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We study the dynamics of thin liquid films on the surface of a rotating horizontal cylinder in the

presence of gravity in the small surface tension limit. Using dynamical system methods, we show

that the continuum of shock solutions increasing across the jump point persists in the small surface

tension limit, whereas the continuum of shock solutions decreasing across the jump point

terminates in the limit. Using delicate numerical computations, we show that the number of steady

states with equal mass increases as the surface tension parameter goes to zero. This corresponds to

an increase in the number of loops on the mass-flux bifurcation diagram. If n is the number of loops

in the mass-flux diagram with 2nþ 1 solution branches, we show that nþ 1 solution branches are

stable with respect to small perturbations in the time evolution of the liquid film. VC 2011 American
Institute of Physics. [doi:10.1063/1.3635535]

I. INTRODUCTION

The time evolution of a liquid film spreading over a

solid surface under the action of the surface tension and vis-

cosity can be described by lubrication models.1–5 These

models approximate the full system of Navier-Stokes equa-

tions that describe the motion of the liquid films. Thin films

play an increasingly important role in a wide range of appli-

cations, for example, packaging, barriers, membranes, sen-

sors, semiconductor devices, and medical implants.6–8

We are concerned here with the dynamics of a viscous

incompressible thin fluid film on the outer surface of a hori-

zontal circular cylinder that is rotating around its axis in the

presence of a gravitational field. The rotating thin fluid film

can exhibit a variety of different behaviors including pattern

formations (“shark teeth” and “duck bill” patterns), fluid cur-

tains, hydroplaning drops, and frontal avalanches.9,10 As a

result, the coating flow has been the subject of continuous

study since the pioneering work of Moffatt11 and Pukhna-

chov.12 During the past decade, this problem attracted many

researchers who analyzed different types of flow regime

asymptotically13–19 and numerically.20–22

The coating flow is generated due to the cylinder’s sur-

face motion relative to the fluid. If the cylinder is fully

coated, there is only one free boundary where the liquid

meets the surrounding air. Otherwise, there is also a free

boundary (or three-phase contact line) where the air and liq-

uid meet the cylinder’s surface. The motion of the liquid film

is governed by four physical effects: viscosity, gravity, sur-

face tension, and centrifugal forces.

We can model the flow on a rotating cylinder using the

full Navier-Stokes equations for the velocity vector

~uðr; h; z; tÞ, where r is the axial variable, h is the angular vari-

able, and z is the variable in the direction of the cylinder. Let

h(h, t) be the thickness of the fluid on the surface of the cyl-

inder at time t. We shall consider the limit when the average

thickness of the liquid is much smaller than the radius of the

cylinder. A model that takes into account small surface ten-

sion and gravitational force was considered in a number of

works including Pukhnachov12 and O’Brien.23 This model is

written in the form,

@thþ @h h� 1

3
h3 cosðhÞ

� �
þ 1

3
�@h h3 @hhþ @3

hh
� �� �

¼ 0;

(1.1)

where h(hþ 2p, t)¼ h(h, t) and � > 0 is a small parameter.

The model (1.1) uses no-slip boundary conditions at the

liquid=solid interface. A solution to this model is physically

relevant if either h is strictly positive (the cylinder is fully

coated) or h is nonnegative (the cylinder is dry in some pla-

ces). Because of slow rotation, the same model describes

both the rimming flow (on the inner side of the cylinder) and

the coating flow (on the outer side of the cylinder).

The stationary solutions of the model equation (1.1) are

given by the 2p-periodic solutions of the third-order differ-

ential equation,

h� 1

3
h3 cosðhÞ þ 1

3
�h3 @hhþ @3

hh
� �

¼ Q; (1.2)

where Q is the constant that corresponds physically to flux of

the liquid through the film cross section.

