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Abstract

A flower graph consists of a half line and N symmetric loops connected at a single vertex with N ≥ 2
(it is called the tadpole graph if N = 1). We consider positive single-lobe states on the flower graph in the 
framework of the cubic nonlinear Schrödinger equation. The main novelty of our paper is a rigorous appli-
cation of the period function for second-order differential equations towards understanding the symmetries 
and bifurcations of standing waves on metric graphs. We show that the positive single-lobe symmetric state 
(which is the ground state of energy for small fixed mass) undergoes exactly one bifurcation for larger 
mass, at which point (N − 1) branches of other positive single-lobe states appear: each branch has K larger 
components and (N − K) smaller components, where 1 ≤ K ≤ N − 1. We show that only the branch with 
K = 1 represents a local minimizer of energy for large fixed mass, however, the ground state of energy is not 
attained for large fixed mass if N ≥ 2. Analytical results obtained from the period function are illustrated 
numerically.
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Fig. 1. A schematic example of the flower graph �N with N = 2 (left) and N = 3 (right).

1. Introduction

A flower graph is a metric graph which consists of a half-line and N symmetric loops con-
nected at a single common vertex. We denote such a graph by �N . Without loss of generality, 
we normalize the length of symmetric loops to 2π and parameterize the loops by [−π, π]. The 
half-line coincides with [0, ∞). We count N + 1 edges and 2 vertices (one at infinity), so that the 
Betti number of �N is equal to N . Fig. 1 gives schematic examples of the flower graph for two 
and three loops.

Standing waves in the nonlinear Schrödinger (NLS) equation on metric graphs have attracted 
much attention in recent years [14]. The NLS equation with a power nonlinearity is usually posed 
in the normalized form

i�t + �� + (p + 1)|�|2p� = 0, (1.1)

where the Laplacian � is defined componentwise on the metric graph subject to proper boundary 
conditions (see, e.g., monographs [6,12]).

Let the wave function � = (ψ1, ψ2, . . . , ψN, ψ0) on the flower graph �N be represented by 
the functions {ψj }Nj=1 : [−π, π] �→ C on the N symmetric loops and by ψ0 : [0, ∞) �→ C on the 

half-line. We define the space of square-integrable functions L2(�N) componentwise as

L2(�N) = L2(−π,π) × · · · × L2(−π,π)︸ ︷︷ ︸
N times

×L2(0,∞)

The NLS equation is locally well-posed in the energy space H 1
C(�N) := H 1(�N) ∩ C0(�N), 

where the Sobolev space H 1(�N) is also defined componentwise as

H 1(�N) = H 1(−π,π) × · · · × H 1(−π,π)︸ ︷︷ ︸
N times

×H 1(0,∞),

and C0(�N) denotes the space of continuous functions on edges of �N and across the vertex 
point in �N . The local solution to the NLS equation (1.1) conserves the energy

E(�) = ‖∇�‖2
2 − ‖�‖2p+2

2p+2 (1.2)

L (�N) L (�N )
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Fig. 2. Examples of a positive single-lobe state on a bounded edge. Left: the maximum is achieved at the internal point, 
and the minima is achieved at the vertices. Right: the minimum is achieved at the internal point, and the maxima is 
achieved at the vertices.

and the mass

Q(�) = ‖�‖2
L2(�N )

. (1.3)

A standing wave of the NLS equation (1.1) is given by the solution of the form �(t, x) =
�(x)e−iωt , where � ∈ H 1

C(�N) is a real-valued solution of the stationary NLS equation

ω� = −�� − (p + 1)|�|2p�, (1.4)

and ω < 0 is a frequency parameter. Among all standing wave solutions, we are particularly 
interested in the positive single-lobe states, examples of which are shown on Fig. 2.

Definition 1. The standing wave � ∈ H 1
C(�N) is said to be a positive single-lobe state if �(x)

is positive for every x ∈ �N and on each bounded edge of �N , either the maximum of � is 
achieved at a single internal point and the minima of � occur at the vertices or the minimum of 
� is achieved at a single internal point and the maxima of � occur at the vertices.

If N = 1, the graph �1 is usually called the tadpole graph. Construction of standing waves of 
the cubic NLS equation (p = 1) on the tadpole graph �1 was obtained with the use of elliptic 
functions in [8]. Bifurcations and stability of standing waves for small negative ω were analyzed 
for any p > 0 in [16] by using Sturm’s theory and asymptotic methods.

For the subcritical powers with p ∈ (0, 2) and for the tadpole graph N = 1, it was shown in 
[2] based on the variational method and symmetric energy-decreasing rearrangements that the 
ground state of energy E(�) subject to the fixed mass μ := Q(�) is attained for every μ > 0
at the positive single-lobe state �, which is symmetric on the loop [−π, π] and monotonically 
decreasing on [0, π] and [0, ∞). The ground state � ∈ H 1

C(�N) is the global minimizer of the 
variational problem

Eμ = inf
�∈H 1 (� )

{E(�) : Q(�) = μ} . (1.5)

C N
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In the case N = 1, Eμ = E(�) is attained on the ground state � ∈ H 1
C(�N) for p ∈ (0, 2). 

Generally, Eμ may not be attained on unbounded metric graphs [1]. For instance, a sufficient 
condition on μ was found in Theorem 5.1 of [2] which ensures that Eμ is not attained on a graph 
with a compact core and exactly one half-line for p ∈ (0, 2). This result is applicable to the flower 
graph �N in the limit of large N .

For the critical power p = 2, it was shown in Theorem 3.3 in [3] that the ground state on the 
metric graph with exactly one half-line is attained if and only if μ ∈ (μR+ , μR], where μR+ is 
the mass of the half-soliton on the half-line R+ and μR is the mass of the full-soliton on the full 
line R, both values are independent of ω for p = 2. It is shown in the recent work [15] for the 
tadpole graph �1 that the ground state is again given by the positive single-lobe state �, which 
is symmetric on the loop [−π, π] and monotonically decreasing on [0, π] and [0, ∞).

Another relevant result is Theorem 3.3 in [4], where the existence of local energy minimizers 
was proven in the limit of large mass μ for p ∈ (0, 2) under the additional condition that the 
energy minimizer is localized on one bounded edge of an unbounded graph and attains a maxi-
mum on this edge. This result applies to �N for every N ≥ 1. Alternative characterization of the 
standing waves in the limit of large mass μ was obtained in the cubic case (p = 1) by using the 
elliptic functions [7] where the state of minimal energy at a fixed large mass μ was identified 
among the local minimizers.

The purpose of this work is to study the interplay between the existence of standing waves 
of the NLS equation (1.1) and the symmetry of the metric graph in the particular case of the 
flower graph �N . We develop a novel analytical method to treat the existence of positive single-
lobe states from properties of the period function for second-order differential equations. Such 
properties are typically used for analysis of existence of periodic solutions to nonlinear evolution 
equations [9,11] as well as their spectral stability [10]. The main novelty of our paper is to show 
how applications of this method allow us to obtain precise analytical results on the existence of 
positive single-lobe states. For clarity, we consider the cubic case (p = 1) only. However, since 
we are not using elliptic functions, the results here can be applied for any subcritical power with 
p ∈ (0, 2).

Let us now present the main results and the organization of this paper. Since we work with 
p = 1 and with real-valued � ∈ H 1

C(�N), we rewrite the stationary NLS equation (1.4) in the 
explicit form:

ω� = −�� − 2�3. (1.6)

The standing wave � = (φ1, φ2, . . . , φN, φ0) is a strong solution to the stationary NLS equation 
(1.6) subject to the natural Neumann–Kirchhoff boundary conditions given by

{
φ1(±π) = φ2(±π) = · · · = φN(±π) = φ0(0),∑N

j=1

[
φ′

j (π) − φ′
j (−π)

]
= φ′

0(0),
(1.7)

where the derivatives are defined as the one-sided limits of quotients. We say that � ∈ H 2
NK(�N)

if � ∈ H 2(�N) satisfies the Neumann–Kirchhoff boundary conditions (1.7), where the Sobolev 
space H 2(�N) is also defined componentwise as

H 2(�N) = H 2(−π,π) × · · · × H 2(−π,π)︸ ︷︷ ︸×H 2(0,∞).
N times
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H 2
NK(�N) is the domain of the Laplacian operator � : H 2

NK(�N) ⊂ L2(�N) → L2(�N), where 
� is defined componentwise in L2(�N). By Theorem 1.4.4 in [6], the Laplacian operator is 
self-adjoint in L2(�N). One can verify via integration by parts that for every � ∈ H 2

NK(�N) we 
have

〈(−�)�,�〉L2(�N ) = ‖∇�‖2
L2(�N )

≥ 0.

Hence σ(−�) ⊆ [0, ∞) and ω in the stationary NLS equation (1.6) is restricted to be negative. 
It is shown in Appendix A that σ(−�) = [0, ∞) includes the continuous spectrum and a set of 
positive embedded eigenvalues.

Thanks to the symmetry of the flower graph �N , we are first interested in the existence of 
symmetric state, according to the following definition.

Definition 2. We say that the standing wave is symmetric if � ∈ H 2
NK(�N) satisfies the symmetry 

condition

φ1(x) = φ2(x) = · · · = φN(x) for x ∈ [−π,π]. (1.8)

The first main result states that there exists the unique positive single-lobe symmetric state 
with the monotonically decreasing tail in the stationary NLS equation (1.6) for every ω < 0. The 
proof of this result is given in Section 2.

Theorem 1. For every ω < 0, there exists only one positive single-lobe symmetric state � ∈
H 2

NK(�N) which satisfies the stationary NLS equation (1.6), is symmetric on each loop parame-
terized by [−π, π], and is monotonically decreasing on [0, π] and [0, ∞) The map (−∞, 0) �
ω �→ �(·, ω) ∈ H 2

NK(�N) is C1 and the mass μ(ω) := Q(�(·, ω)) is a C1 monotonically de-
creasing function satisfying the limits μ(ω) → 0 as ω → 0 and μ(ω) → ∞ as ω → −∞.

Remark 1.1. There exist other positive symmetric states satisfying the stationary NLS equation 
(1.6) with more than one maximum on the N loops or with a non-monotonically decreasing tail 
on [0, ∞). However, these other positive symmetric states are not local energy minimizers, and 
do not exist for small negative ω, hence we ignore them here.

In what follows, we will often omit the dependence of �(·, ω) on ω obtained in Theorem 1. 
Given the positive single-lobe symmetric state � ∈ H 2

NK(�N) to the stationary NLS equation 
(1.6), we can define the self-adjoint linear operator L : H 2

NK(�N) ⊂ L2(�N) → L2(�N) given 
by

L = −� − ω − 6�2. (1.9)

Since φ0(x) → 0 as x → ∞ on the half-line, an application of Weyl’s Theorem yields that the 
continuous spectrum of L is given by

σa.c.(L) = σ(−� − ω) = [|ω|,∞). (1.10)

This implies that there are only finitely many eigenvalues of L of finite multiplicities located 
below |ω|. Let n(L) be the Morse index (the number of negative eigenvalues of L counted with 
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Fig. 3. The bifurcation diagram of positive single-lobe states on the parameter plane (ω, μ) for N = 2 (left) and N = 3
(right). The blue line shows the positive single-lobe symmetric state �. The red line is the single-lobe state �(1) with 
one component having larger amplitude than the other components. The green line (for N = 3) is the single-lobe state 
�(2) with two components having larger amplitudes than the third one. (For interpretation of the colors in the figures, 
the reader is referred to the web version of this article.)

their multiplicities) and z(L) be the nullity index of the kernel of L (the multiplicity of the zero 
eigenvalue of L). Since

〈L�,�〉L2(�N ) = −4‖�‖4
L4(�N )

< 0, (1.11)

there is always a negative eigenvalue of L so that n(L) ≥ 1. When the nullity index is nonzero, 
we define bifurcations of the symmetric state, according to the following definition.

