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MULTI-COMPONENT VORTEX SOLUTIONS
IN SYMMETRIC COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

A. S. Desyatnikov, D. E. Pelinovsky, and J. Yang UDC 517.957

Abstract. A Hamiltonian system of incoherently coupled nonlinear Schrödinger (NLS) equations is con-
sidered in the context of physical experiments in photorefractive crystals and Bose-Einstein condensates.
Due to the incoherent coupling, the Hamiltonian system has a group of various symmetries that include
symmetries with respect to gauge transformations and polarization rotations. We show that the group of
rotational symmetries generates a large family of vortex solutions that generalize scalar vortices, vortex
pairs with either double or hidden charge, and coupled states between solitons and vortices. Novel fam-
ilies of vortices with different frequencies and vortices with different charges at the same component are
constructed and their linearized stability problem is block-diagonalized for numerical analysis of unstable
eigenvalues.
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1. Introduction

Optical vortices [27] have attracted ever growing attention of researchers due to the wide variety
of applications of the so-called singular optical beams [34], ranging from optical tweezers to quantum
information [36]. It is anticipated thar the localized vortex solitons in nonlinear media [9, 17] will be
used as information carriers in futuristic all-optical photonic devices. Similarly, vortices in matter waves
and stirred Bose-Einstein condensates (BEC) [13] provide a close link between self-focusing of light in
nonlinear optics and the nonlinear dynamics of matter waves.

Vortex solitons suffer from the symmetry-breaking modulational instability in the attractive (focusing)
nonlinear systems [14]. Several routes to stabilize self-localized vortices have been proposed; for example,
stable vortex solitons have been predicted to exist in media with competing nonlinearities [9] as well as
in nonlocal nonlinear media [5, 39]. A different approach to vortex stabilization is proposed for partially
coherent optical vortices [28] since the threshold of modulational instability can be tuned with the degree
of partial coherence of the light field [2,22]. This stabilization of vortex beams has been demonstrated in
experiments with photorefractive media [16].
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For a deeper understanding of the stabilizing effect of partial coherence in nonlinear media, the
modal expansion was proposed [6], similarly to the statistical description of partially correlated fields.
In this approach, an optical field is composed of infinitely many components ψk, which propagate at
slightly different angles and form the coherence spectrum. The composite field evolves in the nonlinear
potential which is induced by all interacting components, e.g., in photorefractive saturable media. The
corresponding nonlinear correction to the refractive index, δn(E), is a function of a total intensity, E =∑

k |ψk|2. Thus, it is symmetric with respect to all components and it can be regarded as a generalization
of the Manakov system [18]. Similarly, the nonlinear interaction potential for multi-component Bose-
Einstein condensates is only slightly asymmetric, e.g., for the two-component BEC made of distinct
hyperfine states of 87Rb, the contributions from self- and cross-action of each component differ by several
percent [29].

The distinctive feature of a vortex excited in a partially coherent field is the characteristic ring
dislocation in its cross-correlation function [28]. As was demonstrated recently by Motzek et.al. [24] for
the partially coherent vortex with imposed topological charge m = 1, the model involving only three
interacting components with vortex charges (m−1,m,m+1) is sufficient to adequately describe both the
presence of the ring dislocation in the cross-correlation function and its robustness in nonlinear media.

A physically relevant problem of the evolution of partially coherent vortices in nonlinear media can
be effectively formulated as the stability problem for multi-component composite vortex solitons. Com-
posite vortex solitons were predicted for a piecewise linear potential [25, 26]; we distinguish these states
by using the topological charges in the components of the composite field, i.e., by the integer tuples
(. . . ,mk−1,mk,mk+1, . . . ). Several investigations has shown [9] that, in isotropic media with saturable
nonlinear interaction potential, the coupled state between a soliton and a charge-one vortex, (0, 1), is
modulationally unstable. The vortex component breaks into a dipole mode [15], which was shown to be
linearly stable [40]; the stability predictions extend to rotating dipole modes [30]. Similar states, e.g.
the multipole modes [10,11], were found to be metastable in nonlinear photorefractive media. It remains
unexplored if the stabilization close to the bifurcation point can be achieved for these higher-order az-
imuthal states, similar to the local bifurcation analysis in [40]. Generalization to the higher number of
components include the three-component coupled state between solitons and dipoles and between solitons
and vortices [8]. Similar solutions exist even when the potential is spatially anisotropic [23]. The stability
analysis of these three-component solutions was recently reported in numerical work [38].

In this paper we study existence and stability of coupled states between solitons and vortices in the
system of coupled nonlinear Schrödinger equation (NLS) with additional rotational symmetries. The
multi-component vortices allow the generalization to the so-called “necklace-ring” vector solitons [7],
composed of the azimuthally modulated ring-shaped beams, resembling “optical necklaces” [31–33]. The
stability properties of the solutions with larger angular momentum differ significantly from their counter-
parts with smaller (“hidden”) momentum. The stabilization of counter-rotating vortices against azimuthal
symmetry-breaking instability was confirmed for the model with saturable nonlinearity [4, 41], with the
cubic-quintic nonlinear function [12, 21], and experimentally in photorefractive defocusing media [19]. A
novel physical phenomenon, the so-called “charge-flipping,” was reported for the model with the cubic-
quintic nonlinear function [12]. It is associated with the specific instability modes of the vortex with
a hidden angular momentum, (+m,−m). Namely, the weak instability mode with an azimuthal index
s = 2m initiates the rotation through the soliton family with the two components exchanging the angular
momentum and periodically reversing their charges [12]. This effect is a particular consequence of the
rotational symmetries of the system of coupled NLS equations.

We report here the systematic study of the Hamiltonian system of nonlinearly coupled NLS equation
and address the following questions. First we characterize the group of rotations which preserves the
symplectic structure of the Hamiltonian system. The group includes symmetries with respect to gauge
transformations as well as polarization rotations. Then we address the classifications of all stationary
localized solutions and find a large family of vortex solutions generated by the group of rotational sym-
metries that generalizes the scalar vortices and the vortex pairs with either double or hidden charge. In
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particular, novel families of vortices with different frequencies and vortices with different charges at the
same component are constructed for the Manakov system of cubic NLS equations. Finally, we character-
ize the general properties of the linearized stability problem which are related to the group of symplectic
rotations. We block-diagonalize the linearized stability problem for the vortex solutions and develop the
analysis of unstable eigenvalues for the coupled states between solitons and the vortex pairs with either
double or hidden charges in the system of saturable NLS equations.

This paper is organized as follows. Section 2 describes the model of incoherently coupled NLS equa-
tions. Section 3 discusses symplectic symmetries of the Hamiltonian system due to gauge transformations
and polarization rotations. Section 4 gives a classification of stationary localized solutions of the Hamil-
tonian system. Section 5 describes soliton solutions in the space of one dimension. Section 6 gives a
classification of soliton and vortex solutions in the space of two dimensions and illustrates a numerical
example of the vortex pairs with different charges in the system of two cubic NLS equations (the Man-
akov system). Section 7 discusses linearized stability of vortex solutions and the block-diagonalization of
the linearized problem due to rotational symmetries. Section 8 describes numerical results on existence
and stability of coupled states between a soliton and a vortex pair in the system of three saturable NLS
equations. Section 9 concludes the paper.