A number of researchers including Moffatt,11 Johnson,24

Benjamin et al.,25 Wilson and Williams,26 and O’Brien and

Gath27 considered stationary solutions of Eq. (1.2) with

� ¼ 0. Besides smooth periodic solutions for Q < Qc ¼ 2
3
,

there are two continua of shock solutions for Q¼Qc, one is

associated with the increasing functions at the jump point

(called increasing shocks) and the other one is associated

with the decreasing functions at the jump point (called

decreasing shocks). Both families of solutions are parameter-

ized by the integral,
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M ¼ 1

2p

ðp

�p
hðhÞdh; (1.3)

which is the leading-order approximation to the volume of

liquid in the cylindrical tube that determines the mass of the

liquid. The solution branches can be plotted on the parameter

plane (M, Q) for a fixed value of �, which we term as the

mass–flux diagram.

Previous authors discussed the possibility of decreasing

shocks but discarded them physically on the grounds that these

shocks are unstable if the surface tension effects are included

with � 6¼ 0. Singular perturbation theory of small � was recently

considered by Benilov et al.,28 where the authors showed by

using asymptotic and numerical methods that decreasing shocks

do not exist for small positive �. On the other hand, increasing

shocks exist for small positive �, and asymptotic arguments

complemented by the numerical approximations were used to

predict the linearized stability of increasing shocks.

Pukhnachov29 proved the existence and uniqueness of

the steady states in the differential equation (1.2), if � and Q
are small. Karabut30 constructed two branches of steady

states in the limit of large �. Numerical approximations in

Benilov et al.31 (Figure 14) showed that the mass-flux dia-

gram may become more complicated for small � and large M
and may include a loop near the value Q¼Qc. Three solu-

tions coexist for a fixed M if the loop is present. Stability of

these solutions was not studied in Ref. 31.

It is the purpose of this work to continue, improve, and

clarify the results of Benilov et al.28,31 In particular, we use

dynamical system methods to prove that the family of

increasing shocks persists with respect to � 6¼ 0, whereas the

family of decreasing shocks terminates at � ¼ 0. This corre-

sponds to the main conclusion of Ref. 28 but relies now on

more rigorous geometric theory.

We develop a delicate numerical approximation of the

steady solutions of Eq. (1.2) to show that the number of loops

on the mass-flux diagram increases when � is reduced to zero

and the location of these loops goes to infinity. We also apply

numerical approximations of eigenvalues of the linearized

time evolution associated with the model equation (1.1) and

show that if n is the number of loops on the mass-flux dia-

gram, then nþ 1 solution branches are stable with respect to

small perturbations. These results give a complete solution of

the existence and stability of regularized shock solutions,

compared to the numerical computations in Ref. 31.

The paper is organized as follows. Section II presents

geometric theory of persistence of increasing shocks. Section

III presents numerical results on multi-valued loops in the

mass–flux bifurcation diagram. Section IV provides a sum-

mary and discusses open questions.

II. GEOMETRIC THEORY OF REGULARIZED SHOCKS

We shall study here shock solutions of the steady-state

equation (1.2) in the limit of small �. The steady-state equa-

tion (1.2) can be written in the form,

�
d3h

dh3
þ dh

dh

� �
¼ cosðhÞ � 3ðh� QÞ

h3
; h 2 ð�p; pÞ: (2.1)

We review the limiting solutions at � ¼ 0 that exist for any

Q 2 ð0; 2
3
Þ and prove using a geometric theory that increasing

shocks at � ¼ 0 and Q ¼ 2
3

persist for any � > 0, whereas

decreasing shocks terminate at � ¼ 0 and do not exist for

� > 0. The same conclusion was obtained recently28 using

methods involving asymptotic expansions and numerical

approximations.

Solutions of the limiting problem at � ¼ 0,

FQðhÞ :¼ 3ðh� QÞ
h3

¼ cosðhÞ; h 2 ð�p; pÞ; (2.2)

depend on the value of the flux Q> 0.