Definition 3. We say that the positive single-lobe symmetric state � at the given ω < 0 undergoes 
a bifurcation if z(L) ≥ 1.

The second main result states that the positive single-lobe symmetric state of Theorem 1
undergoes exactly one bifurcation in the parameter continuation in ω. The proof of this result is 
given in Section 3.

Theorem 2. Assume N ≥ 2, and consider the positive single-lobe symmetric state � ∈ H 2
NK(�N)

of Theorem 1. There exists ω∗ ∈ (−∞, 0) such that z(L) = N − 1 for ω = ω∗ and z(L) = 0 for 
ω �= ω∗. Moreover, n(L) = N for ω ∈ (−∞, ω∗) and n(L) = 1 for ω ∈ [ω∗, 0).

Fig. 3 shows the bifurcation diagram on the parameter plane (ω, μ) in the case N = 2 (left) 
and N = 3 (right). The blue line on Fig. 3 shows the symmetric state �. At the bifurcation point 
ω∗ of Theorem 2, (N − 1) branches of positive asymmetric single-lobe states appear. These 
asymmetric states are defined as follows.

Definition 4. Fix 1 ≤ K ≤ N −1. We say that the positive single-lobe state � ∈ H 1
C(�N) is asym-

metric and K-split if, up to permutation between the components in the N loops, components of 
� satisfy the condition:

φ1(x) = · · · = φK(x), φK+1(x) = · · · = φN(x), for x ∈ [−π,π]. (1.12)
724
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For convenience, we denote the positive single-lobe state satisfying (1.12) by �(K) and assume 
that the K components have larger amplitudes (L∞ norms on the corresponding edges), whereas 
the (N − K) components have smaller amplitudes.

Recall again that the blue line on Fig. 3 depicts the symmetric state �, which undergoes a 
bifurcation at ω = ω∗. The asymmetric K-split state �(K) appears at the bifurcation point. It 
follows from the insert of Fig. 3 (right) for N = 3 that the branch of �(2) given by the green line 
is only located for ω < ω∗, whereas the branch of �(1) given by the red line exists for ω > ω∗
near the bifurcation point at ω∗ and has a fold point at ω1 ∈ (ω∗, 0). The branch turns at the fold 
point and extends for every ω < ω1. Hence, two points on the same branch are located for a fixed 
value of ω in (ω∗, ω1). Details of the numerical approximation which produce the bifurcation 
diagram on Fig. 3 are described in Section 5.

Although the behavior of (N − 1) branches can be complicated near the bifurcation point ω∗, 
it becomes simple for large negative values of ω. Our third main result states a rather simple 
characterization of the positive single-lobe asymmetric states for large negative ω. The proof of 
this result is given in Section 4.

Theorem 3. There exists ω∞ ∈ (−∞, ω∗) such that for every ω ∈ (−∞, ω∞) there are exactly N
(up to permutations between the components in the N loops) positive single-lobe states �(K) ∈
H 2

NK(�N) with 1 ≤ K ≤ N , which satisfy the stationary NLS equation (1.6), are symmetric on 
each loop parameterized by [−π, π], and are monotonically decreasing on the half-line [0, ∞). 
Moreover, the first K components in (1.12) are monotonically decreasing on [0, π] and the other 
N − K components in (1.12) are monotonically increasing on [0, π]. For every K , the map 
(−∞, ω∞) � ω �→ �(K)(·, ω) ∈ H 2

NK(�N) is C1 and the mass μ(K)(ω) := Q(�(K)(·, ω)) is a C1

monotonically decreasing function satisfying the limits μ(K)(ω) → ∞ as ω → −∞. Moreover,

μ(1)(ω) < μ(2)(ω) < · · · < μ(N−1)(ω) < μ(N)(ω), ω ∈ (−∞,ω∞), (1.13)

where �(N) = � with μ(N)(ω) = μ(ω) are given by the symmetric state in Theorem 1.

It follows from the characterization of local minimizers of energy in the limit of large mass in 
[4] that the Morse index of �(K=1) is 1, whereas Theorem 3 defines a monotonically decreasing 
map ω �→ μ(K=1)(ω) for large negative ω. By Theorems 1 and 2, the Morse index of � ≡ �(N)

is 1 for small negative ω and the map ω �→ μ(K=N)(ω) is monotonically decreasing for every ω. 
By the standard theory of orbital stability of standing waves, the following corollary is deduced 
from these results.

Corollary 1. Assume N ≥ 2. There exist μ∗ and μ∞ satisfying 0 < μ∗ ≤ μ∞ < ∞ such that the 
positive single-lobe symmetric state �(K=N) = � of Theorem 1 is a local minimizer of energy 
E(�) subject to the fixed mass Q(�) = μ for μ ∈ (0, μ∗), whereas the positive single-lobe state 
�(K=1) of Theorem 3 is a local minimizer of energy E(�) subject to the fixed mass Q(�) = μ

for μ ∈ (μ∞, ∞). Moreover, μ∗ = μ(ω∗) = Q(�(·, ω∗)), where ω∗ is defined in Theorem 2.

Remark 1.2. One can show by the methods used in [7] and [16] that the symmetric state �
of Theorem 1 is the ground state of the constrained minimization problem (1.5) for small μ, 
whereas the asymmetric state �(K=1) of Theorem 3 is not the ground state for large μ if N ≥ 2, 
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Fig. 4. The branch of the positive single-lobe state � in the case N = 1 on the plane (ω, μ) (left) and on the mass–energy 
plane (right).

because the infimum of the constrained minimization problem (1.5) is not attained. These results 
are given in Appendices B and C for completeness.

Remark 1.3. For the tadpole graph (N = 1), no ω∗ or μ∗ exist and the symmetric state of 
Theorem 1 is a local constrained minimizer of energy for every ω ∈ (−∞, 0). Moreover, by 
Corollary 3.4 and the construction on Figure 4 in [2], it is the ground state of energy for every 
mass μ ∈ (0, ∞).

It follows from Proposition 3.3 in [1] that positive states are the only candidates for minimizers 
of the energy E(�) subject to the fixed mass Q(�) = μ. By Theorem 2.2 in [1], Eμ satisfies the 
bounds

−1

3
μ3 ≤ Eμ ≤ − 1

12
μ3, (1.14)

where the lower bound is the energy of a half-soliton on a half-line with the same mass μ and 
the upper bound is the energy of a full soliton on a full line with the same mass μ. By Theorem 
3.3 and Corollary 3.4 in [2], the infimum is attained if there exists �∗ ∈ H 2

NK(�N) such that 
E(�∗) ≤ − 1

12μ3.
Fig. 4 shows the branch of the positive single-lobe state � in the case N = 1 on the (ω, μ)

plane (left) and on the (μ, η) plane (right), where η := E(�). The shaded area on Fig. 4 (right) is 
defined between the lower and upper bounds in (1.14). The branches are computed numerically 
by using the numerical methods based on the period function, see Section 5.

In agreement with Remark 1.3, the positive single-lobe state for N = 1 is the ground state of 
the constrained minimization problem (1.5) in the sense that the solution branch on the (μ, η)

plane is located in the shaded area for every μ > 0. It approaches the lower bound as μ → 0
when � is close to the half-soliton on the half-line and it approaches the upper bound as μ → ∞
when � is close to the full soliton on the full line (see Appendices B and C).

Fig. 5 shows numerically computed branches of the positive single-lobe states on the (μ, η)

plane for N = 2 (left) and N = 3 (right). Compared to the case N = 1 on Fig. 4 (right) and in 
agreement with Remark 1.2, the branch for the positive single-lobe symmetric state � is located 
inside the shaded region only for small mass μ and it goes beyond the shaded region, where the 
bifurcation of Theorem 2 occurs. All new branches of positive single-lobe asymmetric states in 
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Fig. 5. Bifurcation diagram of positive single-lobe states on the mass–energy plane for N = 2 (left) and N = 3 (right).

Theorem 3 bifurcating from the branch for � stay away from the shaded region, hence these 
states are not the ground state of the constrained minimization problem (1.5) for any μ > 0. 
Nevertheless, we note that the branch for �(K=N) = � is close to the lower bound as μ → 0 and 
the branch for �(K=1) approaches the upper bound as μ → ∞ from the unshaded region.

2. Existence of the positive single-lobe symmetric state

Here we reformulate the stationary NLS equation (1.6) equipped with the Neumann–
Kirchhoff conditions (1.7) in the form for which we can use the dynamical system theory for 
orbits on the plane, e.g. the period function. Then, we obtain estimates on the period function 
and on the mass of the symmetric state, from which we prove Theorem 1.

2.1. Reformulation of the existence problem

We use the following scaling transformation for ω := −ε2 < 0 with ε > 0:

φ0(x) = εu0(εx), φj (x) = εuj (εx), j ∈ {1,2, . . . ,N}. (2.1)

In new variables, the stationary NLS equation (1.6) transforms to the following system of differ-
ential equations:

{−u′′
j (z) + uj (z) − 2uj (z)

3 = 0, z ∈ (−πε,πε), j ∈ {1,2, . . . ,N},
−u′′

0(z) + u0(z) − 2u0(z)
3 = 0, z > 0,

(2.2)

where z = εx. The only dependence of system (2.2) on ε is due to the length of the interval 
[−πε, πε]. The boundary conditions (1.7) transform to the equivalent boundary conditions:

{
u1(±πε) = u2(±πε) = · · · = uN(±πε) = u0(0),∑N

j=1 u′
j (πε) − u′

j (−πε) = u′
0(0).

(2.3)

The only positive decaying solution to equation −u′′
0(z) + u0(z) − 2u0(z)

3 = 0 on the half-line 
is expressed by the shifted NLS soliton:
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Fig. 6. Phase portrait on the (u, v)-plane given by the level curves of the function E(u,v).

u0(z) = sech(z + a), z > 0, (2.4)

where a ∈ R is an arbitrary translation parameter. If a > 0, u0 is monotonically decreasing on 
[0, ∞) and if a < 0, u0 is non-monotone on [0, ∞). In order to prove Theorem 1, we only 
consider the positive states with the monotonically decreasing u0, hence we select a > 0.

Each second-order differential equation in the system (2.2) is integrable with the first-order 
invariant:

E(u,v) = v2 − A(u), v := du

dz
, A(u) := u2(1 − u2), (2.5)

where the value of E(u, v) = E is independent of z. Fig. 6 shows the phase portrait given by the 
level curves of the function E(u, v) on the (u, v)-plane.

Since A(u) = u2(1 − u2), there exists only one positive root of A′(u) denoted as p∗ such 
that A′(p∗) = 0, in fact, p∗ = 1√

2
. Two homoclinic orbits exist for E = 0, one corresponds to 

positive u and the other one corresponds to negative u. Periodic orbits exist inside each of the 
two homoclinic loops and correspond to E ∈ (E∗, 0), where E∗ = −A(p∗) = − 1

4 , and they 
correspond to either strictly positive u or strictly negative u. Periodic orbits outside the two 
homoclinic loops exist for E ∈ (0, ∞) and they correspond to sign-indefinite u. Note that

E + A(p∗) > 0, E ∈ (E∗,∞). (2.6)

The homoclinic orbit with the decaying solution (2.4) corresponds to E = 0 and either v =√
A(u) if z + a < 0 or v = −√

A(u) if z + a > 0. Since u0 is monotonically decreasing on 
[0, ∞) and a > 0, we have v = −√

A(u) for all z > 0.
Let us define p0 := sech(a), that is, the value of u0(z) at z = 0. Then, −√

A(p0) is the value 
of u′

0(z) at z = 0. Note that p0 ∈ (0, 1) is a free parameter obtained from a ∈ (0, ∞) such that 
p0(a) → 1 when a → 0 and p0(a) → 0 when a → ∞.

