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a b s t r a c t

We justify the Thomas–Fermi approximation for the stationary Gross–Pitaevskii equation
with the repulsive nonlinear confinement, which was recently introduced in physics
literature. The method is based on the resolvent estimates and the fixed-point iterations.
The results cover the case of the algebraically growing nonlinear confinement.

© 2014 Elsevier Ltd. All rights reserved.

Self-trapping of solitary waves in nonlinear physical media is a commonly known problem of profound significance [1,2].
An obvious condition is that attractive (alias self-focusing) nonlinearity is necessary for the creation of localized states. Re-
cently, a radically different approach to this problem was proposed in Refs. [3–5]: repulsive (self-defocusing) nonlinearity
that grows at infinity readily gives rise to the self-trapping of localized states, which are stable to weak and strong pertur-
bations alike.

An advantage offered by models with the effective nonlinear confinement is a possibility to find particular solutions in an
exact form [6–8], and to apply analytical methods for the qualitative approximation of various localized states [9]. The sim-
plest method used for approximating the ground state of energy is the Thomas–Fermi (TF) approximation [10,11]. Compari-
sonwith numerical results has demonstrated that the TF approximation produces quite accurate results for the self-trapped
modes with sufficiently large amplitudes [3,9]. The objective of the present work is to produce a rigorous estimate of the
proximity of the TF approximation to true ground states in models with the spatially growing strength of the defocusing
cubic nonlinearity.

In a similar context of the stationary Gross–Pitaevskii equation with the harmonic confinement and the defocusing cubic
nonlinearity, the TF approximationwas rigorously justified using calculus of variations [12] and reductions to the Painlevé-II
equation [13,14] (see also earlier works on the Painlevé-II equation in physics literature [15,16]). The difficulty that arises
in this context is that the TF approximation is compactly supported and the derivatives of the ground state diverge in a
transitional layer near the boundary. Compared to this complication, we show that the justification of the TF approximation
in the stationary Gross–Pitaevskii equation with the nonlinear confinement can be obtained from the standard resolvent
estimates and fixed-point arguments.
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Following the main model used in Refs. [3–9], we consider the stationary Gross–Pitaevskii equation with the repulsive
nonlinear confinement,

− ϵ21u + V (x)u3
− u = 0, x ∈ Rd, d = 1, 2, 3, (1)

where ϵ is a small parameter corresponding to the TF approximation,1 is the d-dimensional Laplacian, u is a positive station-
ary state to be found, and, in accordance with what is said above, the strength of the nonlinear confinement V is supposed to
satisfy the following properties: (i) V (x) ≥ V0 > 0 for all x ∈ Rd, and (ii) V (x) → ∞ as |x| → ∞. Further constraints on the
smoothness of V and its growth at infinity will be needed for themain result. Note, however, that no symmetry assumptions
on V are needed.

The formal TF solution of the elliptic problem is found for ϵ = 0 and corresponds to the spatially decaying positive
eigenfunction:

u0(x) =
1

√
V (x)

, x ∈ Rd. (2)

If we require u0 ∈ L2(Rd), so that the stationary state can be normalized in the L2(Rd) norm, then 1/V needs to be integrable.
However, this requirement is not needed for the main persistence result formulated as follows.

Theorem 1. Assume that ∇ log(V ) ∈ H2(Rd) for d = 1 or ∇ log(V ) ∈ H3(Rd) for d = 2, 3. There exist positive constants ϵ0
and C0 such that for every ϵ ∈ (0, ϵ0), there exists a unique solution u = u0 + U of the nonlinear elliptic problem (1) with U ∈

H1(Rd) satisfying

∥U∥H1 ≤ C0ϵ
2. (3)

To study the persistence of the TF approximation, we set u := w/
√
V and decompose w := 1 + r . A similar division

representation is used in Refs. [12,14] and the main advantage of this trick is to transform the nonlinear terms of Eq. (1)
to become independent of x. When the representation above is substituted in Eq. (1), the nonlinear elliptic problem can be
rewritten for the perturbation function r:

Lϵr = ϵ2F + N(r), (4)

where N(r) = −3r2 − r3 is the nonlinear term,

F =
√
V1

1
√
V

= −
1V
2V

+
3|∇V |

2

4V 2
(5)

is the source term, and

Lϵ = 2 − ϵ21 + ϵ2 1
V

∇V · ∇ − ϵ2F (6)

is the linearized operator at the TF approximation. Further, we write Lϵ as a sum of two operators,

L̃ϵ := 2 − ϵ21 −
ϵ2

|∇V |
2

4V 2
(7)

and

Lϵ − L̃ϵ := ϵ2 ∇V · ∇

V
+

ϵ2

2
∇


∇V
V


, (8)

where the last term is a multiplicative potential. We establish invertibility of L̃ϵ on any element of L2(Rd) in the following
lemma.