If Q 2 0; 2
3

� �
, the 2p-periodic solution h(h) is unique.11

To obtain this result, we denote the smallest roots of

FQ(h)¼61 for Q 2 0; 2
3

� �
by h6 such that h�< hþ (Figure 1,

left). The unique solution of the limiting problem (2.2)

satisfies

hð�hÞ ¼ hðhÞ : h0ðhÞ > 0; h 2 ð�p; 0Þ; (2.3)

with h(6p)¼ h�, h(0)¼ hþ, and h
0
(6p)¼ h

0
(0)¼ 0. The

unique solution with properties (2.3) is shown in Figure 1

(right top panel) for Q¼ 0.5.

If Q > 2
3
, no solution h(h) exists because max

h2Rþ
FQðhÞ < 1.

If Q ¼ Q� ¼ 2
3
, there is a unique continuous solution

h(h) with properties (2.3) and h(6p)¼ h�, h(0)¼ hþ : 1,

h
0
(�p)¼ 0, and lim

h!�0
h0ðhÞ ¼ 1ffiffi

6
p . This solution with the sharp

corner is shown in Figure 1 (right middle panel) for Q¼Q*.

Besides the continuous solution with the sharp corner at

Q ¼ Q� ¼ 2
3
, there exist two symmetric families of shock sol-

utions with a jump discontinuity at either h¼ h0 or h¼�h0,

where h0 2 0; p
2

� �
is a continuous parameter.

To construct the shock solutions, we denote the two sim-

ple zeros of FQ� ðhÞ ¼ cosðh0Þ 2 ð0; 1Þ by H6 such that

H�< 1<Hþ. The increasing shock is centered at h¼�h0

and satisfies

h0ðhÞ > 0; h 2 ð�p;�h0Þ; h0ðhÞ < 0; h 2 ð�h0; pÞ;
(2.4)

with h(6p)¼ h�, lim
h!�h0�0

hðhÞ ¼ H�, lim
h!�h0þ0

hðhÞ ¼ Hþ,

and h
0
(6p)¼ 0. The increasing shock is shown in Figure 1

(right bottom panel) for Q¼Q*. Using the symmetry of the

limiting problem (2.2) with respect to reflection h! �h, the

decreasing shock can be constructed using the reflection. It is

then centered at h¼ h0.

The net mass M defined by Eq. (1.3) is a one-to-one

increasing function of Q for Q 2 0;Q�ð Þ with lim
Q!0

M ¼ 0 and

lim
Q!Q��0

M ¼ M� for some M*<1, whereas the two families

of shock solutions for Q¼Q* correspond to the values of

M 2 M�;1ð Þ.
To consider the persistence of the two shock solutions

with respect to parameter �, we shall rescale the coordinate h
near 6h0 by the transformation,
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hðhÞ ¼ HðxÞ; x ¼ h� h0

�1=3
: (2.5)

The new function H(x) satisfies a new version of the third-

order differential equation, also known as the inner equation,

d3H

dx3
þ �2=3 dH

dx
¼ cosð6h0 þ �1=3xÞ � FðHÞ;

x 2 �p� h0

�1=3
;
p� h0

�1=3

	 

;

(2.6)

where H(x) is a periodic function with period 2p��1=3 and

FðHÞ ¼ FQ� ðHÞ ¼
3H � 2

H3
:

The limiting problem at � ¼ 0 becomes now the autonomous

equation,

d3H0

dx3
¼ cosðh0Þ � FðH0Þ; x 2 R; (2.7)

FIG. 1. Function FQ(h) (left) and steady-state solution h(h) (right) for Q¼ 0.5 (top) and Q¼ 2=3 (middle and bottom). The right bottom panel shows an

increasing shock solution located at h¼�h0.
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which is posed in the phase space ðH0;H
0
0;H

00
0Þ 2 R3. Criti-

cal points of the dynamical system (2.7) corresponds to zeros

of F(H0)¼ cos(h0), which are denoted above by H� and Hþ
such that H�<Hþ. Solutions of Eq. (2.7) are not available

in the closed form; therefore, we shall use dynamical system

methods (geometric theory) to analyze shock solutions (het-

eroclinic orbits). Note in passing that solutions of a simpli-

fied version of Eq. (2.7), y000 ¼ y�2 are available in the closed

form.32

The increasing shock h(h) of the original equation (2.1)

corresponds after scaling (2.5) and the limit �! 0 to a heter-

oclinic orbit H0(x) of the reduced equation (2.7) satisfying

the boundary conditions,

lim
x!61

H0ðxÞ ¼ H6: (2.8)