Under the scaling transformation (2.1), the symmetry condition (1.8) yields

u1(z) = u2(z) = · · · = uN(z), z ∈ [−πε,πε], (2.7)
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Fig. 7. Geometric construction of the positive single-lobe symmetric state on the plane for N = 2 with a = 0.7 (left) and 
a = 1 (right).

hence the positive symmetric state of Definition 2 is found from the following boundary-value 
problem: ⎧⎨

⎩
−u′′

1(z) + u1(z) − 2u1(z)
3 = 0, z ∈ (−πε,πε),

u1(πε) = u1(−πε) = p0,

u′
1(−πε) = −u′

1(πε) = 1
2N

√
A(p0),

(2.8)

where p0 ∈ (0, 1) is a free parameter of the problem. The positive single-lobe states of Defini-
tion 1 correspond to a part of the level curve E(u, v) = E which intersects p0 only twice at the 
ends of the interval [−πε, πε].

Fig. 7 shows a geometric construction of solutions to the boundary-value problem (2.8) on 
the plane (u, v). The dashed line represents the homoclinic orbit at E = 0 with the solid part 
depicting the shifted NLS soliton (2.4) for a = 0.7 (left) and a = 1 (right). The dashed-dotted 
vertical line depicts the value of p0 = u0(0) = sech(a). The red solid line plots q0 = 1

2N

√
A(p0)

versus p0 ∈ (0, 1). The level curve E(u, v) = E(p0, q0) at p0 = sech(a) and q0 = 1
2N

√
A(p0) is 

shown by the dashed line, whereas the solid part depicts a suitable solution to the boundary-value 
problem (2.8).

We shall make this geometric picture rigorous by using analytical tools of the period function 
(see, e.g., [9]). We define two period functions for a given (p0, q0):

T+(p0, q0) :=
p+∫

p0

du√
E + A(u)

, T−(p0, q0) :=
p0∫

p−

du√
E + A(u)

, (2.9)

where the fixed value E and the turning points p+ and p− are defined from (p0, q0) by

E = q2
0 − A(p0) = −A(p+) = −A(p−). (2.10)

For each level curve of E(u, v) = E inside the homoclinic loop on Fig. 7, we can order the 
turning points as follows:

0 < p− < p∗ < p+ < 1. (2.11)
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It is obvious that u1 is a positive single-lobe solution of the boundary-value problem (2.8) if and 
only if p0 is a root of the nonlinear equation:

T (p0) = πε, where T (p0) := T+
(

p0,
1

2N

√
A(p0)

)
. (2.12)

Since T (p0) is uniquely defined by p0 ∈ (0, 1), the nonlinear equation (2.12) defines a unique 
mapping (0, 1) � p0 �→ ε(p0) := 1

π
T (p0) ∈ (0, ∞). Monotonicity of this mapping is shown 

next.

2.2. Monotonicity of the period function

It follows that u = p∗ is a double root of A(u) − A(p∗) since A′(p∗) = 0 and A′′(p∗) �= 0, 
where we can use the explicit computations of A′(u) = 2u(1 − 2u2) and A′′(u) = 2(1 − 6u2).

Recall that if W(u, v) is a C1 function in an open region of R2, then the differential of W is 
defined by

dW(u, v) = ∂W

∂u
du + ∂W

∂v
dv

and the line integral of dW(u, v) along any C1 contour γ connecting (u0, v0) and (u1, v1) does 
not depend on γ and is evaluated as∫

γ

dW(u, v) = W(u1, v1) − W(u0, v0).

At the level curve of E(u, v) = v2 − A(u) = E, we can write

d

[
2(A(u) − A(p∗))v

A′(u)

]
=
[

2 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
vdu + 2(A(u) − A(p∗))

A′(u)
dv,

where the quotients are not singular for every u > 0. Since 2vdv = A′(u)du on the level curve 
E(u, v) = E, the previous representation allows us to express

A(u) − A(p∗)
v

du = −
[

2 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
vdu + d

[
2(A(u) − A(p∗))v

A′(u)

]
. (2.13)

The following lemma justifies monotonicity of the mapping (0, 1) � p0 �→ T (p0) ∈ (0, ∞).

Lemma 2.1. The function p0 �→ T (p0) is C1 and monotonically decreasing for every p0 ∈
(0, 1).

Proof. Since q0 = 1
2N

√
A(p0) in (2.12) for a given p0 ∈ (0, 1), the value of T (p0) is obtained 

from the level curve E(u, v) = E0(p0), where

E0(p0) := q2
0 − A(p0) = −

(
1 − 1

2

)
A(p0). (2.14)
4N
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For every p0 ∈ (0, 1), we use the formula (2.13) to get

[E0(p0) + A(p∗)]T (p0) =
p+∫

p0

[
v − A(u) − A(p∗)

v

]
du

=
p+∫

p0

[
3 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
vdu + 2(A(p0) − A(p∗))q0

A′(p0)
,

where we have used that v = 0 at u = p+ and v = q0 at u = p0. Because the integrands are free of 
singularities and E0(p0) + A(p∗) > 0 due to (2.6), the mapping (0, 1) � p0 �→ T (p0) ∈ (0, ∞)

is C1. We only need to prove that T ′(p0) < 0 for every p0 ∈ (0, 1).
Differentiating the previous expression with respect to p0 yields

[E0(p0) + A(p∗)]T ′(p0)

= − A(p∗)
4N2q0

− A′(p0)

2

(
1 − 1

4N2

) p+∫
p0

[
1 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
du

v
,

where we have used

E′
0(p0) = −

(
1 − 1

4N2

)
A′(p0), q ′

0(p0) = 1

8N2q0
A′(p0),

∂v

∂p0
= 1

2v
E′

0(p0).

The formula for T ′(p0) can be simplified using A(u) = u2(1 − u2) to the form:

[E0(p0) + A(p∗)]T ′(p0) = − A(p∗)
4N2q0

− A′(p0)

8

(
1 − 1

4N2

) p+∫
p0

1 − 2u2

u2v
du. (2.15)

Since A′(p0) < 0 for any p0 ∈ (p∗, 1) and 1 − 2u2 < 0 for u ∈ [p0, p+] ⊂ (p∗, 1), we get that 
T ′(p0) < 0 for any p0 ∈ (p∗, 1). Similarly, since A′(p∗) = 0, we also have T ′(p∗) < 0.

If p0 ∈ (0, p∗) we use A′(u) = 2u(1 − 2u2) and proceed with integration by parts to get

p+∫
p0

1 − 2u2

u2v
du =

p+∫
p0

A′(u)

2u3
√

E0(p0) + A(u)
du (2.16)

= −
√

E0(p0) + A(p0)

p3
0

+ 3

p+∫
p0

√
E0(p0) + A(u)

u4 du

= − q0

p3
0

+ 3

p+∫
v

u4 du.
p0
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Substituting this into (2.15) yields

[E0(p0) + A(p∗)]T ′(p0)

= − A(p∗)
4N2q0

− A′(p0)

8

(
1 − 1

4N2

) p+∫
p0

1 − 2u2

u2v
du

= − A(p∗)
4N2q0

+ A′(p0)

8

(
1 − 1

4N2

)
q0

p3
0

− 3A′(p0)

8

(
1 − 1

4N2

) p+∫
p0

v

u4 du.

The last term is negative since A′(p0) > 0 for every p0 ∈ (0, p∗). To evaluate the first two terms 
we use that A(p∗) = 1

4 , A′(p0) = 2p0(1 − 2p2
0), and 4N2q2

0 = p2
0 − p4

0 so that we get

− A(p∗)
4N2q0

+ A′(p0)

8

(
1 − 1

4N2

)
q0

p3
0

= − 1

16N2q0
+ (1 − 2p2

0)q0

4p2
0

− A′(p0)q0

32N2p3
0

= − (3 − 2p2
0)p

2
0

16N2q0
− A′(p0)q0

32N2p3
0

,

which is negative for every p0 ∈ (0, p∗). As a result of the above calculations, for every p0 ∈
(0, p∗) we have T ′(p0) < 0. �
2.3. Monotonicity of the mass of the symmetric state

By construction of the symmetric state �, we compute the mass μ(ω) := Q(�(·, ω)) in the 
form

μ = N

π∫
−π

φ2
1dx +

∞∫
0

φ2
0dx.

Due to the scaling transformation (2.1), the explicit solution on the half-line (2.4), and the first-
order invariant (2.5), the mass integral can be rewritten as follows:

μ = 2Nε

p+∫
p0

u2du√
E + A(u)

+ ε

(
1 −

√
1 − p2

0

)
, (2.17)

where p0 ∈ (0, 1) is the same parameter as in (2.12), E(u, v) = E0(p0) is fixed at the energy level 

(2.14), A(u) = u2 − u4, and we have used tanh(a) =
√

1 − p2
0 that follows from sech(a) = p0

with a > 0.
Using T (p0) = πε in (2.12), we rewrite (2.17) as

M(p0) := πμ = T (p0)

⎡
⎣2N

p+∫
u2du√

E + A(u)
+
(

1 −
√

1 − p2
0

)⎤⎦ . (2.18)
p0
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Recall that ω = −ε2 and that the function p0 �→ T (p0) is C1 and monotonically decreasing 
for every p0 ∈ (0, 1) by Lemma 2.1. The following lemma gives monotonicity of the mapping 
(0, 1) � p0 �→ M(p0) ∈ (0, ∞).

Lemma 2.2. The function p0 �→ M(p0) is C1 and monotonically decreasing for every p0 ∈
(0, 1).

Proof. We denote B(p0) :=
∫ p+
p0

u2du√
E+A(u)

and prove that the mapping (0, 1) � p0 �→ B(p0) ∈
(0, ∞) is C1. At the level curve E(u, v) = E0(p0), we can write

d

[
2(A(u) − A(p∗))u2v

A′(u)

]
= 2

[
1 + 2(1 + 2u2)(A(u) − A(p∗))

[A′(u)]2

]
u2vdu

+ 2(A(u) − A(p∗))
A′(u)

u2dv,

where the relations A′(u) = 2u(1 − 2u2) and A′′(u) = 2(1 − 6u2) have been used. Since 2vdv =
A′(u)du along the level curve E(u, v) = E0(p0), we obtain

(A(u) − A(p∗))
v

u2du = d

[
2(A(u) − A(p∗))u2v

A′(u)

]

−2

[
1 + 2(1 + 2u2)(A(u) − A(p∗))

[A′(u)]2

]
u2vdu, (2.19)

where the quotients are not singular for every u > 0. For every p0 ∈ (0, 1) we use the formula 
(2.19) to write

[E0(p0) + A(p∗)]B(p0) =
p+∫

p0

[
vu2 − (A(u) − A(p∗))u2

v

]
du

=
p+∫

p0

[
3 + 4(1 + 2u2)(A(u) − A(p∗))

[A′(u)]2

]
u2vdu

+ 2(A(p0) − A(p∗))p2
0q0

A′(p0)
,

where we have used that v = 0 at u = p+ and v = q0 at u = p0. Because the integrands are 
free of singularities and E0(p0) + A(p∗) > 0 due to (2.6), the mapping (0, 1) � p0 �→ B(p0) ∈
(0, ∞) is C1. Hence, the mapping (0, 1) � p0 �→M(p0) ∈ (0, ∞) is C1. It remains to prove that 
M′(p0) < 0 for every p0 ∈ (0, 1). We differentiate (2.18) with respect to p0:

M′(p0) = T ′(p0)

[
2NB(p0) +

(
1 −

√
1 − p2

0

)]

+2NT (p0)B′(p0) + T (p0)
p0√

1 − p2
. (2.20)
0
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It follows from the proof of Lemma 2.1 that T ′(p0) < 0, where

[E0(p0) + A(p∗)]T ′(p0) = − A(p∗)
4N2q0

− A′(p0)

8

(
1 − 1

4N2

) p+∫
p0

1 − 2u2

u2v
du. (2.21)

Similarly, differentiating the expression for B(p0) yields the following expression:

[E0(p0) + A(p∗)]B′(p0) = −A(p∗)p2
0

4N2q0
+ A′(p0)

8

(
1 − 1

4N2

) p+∫
p0

1 − 2u2

v
du. (2.22)

The first term in the right-hand side of (2.20) is always negative, whereas the third term is always 
positive. The second term can be of either sign depending on the value of p0 ∈ (0, 1). In order to 
prove that M′(p0) < 0 for every p0 ∈ (0, 1), we shall balance the positive terms in the right-hand 
side of (2.20) with the negative terms.