2. Formalism

We consider the system of coupled nonlinear Schrödinger (NLS) equations in the form

iψ̇k + Δψk = W ′(E)ψk, k = 1, 2, . . . , n, (2.1)

where ψk(x, t) : R
d × R �→ C, Δ is the Laplacian in space x ∈ R

d, the dot denotes the partial derivative
in time t ∈ R, and W (E) : R �→ R is a nonlinear C2 function of the scalar variable E =

∑n
k=1 |ψk|2, such

that W (0) = W ′(0) = 0.
System (2.1) can be cast as a Hamiltonian system with the standard symplectic structure. Let

ψk = uk + ivk, where (uk, vk) ∈ R
2 and denote u = (u1, . . . , un)T ∈ R

n and v = (v1, . . . , vn)T ∈ R
n.

Let I and O denote the identity and zero matrices in R
n. Then, the system (2.1) is equivalent to the

Hamiltonian system:
(

u̇
v̇

)

=
(

O I
−I O

)( ∇u

∇v

)

H(u,v), (2.2)

where H is the Hamiltonian in the form

H =
∫

Rd

⎡

⎣
d∑

j=1

(
∂xju · ∂xju + ∂xjv · ∂xjv

)
+W (u · u + v · v)

⎤

⎦ dx, (2.3)

and the standard dot product in R
n is used. The values of H are constant in time t due to the t-translation

invariance of the NLS system (2.1). The NLS system (2.1) has also other conserved quantities (see Chapter
2 in [35]). Due to the x-translation invariance, it has the conserved vector momentum P = (P1, . . . , Pd)T

with the components

Pj =
∫

Rd

(
v · ∂xju − u · ∂xjv

)
dx, j = 1, . . . , d. (2.4)

Due to the invariance of Δ with respect to x-rotations, the NLS system (2.1) has the conserved angular
momentum, which in the case d = 2 takes the form

M =
∫

R2

(u · ∂θv − v · ∂θu) dx, (2.5)
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where ∂θ = x1∂x2 − x2∂x1 . Due to the phase shift (gauge) invariance, it has n conserved charges,

Qk =
∫

Rd

(
u2

k + v2
k

)
dx, k = 1, . . . , n. (2.6)

We shall proceed with analysis of a complete group of rotational symmetries of the NLS system (2.1).

3. Rotational Symmetries

The nonlinear function W (u · u + v · v) and the Hamiltonian function H(u,v) are invariant with
respect to N -parameter group of rotations in the space R

2n, where

N =
(

2n
2

)

=
(2n)!

2!(2n− 2)!
= n(2n− 1).

In order to characterize the group of rotations which preserves the symplectic structure of the Hamiltonian
system (2.2), we need the following result.
Lemma 1. Let y = Gx be an invertible linear transformation from x ∈ R

m to y ∈ R
m. Let H : R

m �→ R

be a G-invariant Hamiltonian function for the system ẋ = J∇xH(x), such that H(Gx) = H(x). The
transformation y = Gx is symplectic, such that ẏ = J∇yH(y), if and only if

J = GJGT . (3.1)

Proof. Although the result is standard in Hamiltonian mechanics (see Sec. A in [20]), we deduce an
elementary proof from the identities

ẏ = Gẋ, ∇xH(x) = GT∇yH(y)

and the fact that G is invertible.

Corollary 1. If the group of infinitesimal symmetries is generated by the near-identity matrix G = I+g,
where g is infinitesimal, then the symplectic structure is preserved if and only if

gJ + JgT = O. (3.2)

Lemma 2. Let (u,v)T ∈ R
2n be the vector of variables of the Hamiltonian system (2.2) and

J =
(

O I
−I O

)

.

Then, the group of symplectic rotations of the system (2.2) is generated by the matrix

g =
(

A B
−B A

)

: R
2n �→ R

2n, (3.3)

where AT = −A and BT = B are matrices in R
n.

Proof. The general n(2n−1)-parameter group of rotations in R
2n is generated by the matrix g : R

2n �→ R
2n

of infinitesimal symmetries in the form

g =
(

A B
−BT C

)

,

where A and C are skew-symmetric matrices and B is a general matrix in R
n×n. Using the constraint

(3.2), we find immediately the constraints A = C and BT = B, which restrict the general group of
n(2n− 1) rotations to the n2-parameter group of symplectic rotations.

Corollary 2. Let ψ ∈ C
n be the vector of variables in the coupled NLS system (2.1), such that ψ = u+iv.

Then, the group of symplectic rotations of the coupled NLS system (2.1) is generated by the matrix
gc : C

n �→ C
n, where gc = A− iB with AT = −A and BT = B.
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Related to the group of n2 symplectic rotations, there exist n2 quantities, which are constant in time
t. By the standard technique (see [20]), the conserved quantities are related to the dot products iψ̄ ·Aψ
and ψ̄ · Bψ. Since the Hamiltonian system (2.2) is defined on x ∈ R

d, the conserved quantities are
equivalent to the set of quadratic functionals

Qk,m =
∫

Rd

ψkψ̄mdx, k = 1, . . . , n, m = k, . . . , n. (3.4)

There exists n real-valued charges Qk,k ≡ Qk which coincide with the charges (2.6). The additional
1
2n(n − 1) conserved quantities Qk,m with k �= m are complex-valued. The total number of real-valued
conserved quantities Qk,m is n+n(n− 1) = n2, and this number coincides with the number of symplectic
rotational symmetries of the system (2.2). It is easy to verify conservation of Qk,m directly from the
coupled NLS system (2.1) for ψk(·, t) ∈ L2(Rd).
Example 1 (n = 2). In the complex-valued form ψ ∈ C

2, there exist n2 = 4 transformation matrices,
which leave solutions of the NLS system (2.1) with n = 2 invariant:

G1 =
(
eiθ1 0
0 1

)

, G2 =
(

1 0
0 eiθ2

)

, G3 =
(

cos θ3 sin θ3
− sin θ3 cos θ3

)

, G4 =
(

cos θ4 i sin θ4
i sin θ4 cos θ4

)

,

where θ1,2,3,4 are arbitrary parameters. The parameters θ1 and θ2 are related to the phase shift (gauge)
invariance, while the parameters θ3 and θ4 are related to the rotational symmetry of the Hamiltonian
system (2.2). If there exists a solution of the coupled NLS system (2.1) in the form ψ = (ψ1, ψ2)T , then
there exists a 4-parameter continuation of the solution to the form

ψ̃1 = α1e
iθ1ψ1 + α2e

iθ2ψ2, ψ̃2 = −ᾱ2e
iθ1ψ1 + ᾱ1e

iθ2ψ2, (3.5)

where
α1 = cos θ3 cos θ4 + i sin θ3 sin θ4, α2 = sin θ3 cos θ4 + i cos θ3 sin θ4.

In the general case n ≥ 2, there exists n-parameter continuations of solutions due to phase shift
(gauge) invariance and n(n− 1)-parameter continuation of solutions due to rotational symmetries of the
Hamiltonian system (2.2).