The decreasing shock corresponds to a heteroclinic orbit

with the boundary conditions,

lim
x!61

H0ðxÞ ¼ H�: (2.9)

Linearization of the limiting equation (2.7) near the equilib-

rium states H6 with H0 ¼ H6 þ ~H6ðxÞ gives

d3 ~H6

dx3
¼ �F0ðH6Þ ~H6; (2.10)

where F0(H�)> 0 and F0(Hþ)< 0.

If F0(H�)> 0, there exist one decaying and two growing

solutions of Eq. (2.10) for ~H�. From a geometric point of

view, this means that the phase space R3 near (H�, 0, 0) can

be decomposed into the sum of two invariant manifolds, a

two-dimensional unstable manifold Wu(H�) and a one-
dimensional stable manifold Ws(H�).

Similarly, if F0(Hþ)< 0, there exist two decaying and

one growing solutions of Eq. (2.10) for ~Hþ, hence, the phase

space R3 near (Hþ, 0, 0) can be decomposed into the sum of

two invariant manifolds, a one-dimensional unstable mani-

fold Wu(Hþ) and a two-dimensional stable manifold Ws(Hþ).

Here, stable and unstable manifolds are introduced with

respect to the flow of the dynamical system (2.7) and they

are not related to physical stability of the equilibrium states

or shock solutions. Heteroclinic orbits satisfying boundary

conditions (2.8) and (2.9), if they exist, are intersections of

stable and unstable manifolds from the two critical points

(H�, 0, 0) and (Hþ, 0, 0) in the phase space R3.

Intersection of two-dimensional manifolds in Wu(H�)

\ Ws(Hþ) is transverse in the three-dimensional space.

Hence, a heteroclinic orbit satisfying the boundary condi-

tions (2.8) exists generally and persists under the perturba-

tion. This heteroclinic orbit corresponds to the increasing

shock in the inner equation (2.6).

Intersection of one-dimensional manifolds in Wu(Hþ)

\ Ws(H�) is non-transverse in the three-dimensional space.

Hence, a heteroclinic orbit satisfying the boundary condi-

tions (2.9) does not exist generally and does not persist under

the perturbation. Moreover, it was shown in Ref. 28 using

sign-definite integral quantities that no solution of the limit-

ing equation (2.7) with the boundary conditions (2.9) exists.

Since the boundary conditions (2.9) correspond to decreasing

shocks, we conclude that no decreasing shocks may exist in

the inner equation (2.6) for small and zero values of �.
Based on this geometric theory of dynamical systems,

we summarize that the increasing shock centered at h¼�h0

persists as a smooth solution h(h) of the third-order equation

(2.1) for any small � > 0, whereas the decreasing shock cen-

tered at h¼ h0 does not persist in the third-order equation

(2.1) for any small � > 0. This conclusion holds for any fixed

M>M*. It does not exclude, however, a possibility of a com-

plicated branching behavior in the solutions of the third-

order equation (2.1), which can come from M¼1 for small

values of � > 0. The limit M!1 corresponds to the case of

large h and is beyond the applicability of the underlying

model (2.1). Nevertheless, as we will show in the next sec-

tion, bifurcation from M¼1 at � ¼ 0 corresponds to non-

trivial steady-state solutions, which reside for finite values of

M if � > 0.

III. NUMERICAL APPROXIMATIONS OF
REGULARIZED SHOCKS

We shall construct numerical approximations of solu-

tions of the third-order differential equation (2.1). The nu-

merical approximations were generated using a custom-

written turning-point algorithm and implemented in MATLAB.