Lemma 1. Assume that ∇ log(V ) ∈ L∞(Rd). There exists a positive constant ϵ0 such that for every ϵ ∈ (0, ϵ0) and for every
f ∈ L2(Rd), the following is true:

∥L̃−1
ϵ f ∥L2 ≤ ∥f ∥L2 , ϵ∥∇ L̃−1

ϵ f ∥L2 ≤ ∥f ∥L2 . (9)

Additionally, if 1 log(V ) ∈ L∞(Rd), then for every f ∈ H1(Rd), the following is true as well:

∥∇ L̃−1
ϵ f ∥L2 ≤ ∥f ∥H1 . (10)

Proof. Under the condition of∇ log(V ) ∈ L∞(Rd), the last term in L̃ϵ is a small bounded negative perturbation added to the
first positive term, whereas the second term, −ϵ21, is a nonnegative operator. The bilinear form

a(u, w) :=


Rd


2w̄u + ϵ2

∇w̄ · ∇u −
ϵ2

|∇V |
2

4V 2
w̄u


dx (11)
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satisfies the boundedness and coercivity assumptions in the H1(Rd) space:

|a(u, w)| ≤ (2 + ϵ2C(V ))∥u∥H1∥w∥H1 , a(u, u) ≥ (2 − ϵ2C(V ))∥u∥2
L2 + ϵ2

∥∇u∥2
L2 , (12)

where the positive constant C(V ) depends on ∥∇ log(V )∥L∞ . By the Lax–Milgram Theorem, for every f ∈ L2(Rd), there is a
unique u ∈ H1(Rd) such that for every w ∈ H1(Rd),

a(u, w) =


Rd

f w̄dx.

Hence, u satisfies

∥u∥2
L2 + ϵ2

∥∇u∥2
L2 ≤ a(u, u) =


Rd

ūfdx. (13)

By the Cauchy–Schwarz inequality, we obtain the bounds (9). Under the additional condition of 1 log(V ) ∈ L∞(Rd), we
apply operator ∇ to L̃ϵu = f and write the corresponding equation in the weak form for every w ∈ H1(Rd),

a(∇u, ∇w) =


Rd

∇w̄ · ∇fdx +
ϵ2

4


Rd

u∇w̄ · ∇


|∇V |

2

V 2


dx, (14)

where a(∇u, ∇w) is defined by a vector extension of the formula (11). From the Cauchy–Schwarz inequality, we obtain

(2 − ϵ2C−(V ))∥∇u∥2
L2 ≤ a(∇u, ∇u) ≤ ∥∇u∥L2∥∇f ∥L2 + ϵ2C+(V )∥u∥L2∥∇u∥L2 ,

where the positive constants C±(V ) depend on ∥∇ log(V )∥L∞ and ∥1 log(V )∥L∞ . Using the smallness of ϵ2 and the bound
(9), we obtain the bound (10). �

Using Lemma 1, the persistence problem (4) can be rewritten as the fixed-point equation:

r = Φϵ(r) := ϵ2L̃−1
ϵ F + L̃−1

ϵ (L̃ϵ − Lϵ)r + L̃−1
ϵ N(r). (15)

Using the contraction mapping principle, we prove the following result.

Lemma 2. Assume that 1 log(V ) ∈ L∞(Rd) and ∇ log(V ) ∈ H2(Rd), with d = 1, 2, 3. There exist positive constants ϵ0 and C0
such that for every ϵ ∈ (0, ϵ0), there exists a unique solution r ∈ H1(Rd) of Eq. (15) satisfying

∥r∥H1 ≤ C0ϵ
2. (16)

Proof. Wewill prove that under the assumptions of the lemma, operatorΦϵ is a contraction on the ball Bδ(H1(Rd)) of radius
δ if δ = C0ϵ

2 for a positive ϵ-independent constant C0.
From the assumption of ∇ log(V ) ∈ H2(Rd) ⊂ L∞(Rd), for d = 1, 2, 3, we realize that F ∈ H1(Rd). Applying the bounds

(9) and (10), we obtain that, for ϵ > 0 sufficiently small, there is a positive constant C1(V ) that depends on ∥F∥H1 such that

∥ϵ2L̃−1
ϵ F∥H1 ≤ ϵ2C1(V ). (17)

By Sobolev’s embedding of H1(Rd) to Lp(Rd) for any p ≥ 2 if d = 1, 2 ≤ p < ∞ if d = 2, and 2 ≤ p ≤ 6 if d = 3, and by the
estimate (9), we obtain that, for ϵ > 0 sufficiently small, there is a positive constant C2 such that