We combine the second and third terms in the right-hand side of (2.20) after multiplication by 
(E0(p0) + A(p∗)) and obtain:

I := (E0(p0) + A(p∗))

⎡
⎢⎣2NT (p0)B′(p0) + T (p0)

p0√
1 − p2

0

⎤
⎥⎦

= 2NT (p0)

⎡
⎣−A(p∗)p2

0

4N2q0
+ A′(p0)

8

(
1 − 1

4N2

) p+∫
p0

1 − 2u2

v
du

⎤
⎦

+T (p0)
p0√

1 − p2
0

(E0(p0) + A(p∗))

= −
(

1 − 1

4N2

)
T (p0)

⎡
⎢⎣p0A(p0)√

1 − p2
0

+ NA′(p0)

4

p+∫
p0

2u2 − 1

v
du

⎤
⎥⎦

where we have used the relations E0(p0) = − 
(

1 − 1
4N2

)
A(p0) and q0 = 1

2N

√
A(p0). The first 

term in I is already negative, however, the second term in I is sign-indefinite.
For p0 ∈ (p∗, 1), the second term in I is positive because A′(p0) < 0 and 2u2 − 1 > 0 for 

u ∈ [p0, p+]. Using the integration by parts, we write

p+∫
p0

2u2 − 1

v
du = −

p+∫
p0

A′(u)du

2u
√

E + A(u)
= q0

p0
−

p+∫
p0

v

u2 du.

Substituting this expression into the expression for I yields
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I = −
(

1 − 1

4N2

)
T (p0)

⎡
⎢⎣p0(1 + 2p2

0)

√
1 − p2

0

4
− NA′(p0)

4

p+∫
p0

v

u2 du

⎤
⎥⎦

which is negative since A′(p0) ≤ 0 for p0 ∈ [p∗, 1). Hence, M′(p0) < 0 for p0 ∈ [p∗, 1).
For p0 ∈ (0, p∗), we have A′(p0) > 0 but 2u2 − 1 is sign-indefinite for u ∈ [p0, p+]. We 

combine the second term in I and the second term in the right-hand side of (2.21), which appears 
in the first term of the right-hand side of (2.20) after multiplication by (E0(p0) + A(p∗)). All 
other terms in the right-hand side of (2.20) are negative. Hence, we consider

II := −NA′(p0)

4

(
1 − 1

4N2

)⎡⎣T (p0)

p+∫
p0

2u2 − 1

v
du +B(p0)

p+∫
p0

1 − 2u2

u2v
du

⎤
⎦

= −NA′(p0)

4

(
1 − 1

4N2

)⎡⎢⎣
⎛
⎝ p+∫

p0

u2du

v

⎞
⎠
⎛
⎝ p+∫

p0

du

u2v

⎞
⎠−

⎛
⎝ p+∫

p0

du

v

⎞
⎠2
⎤
⎥⎦ ,

where A′(p0) > 0 if p0 ∈ (0, p0). Thanks to the Cauchy–Schwarz inequality

p+∫
p0

du

v
=

p+∫
p0

u√
v

du

u
√

v
≤
⎛
⎝ p+∫

p0

u2du

v

⎞
⎠1/2⎛⎝ p+∫

p0

du

u2v

⎞
⎠1/2

,

the expression in II is negative. Hence, M′(p0) < 0 for p0 ∈ (0, p∗). �
2.4. Proof of Theorem 1

By monotonicity of the period function T (p0) in p0 given by Lemma 2.1 and by the nonlinear 
equation (2.12), we have a diffeomorphism (0, 1) � p0 �→ ε(p0) = 1

π
T (p0) ∈ (0, ∞). Let us 

show that ε(p0) → 0 as p0 → 1 and ε(p0) → ∞ as p0 → 0. Then, since the function T (p0) is 
monotonically decreasing, the range of the mapping p0 �→ ε(p0) is indeed (0, ∞).

Recall (2.10) with E(u, v) = E0(p0) given by (2.14). Also recall the ordering given by (2.11). 
For a given p0 ∈ (0, 1), the equation E0(p0) = −A(p+) determines p+ from the nonlinear equa-
tion

p2+(1 − p2+) =
(

1 − 1

4N2

)
p2

0(1 − p2
0). (2.23)

Since p+ ∈ (p0, 1), it follows from (2.23) that p+ → 1 as p0 → 1 so that |p+ − p0| → 0 as 
p0 → 1. Since the weakly singular integrand below is integrable, we have

T (p0) =
p+∫

p0

du√
E + A(u)

=
p+∫

p0

du√
A(u) − A(p+)

→ 0 as p0 → 1, (2.24)

hence ε(p0) = 1 T (p0) → 0 as p0 → 1. For every 0 < p0 < p+ < 1 we obtain

π
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T (p0) =
p+∫

p0

du√
A(u) − A(p+)

≥
p+∫

p0

du

u
√

1 − u2
. (2.25)

Since p+ ∈ (p∗, 1), it follows from (2.23) that p+ → 1 as p0 → 0. Since

1∫
0

du

u
√

1 − u2
= ∞,

we have T (p0) → ∞ as p0 → 0, hence ε(p0) = 1
π
T (p0) → ∞ as p0 → 0.

Thus, for each p0 = sech(a) ∈ (0, 1) or equivalently, for each a ∈ (0, ∞), there exists exactly 
one root ε ∈ (0, ∞) of the nonlinear equation (2.12). By using ω = −ε2, the scaling transforma-
tion (2.1), the soliton (2.4), and the symmetry (2.7), we obtain a unique solution � ∈ H 2

NK(�N)

satisfying the stationary NLS equation (1.6), which is symmetric on each loop parameterized by 
[−π, π] and is monotonically decreasing on [0, π] and [0, ∞). Moreover, by Lemma 2.1 and by 
the construction, the map (−∞, 0) � ω �→ �(·, ω) ∈ H 2

NK(�N) is C1.
Let us now define the mass μ(ω) := Q(�(·, ω)) on the unique solution � ∈ H 2

NK(�N) for 
each ω ∈ (−∞, 0). By Lemma 2.2, the mapping (0, 1) � p0 �→ M(p0) ∈ (0, ∞) is C1 and 
monotonically decreasing, where M(p0) = πμ(ω). Since the mapping (0, ∞) � ε �→ p0(ε) is 
C1 and monotonically decreasing, whereas ω = −ε2, we obtain that the mapping (−∞, 0) �
ω �→ μ(ω) ∈ (0, ∞) is C1 and monotonically decreasing, which follows from the chain rule

dμ

dω
= dμ

dp0

dp0

dε

dε

dω
. (2.26)

It remains to prove that μ(ω) → 0 as ω → 0 and μ(ω) → ∞ as ω → −∞.
Since ε → 0 as p0 → 1, it follows from (2.17) that μ → 0 as p0 → 1. Moreover, the first term 

in (2.17) is smaller than the second term in (2.17) due to

p+∫
p0

u2du√
E + A(u)

=
p+∫

p0

u2du√
A(u) − A(p+)

→ 0 as p0 → 1. (2.27)

Hence, it follows from (2.17) that

lim
ε→0

μ

ε
= 1. (2.28)

On the other hand, since ε → ∞ as p0 → 0, we obtain μ → ∞ as p0 → 0. Moreover, the second 

term in (2.17) is smaller than the first term in (2.17) since 1 −
√

1 − p2
0 → 0 as p0 → 0 whereas

p+∫
p0

u2du√
E + A(u)

→
1∫

0

udu√
1 − u2

= 1 as p0 → 0. (2.29)

Hence, it follows from (2.17) that
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lim
ε→∞

μ

ε
= 2N. (2.30)

Thus, the mass μ(ω) in (2.17) satisfies μ(ω) → 0 as ω → 0 and μ(ω) → ∞ as ω → −∞. The 
proof of Theorem 1 is complete.

Remark 2.1. For every ε > 0, the solution u1 to the boundary-value problem (2.8) which corre-
sponds to Theorem 1 is given by a positive, even function on [−πε, πε] such that u′(z) < 0 for 
every z ∈ (0, πε].

Remark 2.2. In the proof of Theorem 1, we show that T (p0) = T+(p0, 1
2N

√
A(p0)) → ∞ as 

p0 → 0 using the estimate (2.25) in the limit p+ → 1 as p0 → 0. In a similar manner, we can 
prove that T+(p0, C

√
A(p0)) → ∞ as p0 → 0 for any positive constant C.

3. Bifurcations from the positive single-lobe symmetric state

By Theorem 1, for every ω < 0, there exists a unique positive single-lobe symmetric state 
� ∈ H 2

NK(�N). For every such �, we define the self-adjoint operator L : H 2
NK(�N) ⊂ L2(�N) →

L2(�N) as in (1.9). Thanks to the exponential decay of φ0(x) → 0 as x → ∞, by Weyl’s 
theorem, the spectrum of L in L2(�N) consists of finitely many isolated eigenvalues of finite 
multiplicities below |ω|, which is the infimum of the continuous spectrum of L in (1.10).

Here we prove Theorem 2. We shall first group the negative and zero eigenvalues of L into 
three sets. By using the Sturm comparison theorem and the analytical properties of the period 
function T+(p0, q0), we control the first eigenvalues in each set. In the end, we prove that there 
exists only one value of ω ∈ (−∞, 0), labeled as ω∗, for which z(L) = N − 1, whereas z(L) = 0
for ω �= ω∗. We also show that n(L) = 1 for ω ∈ (ω∗, 0) and n(L) = N for ω ∈ (−∞, ω∗).

Note that we avoid the surgery techniques for the count of nodal domains [5], which do not 
provide precise information on the Morse index for graphs with positive Betti number. Instead, 
we establish further analytical properties of the period function. In particular, we show that the 
bifurcation at ω∗ is related to the existence of a critical point of the period function T+(p0, q0)

with respect to the parameter q0 at the corresponding level curve on the (u, v)-plane.

3.1. Eigenvalues of L

Let us consider the spectral problem Lϒ = ε2λϒ, where ϒ ∈ H 2
NK(�N) is an eigenfunc-

tion of L corresponding to the eigenvalue ε2λ and the parameter ε is used to express ω = −ε2

and the positive single-lobe symmetric state � by using the scaling transformation (2.1) with 
(u1, u2, . . . , uN, u0). By using a similar transformation with (v1, v2, . . . , vN, v0) for the eigen-
function ϒ, we rewrite the spectral problem Lϒ = ε2λϒ as the following boundary-value prob-
lem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−v′′
j (z) + vj (z) − 6uj (z)

2vj (z) = λvj (z), z ∈ (−πε,πε), j ∈ {1,2, . . . ,N},
−v′′

0 (z) + v0(z) − 6u0(z)
2v0(z) = λv0(z), z > 0,

v1(±πε) = v2(±πε) = · · · = vN(±πε) = v0(0),∑N
j=1 v′

j (πε) − v′
j (−πε) = v′

0(0).