Solutions were found using Newton-Raphson iterations and

Fourier spectral differentiation matrices with 256, 512, and

1024 Fourier modes. The mass–flux diagram was generated

with parameter continuation of Q or M, as decided by the

algorithm. A convergent solution was defined numerically if

the (nþ 1)-th iteration hnþ 1(h) satisfied

sup
h2½�p;p�

jhnþ1ðhÞ � hnðhÞj � 5� 10�8:

Eventually, non-convergent solutions were found and the pa-

rameter continuation failed at the turning (bifurcation)

points. To resolve the mass–flux diagram near the turning

point, the following algorithm was implemented: first, a ref-

erence point was identified in k steps behind the turning point

(for our simulations, we generally chose k¼ 5). Next, the

convergence of the algorithm at the points making up a half-

circle centered at the turning point was checked. The orienta-

tion of the half-circle was chosen to be facing away from

the direction of the current parametrization (i.e., if we

are increasing along the vertical axis, then the lower half of

the circle would be chosen). A vector was then drawn from

the turning point to the convergent point with the largest dis-

tance from the reference point. Finally, the direction of new

parametrization was chosen from the largest component of

this vector. We found that this algorithm successfully navi-

gated the loops in the mass-flux diagram.

Figure 2 shows the mass-flux diagram of stationary solu-

tions for four values of �. For � ¼ 0:005 (dashed curve), we

see no loops in the mass-flux diagram. For each fixed value

of mass M, there is exactly one value of the flux Q for the

steady states of Eq. (2.1). The first loop is seen for � ¼ 0:001

(light gray). In an interval of values of M, three stationary
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solutions coexist for three different values of Q. Note that

this loop was discovered by Benilov et al.31 (Figure 14).

Reducing � further, we observe a formation and persist-

ence of the second loop in the mass-flux diagram for

� ¼ 0:0005 (dark gray) and � ¼ 0:0001 (solid black). Five

solutions for different values of Q coexist in an interval of

values of M. The number of loops keeps increasing as �
decreases to zero and their location is drifted to large values

of M. Figure 3 shows the number of steady states for fixed

Q ¼ 2=3 as the value of � decreases.

As �! 0, the mass-flux diagram represents an increas-

ing curve for M 2 0;M�ð Þ and a constant level Q¼Q* for

M>M*, where Q� ¼ 2
3

and M* � 4.44272. The limiting pic-

ture corresponds to the mass-flux diagram of the solutions of

the limiting equation (2.2), which include the smooth solu-

tions for Q<Q* and the shock solutions for Q¼Q*.

We focus now on two particular examples of the mass-

flux diagram with a single loop and a double loop. Figure 4

(top) shows the mass-flux diagram for � ¼ 0:001 with a sin-

gle loop. We can identify three solution branches (labeled as

S1, S2, and S3) connected at two bifurcation points (labeled

as BF1 and BF2). The other point of intersections of solution

branches S1 and S2 is not a bifurcation point, because, the

two solutions for the same value of M and Q remain distin-

guishable into two different solutions. For M¼ 10.5, we

compute the solution profiles and show them in Figure 4

(bottom). Although similar in their shapes, the three steady

state solutions are clearly distinct. The peaks of the solutions

are located for h>p, or equivalently for h< 0, thanks to the

2p-periodicity of the solutions. They correspond to the

increasing shock solution as �! 0 located at h¼�h0< 0.

Oscillations which are visible on both sides of the shock are

attributed to complex eigenvalues of the linearized equation

(2.10) after the scaling transformation (2.5) and the limit

�! 0.

Because of multiple steady-state solutions with the same

physical parameter of the mass M, we anticipate that they

may have different stability properties. Therefore, we exam-

ine eigenvalues of the linearized equation,

kf þ @h f � h2 cosðhÞf þ �h2ð@hhþ @3
hhÞf

�

þ 1

3
�h3ð@hf þ @3

h f Þ
�
¼ 0; (3.1)

where h(h) is a 2p-periodic steady-state solution and f(h) is a

2p-periodic perturbation to the steady state with the growth

rate k 2 C. If Re(k)> 0, the perturbation f(h)ekt grows on

the background of h(h) and induces instability of the steady-

state solution in the time evolution of the model equation

(1.1). Expressing h(h) from the third-order equation (2.1),

we can rewrite the spectral problem (3.1) in the equivalent

form,

FIG. 2. The mass (M) versus the flux (Q) of the steady state solutions for

various values of �: 0.005 (dashed), 0.001 (light gray), 0.0005 (dark gray),

and 0.0001 (black).