4. Stationary Localized Solutions of the Coupled System

The class of stationary solutions of the coupled NLS system (2.1) is defined in the form

ψk = ϕk(x)eiωkt, k = 1, . . . , n, (4.1)

where ωk are real-valued parameters. The functions ϕk(x) : R
d �→ C solve the PDE boundary-value

problem:
ϕk ∈ L2(Rd) : Δϕk − ωkϕk = W ′(E)ϕk, k = 1, 2, . . . , n, (4.2)

where E =
∑n

k=1 |ϕk(x)|2. The boundary-value problem (4.2) coincides with the variational problem for
critical points of the Lyapunov functional,

Λ = H +
n∑

k=1

ωkQk. (4.3)

In order to classify all stationary localized solutions of the boundary-value problem (4.2), we specify two
distinct cases in the following result.
Lemma 3. For any k �= m, either ωk = ωm or

ωk �= ωm,

∫

Rd

ϕk(x)ϕ̄m(x)dx =
∫

Rd

ϕk(x)ϕm(x)dx = 0, (4.4)

where (ϕ1, ϕ2, . . . , ϕn) is a stationary solution of the boundary-value problem (4.2).
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Proof. The statement is derived by integrating the PDE problem (4.2) and using the Green Theorem.
The first equality in (4.4) ensures that Q̇k,m = 0 for all k �= m, where Qk,m is given by (3.4) and
ψk(·, t) ∈ L2(Rd) is given by (4.1).

We shall consider separately the two particular types of stationary solutions in the boundary-value
problem (4.2) and the general (mixed) case.

(I) Case ωk �= ωm for all k �= m. Non-trivial two-component solutions with ω1 �= ω2 are computed
in [26] for a piecewise linear potential function W (E) and in [15] for a rational function W (E). In
particular, a coupled state between a fundamental soliton and a vortex of charge m was considered
in [15, 26]. The constraints (4.4) are satisfied for these solutions, since the vortex charges are different in
different components of the solution and integration over the angle in polar coordinates gives zero integrals.
Stability of the stationary two-component solutions with ω1 �= ω2 was addressed in [40]. It is obvious that
the group of rotational symmetries (3.5) generates a nonstationary solution (ψ̃1, ψ̃2) with two frequencies
in one component. The existence of such nonstationary solutions with several frequencies explains the
existence of exact internal modes (eigenvectors that correspond to purely imaginary eigenvalues) in the
linearization of stationary solutions discovered in [40].

(II) Case ωk = ωm for all k �= m. Let ω1 = · · · = ωn ≡ ω. The functional Λ in (4.3) is invariant with
respect to the n2-parameter group of symplectic rotations and the boundary-value problem (4.2) can be
rewritten in the elliptic form:

ϕk ∈ L2(Rd) : Δϕk = W ′
ω(E)ϕk, k = 1, 2, . . . , n, (4.5)

where Wω = W (E) + ωE is a function of scalar variable E =
∑n

k=1 |ϕk(x)|2. The divergence form of the
Green theorem follows from the PDE problem (4.5):

{
div (ϕ̄k∇ϕm − ϕm∇ϕ̄k) = 0
div (ϕk∇ϕm − ϕm∇ϕk) = 0 1 ≤ k,m ≤ n. (4.6)

It follows from the divergence form (4.6) that the vector p = (p1, . . . , pd)T with components

pj = i
(
ϕ̄ · ∂xjϕ−ϕ · ∂xj ϕ̄

)
, j = 1, . . . , d

satisfies ∇·p = 0. Therefore, there exists a vector field A, such that p = ∇×A and the vector momentum
P =

∫
Rd pdx defined in (2.4) is identically zero. Stationary solutions of the PDE problem (4.5) in the

space of two dimensions were considered in [4,11,41], where, in particular, vortex pairs with either double
or hidden charge were addressed. The group of rotational symmetries can be applied to vortex pairs
to generate a more general stationary solution which includes dipole and vortex modes of the coupled
system [1, 7]. Stability of the stationary two-component solutions with ω1 = ω2 was considered in the
saturable coupled NLS equations [4, 41]. It was shown that vortex pairs of both types are unstable but
the vortex pair with hidden charge is less unstable compared to the vortex pair with double charge. In
contrast, full stabilization of the vortices with hidden momentum can be achieved in the coupled NLS
equation with the competing cubic-quintic nonlinearity [12,21].

(III) General case. In general, localized solutions of the PDE problem (4.2) can be represented by
p components with distinct parameters ωk and q = n − p components with equal parameters ωk. For
instance, the three-component coupled state between the fundamental soliton and a vortex pair with either
double or hidden charge was considered in [10,23,38]. The local bifurcation of such three-component states
is analyzed in Sec. 8.
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5. Solitons in One Dimension

We shall consider a construction of one-dimensional solutions in the case II (all ωk = ωm), such that
d = 1 and ω1 = · · · = ωn ≡ ω. It follows from the divergence equations (4.6) for solutions in L2(R) that

{
ϕ̄k(x)ϕ′

m(x) − ϕm(x)ϕ̄′
k(x) = 0

ϕk(x)ϕ′
m(x) − ϕm(x)ϕ′

k(x) = 0 ∀x ∈ R

As a result, there exist constants cm,k, dm,k ∈ C such that ϕm(x) = cm,kϕ̄k(x) and ϕm(x) = dm,kϕk(x).
Therefore, the most general family of stationary solutions of the boundary-value problem (4.5) with d = 1
takes the form

ϕk = akϕ(x), k = 1, . . . , n, (5.1)
where ϕ(x) : R �→ R and ak ∈ C. Using the normalization

∑n
k=1 |ak|2 = 1, we define the function ϕ(x)

from a solution of the normalized boundary-value ODE problem:

ϕ ∈ L2(R) : ϕ′′ = W ′
ω(ϕ2)ϕ. (5.2)

In order to remove the parameter of x-translation and to define a unique solution ϕ(x), the ODE problem
(5.2) can be considered in the space of even functions on x ∈ R. The family (5.1) can be generated from
the particular scalar solution,

ϕ1 = ϕ(x), ϕk = 0, k = 2, . . . , n, (5.3)

by means of the n2-parameter group of symplectic rotations. As a result, n complex parameters ak of the
family (5.1) under the normalization constraint

∑n
k=1 |ak|2 = 1 are expressed in terms of n2 real-valued

parameters of symplectic rotations. This count shows that n2−2n+1 = (n−1)2 parameters of the group
of symplectic rotations are redundant.

6. Vortices in Two Dimensions

We shall consider a construction of one-dimensional solutions in the case II (all ωk = ωm), such that
d = 2 and ω1 = · · · = ωn ≡ ω. The same reduction (5.1) exists and allows us to generate a family of
vector solutions from the scalar solution (5.3) by using the group of symplectic rotations. However, the
reduction (5.1) does not generate the most general family of solutions of the boundary-value problem
(4.5) with d = 2. We shall classify all possible vortex solutions in the PDE problem (4.5) after separation
of variables.

We use the polar coordinates (r, θ) for vortex solutions and place the center of the vortex to the origin
r = 0. Thus, we eliminate two parameters of space translations which are related to the space translation
invariance of the NLS system (2.1). Let us separate the polar coordinates as follows:

ϕk = φk(θ)Rk(r), k = 1, . . . , n, (6.1)

where Rk(r) : R+ �→ R and φk(θ) : [0, 2π] �→ C. The separation of variables in the PDE problem (4.5)
leads to two ODE problems:

φk(θ + 2π) = φk(θ) : φ′′k +m2
kφk = 0, k = 1, . . . , n, (6.2)

Rk ∈ L2(R+) : R′′
k +

1
r
R′

k − m2
k

r2
Rk = W ′

ω(E0)Rk, k = 1, . . . , n, (6.3)

subject to the constraint

E =
n∑

k=1

R2
k(r)|φk(θ)|2 = E0(r). (6.4)

The periodicity conditions for φk(θ) imply that parameters mk are integers. The value of mk is referred to
as the vortex charge in the kth component. When mk = 0, the kth component is a soliton. When mk �= 0,
the kth component is a vortex. The following lemma shows that two distinct cases occur in solutions of
the coupled system of nonlinear ODEs (6.3).
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Lemma 4. For any k �= m, either m2
k = m2

m and Rk = cm,kRm for some cm,k ∈ R or m2
k �= m2

m and the
functions Rk(r), Rm(r) satisfy the constraints:

∞∫

0

Rk(r)Rm(r)dr
r

= 0, m2
k �= m2

m. (6.5)

In the latter case, there is no constant cm,k ∈ R such that Rk = cm,kRm and

φk = ake
±imkθ, φm = ame

±immθ, (6.6)

where ak, am ∈ C.