(3.1)

In what follows, ε > 0 is a fixed parameter and the statements hold for every ε > 0.
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Due to the symmetry (2.7) on the positive single-lobe symmetric state �, we have the follow-
ing trichotomy.

Lemma 3.1. The set of non-positive eigenvalues λ of the boundary-value problem (3.1) is a union 
of sets S1, S2, and S3, where

• S1 consists of simple eigenvalues with v0 �≡ 0 and even v1 = · · · = vN on [−πε, πε];
• S2 consists of eigenvalues of multiplicity (N − 1) with v0 ≡ 0 and even vj on [−πε, πε] for 

every j ;
• S3 consists of eigenvalues of multiplicity N with v0 ≡ 0 and odd vj on [−πε, πε] for every 

j .

Moreover, S1 ∩ S2 = ∅ and S2 ∩ S3 = ∅.

Proof. If v0 �≡ 0, there exists only one solution of the second-order equation for v0 which decays 
to 0 as z → ∞, as is shown, e.g., in [13, Lemma 5.1]. Hence, if v0 �≡ 0, the multiplicity of λ in the 
set S1 is one. In fact, the solution v0 (up to normalization) is available in the following analytic 
form:

v0(z) = V0(z;λ) := e−√
1−λz 3 − λ + 3

√
1 − λ tanh(z + a) − 3sech2(z + a)

3 − λ + 3
√

1 − λ
. (3.2)

Since a > 0 for the symmetric state in Theorem 1, it follows from (3.2) for every λ ≤ 0 that 
v0(z) > 0 for every z ≥ 0.

Thanks to the symmetry condition (2.7) and the even parity of uj in the symmetric state of 
Theorem 1, if vj satisfies the boundary conditions vj (−πε) = vj (πε) = v0(0) �= 0, then vj is 
even and v1 = v2 = · · · = vN . Hence, vj is a solution of the following boundary-value problem:

SP1 :
⎧⎨
⎩

−v′′(z) + v(z) − 6u1(z)
2v(z) = λv(z), z ∈ (−πε,πε),

v(−πε) = v(πε) = V0(0;λ),

2Nv′(πε) = V ′
0(0;λ),

(3.3)

where the prime denotes the derivative in z.
If v0 ≡ 0, then vj is a solution of the following Sturm–Liouville boundary-value problem

SP2 :
{−v′′(z) + v(z) − 6u1(z)

2v(z) = λv(z), z ∈ (−πε,πε),

v(−πε) = v(πε) = 0.
(3.4)

If v1 is a solution to SP2, then so are v2, . . . , vN . By the linear superposition principle and the 
even parity of u1, the solution v to SP2 is generally a linear combination of the even and odd 
functions.

If v1 is even, then the derivative boundary condition in (3.1) yields a nontrivial constraint:

N∑
v′
j (πε) = 0 (3.5)
j=1
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and since v′(πε) �= 0 for a nonzero solution of the spectral problem (3.4), then there are only 
N − 1 combinations of v1, v2, . . . , vN satisfying the constraint (3.5). Hence the eigenvalue λ in 
the set S2 has multiplicity (N − 1).

If v1 is odd, then the derivative boundary condition in (3.1) is trivially satisfied, hence there 
are N linearly independent functions v1, v2, . . . , vN and the eigenvalue λ in the set S3 has mul-
tiplicity N .

The boundary-value problem SP2 is the Sturm–Liouville problem with the Dirichlet boundary 
conditions, hence its eigenvalues are all simple. This implies S2 ∩ S3 = ∅.

Each v(z) satisfying SP1 is even on (−πε, πε). Since V0(0; λ) > 0 for every λ ≤ 0, this 
implies that v(±πε) > 0 so that v(z) does not satisfy SP2 and vice versa. This implies that 
S1 ∩ S2 = ∅. �

Let us order the eigenvalues in the spectral problem (3.1) counting their multiplicities as 
follows:

λ1 ≤ λ2 ≤ λ3 ≤ . . . (3.6)

By Lemma 3.1, each eigenvalue of the spectral problem (3.1) corresponds to either v0 �≡ 0 or 
v0 ≡ 0, and so, the set of eigenvalues (counting multiplicities) in the spectral problem (3.1) is in 
one-to-one correspondence with the union of sets of eigenvalues of the boundary-value problems 
SP1 and SP2. Next, we control the sign of the first eigenvalues of the boundary-value problems 
SP1 and SP2.

3.2. Eigenvalues of the boundary-value problems SP1 and SP2

We start with the first eigenvalue λ1 of the spectral problem (3.1). By the Rayleigh-Ritz prin-
ciple (see [17, Lemma 5.12]), this eigenvalue can be characterized variationally as follows:

λ1 = inf
ϒ̃∈H 1

C(�̃N )

{
〈L̃ϒ̃, ϒ̃〉L2(�̃N ) : ‖ϒ̃‖L2(�̃N ) = 1

}
, (3.7)

where L̃ is the ε-scaled version of the linearized operator L and ϒ̃ = (v1, v2, . . . , vN, v0) is the 
scaled eigenfunction on the ε-scaled graph �̃N . The following lemma states that λ1 < 0 and 
λ1 < λ2 in (3.6).

Lemma 3.2. Let λ = γ1 be the first eigenvalue of SP1. Then, λ1 = γ1, moreover, λ1 is negative 
and simple with a strictly positive eigenfunction ϒ̃1 on �̃N .

Proof. It follows from (1.11) that λ1 is negative. By the variational analysis on graphs, as in 
[1, Proposition 3.3], the infimum (3.7) is uniquely attained at some strictly positive ϒ̃1 which 
belongs to H 2

HK(�̃N). This positive ϒ̃1 = (v1, v2, . . . , vN, v0) is the corresponding eigenfunction 
in the spectral problem (3.1). Hence, v0 �≡ 0 and so, λ1 coincides with the first eigenvalue γ1 in 
the set S1 by Lemma 3.1. Since S1 ∩S2 = ∅, whereas the first eigenvalue of the Sturm–Liouville 
problem (3.4) corresponds to an even eigenfunction, it follows that λ1 is not an eigenvalue in 
SP2, hence λ1 is simple. �
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Before proceeding with other eigenvalues, we review the Sturm–Liouville theory for the 
boundary-value problem (3.4). The following three propositions are well-known, see, e.g., [17, 
Section 5.5].

Proposition 3.1. Let βn be the n-th eigenvalue of the Sturm–Liouville problem (3.4) for n ∈ N . 
Then, βn is simple and its corresponding eigenfunction is even (odd) if n is odd (even). Moreover, 
the eigenfunction vanishes on (−πε, πε) at exactly n − 1 nodal points.

Proposition 3.2. Let β1 be the first eigenvalue of the Sturm–Liouville problem (3.4). Then, for 
β < β1, the initial value problem

{−v′′(z) + v(z) − 6u1(z)
2v(z) = βv(z), z ∈ (−πε,πε),

v(0) = 1, v′(0) = 0,
(3.8)

has the unique solution v, which is even and strictly positive on [−πε, πε]. For β > β1, the 
unique solution v is sign-indefinite.

Proposition 3.3. Let β2 be the second eigenvalue of the Sturm–Liouville problem (3.4). Then, for 
β < β2, the initial value problem

{−v′′(z) + v(z) − 6u1(z)
2v(z) = βv(z), z ∈ (−πε,πε),

v(0) = 0, v′(0) = 1,
(3.9)

has the unique solution v, which is odd on [−πε, πε] and strictly positive on (0, πε]. For β > β2, 
the unique solution v is sign-indefinite on (0, πε].

The following three lemmas state the ordering between the second eigenvalue of the 
boundary-value problem SP1 and the first two eigenvalues of the boundary-value problem SP2. 
These eigenvalues contribute to the order of eigenvalues λ2 and λ3 in (3.6).

Lemma 3.3. Let λ = β1 be the first eigenvalue of the boundary-value problem SP2 in (3.4) and 
λ = γ2 be the second eigenvalue of the boundary-value problem SP1 in (3.3). If λ2 in (3.6) is 
negative or zero, then λ2 = β1 < γ2. Moreover, the eigenvalue λ2 has an algebraic multiplicity 
(N − 1) and is associated with (N − 1) even eigenfunctions ϒ̃ on �̃N .

Proof. Let λ2 be the second eigenvalue of the spectral problem (3.1) with an eigenfunction 
ϒ̃2 = (v1, v2, . . . , vN, v0). If λ2 ∈ (−∞, 0], then either v0 ≡ 0 or v0(z) > 0 for all z ≥ 0 thanks 
to the analytic form (3.2).

If v0 ≡ 0, then λ2 coincides with the first eigenvalue in SP2, which is β1. Then, by Propo-
sition 3.1, each vj is even and λ2 belongs to the set S2 in Lemma 3.1. Since S1 ∩ S2 = ∅ in 
Lemma 3.1, then λ2 �= γ2, and since γ2 is also an eigenvalue of the spectral problem (3.1), it 
follows that λ2 < γ2.

If v0(z) > 0 for all z ≥ 0, we have that λ2 = γ2 belongs to set S1. Since S1 ∩ S2 = ∅ in 
Lemma 3.1, we have λ2 �= β1, and since β1 is also an eigenvalue of the spectral problem (3.1), it 
follows that λ2 < β1. Therefore, each even vj is constant proportional to the unique solution of 
the initial-value problem (3.8) with β = λ2 < β1. By Proposition 3.2, each vj is strictly positive 
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on [−πε, πε]. As a result, the eigenfunction ϒ̃2 is strictly positive on �̃N . Since the eigenfunc-
tion ϒ̃1 in Lemma 3.2 is also strictly positive on �̃N , the L2(�̃N )-inner product of ϒ̃1 and ϒ̃2 is 
not zero, which contradicts to the orthogonality of eigenfunctions for distinct eigenvalues to the 
spectral problem (3.1). Hence v0 �≡ 0 is impossible so that λ2 = β1 < γ2. �
Lemma 3.4. Let λ = γ2 be the second eigenvalue of the boundary-value problem SP1 in (3.3). 
Then, γ2 �= 0.

Proof. To show that γ2 �= 0, we consider the boundary-value problem

⎧⎨
⎩

−u′′(z) + u(z) − 2u(z)3 = 0, z ∈ (−T+(p0, q0), T+(p0, q0)),

u(−T+(p0, q0)) = u(T+(p0, q0)) = p0,

u′(−T+(p0, q0)) = −u′(T+(p0, q0)) = q0,

(3.10)

where T+(p0, q0) is defined in (2.9) with two independent parameters p0 ∈ (0, 1) and q0 ∈
(0, ∞). The unique solution of the boundary-value problem (2.8) is obtained at q0 = 1

2N

√
A(p0), 

for which T (p0, q0) = T (p0) = πε in (2.12). We use the notation u(z) = u(z; p0, q0) and recall 
that u(z; p0, q0) is a C1 function with respect to p0 and q0.

Define s(z; p0, q0) := ∂q0u(z; p0, q0). Then, s(z; p0, q0) is an even solution of the following 
differential equation:

−s′′(z) + s(z) − 6u(z)2s(z) = 0, z ∈ (−T+(p0, q0), T+(p0, q0)). (3.11)

Moreover, since u(0; p0, q0) = p+, where p+ is defined by (2.10), we have s(0; p0, q0) = ∂q0p+, 
where ∂q0p+ �= 0. Indeed, after differentiating E(u, v) = q2

0 − A(p0) = −A(p+) with respect to 
q0, we have

2q0 = 2p+(2p2+ − 1)∂q0p+.

Since p+ > p∗ = 1√
2

and q0 > 0, we have s(0; p0, q0) = ∂q0p+ > 0.