FIG. 3. The number of steady state solutions for Q¼ 2=3 versus ��1.

FIG. 4. (Top) A segment of the mass-flux diagram for � ¼ 0:001. Three

branches are indicated between two bifurcation points (labeled BF1 and

BF2). The three branches are shown by solid gray line (S1), solid black line

(S2), and dashed line (S3). The dashed gray line shows the value of mass

M¼ 10.5. (Bottom) Three steady state solutions with M¼ 10.5 and

� ¼ 0:001: S1 (solid gray line, Q¼ 0.6601), S2 (solid black line,

Q¼ 0.6652), and S3 (dashed line, Q¼ 0.6686).
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Lf ¼ kf ; L ¼ @

@h
2h� 3Q

h
� 1

3
�h3 @

@h
þ @3

@h3

	 
� �
: (3.2)

Note that there is always a zero eigenvalue in the spectral

problem (3.2). Indeed, f0 ¼ @h
@Q is an eigenfunction for k¼ 0,

because Q is a free parameter of the steady state solution h.

The zero eigenvalue corresponds physically to the fact that

the steady-state solutions are represented by the one-

parameter smooth curve on the mass–flux diagram.

We will now show that the zero eigenvalue is simple.

First, since the Jacobian operator in the iteration algorithm

was found to be invertible, the operator L0 is invertible,

where

L0 ¼
2h� 3Q

h
� 1

3
�h3 @

@h
þ @3

@h3

	 

:

Since L¼ @hL0 and @h has a one-dimensional kernel, the op-

erator L has at most one eigenfunction in the kernel, which is

f0 ¼ @h
@Q.

Next, we consider the adjoint spectral problem

L�g ¼ kg; L� ¼ 3Q� 2h

h
� 1

3
�

@

@h
þ @3

@h3

	 

h3

� �
@

@h
:

(3.3)

It is clear that g0¼ 1 is the adjoint eigenfunction for k¼ 0

and that

hg0; f0i ¼
1

2p

ðp

�p

@h

@Q
dh ¼ dM

dQ

is nonzero at all values of Q but the bifurcation points BF1

and BF2. By Fredholm’s theory for isolated eigenvalues, this

fact implies that k¼ 0 is a simple eigenvalue for all values of

Q but the bifurcation points BF1 and BF2.

We use a numerical method based on building a matrix

representation of the differential operator L acting on f. To

do so, we discretize the space and approximate the deriva-

tives using the Fourier spectral method. The eigenvalue

problem is then solved using the MATLAB function eig.

The real part of the smallest eigenvalues k of the spec-

tral problem (3.1) is shown in Figure 5 for � ¼ 0:001. All

other eigenvalues have larger negative real parts. Between

the two bifurcation points BF1 and BF2, one eigenvalue

FIG. 5. The real part of the smallest eigenvalues k of the spectral problem

(3.1) for � ¼ 0:001.

TABLE I. Smallest nonzero eigenvalues of the spectral problem (3.1) for

�¼ 0.001 and M¼ 10.5.