Proof. It follows from (6.3) that the functions Rk and Rm for all k �= m satisfy the divergence equation:

d

dr

[
r
(
RmR

′
k −R′

mRk

)]
+
m2

m −m2
k

r
RmRk = 0, r ≥ 0. (6.7)

When m2
k = m2

m and Rm, Rk ∈ L2(R+), the divergence equation (6.7) implies that RmR
′
k − R′

mRk = 0
such that Rk = cm,kRm for some cm,k ∈ R. When m2

k �= m2
m, Eq. (6.7) can be integrated on r ∈ (0,∞)

under the conditions that Rk(r) and Rm(r) and their derivatives are bounded at r → 0 and belong to
L2(R+). This procedure results in the constraint (6.5), while the reduction Rk = cm,kRm fails to satisfy
the system (6.3) for any cm,k ∈ R. The particular representation (6.6) is required by the fact that E0(r)
in (6.4) does not depend on θ.

We shall consider separately the two particular types of stationary solutions in the coupled ODE
system (6.3) and the general (mixed) case.

(i) Case m2
k �= m2

m for all k �= m. A nontrivial feature of the coupled system (6.3) is the existence
of invariant reductions Rk = 0 for a particular value of k. Therefore, the family of vortices of different
charges can be classified by the number of nonempty (nonzero) components Rk(r). The single-component
(scalar) vortex has the form (5.3) rewritten in polar coordinates as

ϕ1 = R1(r)eim1θ, ϕk = 0, k = 2, . . . , n. (6.8)

By symplectic rotations, the scalar solution (6.8) transforms to the vector solution

ϕk = akR(r)eimθ, k = 1, . . . , n, (6.9)

where R ≡ R1, m ≡ m1, and parameters ak ∈ C satisfy the normalization condition
∑n

k=1 |ak|2 = 1. In
the case n = 2, the vector solution (6.9) is referred to as the vortex pair with double charge. These vector
solutions are reviewed in [9].

Similarly, we can define the two-component vortex in the form

ϕ1 = α1R1(r)eim1θ, ϕ2 = α2R2(r)eim2θ, ϕk = 0, k = 3, . . . , n, (6.10)

where m2
1 �= m2

2 and α1, α2 ∈ C. Continuing in the same way, the N -component vortex can be defined
for distinct values of m2

k, k = 1, . . . , N , where 2 ≤ N ≤ n. The N -component vortices can be rotated
with the group of n2-parameter symplectic rotations, which result in stationary solutions with different
charges in the same components.
Example 2. Consider the system of cubic NLS equations (2.1) with n = 2 and W ′(E) = −E. Let ω = 1
without loss of generality since the scaling transformation can be used to normalize the parameter ω.
Using the transformation (3.5), we continue the solution (6.10) with α1 = α2 = 1 into a more general
family of vortex solutions:

(
ϕ1(r, θ)
ϕ2(r, θ)

)

=
(

α1e
iθ1 α2e

iθ2

−ᾱ2e
iθ1 ᾱ1e

iθ2

)(
R1(r)eim1θ

R2(r)eim2θ

)

. (6.11)

The ODE system (6.3) is now rewritten as

Lm1R1 = 0, Lm2R2 = 0,
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Fig. 1. Envelopes R1(r) and R2(r) of the two-component vortex with different charges in
the same components for (m1,m2): (a) (0, 1), (b) (0, 2), and (c) (1, 2). Rows (i), (ii), and
(iii) show the solutions with n2 = 0, n2 = 1, and n2 = 2, respectively.

where

Lm ≡ d2

dr2
+

1
r

d

dr
− m2

r2
− 1 +R2

1 +R2
2. (6.12)

We are looking for solutions R1(r) and R2(r) such that Rk ∼ r|mk| as r → 0 and Rk(r) is exponentially
decaying as r → ∞. Figure 1 shows numerically obtained solutions for the envelopes R1(r) and R2(r) for
(m1,m2) = (0, 1); (0, 2); (1, 2). If nk denotes the number of nodes for the function Rk(r) on r > 0, then
Fig. 1 suggests preservation of integers:

|m1| + n1 = |m2| + n2.

We have observed in the numerical integration of the cubic NLS system (2.1) that all vortex solutions in
Fig. 1 are linearly unstable. The radial instability of the coupled state between a soliton and a charge-
m vortex is responsible for the catastrophic collapse [3] of the central peak which develops faster than
any azimuthal instability. This situation is observed for the solutions with (0, 1) and (0,2) types, which
correspond to Fig. 1 (a,b). The collapse instability is significantly slowed down when all the components
carry vortices, such as in the case shown in Fig. 1(c). In this case, we observe an azimuthal instability
splitting the rings just before the splinters collapse [37].

Numerical integration of the cubic NLS system (2.1) for the vortex solution with m1 = 1, n1 = 1,
m2 = ±2, and n2 = 0 (see Fig. 1 (c,top)) is shown in Figs. 2 and 3. The initial conditions are shown in
Figs. 2(a) and 3(a,c), while the results of the temporal evolution are shown in Fig. 2(b,c) for α1 = 1 and
α2 = 0 and in Fig. 3(b,d) for α1 = α2 = 1/

√
2.

(ii) Case m2
k = m2

m for all k �= m. Let m2
1 = · · · = m2

n ≡ m2 and R(r) be defined from the boundary-
value ODE problem:

R ∈ L2(R+) : R′′ +
1
r
R′ − m2

r2
R = W ′

ω(R2)R, (6.13)
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Fig. 2. Intensities |ψ1|2, |ψ2|2 and E = |ψ1|2+ |ψ2|2 for the two-component solution (6.11)
with α1 = 1 and α2 = 0 at t = 0 (a), t = 7.5 and (m1,m2) = (+1,+2) (b), t = 8 and
(m1,m2) = (+1,−2) (c).