Similarly, we define t (z; p0, q0) := ∂p0u(z; p0, q0), and notice that t (z; p0, q0) is also an even 
solution of the differential equation (3.11). Differentiating E(u, v) = q2

0 − A(p0) = −A(p+)

with respect to p0 yields

2p0(2p2
0 − 1) = 2p+(2p2+ − 1)∂p0p+.

If p0 = p∗ = 1/
√

2, then t (0; p0, q0) = ∂p0p+ = 0 so that t (z; p0, q0) ≡ 0 is zero solution to 
(3.11). Otherwise, t (0; p0, q0) = ∂p0p+ �= 0 and t (z; p0, q0) is a nonzero even solution to (3.11).

For q0 = 1
2N

√
A(p0), we have T+(p0, q0) = T (p0) = πε, and since s(0; p0, q0) �= 0, the 

solution s(z; p0, q0) of the differential equation (3.11) with this q0 is constant proportional to 
the unique solution to the initial-value problem (3.8) with β = 0. Moreover, if p0 �= p∗, the 
above statement also applies to t (z; p0, q0), so that there exists a nonzero constant C such that 
t (z; p0, q0) = Cs(z; p0, q0).

If λ = γ2 = 0 in SP1, we know from (3.2) that V0(z; 0) = 1
2 sech(z + a) tanh(z + a), where a

is related to p0 by p0 = sech(a). Moreover, by Lemma 2.1, a and p are C1 functions of ε, that 
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is a = a(ε) and p0 = p0(ε). We also define ϕ(z) := sech(z), and rewrite the boundary values in 
the spectral problem SP1 as follows:

V0(0;0) = −1

2
ϕ′(a), and V ′

0(0;0) = −1

2
ϕ′′(a). (3.12)

Solution to the differential equation in SP1 for λ = 0 is given by v(z) = C0s(z; p0, q0), where 

q0 = 1
2N

p0

√
1 − p2

0 and C0 is a real constant. By using the boundary conditions in SP1 and the 
representation (3.12), we obtain the following system of equations:{−2C0s(πε;p0, q0) = ϕ′(a)

−4NC0s
′(πε;p0, q0) = ϕ′′(a),

(3.13)

where T+(p0, q0) = T (p0) = πε by (2.12). Since a(ε) > 0 for every positive ε, we know 
ϕ′(a) �= 0 and from (3.13) we obtain

2Ns′(πε;p0, q0)

s(πε;p0, q0)
= ϕ′′(a)

ϕ′(a)
. (3.14)

On the other hand, using that p0 = ϕ(a) and q0 = − 1
2N

ϕ′(a) we rewrite the boundary values 
in (3.10) at T+(p0, q0) = T (p0) = πε to be{

u(πε;p0, q0) = ϕ(a)

2Nu′(πε;p0, q0) = ϕ′(a).
(3.15)

For p0 �= p∗, we use that a, p0, and q0 are C1 functions of ε, hence we differentiate (3.15)
with respect to ε and since t (z; p0, q0) = Cs(z; p0, q0) we obtain{

s(πε;p0, q0)
[
Cp′

0(ε) + q ′
0(ε)

]= ϕ′(a)
[
a′(ε) − π

2N

]
2Ns′(πε;p0, q0)

[
Cp′

0(ε) + q ′
0(ε)

]= ϕ′′(a)
[
a′(ε) − 2πN

] (3.16)

Note that Cp′
0(ε) +q ′

0(ε) �= 0 since ϕ′(a) �= 0 �= ϕ′′(a) for p0 �= p∗. Hence, it follows from (3.16)
that

2Ns′(πε;p0, q0)

s(πε;p0, q0)
= ϕ′′(a)

[
a′(ε) − 2πN

]
ϕ′(a)

[
a′(ε) − π

2N

] ,

which contradicts to (3.14) since ϕ′′(a) �= 0 for p0 �= p∗.
For p0 = p∗, we have s′(πε; p0, q0) = 0 by (3.13). Then, we differentiate the invariant re-

lation q2
0 − p2

0 + p4
0 = [u′(z;p0, q0)

]2 − u2(z; p0, q0) + u4(z; p0, q0) with respect to q0 and 
obtain

2q0 = 2u′(z;p0, q0)s
′(z;p0, q0) + 2u(z;p0, q0)

[
2u2(z;p0, q0) − 1

]
s(z;p0, q0). (3.17)

For z = T+(p0, q0) = T (p0) = πε, we substitute s′(πε; p0, q0) = 0 and u(πε; p0, q0) = p∗
in (3.17) to get 2q0 = 0, which is a contradiction. In both cases, λ = γ2 = 0 is impossible in 
SP1. �
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Lemma 3.5. Let λ = β2 be the second eigenvalue of the boundary-value problem SP2 in (3.4). 
Then, β2 > 0.

Proof. Define r(z; p0, q0) := u′(z; p0, q0), where the prime stands for the derivative with respect 
to z. We have that r(z; p0, q0) is odd and that r ′(0; p0, q0) = u′′(0; p0, q0) = (1 − 2p2+)p+ <

0. For q0 = 1
2N

√
A(p0), we have T+(p0, q0) = T (p0) = πε, and since r ′(0; p0, q0) �= 0, 

r(z; p0, q0) with this q0 is constant proportional to the unique solution to the initial-value prob-
lem (3.9) with β = 0. By the construction of u(z; p0, q0) in (3.10) and negativity of r ′(0; p0, q0), 
the function −r(z; p0, q0) with this q0 is strictly positive on (0, πε], and by Proposition 3.3, 
0 = β < β2. �
3.3. Existence of a zero eigenvalue in SP2

It follows from Lemmas 3.2, 3.3, 3.4, and 3.5 that, when the parameter ε is increased, the only 
eigenvalue of the spectral problem (3.1) which may cross zero and become the second negative 
eigenvalue λ2 in addition to the eigenvalue λ1 = γ1 is the first eigenvalue λ = β1 of the Sturm–
Liouville problem SP2 in (3.4).

Here we study the conditions for β1 to become negative from the analytical properties of the 
period function T+(p0, q0), which appears in the boundary-value problem (3.10). The following 
two lemmas state properties of T+(p0, q0) with respect to q0 separately for p0 ∈ (0, p∗] and 
p0 ∈ (p∗, 1).

Lemma 3.6. For every p0 ∈ (0, p∗], T+(p0, q0) is a monotonically decreasing function of q0 in 
(0, ∞).

Proof. By using the same approach as in the proof of Lemma 2.1, we write

[E0(p0, q0) + A(p∗)]T+(p0, q0) =
p+∫

p0

[
3 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
vdu

+ 2(A(p0) − A(p∗))q0

A′(p0)
,

where E0(p0, q0) = q2
0 − A(p0) and the integrands are free of singularities. Compared to 

Lemma 2.1, p0 ∈ (0, 1) and q0 ∈ (0, ∞) are independent parameters. All terms in the repre-
sentation are C1 functions in q0. Differentiating in q0 yields the expression

[E0(p0, q0) + A(p∗)]
∂

∂q0
T+(p0, q0) = q0

p+∫
p0

[
1 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
du

v

+ 2(A(p0) − A(p∗))
A′(p0)

,

or equivalently
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E0(p0, q0) + A(p∗)
2q0

∂

∂q0
T+(p0, q0) =

p+∫
p0

1 − 2u2

8vu2 du − 1 − 2p2
0

8p0q0
. (3.18)

Recall from (2.6) that E0(p0, q0) +A(p∗) > 0 for every p0 ∈ (0, 1) and q0 ∈ (0, ∞). If p0 = p∗, 
the first term in (3.18) is negative and the second term is zero, hence ∂

∂q0
T+(p∗, q0) < 0.

For any p0 ∈ (0, p∗), we intoduce the value p̃0 ∈ (p∗, 1) by setting p̃2
0 := 1 − p2

0. It follows 
from (2.5) that A(p0) = A(p̃0) with 0 < p0 < p∗ < p̃0 < p+ < 1. Next, we rewrite the equation 
(3.18) as

E0(p0, q0) + A(p∗)
2q0

∂

∂q0
T+(p0, q0) =

p∗∫
p0

1 − 2u2

8vu2 du +
p̃0∫

p∗

1 − 2u2

8vu2 du (3.19)

+
p+∫

p̃0

1 − 2u2

8vu2 du − 1 − 2p2
0

8p0q0
.

The substitution z = √
1 − u2 in the second integral implies that

p̃0∫
p∗

1 − 2u2

8vu2 du = −
p∗∫

p0

(1 − 2z2)z

8v(1 − z2)3/2 dz.

Substituting this equation into (3.19) and calling z as u again, we get

E0(p0, q0) + A(p∗)
2q0

∂

∂q0
T+(p0, q0) =

p∗∫
p0

1 − 2u2

8v

(
1

u2 − u

(1 − u2)3/2

)
du (3.20)

+
p+∫

p̃0

1 − 2u2

8vu2 du − 1 − 2p2
0

8p0q0
.

The second term in the right-hand side of (3.20) is negative since p̃0 ∈ (p∗, p+), whereas the 
first and last terms satisfy

p∗∫
p0

1 − 2u2

8v

(
1

u2 − u

(1 − u2)3/2

)
du − 1 − 2p2

0

8p0q0

≤ 1 − 2p2
0

8q0

p∗∫ (
1

u2 − u

(1 − u2)3/2

)
du − 1 − 2p2

0

8p0q0

p0
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= (1 − 2p2
0)

8q0

⎡
⎢⎣ 1√

1 − p2
0

− 2

p∗

⎤
⎥⎦ ,

which is negative since p∗ < p̃0 =
√

1 − p2
0. As a result, the entire right-hand side of (3.20) is 

negative, hence ∂
∂q0

T+(p0, q0) < 0 for p0 ∈ (0, p∗). �
Lemma 3.7. For every p0 ∈ (p∗, 1), T+(p0, q0) is a non-monotone function of q0 in (0, ∞) such 
that T+(p0, q0) → 0 as q0 → 0 and q0 → ∞.

Proof. First we claim that T+(p0, q0) → 0 as q0 → 0. Indeed, if q0 = 0, the only admissible 
root for p+ ≥ p0 in the nonlinear equation (2.10) is p+ = p0. Hence, as q0 → 0, the length of 
integration in T+(p0, q0) given by (2.9) shrinks to zero whereas the integrand remains absolutely 
integrable so that T+(p0, q0) → 0 as q0 → 0.

Next, we claim that T+(p0, q0) → 0 as q0 → ∞. By (2.9) and (2.10), we bound T+(p0, q0)

as in

T+(p0, q0) =
p+∫

p0

du√
E + u2 − u4

≤
p+∫
0

du√
u2 − u4 − p2+ + p4+

.

By change of variables u = p+x, we rewrite the estimate as

T+(p0, q0) ≤ 1

p+

1∫
0

dx√
1 − x2

√
1 + x2 − 1

p2+

. (3.21)

We define A(x) := 1√
(1+x)(1+x2−1/p2+)

, and using the integration by parts, we rewrite the integral 

in (3.21) as

1∫
0

A(x)dx√
1 − x

=
[
−2

√
1 − xA(x)

] ∣∣∣1
0
+ 2

1∫
0

√
1 − xA′(x)dx,

which is finite for p+ > 1 since A(x) is continuously differentiable on [0, 1] for p+ > 1. Since 
for fixed p0, we have p+ → ∞ as q0 → ∞, the representation (3.21) implies that

T+(p0, q0) ≤ 1

p+

1∫
0

A(x)dx√
1 − x

→ 0

as q0 → ∞. �
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The following lemma defines the necessary and sufficient condition for the first eigenvalue 
β1 of the Sturm–Liouville problem SP2 to cross zero when the parameter ε is increased. This 
condition is given by the intersection of two curves C1 and C2 given by

C1 :=
{
(p0, q0) : ∂T+

∂q0
(p0, q0) = 0, p0 ∈ (p∗,1)

}
(3.22)

and

C2 :=
{
(p0, q0) : q0 = 1

2N

√
A(p0), p0 ∈ (0,1)

}
. (3.23)

The uniqueness of C2 is obvious (see red curve on Fig. 7). In the subsequent lemmas, we will 
also prove that C1 is also uniquely defined.