Solution branch Real k Complex k

S1, Q¼ 0.6601 �0.32 �0.44 6 i0.79, �0.72 6 i1.50

S2, Q¼ 0.6652 �1.34 �0.75 6 i0.44, �1.31 6 i0.97

S3, Q¼ 0.6686 0.28 �0.80 6 i0.11, �1.18 6 i1.07

FIG. 6. (Top) A segment of the mass-flux diagram for � ¼ 0:00039. Five

branches are indicated between four bifurcation points (labeled BF1, BF2,

BF3, and BF4 and shown by circles). The five branches are shown by solid

light gray line (S1), solid dark gray line (S2), dashed line (S3), dashed gray

line (S4), and solid black line (S5). The dashed gray line shows the value of

mass M¼ 12.93. (Bottom) Five steady state solutions with M¼ 12.93 and

� ¼ 0:00039: S1 (solid light gray line, Q¼ 0.6638), S2 (solid dark gray line,

Q¼ 0.6648), S3 (dashed line, Q¼ 0.6653), S4 (dashed gray line,

Q¼ 0.6661), S5 (solid black line, Q¼ 0.6666).

FIG. 7. The real part of the smallest eigenvalues k of the spectral problem

(3.1) for � ¼ 0:00039.
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crosses zero and becomes unstable, revealing a saddle-node

bifurcation at points BF1 and BF2. Branch S3 (between BF1

and BF2) is unstable with exactly one real positive eigen-

value k. Other two branches S1 and S2 are stable with all but

one zero eigenvalue having negative real parts. It follows

from Figure 4 (bottom) that the unstable steady-state solution

at branch S3 is squeezed between the stable solutions at

branches S1 and S2. Small perturbations of the middle tail of

the unstable solution are expected to grow towards the upper

or lower tails of the other two stable solutions. Particular val-

ues of the smallest eigenvalues k for branches S1, S2, and S3

are given in Table I.

Figure 6 (top) shows the mass-flux diagram for

� ¼ 0:00039 with two loops. We can identify five solution

branches (labeled as S1, S2, S3, S4, and S5) connected at

four bifurcation points (labeled as BF1, BF2, BF3, and BF4).

For M¼ 12.93, we compute the solution profiles and show

them in Figure 6 (bottom). Although similar in their shapes,

the five steady state solutions are clearly distinct. Properties

of these solutions resemble those in Figure 4. In particular,

multiple steady states exist for a fixed mass M and � and can

be identified by their flux values Q. The five steady-state sol-

utions are almost identical with the most visible deviation in

their tails and peak heights.

Although the five steady-state solutions exist mathemati-

cally, whether or not they could exist physically depends on

their stability. The real part of the smallest eigenvalues k of the

spectral problem (3.1) is shown in Figure 7 for � ¼ 0:00039.

All other eigenvalues have larger negative real parts. Between

the bifurcation points BF1 and BF2, BF2 and BF3, BF3 and

BF4, one eigenvalue crosses zero, revealing four saddle-node

bifurcations at these points. Branch S3 (between BF1 and

BF2) is unstable with exactly one real positive eigenvalue k.

Branch S4 between BF3 and BF4 is also unstable with exactly

one real positive eigenvalue. Other three branches S1, S2, and

S5 are stable with all but one zero eigenvalue having negative

real parts. Again, we point readers to Figure 6 (bottom) that

shows how tails of unstable solutions S3 and S4 are located in

between the tails of stable solutions S1, S2, and S5. Particular

values of the smallest eigenvalues k for branches S1, S2, S3,

S4, and S5 are given in Table II.

IV. CONCLUSION

We have explored the structure of steady-state solutions

of the model for thin films in a rotating cylinder in the limit

of small surface tension. We showed that increasing shocks

persist under small surface tension. These shocks were then

visualized on the mass-flux diagram by using numerical dis-

cretizations on an uniform grid. We have found loops of so-

lution branches on the mass-flux diagram and have shown

numerically that the number of loops increases and their

location moves to infinity on the mass-flux diagram as the

surface tension decreases to zero.

We conclude by listing a number of open questions.

First, it is suggested by the numerical computations that the

number of solution branches goes to infinity as �! 0 but

computations become difficult and unreachable for

� < 10�5. Second, the steady states are expected to persist

with respect to small inclinations of the cylinder,33 but we do

not include inclined cylinders in this work. Finally, numeri-

cal discretizations on the adaptive (variable) grid can be

developed further to resolve better the steady states near the

shock location.
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