Fig. 3. The same as in Fig. 2 for the two-component solution (6.11) with α1 = α2 = 1/
√

2
at t = 0 (a), t = 7.5 (b) for (m1,m2) = (+1,+2) and at t = 0 (c), t = 8 (d) for
(m1,m2) = (+1,−2).

under the constraint and normalization
∑n

k=1 |φk|2 = 1. The ODE system (6.2) admits the general
solution

φk = ake
imθ + bke

−imθ, k = 1, . . . , n. (6.14)
By using the constraint (6.4) on separation of variables, we obtain two constraints on (2n) complex
parameters ak and bk:

n∑

k=1

|ak|2 + |bk|2 = 1,
n∑

k=1

ak b̄k = 0. (6.15)
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Let a = (a1, . . . , an)T ∈ C
n, b = (b1, . . . , bn)T ∈ C

2, and (a,b) =
∑n

k=1 ak b̄k be the standard inner
product in C

n, such that ||a||2 = (a,a). The two constraints (6.15) can be rewritten in the form

‖a‖2 + ‖b‖2 = 1, (a,b) = 0. (6.16)

When a �= 0, b = 0 or a = 0, b �= 0, the family of stationary solutions (6.14) is generated from
the single-component vortex (6.8) by using the group of n2 symplectic rotations. Since this family has
n complex-valued parameters with a single constraint (6.15), it is clear that n2 − 2n + 1 = (n − 1)2

parameters of the symplectic rotations are redundant. When a,b �= 0, the family of stationary solutions
(6.14) is generated from the following two-component vortex solution by using the group of n2 symplectic
rotations:

ϕ1 = α1R(r)eimθ, ϕ2 = α2R(r)e−imθ, ϕk = 0, k = 3, . . . , n, (6.17)

where α1, α2 ∈ C and |α1|2 + |α2|2 = 1. In the case n = 2, the vortex solution (6.17) is referred to
as the vortex pair with hidden charge. The most general family of vortex solutions obtained from the
two-component vortex solution (6.17) has equal charges in the different components. This family has 2n
complex parameters under one real-valued and one complex-valued constraints (6.15). Therefore, it is
clear that 1 + n2 − 4n+ 3 = (n− 2)2 parameters of the symplectic rotations are redundant. The vortex
pairs with hidden charge are reviewed in [9].

(iii) General case. In general, p-component vortices with different charges can form coupled states with
q two-component vortex pairs with hidden charge, where p+ 2q ≤ n and n ≥ 3.

7. Linearization of Stationary Solutions

Stability of the stationary solutions (4.1) in the time evolution of the coupled NLS system (2.1) is
studied with the method of linearization:

ψk = eiωkt
(
ϕk(x) + uk(x)eλt + v̄k(x)eλ̄t

)
, k = 1, . . . , n, (7.1)

where (uk, vk) : R
d �→ C

2 are components of the eigenvector in L2(Rd,C2n) that correspond to the
eigenvalue λ ∈ C. Let ϕ = (ϕ1, . . . , ϕn)T ∈ C

n, u = (u1, . . . , un)T ∈ C
n, v = (v1, . . . , vn)T ∈ C

n,
E(x) =

∑n
k=1 |ϕk(x)|2, and Ω = diag(ω1, . . . , ωn). The linearized problem defines spectral stability of

stationary solutions with respect to time evolution of the NLS system (2.1). The linearized problem is
written in the Hamiltonian form:

H
(

u
v

)

= iλ

(
I O
O −I

) (
u
v

)

, (7.2)

where the self-adjoint operator H on L2(Rd,C2n) takes the form

H =
(

Ω O
O Ω

)

+
(−Δ +W ′(E)

)
(

I O
O I

)

+W ′′(E)
(
ϕ
ϕ̄

)

· (ϕ̄T ϕT
)
. (7.3)

The last term in (7.3) consists of the outer product of two vectors, which is a rank-one matrix for any
x ∈ R

d. We shall characterize general properties of the linearized problem (7.2)–(7.3) which are related
to the group of symplectic rotations.

(I) Case ωk �= ωm for all k �= m. The rotational symmetries of the NLS system (2.1) lead to existence
of nonstationary solutions which are obtained by symplectic rotations of stationary solutions with distinct
parameters ωk, k = 1, . . . , n. Derivatives of these solutions with respect to parameters of rotations result
in eigenvectors of the linearized problem that correspond to nonzero eigenvalues λ. We will show that
each distinct pair of frequencies ωk �= ωm for k �= m corresponds to a pair of purely imaginary eigenvalues
λ = ±i(ωk − ωm). Each pair can be either isolated or embedded in the continuous spectrum of the
linearized problem (7.2).
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Lemma 5. Let ωk �= ωm for any k �= m. The linearized problem has the exact pair of eigenvectors and
eigenvalues:

uk = ϕm(x), vm = −ϕ̄k(x), λ = i(ωm − ωk), (7.4)

um = ϕk(x), vk = −ϕ̄m(x), λ = −i(ωm − ωk), (7.5)

where all other components are identically zero.

Proof. Direct proof of the statement is developed by showing that

(
ϕ̄T ϕT

) ·
(

u
v

)

= ϕ̄kuk + ϕmum + ϕkvk + ϕmvm = 0,

for the eigenvectors (7.4) and (7.5). The linearized problem (7.2) reduces then to the PDE problem (4.2)
for components ϕk(x) and ϕm(x).

A simple count shows that there exists n(n − 1)/2 pairs of purely imaginary eigenvalues of Lemma
5 in the case where all parameters (ω1, . . . , ωn) are distinct. In addition, there exist n zero eigenvalues
related to n gauge invariances, where the eigenvectors are given by (7.4) with m = k. As a result, the
group of n2 symplectic rotations corresponds exactly to the purely imaginary and zero eigenvalues with
the eigenvectors (7.4) and (7.5) of the linearized problem (7.2). These pairs can have negative Krein
signatures and they trap potentially unstable eigenvalues of the stability problem (see discussion and
references in [40]).

(II) Case ωk = ωm for all k �= m. Let ω1 = · · · = ωn ≡ ω such that Ω = ωI. All n(n − 1) eigenvalues
in Lemma 5 are zero, so that all n2 symplectic rotations produce a multi-dimensional kernel of H. This
feature is related to the fact that the n2 symplectic rotations map stationary solutions (4.1) with equal
values of parameters (ω1, . . . , ωn) to the same class of stationary solutions. The linearized problem (7.2)–
(7.3) can be simplified if the stationary solutions are obtained from a N -component vortex solution with
N < n by symplectic rotations. In particular, we consider symplectic rotations of the scalar vortex (6.8)
and the two-component vortex pair with hidden charge (6.17).

(i) Symplectic rotations of the scalar vortex (6.8). The stationary solutions of the vector form (6.9)
are generated from the scalar vortex (6.8) by using symplectic rotations. We show that the linearization
problem (7.2)–(7.3) for the vector solution (6.9) can be block-diagonalized into a coupled 2-by-2 (non-self-
adjoint) linearized operator and (n− 1) pairs of uncoupled (self-adjoint) linear Schrödinger operators.

Let ϕk(x) = akϕ(x), where ak ∈ C under the normalization condition
∑n

k=1 |ak|2 = 1. Then, the
operator H is rewritten in the form

H =
(
ω − Δ +W ′(|ϕ|2))

(
I O
O I

)

+W ′′(|ϕ|2)
( |ϕ|2(a,a) ϕ2(a,a)

ϕ2(a,a) |ϕ|2(a,a)

)

, (7.6)

where (f ,g) =
∑n

k=1 fkḡk is used in vector space C
n. Due to the normalization conditions, we have

(a,a) = ‖a‖2 = 1. By Gram–Schmidt orthogonalization, there exists an orthonormal basis in the vector
space C

n:

S1 = {a, c1, c2, . . . , cn−1} , (7.7)

where the set {cj}n−1
j=1 spans an orthogonal compliment of the vector a in C

n. The components of the
eigenvectors u(x) and v(s) can be decomposed over the orthonormal basis S1:

u(x) = α+(x)a +
n−1∑

j=1

γ+
j (x)cj , v(x) = α−(x)a +

n−1∑

j=1

γ−j (x)cj .
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The linear eigenvalue problem (7.2) is projected to the basis S1, which results in the following system of
equations for (α+, α−) and (γ+

j , γ
−
j ):

(
ω − Δ +W ′(|ϕ|2))α+ +W ′′(|ϕ|2)(|ϕ|2α+ + ϕ2α−) = iλα+,

(
ω − Δ +W ′(|ϕ|2))α− +W ′′(|ϕ|2)(ϕ2α+ + |ϕ|2α−) = −iλα− (7.8)

and (
ω − Δ +W ′(|ϕ|2)) γ+

j = iλγ+
j ,

(
ω − Δ +W ′(|ϕ|2)) γ−j = −iλγ−j .

