting is the case, when the initial amplitude is less than the minimal amplitude of the
breather (“algebraic” breather), see (43) and (63). In our caseBmin = 0.126 (forΦ = 0.25,Ψ = 2,K = −0.016).
The evolution of this small breather-like initial disturbance is shown in Fig. 6, and demonstrates the demodulation
of the wave packet and its dispersion.

The last series of simulations were for the periodic sine modulation,

A(x) = A0[1 + 0.1 sinKx] sinkx. (67)
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Fig. 6. Evolution of an initial disturbance with an amplitude less than the minimal value fork = 0.484< kcr = 0.5.
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Fig. 7. Snapshot of the periodically modulated wavetrain (left: eKdV equation, right: NLS equation).
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Fig. 7. (Continued).
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Fig. 7. (Continued).
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Results for the caseµ = 4, ν = 2, λ = 1, k = 1.57 (kcr = 4
3), K = 0.0157,A0 = 0.2 are presented in Fig. 7 for

the eKdV equation and the NLS equation. Snapshots show the development of the Benjamin–Feir instability with
formation of solitons and breathers, and their recurrence. Again here the simulation in the framework of the eKdV
equation shows more asymmetric forms for the wave envelopes. The NLS equation describes the wave evolution
correctly only at the beginning stage.

6. Conclusions

These results show the link between the solutions of the eKdV equation and the NLS equation for the description
of wave groups. The dynamics of solitons and breathers in the eKdV model is determined by the sign of the
coefficientν of the cubic nonlinear term. Correspondingly, the dynamics of wave groups in the weakly nonlinear
reduction to the NLS equation is determined by the sign of the coefficient of its cubic nonlinear term. For the case
whenν < 0 weakly nonlinear wave groups are always stable, but ifν < 0 then weakly nonlinear wave groups with
small carrier wavenumbers are again stable, but high wavenumber wave groups are unstable and form wave packets
(i.e. envelope solitons). For the transition zone where the coefficientδ ≈ 0, a modified NLS equation is derived,
and its steady-state solitary wave solutions are found. In particular, it is shown that this equation has a soliton of
algebraic form. The exact breather solution of the eKdV equation is investigated in the weakly nonlinear limit. It is
shown that the breather coincides with solutions of the NLS equation and its modification in the transition zone. Our
numerical simulations of the eKdV equation demonstrate the main features of the wave dynamics for a wide range
of parameters, exhibiting modulation and demodulation, and the formation of envelope solitons and breathers. For
the same conditions the solutions of the eKdV equation have a more asymmetric form than that predicted in the
framework of the NLS equation. Also, the steady-state wave packets of the eKdV equation move relative to each
other, a feature not seen in the NLS equation.
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