Lemma 3.8. Let s(z; p0, q0) be the even solution to the differential equation (3.11). Then,

s(±T+(p0, q0);p0, q0) = 0 if and only if
∂T+
∂q0

(p0, q0) = 0.

Moreover, the first eigenvalue λ = β1 of the Sturm–Liouville problem SP2 is zero if and only if 
∂T+
∂q0

(p0, q0) = 0 at q0 = 1
2N

√
A(p0).

Proof. Since u(z; p0, q0) satisfying (3.10) and s(z; p0, q0) satisfying (3.11) are even, it is suffi-
cient to consider the left boundary condition at z = −T+(p0, q0) rewritten again as{

u(−T+(p0, q0);p0, q0) = p0,

u′(−T+(p0, q0);p0, q0) = q0.
(3.24)

We differentiate the first equation in (3.24) with respect to q0 and obtain

∂q0u(−T+(p0, q0);p0, q0) − u′(−T+(p0, q0);p0, q0)
∂

∂q0
T+(p0, q0) = 0. (3.25)

By using the definition of s(z; p0, q0) and the second equation in (3.24), we rewrite (3.25) in the 
form:

s(−T+(p0, q0);p0, q0) = q0
∂

∂q0
T+(p0, q0). (3.26)

Since q0 ∈ (0, ∞), it follows from (3.26) that s(−T+(p0, q0); p0, q0) = 0 if and only if 
∂T+
∂q0

(p0, q0) = 0.

If q0 = 1
2N

√
A(p0), then we have T+(p0, q0) = T (p0) = πε so that the differential equa-

tion (3.11) coincides with that in the Sturm–Liouville problem SP2 with λ = 0 in (3.4). 
If ∂T+

∂q0
(p0, q0) = 0 for this q0, then it follows from (3.26) that s(±πε; p0, q0) = 0, hence 

s(z; p0, q0) with this q0 is the eigenfunction of SP2 with β1 = 0. On the other hand, if β1 = 0, 
then the corresponding eigenfunction is even and hence it coincides up to a scalar multiplication 
with s(z; p0, q0) for this q0 by uniqueness of solutions of the second-order differential equations. 
Then, it follows from (3.26) that ∂ T+(p0, q0) = 0 for this q0. �
∂q0
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The following lemma ensures that there is only one critical (maximum) point of T+(p0, q0)

with respect to q0 at each energy level E0(p0, q0) = q2
0 − A(p0).

Lemma 3.9. Let E(p, q) = q2 − A(p) be the first-order invariant for the boundary-value prob-
lem (3.10). There are no distinct points (p1, q1) and (p2, q2) in (0, 1) × (0, ∞) with E(p1, q1) =
E(p2, q2) such that ∂T+

∂q1
(p1, q1) = 0 and ∂T+

∂q2
(p2, q2) = 0.

Proof. Assume that such points (p1, q1) and (p2, q2) in (0, 1) × (0, ∞) do exist, and pick 
p1 < p2 without loss of generality. Then, we have ∂T+

∂q1
(p1, q1) = 0 and ∂T+

∂q2
(p2, q2) = 0. For 

j ∈ {1, 2}, consider the boundary-value problem (3.10) with the boundary values (pj , qj ). By 
Lemma 3.8, we know that s(z; pj , qj ) is a solution to the differential equation (3.11) such that 
s(±T+(pj , qj ); pj , qj ) = 0, hence s(z; pj , qj ) is the eigenfunction of the corresponding Sturm–
Liouville problem.

Since E(p1, q1) = E(p2, q2) and p1 < p2 by assumption, we have u(z; p1, q1) = u(z; p2, q2)

for all z ∈ [−T+(p2, q2), T+(p2, q2)]. Then, the function s(z; p1, q1) is proportional to a solution 
to the initial-value problem (3.8) for β = 0 on [−T+(p1, q1), T+(p1, q1)], where it vanishes at 
least at two internal points ±T+(p2, q2). By Proposition 3.1, s(z; p1, q1) is the eigenfunction 
of the Sturm–Liouville problem corresponding to (at least) the third eigenvalue of SP2, which 
implies that the second eigenvalue β2 is negative. However, this contradicts to Lemma 3.5 which 
ensures that β2 > 0. Hence, no two distinct points exist as in the assertion of the lemma. �

By Lemma 3.7, there exists at least one local maximum of T+(p0, q0) in q0 for p0 ∈ (p∗, 1). 
Let us denote the corresponding value of q0 by qmax(p0). Since T+(p0, q0) is a C1 function of 
(p0, q0) in (0, 1) × (0, ∞), qmax is a continuous function of p0. The following lemma shows 
that qmax(p0) is the unique critical point of T+(p0, q0) in q0 inside (0, 

√
A(p0)). This given 

uniqueness of the curve C1 defined by (3.22).

Lemma 3.10. There exists p∗∗ ∈ (p∗, 1) such that for every p0 ∈ (p∗, p∗∗), there is exactly one 
critical point of T+(p0, q0) in q0 inside (0, 

√
A(p0)). For p0 ∈ [p∗∗, 1), T+(p0, q0) has no criti-

cal points in q0 inside (0, 
√

A(p0)).

Proof. Let qmax(p0) be the point of maximum of T+(p0, q0) in q0 for p0 ∈ (p∗, 1). We first 
show that qmax(p0) → 0 as p0 → p∗ and qmax(p0) >

√
A(p0) for p0 near 1.

It follows from (3.18) that if ∂
∂q0

T+(p0, qmax(p0)) = 0, then on the energy level E =
E0(p0, qmax(p0)) we have

qmax(p0)

p+∫
p0

2u2 − 1

vu2 du = 2p2
0 − 1

p0
. (3.27)

Integration by parts with the help of

d
( v

u3

)
= −2u2 − 1

vu2 du − 3v

u4 du (3.28)

yields
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qmax(p0)
2 − (2p2

0 − 1)p2
0 = 3p3

0qmax(p0)

p+∫
p0

v

u4 du > 0. (3.29)

This gives the lower bound for qmax(p0) as

qmax(p0) > p0

√
2p2

0 − 1.

Recall that 
√

A(p0) = p0

√
1 − p2

0. Hence, qmax(p0) >
√

A(p0) if p0 >
√

2/3. By continuity of 

qmax and Lemma 3.9, there exists unique p∗∗ ∈ (p∗, 
√

2/3) such that qmax(p∗∗) = √
A(p∗).

To prove that qmax(p0) → 0 as p0 → p∗, we assume the contrary. That is, let qmax(p0) > ε

for some ε > 0 whenever 0 < p0 − p∗ < δ0 with sufficiently small δ0 > 0. Then, there is some 
positive δ1 such that p+ > p0 + δ1. Then,

p+∫
p0

2u2 − 1

vu2 du >

p+∫
p0+δ1

2u2 − 1

vu2 du >
2(p0 + δ1)

2 − 1

p2+

p+∫
p0+δ1

du

v
. (3.30)

Since p0 ∈ (p∗, p∗ + δ0) and qmax(p0) is continuous, p+ is bounded from above, so that there 
exists some δ2 > 0 such that

2(p0 + δ1)
2 − 1

p2+
> δ2.

Since qmax(p0) > ε and the integration in (3.30) goes along the energy level containing 
(p0, qmax(p0)), there exists some δ3 > 0 such that

p+∫
p0+δ1

du

v
= T+(p0 + δ1, qmax(p0)) > δ3.

Combining the computations above, we get that (3.27) becomes

2p2
0 − 1

p0
= qmax(p0)

p+∫
p0

2u2 − 1

vu2 du > εδ2δ3,

which is the contradiction since 
2p2

0−1
p0

→ 0 as p0 → p∗. Hence qmax(p0) → 0 as p0 → p∗.
Thus, the graph of the function p0 �→ qmax(p0) starts from zero at p0 = p∗ and traverses 

beyond the homoclinic orbit for p0 > p∗∗. By continuity of qmax in p0, qmax intersects at least 
once each energy level (2.14) inside the homoclinic orbit. By Lemma 3.9, the intersection of 
qmax with each energy level is unique. This proves the assertion of this lemma. �
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By Lemma 3.10, the curve C1 in (3.22) intersects at least once with every energy level 
E(u, v) = E0(p0, q0) inside the homoclinic orbit. On the other hand, the curve C2 in (3.23)
lies entirely within the homoclinic orbit, hence there exists an intersection between the curves 
C1 and C2. The following lemma shows that this intersection is in fact unique.

Lemma 3.11. There exists exactly one value of p0 ∈ (p∗, p∗∗) for which qmax(p0) = 1
2N

√
A(p0).

Proof. Consider the function F : (p∗, p∗∗) → R given by

F(p0) = p2
0(2p2

0 − 1) − q0p
3
0

p+∫
p0

2u2 − 1

vu2 du, (3.31)

where q0 = 1
2N

√
A(p0) and the integration is performed along the level curve with E(u, v) =

E0(p0, q0). By (3.27), F(p0) = 0 if and only if qmax(p0) = 1
2N

√
A(p0). Since by Lemma 3.10, 

F(p0) = 0 has at least one root in (p∗, p∗∗), it suffices to show that there are no other roots.
By using (3.28), we obtain

F(p0) = (2p2
0 − 1)p2

0 − q2
0 + 3q0p

3
0

p+∫
p0

v

u4 du. (3.32)

We claim that F ′(pbif) at the root pbif of F(p0) = 0, so that the root pbif is unique. Indeed, 
taking the derivative in (3.32) with respect to p0, and using that q0 = 1

2N

√
A(p0) and F(p0) = 0

we obtain

F ′(p0) = p0(2p2
0 + 1) − ∂p0q0

q0

[
q2

0 + (2p2
0 − 1)p2

0

]
+ p0(2p2

0 − 1)

[
1 − 1

4N2

] p+∫
p0

du

vu4 ,

which is strictly positive since ∂p0q0 = A′(p0)

4N
√

A(p0)
< 0 for p0 ∈ (p∗, 1). This completes the 

proof. �
Fig. 8 illustrates the results of Lemmas 3.10 and 3.11. The black dashed curve displays the 

homoclinic orbit at the energy level E(u, v) = 0. The red dashed curve gives the curve C2 for 
N = 3. The blue solid curve shows the curve C1. There exists only one intersection of curves 
C1 and C2 and it occurs at pbif ≈ 0.711 (for N = 3) The existence of the unique value of pbif is 
stated in Lemma 3.11. Moreover, C1 crosses the homoclinic orbit at p∗∗ ≈ 0.782 in agreement 
with Lemma 3.10.

3.4. Proof of Theorem 2

By Lemma 2.1 for T (p0) = πε defined in (2.12), the mapping from p0 ∈ (0, 1) to ε =
1
π
T (p0) ∈ (0, ∞) is a monotonic bijection.
For sufficiently small values of ε > 0, the value of p0 is near 1. Then, by Lemmas 3.7 and 

3.10, T+(p0, q0) has no critical points with respect to q0 in (0, 
√

A(p0)) and is monotonically 
749



A. Kairzhan, R. Marangell, D.E. Pelinovsky et al. Journal of Differential Equations 271 (2021) 719–763
Fig. 8. Numerical illustration of Lemmas 3.10 and 3.11 on the (u, v)-plane.

increasing in q0. In this case, the solution s(z; p0, q0) to the differential equation (3.11) with 
q0 = 1

2N

√
A(p0) satisfies s(z; p0, q0) > 0 for z ∈ [−πε, πε]. By Proposition 3.2, we conclude 

that the first eigenvalue λ = β1 in SP2 is positive. Therefore, Lemmas 3.2 and 3.3 imply that 
the spectral problem (3.1) has exactly one negative eigenvalue and no zero eigenvalues, so that 
n(L) = 1 and z(L) = 0 for sufficiently small ε > 0.