(7.9)

The 2-by-2 non-self-adjoint eigenvalue problem (7.8) is uncoupled from the set of self-adjoint eigenvalue
problems (7.9). The stability of vector vortices (6.9) is defined entirely by the stability of scalar vortices
(6.8) in the 2-by-2 non-self-adjoint eigenvalue problem (7.8).

(ii) Symplectic rotations of the two-component vortex pair with hidden charge (6.17). The
stationary solution of the vector form (6.1) with a general superposition (6.14) can be obtained from
the two-component vortex pair with hidden charge (6.17) by using symplectic rotations. We show that
the linearized problem (7.2)–(7.3) for the vector solutions (6.1) with a general superposition (6.14) can
be block-diagonalized into a coupled 4-by-4 (non-self-adjoint) linearized operator and (n − 2) pairs of
uncoupled (self-adjoint) linear Schrödinger operators.

Let ϕ(x) be given by (6.1) with the general superposition (6.14) under the normalization condition
(6.15). Then, the operator H is rewritten in the form

H =
(
ω − Δ +W ′(R2)

)
(

I O
O I

)

+R2W ′′(R2)H1, (7.10)

where

H1 =
(

a
b̄

)

· (āT bT
)

+
(

b
ā

)

· (b̄T aT
)

+
(

a
b̄

)

· (b̄T aT
)
e2imθ +

(
b
ā

)

· (āT bT
)
e−2imθ.

The polar coordinates (r, θ) can be separated by using the Fourier series for periodic functions on θ ∈
[0, 2π]:

(
u(r, θ)
v(r, θ)

)

=
∑

s∈Z

(
us(r)
vs(r)

)

eisθ, (7.11)

such that the system (7.2) reduces to the form

(
ω − Δs +W ′(R2)

)
(

us

vs

)

+R2W ′′(R2)
[(

a
b̄

)

· (āT bT
)

+
(

b
ā

)

· (b̄T aT
)
](

us

vs

)

+R2W ′′(R2)
[(

a
b̄

)

· (b̄T aT
)
(

us−2m

vs−2m

)

+
(

b
ā

)

· (āT bT
)
(

us+2m

vs+2m

)]

= iλ

(
us

−vs

)

,

where

Δs =
∂2

∂r2
+

1
r

∂

∂r
− s2

r2
. (7.12)

Let a,b �= 0. There exists an orthogonal basis in the vector space C
n:

S2 = {a,b, c1, c2, . . . , cn−2} , (7.13)

where the set {cj}n−1
j=1 spans an orthogonal compliment of the vectors a and b in C

n. It follows from the
normalization condition (6.15) that a and b are orthogonal in C

n, while the norms of a and b are defined
by the parameter μ ∈ (−1, 1):

|a|2 =
1 + μ

2
, |b|2 =

1 − μ

2
.
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such that |a|2 + |b|2 = 1 and |a|2 − |b|2 = μ. The components of the eigenvectors us(r) and vs(r) can be
decomposed over the orthonormal basis S2:

us(r) = α+
s (r)a + β+

s (r)b +
n−2∑

j=1

γ+
s,j(r)cj , vs(r) = α−

s (r)b̄ + β−s (r)ā +
n−2∑

j=1

γ−s,j(r)c̄j .

The linear eigenvalue problem (7.2) is projected to the basis S2, which results in the following system of
equations for (α+

s , α
−
s , β

+
s−2m, β

−
s−2m) and (γ+

s,j , γ
−
s,j):

(
ω − Δs +W ′(R2)

)
α+

s +R2W ′′(R2)Υ = iλα+
s ,

(
ω − Δs +W ′(R2)

)
α−

s +R2W ′′(R2)Υ = −iλα−
s ,

(
ω − Δs−2m +W ′(R2)

)
β+

s−2m +R2W ′′(R2)Υ = iλβ+
s−2m,

(
ω − Δs−2m +W ′(R2)

)
β−s−2m +R2W ′′(R2)Υ = −iλβ−s−2m,

(7.14)

and (
ω − Δs +W ′(R2)

)
γ+

s,j = iλγ+
s,j ,

(
ω − Δs +W ′(R2)

)
γ−s,j = −iλγ−s,j , (7.15)

where
Υ =

1 + μ

2
(α+

s + β−s−2m) +
1 − μ

2
(α−

s + β+
s−2m).

The 4-by-4 non-self-adjoint eigenvalue problem (7.14) is uncoupled from the set of self-adjoint eigen-
value problems (7.15). The stability of vector vortices (6.1) with a general superposition (6.14) is defined
entirely by the stability of the two-component vortex pair with hidden charge (6.17) in the 4-by-4 non-
self-adjoint eigenvalue problem (7.14). When μ = ±1, the non-self-adjoint problem reduces to the 2-by-2
non-self-adjoint problem and 2 uncoupled self-adjoint problems, since the vortex pair (6.17) with μ = ±1
degenerates into the scalar vortex (6.8). When μ ∈ (−1, 1), no further reductions of the non-self-adjoint
problem exist. A symmetric case μ = 0 deserves a special consideration since this case corresponds to
equal amplitudes α1 = α2 in the vortex pair (6.17). Numerical analysis of the 4-by-4 non-self-adjoint
eigenvalue problem in the symmetric case μ = 0 is reported in [41] for the saturable NLS equations and
in [12] for the cubic–quintic NLS equations.

(iii) General case. In general, the family of stationary vortex solutions is generated from a p-component
vortex with different charges and q two-component vortices with hidden charge, where p+2q ≤ n. There-
fore, the linearized problem (7.2) for these vortex solutions can be block-diagonalized into corresponding
blocks. If one is interested in the stability of a composite vortex obtained by symplectic rotations of a
simple vortex (called the seed vortex), the following algorithm can be used:

(1) Start with the linearized problem for the seed vortex, e.g., the scalar vortex (6.8) or the vortex
pair with hidden charge (6.17).

(2) Obtain a complete set of eigenvalues and eigenvectors of the uncoupled linearized problems.
(3) Rotate the seed vortex and the eigenvectors of the linearized problem with the same group of

symplectic rotations used to obtain a composite vortex.
For instance, stability of the vortex pair with double charge (6.9) can be studied from that of the scalar
vortex (6.8), and stability of vortices with a general superposition (6.14) can be studied from that of the
vortex pair with hidden charge (6.17).

8. Soliton-Vortex Coupled States in Saturable Coupled NLS Equations

We shall consider a local bifurcation of a coupled state between a fundamental soliton in one compo-
nent and a vortex pair with either double or hidden charge in the other two components. An example of
such three-component coupled states occurs in the saturable coupled NLS equations (2.1) with n = 3 and

W ′(E) = − E

1 + σE
, 0 ≤ σ ≤ 1. (8.1)
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Existence and stability of such structures were addressed recently in [38] by direct numerical simula-
tions. We develop here a local bifurcation analysis which extends our earlier work [40] and correct some
inconsistencies of the numerical results in [38].