∥L̃−1
ϵ N(r)∥H1 ≤

√
2ϵ−1

∥N(r)∥L2 ≤
√
2ϵ−1(3∥r∥2

L4 + ∥r∥3
L6) ≤ C2ϵ

−1(∥r∥2
H1 + ∥r∥3

H1). (18)

Finally, under the conditions of ∇ log(V ), 1 log(V ) ∈ L∞(Rd), we have the bounds

∥(L̃ϵ − Lϵ)r∥L2 ≤ ϵ2
∥∇ log(V )∥L∞∥∇r∥L2 +

1
2
ϵ2

∥1 log(V )∥L∞∥r∥L2 , (19)

hence, using estimate (9), we obtain that, for ϵ > 0 sufficiently small, there is a positive constant C3(V ) that depends on
∥∇ log(V )∥L∞ and ∥1 log(V )∥L∞ such that

∥L̃−1
ϵ (L̃ϵ − Lϵ)r∥H1 ≤

√
2ϵ−1

∥(L̃ϵ − Lϵ)r∥L2 ≤ ϵC3(V )∥r∥H1 . (20)

From these three estimates, it is clear that Φϵ maps a ball Bδ(H1(Rd)) of radius δ = C0ϵ
2 to itself, where C0 > C1(V ), inde-

pendently of ϵ. Similar estimates on the Lipschitz continuous nonlinear term N(r) and perturbation operator L̃−1
ϵ (L̃ϵ − Lϵ)

show that Φϵ is a contraction on the ball Bδ(H1(Rd)) of radius δ = C0ϵ
2. Hence, the assertion of the theorem follows from

the Banach fixed-point theorem. �

Remark 1. Sobolev’s embedding of Hs(Rd) to L∞(Rd) for s > d
2 allows us to replace the three conditions of the lemma by

only one condition: ∇ log(V ) ∈ H2(R) if d = 1 and ∇ log(V ) ∈ H3(Rd) if d = 2 or d = 3. With this refinement, Theorem 1
follows from Lemma 2 after the decomposition u = u0(1 + r) is used.
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Remark 2. Because H1(Rd) is embedded into L∞(Rd) for d = 1, the solution u = u0(1 + r) in Theorem 1 with small ∥r∥H1

is positive for d = 1. However, positivity of u is not proved for d = 2, 3, because the correction term r is not controlled in
the supremum norm.

In the end of this article, we discuss several examples.

• If V grows algebraically at infinity with any rate α > 0, that is, if

V (x) ∼ |x|α as |x| → ∞

(the nonlinear confinement of this kind was adopted in Ref. [3]), then

|∇ log(V )| ∼ |x|−1 and |1 log(V )| ∼ |x|−2.

Assuming smoothness ofV , these conditions provide F ∈ H1(Rd) if d = 1, 2, 3, hence Theorem1holds for such potentials
for any α > 0. (Of course, u ∈ L2(Rd) if and only if α > d.) Some exact expressions are available for particular V and ϵ [8].

• If V grows like the exponential or Gaussian function (such as in themodels introduced in Refs. [4,9]), then the assumption
F ∈ H1(Rd) fails for any d = 1, 2, 3. Nevertheless, if V = (1 + β|x|2)eα|x|2 with α, β > 0, then the analytic expression is
available [4] for a particular value of ϵ = ϵ0:

u =
ϵα
√

β
e−

α
2 |x|2 , ϵ0 =

√
β

α2 + dαβ
. (21)

However, because F ∉ H1(Rd) (F is not even bounded at infinity), it is not clear if there exists a family of stationary states
for any ϵ ∈ (0, ϵ0) that connects the TF approximation (2) and the exact solution (21).

• If V is a symmetric double-well potential, then Theorem 1 justifies the construction of a symmetric stationary state u.
Symmetry-breaking bifurcation may happen in double-well potentials, but it cannot happen to the symmetric state due
to uniqueness arguments. Therefore, such a bifurcation may only happen to an anti-symmetric stationary state.

In conclusion, we have presented a rigorous proof of the proximity of the self-trapped states, produced by the TF
(Thomas–Fermi) approximation in the recently developedmodelswith the spatially growing local strength of the defocusing
cubic nonlinearity, to the true ground state, in the space of any dimension, d = 1, 2, 3. As an extension of the analysis, it may
be interesting to justify the empiric use of the TF approximation for the description of self-trappedmodeswith intrinsic vor-
ticity (by themselves, they are not ground states, but may play such a role in the respective reduced radial models [7,9,12]).
Another relevant extension can be developed for two-component Gross–Pitaevskii equations with the nonlinear confine-
ment of the same type [5].
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