Let us use the normalization ω1 = 1. The fundamental soliton of the first component ϕ1 = U(x)
satisfies the scalar boundary-value problem

U ∈ L2(R2) : ΔU − U = W ′(U2)U, (8.2)

where U(x) is a real-valued nonnegative ground state. The local bifurcation of the vortex pair in the
second and third components of the solution occurs when the linear operator L = −Δ +W ′(U2) admits
a nontrivial bound state for ϕ2(x) and ϕ3(x):

Lϕj = −ωjϕj , j = 2, 3, (8.3)

where ωj > 0. By Lemma 3, if ω2,3 �= 1, then
∫

R2

ϕ2,3(x)U(x)dx =
∫

R2

ϕ̄2,3(x)U(x)dx = 0.

If U(x) is a radially symmetric fundamental soliton and ϕ2,3(x) represent a vortex pair with either double
or hidden charge, then the constraints are trivially satisfied due to integration in the angular variable
θ. By Lemma 3, if ω2 �= ω3, then

∫
R2 ϕ2(x)ϕ3(x)dx =

∫
R2 ϕ̄2(x)ϕ3(x)dx = 0. The constraints are not

satisfied if ϕ2,3(x) represent a vortex pair with either double or hidden charge, such that these solutions
exist only when ω2 = ω3 ≡ ω. By Lemma 4, the functions ϕ2,3(x) for the vortex pairs are written in polar
coordinates by the separation of variables (6.1) with R2 = R3 ≡ R(r) and m2 = ±m3 ≡ m.

We shall consider both vortex pairs in the diagonal form:

ϕ1 = U(r), ϕ2 = α2R(r)eimθ, ϕ3 = α3R(r)e±imθ, (8.4)

where m ∈ N,

α2 =

√
1 + μ

2
, α3 =

√
1 − μ

2
, −1 ≤ μ ≤ 1,

and the functions U(r) and R(r) satisfy the coupled system of ODEs:

U ′′(r) +
1
r
U ′(r) − U(r) = W ′(U2 +R2)U, (8.5)

R′′(r) +
1
r
R′(r) − m2

r2
R(r) − ωR(r) = W ′(U2 +R2)R. (8.6)

The functions U(r) and R(r) are real-valued nonnegative ground states for r > 0 with U(0) > 0 and
R(0) = 0. By the group of symplectic rotations, the vortex pair with double charge (m,m) is equivalent
to the scalar vortex with α2 = 1 and α3 = 0, while the vortex pair with hidden charge (m,−m) can be
rotated into a more general solution family with a general superposition (6.14). The coupled problem
(8.5)–(8.6) is the same as in the two-component NLS system. Local bifurcation of the vortex solution
(U,R) with m = 1 is considered analytically and numerically for the saturable nonlinearity in [40]. The
perturbation series for the vortex solution near the local bifurcation threshold takes the form

U = u0(r) + ε2u2(r) +O(ε4), R = εφ1(r) + ε3φ3(r) +O(ε4), ω = ω0 + ε2ω2 +O(ε4), (8.7)

where the function u0(r) solves the nonlinear ODE

u′′0 +
1
r
u′0 − u0 = W ′(u2

0)u0,

the function φ1(r) is a eigenvector of the operator L with U = u0 and charge m for the eigenvalue ω = ω0,

φ′′1 +
1
r
φ′1 −

m2

r2
φ1 − ω0φ1 = W ′(u2

0)φ1,
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the function u2(r) solves the inhomogeneous linear ODE:

u′′2 +
1
r
u′2 − u2 −W ′(u2

0)u2 − 2W ′′(u2
0)u

2
0u2 = W ′′(u2

0)u0φ
2
1,

and the correction term ω2 is found from the inhomogeneous linear ODE for φ3(r):

ω2

∞∫

0

φ2
1(r)rdr =

∞∫

0

W ′′(u2
0)(2u0u2 + φ2

1)φ
2
1rdr. (8.8)

Numerical results on the local bifurcation in the saturable NLS system (2.1) with (8.1) suggest that ω2 > 0
(at least for m = 1 and σ = 0.5) [40]. The linearized stability problem for the coupled state takes the
form (7.2)–(7.3). The vortex pair (m,m) is equivalent to the scalar vortex. By the block-diagonalization
of Sec. 7, the stability problem in the three-component system is equivalent to the stability problem in
the two-component system.

Specific details on unstable eigenvalues for the vortex pair with double charge are explained in [40]
with the local bifurcation analysis. It is shown there that the vortex pair with m = 1 is spectrally stable
near the local bifurcation threshold but it has two pairs of potentially unstable eigenvalues: the purely
imaginary eigenvalues of negative energy for s = 1 and the double zero eigenvalue for s = 2, where s occurs
in the Fourier series decomposition (7.11). By Lemma 5, the pair of purely imaginary eigenvalues for s = 1
is forced to stay on the imaginary axis. By the perturbation analysis and numerical computations in [40],
the double zero eigenvalue for s = 2 bifurcates into a pair of purely imaginary eigenvalues of negative
energy and leads to instability far from the local bifurcation threshold. (This instability for s = 2 is
re-confirmed in the numerical computations of [38] (Fig. 3), where a full three-component stability was
considered without block-diagonalization of the linearized system. Results of [38] also report a weak
instability for s = 1 which does not agree with our analysis and numerical results in [40]. This weak
instability is an artificial result caused by the numerical inaccuracies in [38].)

Next, we examine the linear stability for the vortex pair (m,−m) coupled to the fundamental soliton
by the asymptotic analysis. When the decomposition (7.1) is supplemented by the separation of variables

u1 = u+(r)e−isθ, u2 = v+(r)ei(m−s)θ, u3 = w+(r)e−i(m+s)θ,

v1 = u−(r)e−isθ, v2 = v−(r)e−i(m+s)θ, v3 = w−(r)ei(m−s)θ,

the linearized problem is rewritten in the explicit form,

iλu+ = −Δsu+ + u+ + V (r)u+ + V11(r)(u+ + u−) + V12(ᾱ2v+ + α2v− + ᾱ3w+ + α3w−),

−iλu− = −Δsu− + u− + V (r)u− + V11(r)(u+ + u−) + V12(ᾱ2v+ + α2v− + ᾱ3w+ + α3w−),

iλv+ = −Δs−mv+ + ωv+ + V (r)v+ + α2V12(r)(u+ + u−) + α2V22(ᾱ2v+ + α2v− + ᾱ3w+ + α3w−),

−iλv− = −Δs+mv− + ωv− + V (r)v− + ᾱ2V12(r)(u+ + u−) + ᾱ2V22(ᾱ2v+ + α2v− + ᾱ3w+ + α3w−),

iλw+ = −Δs+mw+ + ωw+ + V (r)w+ + α3V12(r)(u+ + u−) + α3V22(ᾱ2v+ + α2v− + ᾱ3w+ + α3w−),

−iλw− = −Δs−mw− + ωw− + V (r)w− + ᾱ3V12(r)(u+ + u−) + ᾱ3V22(ᾱ2v+ + α2v− + ᾱ3w+ + α3w−),

where Δs is defined by (7.12) and the potential terms are

V = W ′(U2 +R2), V11 = W ′′(U2 +R2)U2, V12 = W ′′(U2 +R2)UR, V22 = W ′′(U2 +R2)R2.

At the local bifurcation threshold, when ε = 0 in the perturbation expansion (8.7), the linearized problem
has two pairs of purely imaginary eigenvalues for λ = ±i(1−ω0) and s = ±m, two double zero eigenvalues
for s = ±2m and a multiple zero eigenvalue for s = 0. The multiple zero eigenvalue for s = 0 is controlled
by the symmetries of the coupled NLS equations (2.1) and it remains zero beyond the local bifurcation
threshold. The two pairs of purely imaginary eigenvalues for s = ±m are controlled by Lemma 5 and
they remain neutrally stable beyond the local bifurcation threshold. The two double zero eigenvalues for
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s = ±2m could bifurcate into unstable eigenvalues as happens for the coupled two-component soliton-
vortex state [40]. We shall hence consider the splitting of these eigenvalues and the consequences of the
splitting for stability of the coupled three-component soliton-vortex state.

We construct a perturbation series expansion for the solution of the linearized problem for s = 2m
near the local bifurcation threshold:

u± = εu±1 (r) +O(ε3), v+ = c2φ1(r) + ε2v+
2 (r) +O(ε4), v− = ε2v−2 (r) +O(ε4),

w+ = ε2w+
2 (r) +O(ε4), w− = c3φ1(r) + ε2w−

2 (r) +O(ε4), λ = ε2λ2 +O(ε4),
(8.9)

where (c2, c3) ∈ C
2 are projection coordinates for the two-dimensional kernel of the linearized problem

for s = 2m. The linear inhomogeneous system for u±1 (r) at O(ε) admits the implicit solution u±1 (r) =
(ᾱ2c2 + α3c3)ũ2(r), where ũ2(r) is found from the linear inhomogeneous ODE

Δ2mũ2 − ũ2 −W ′(u2
0)ũ2 − 2W ′′(u2

0)u
2
0ũ2 = W ′′(u2

0)u0φ
2
1.

The linear inhomogeneous system for v+
2 (r) and w−

2 (r) at O(ε2) is solvable subject to the projection
equations:

iλ2x1 = −μC0x1, iλ2x2 = −C0x1, (8.10)

where
x1 = ᾱ2c2 + α3c3, x2 = ᾱ2c2 − α3c3,

the constant C0 is defined by

C0

∞∫

0

φ2
1(r)rdr =

∞∫

0

W ′′(u2
0)(2u0ũ2 + φ2

1)φ
2
1rdr,

and the equation (8.8) has been used. Two eigenvalues exist in the reduced eigenvalue problem (8.10):
λ2 = iμC0 and λ2 = 0. The zero eigenvalue is preserved at λ = 0 due to the translation of the vortex pair
with hidden charge (8.4) along the arbitrary parameter μ. When μ �= 0, the nonzero eigenvalue is purely
imaginary near the local bifurcation threshold. (Another purely imaginary eigenvalue λ2 = −iμC0 exists
for s = −2m.) The pair of purely imaginary eigenvalues has negative energy, similar to the case of the
scalar vortex in [40], which is recovered here for μ = ±1. Therefore, this pair will lead to instability far
from the local bifurcation threshold when the pair collides either with eigenvalues with positive energy or
with the continuous spectrum of the linearized problem.

When μ = 0, the eigenvalue λ2 = iμC0 is zero. This additional zero is preserved as the generalized
kernel of the linearized problem for s = 2m becomes two-dimensional when α2 = α3 = 1/

√
2. Indeed, the

eigenvector of the linearized problem for λ = 0

u+ = u− = v− = w+ = 0, v+ = −w− = R(r),

satisfies the Fredholm alternative theorem for the generalized kernel. Therefore, the zero eigenvalues for
s = ±2m remain zero for the symmetric vortex pair with hidden charge (when μ = 0) beyond the local
bifurcation threshold.

In the end, we give specific details of unstable eigenvalues for the coupled state between fundamental
soliton and the vortex pair with hidden charge. Since no other potentially unstable eigenvalues exist
at the local bifurcation threshold [40], the analysis above guarantees stability of the coupled state near
the local bifurcation threshold. Moreover, potentially unstable eigenvalues with s = ±1 and s = ±2 are
proved to lead not to instability of the symmetric vortex pair with μ = 0 far from the local bifurcation
threshold. This perturbation analysis explains the main conclusion of [8, 41] that the vortex pair with
hidden charge is more stable than the vortex pair with double charge when it is coupled with the stable
fundamental soliton. This result is also in agreement with the numerical results of [38] reported on Fig.
3, where no instability was discovered for s = 2 (m = 1). (The weak instability for s = 1 in [38] is again
an artificial result caused by the inaccuracies of the numerical scheme.)
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Fig. 4. Unstable eigenvalues of the coupled state between fundamental soliton and the
vortex pair with double and hidden charges for σ = 0.5.

The results above do not exclude other mechanisms of instabilities which may occur far from the local
bifurcation threshold. Figure 4 shows unstable eigenvalues of the coupled state between the fundamental
soliton and the vortex pairs with double and hidden charges for σ = 0.5. The unstable eigenvalue for the
vortex pair with double charge m = 1 corresponds to s = 2, in agreement with the previous discussion
(this part of the graph is published in [40]). The unstable eigenvalue for the symmetric vortex pair with
hidden charge m = 1 corresponds to s = 3 (this part of the graph is in agreement with Fig. 3 in [38]).

The unstable eigenvalues for the vortex pair with double charge m = 1 are complex. They originate
from the continuous spectrum at ω ≈ 0.41 and exist for ω > 0.41. The unstable eigenvalue for the
symmetric vortex pair with hidden charge m = 1 is real. The pair of real eigenvalues coalesces at the
origin for ω ≈ 0.61 and becomes a pair of purely imaginary eigenvalues for ω < 0.61. Near the value
ω ≈ 0.39, the pair of purely imaginary eigenvalues merges with the continuous spectrum and disappears.

It is clear from Fig. 8 that the vortices with hidden charge are more stable than vortices with double
charge due to two reasons. First, the stability region of hidden-charge vortices ω0 < ω < 0.61 is wider
than the stability region of double-charge vortices ω0 < ω < 0.41, where ω0 = 0.26 is the local bifurcation
threshold for σ = 0.5. Second, when both vortices are unstable, growth rates of the hidden-charge vortices
are smaller than those of the double-charge vortices.

Concerning evolution of unstable vortices far from the local bifurcation threshold, it has been studied
in the previous literature. The vortex pair with double charge either breaks into a rotating dipole solution
or splits into two fundamental solitons that move apart (see Figs. 7 and 8 in [40]). The coupled state
between fundamental soliton and a vortex pair with hidden charge breaks up into three fundamental
solitons that move apart (see Fig. 8 in [38]). The reason for this difference is quite simple: hidden-charge
vortices have zero net angular momentum. Due to momentum conservation of the original system of
coupled NLS equations, the filaments do not rotate. On the contrary, double-charge vortices have nonzero
net angular momentum and the filaments must rotate. The net angular momentum of the hidden-charge
vortices is the physical reason why unstable eigenvalues of the corresponding linearized problem are real
rather than complex.

9. Conclusion

Although the model with a purely incoherent coupling between nonlinear modes is only an approxi-
mation to real physical models, this model is important in the perturbation theory. If partial coherence
is accounted, which breaks the rotational symmetries of the coupled NLS system, zero eigenvalues corre-
sponding to the additional group of symplectic rotations bifurcate to the complex domain. The family of
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vortex solutions may undertake various bifurcations, which can be studied by using the Lyapunov-Schmidt
theory. In the context of these problems, the results obtained in our paper represent a necessary step
in the construction and analysis of the perturbation series expansions. An example of the perturbation
series expansion is reported in [29].
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