Let β1 be the first eigenvalue in SP2 and γ2 be the second eigenvalue in SP1. Since β1 > 0
and γ2 > 0 for sufficiently small ε > 0, it suffices to show that β1 = 0 at some unique point 
ε∗ ∈ (0, ∞) so that β1 < 0 for all ε > ε∗, whereas γ2 > 0 for all ε > 0. By Lemma 3.4 it follows 
that γ2 �= 0 for every ε > 0, hence γ2 > 0 for all ε > 0.

Next, we show that β1 = 0 for some ε∗ ∈ (0, ∞). Indeed, by Lemmas 3.10 and 3.11, the 
curves C1 and C2 defined by (3.22) and (3.23) intersect exactly once at some pbif ∈ (p∗, 1). By 
Lemma 3.8, β1 = 0 at this pbif and by Lemma 2.1, there exists a unique value ε∗ for this pbif. 
By Lemma 3.1, β1 has multiplicity N − 1 in the spectral problem (3.1) so that z(L) = N − 1 for 
this ε∗. No other intersections exist so that z(L) = 0 for ε �= ε∗.

Finally, for ε > ε∗, qmax(p0) < 1
2N

√
A(p0) for p0 ∈ (p∗, pbif) or does not exist if p0 ∈ (0, p∗]

by Lemma 3.6. In both cases, the solution s(z; p0, q0) to the differential equation (3.11) with 
q0 = 1

2N

√
A(p0) vanishes at some internal points in [−πε, πε]. By Proposition 3.2, it follows 

that β1 < 0 for ε > ε∗, so that n(L) = N for ε > ε∗.
Theorem 2 is proven. Fig. 9 illustrates the result of Theorem 2. The second eigenvalue λ2 of 

the spectral problem (3.1) is computed by using numerical approximation of the first eigenvalue 
λ = β1 in the Sturm–Liouville problem SP2 and is shown versus ω. It follows from Fig. 9 that 
there exists a value ω∗ ∈ (−∞, 0) for which λ2 = β1 crosses zero. This is the bifurcation point 
for the positive single-lobe symmetric state � in Theorem 2.

4. Existence of other positive single-lobe states

Recall that by Theorem 2, there exists a unique ω∗ ∈ (−∞, 0), and unique corresponding 
pbif ∈ (p∗, 1), at which the single-lobe symmetric state � defined in Theorem 1 admits a bifur-
cation in the sense of Definition 3.
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Fig. 9. The second eigenvalue λ2 = β1 of the spectral problems (3.1) and (3.4) as a function of ω for the positive single-
lobe symmetric state � on the flower graph �N with N = 3. The eigenvalue crosses zero at ω = ω∗ .

Here we are interested in the existence of asymmetric, K-split, single-lobe states of Defini-
tion 4 for p0 ∈ (0, p∗). This range of values of p0 does not cover the entire admissible interval 
since pbif ∈ (p∗, 1) but it is sufficient for the proof of Theorem 3.

After the scaling transformation (2.1), the asymmetric positive state (u1, u2, . . . , uN, u0) sat-
isfies the system of differential equations given by (2.2)–(2.3). Taking into account the solution 
(2.4) for u0 with p0 = sech(a) = u0(0), each component uj for j = 1, . . . , N satisfies the fol-
lowing boundary-value problem

{−u′′
j (z) + uj (z) − 2uj (z)

3 = 0, z ∈ (−πε,πε),

uj (−πε) = uj (πε) = p0.
(4.1)

Assuming that uj is even, the derivative condition in (2.3) is satisfied if the derivative of the 
components satisfy the scalar equation

2
N∑

j=1

u′
j (−πε) =√A(p0). (4.2)

Using the first-order invariant in (2.5), any single-lobe solution to the boundary-value problem 
(4.1) satisfies either

⎧⎪⎪⎨
⎪⎪⎩

E(uj ,u
′
j ) = E(p0, qj ),

uj (−T+(p0, qj )) = p0,

u′
j (−T+(p0, qj )) = qj ≥ 0,

T+(p0, qj ) = πε,

(4.3)

or

⎧⎪⎪⎨
⎪⎪⎩

E(uj ,u
′
j ) = E(p0, qj ),

uj (−T−(p0, qj )) = p0,

u′
j (−T−(p0, qj )) = −qj ≤ 0,

T (p , q ) = πε,

(4.4)
− 0 j
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where the period functions T+ and T− are given in (2.9) with fixed value of E(uj , u′
j ) = E. 

Therefore, any asymmetric single-lobe state is a combination of the solutions of type (4.3) or 
(4.4).

In order to prove Theorem 3, we first study monotonicity of the period function T−(p0, q0)

in q0 for p0 ∈ (0, p∗). Then, we prove existence and uniqueness of the asymmetric positive 
single-lobe states with K-split profile described by Definition 4. Finally, we study the mapping 
from p0 ∈ (0, p∗) to ε ∈ (0, ∞), which extends to the limit ε → ∞ that corresponds to the limit 
ω → −∞.

4.1. Monotonicity of the period function T−

The following lemma shows that the period function T−(p0, q0) defined by (2.9) is monoton-
ically increasing for p0 ∈ (0, p∗).

Lemma 4.1. For every p0 ∈ (0, p∗), T−(p0, q0) is a monotonically increasing function of q0 in 
(0, 

√
A(p0)). Moreover, T−(p0, q0) → 0 as q0 → 0, and T−(p0, q0) → ∞ as q0 → √

A(p0).

Proof. We write

[E0(p0, q0) + A(p∗)]T−(p0, q0) =
p0∫

p−

[
v − A(u) − A(p∗)

v

]
du

=
p0∫

p−

[
3 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
vdu

− 2[A(p0) − A(p∗)]q0

A′(p0)
,

where E0(p0, q0) = q2
0 − A(p0) and the integrands are non-singular for every u ∈ (0, 1). Since 

dE0 = 2q0dq0 at fixed p0 ∈ (0, 1) and dE = 2vdv at fixed u ∈ (0, 1), we differentiate the previ-
ous expression in q0 and obtain

E0(p0, q0) + A(p∗)
2q0

∂

∂q0
T−(p0, q0) =

p0∫
p−

[
1 − 2(A(u) − A(p∗))A′′(u)

[A′(u)]2

]
du

2v
− A(p0) − A(p∗)

q0A′(p0)
.

Recall that E0(p0, q0) + A(p∗) > 0 for every p0 ∈ (0, 1) and q0 ∈ (0, ∞) due to (2.6). Substi-
tuting A(u) transforms the previous expression to the form:

E0(p0, q0) + A(p∗)
2q0

∂

∂q0
T−(p0, q0) =

p0∫
p−

1 − 2u2

8vu2 du + 1 − 2p2
0

8p0q0
. (4.5)

Since both terms in the right-hand side of (4.5) are strictly positive if p0 ∈ (0, p∗) with q0 ∈
(0, ∞), we conclude that ∂ T−(p0, q0) > 0 if p0 ∈ (0, p∗).
∂q0
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It follows that T−(p0, q0) → 0 as q0 → 0 similarly as in Lemma 3.7. On the other hand, 
p− → 0 as q0 → √

A(p0), hence T−(p0, q0) → ∞ as q0 → √
A(p0). �

The following lemma follows from monotonicity of the period functions T+ and T− in q0 for 
every p0 ∈ (0, p∗), thanks to Lemmas 3.6 and 4.1.

Lemma 4.2. For every p0 ∈ (0, p∗), there are no distinct solutions uj (z) and ui(z) to the 
boundary-value problem (4.1) such that uj (z) and ui(z) are either both of type (4.3) or both 
of type (4.4).

Proof. If uj (z) and ui(z) are distinct and both have the type (4.3), then qj �= qi . By Lemma 3.6, 
we have T+(p0, qj ) �= T+(p0, qi) which contradicts to the condition T+(p0, qj ) = πε =
T+(p0, qi) in (4.3).

Similarly, if uj (z) and ui(z) are distinct and both have the type (4.4), then qj �= qi . By 
Lemma 4.1, we have T−(p0, qj ) �= T−(p0, qi) which contradicts to the condition T−(p0, qj ) =
πε = T−(p0, qi) in (4.4). �
4.2. Construction of asymmetric single-lobe states

By Lemma 4.2, every asymmetric single-lobe state must have the particular structure of Def-
inition 4 if p0 ∈ (0, p∗) with K components being of type (4.3) and (N − K) components being 
of type (4.4). Up to permutation between the components in the N loops, we order the K-split 
state as follows:

q1 = q2 = · · · = qK ≥ 0 and qK+1 = qK+2 = · · · = qN ≥ 0. (4.6)

The existence of asymmetric, K-split, single-lobe states for a given p0 ∈ (0, p∗) is equivalent 
to the existence of (q1, q2, . . . , qN) satisfying (4.6) and solving the system of two nonlinear 
equations on q1 and qN :

{
T+(p0, q1) = T−(p0, qN),

2Kq1 − 2(N − K)qN = √
A(p0),

(4.7)

where the second equation comes from the boundary condition (4.2). The following lemma pro-
vides the unique solution to the system (4.7) for each K .

Lemma 4.3. Let p0 ∈ (0, p∗). For every K = 1, 2, . . . , N − 1, there exists the unique solution to 
the system (4.7) and the unique asymmetric, K-split, single-lobe state in the sense of Definition 4.

Proof. By Lemma 4.2, for every asymmetric single-lobe state, there are no distinct components 
uj (z) and ui(z) of the same type. If uj (z) and ui(z) are distinct, then one of them is uniquely 
given by (4.3), while the other one is uniquely given by (4.4). Hence, the assertion of the lemma 
holds if we can prove the existence of the unique solution to the system (4.7).

Consider the function F(q1) defined by

F(q1) := T+(p0, q1) − T−(p0, qN(q1)), (4.8)
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Fig. 10. Numerical illustration to the statement of Lemma 4.3 for p0 = 0.7003 ∈ (0, p∗), N = 3, and K = 1. Left: 
the blue and red lines show respectively the dependence of T+(p0, q0) and T−(p0, q0) in q0. Right: The graph of the 
function F defined in (4.8) with the only root.

where qN(q1) is obtained from the second equation of system (4.7) in the form:

qN(q1) = K

N − K
q1 − 1

2(N − K)

√
A(p0). (4.9)

Since qN ≥ 0, we have q1 ≥ 1
2K

√
A(p0). In addition, it follows from positivity of the single-lobe 

solution that qN ≤ √
A(p0), so that q1 ≤ 2(N−K)+1

2K

√
A(p0). Hence, we are only interested in the 

behavior of F on the interval

I(p0;K) :=
[

1

2K

√
A(p0),

2(N − K) + 1

2K

√
A(p0)

]
.

Since qN is monotonically increasing function of q1, Lemmas 3.6 and 4.1 imply that the function 
F is monotonically decreasing in q1. We show that F(q1) = 0 has an unique root in I(p0; K). As 
q1 → 1

2K

√
A(p0), we have qN(q1) → 0, and by Lemma 4.1, F(q1) → T+(p0, 1

2K

√
A(p0)) >

0. On the other hand, as q1 → 2(N−K)+1
2K

√
A(p0), we have qN(q1) → √

A(p0), and by 
Lemma 4.1, F(q1) → −∞. Therefore, by monotonicity of F , there exists the unique root of 
F in I(p0; K). �

The conclusion of Lemma 4.3 is illustrated on Fig. 10. The left panel shows plots of 
T+(p0, q0) and T−(p0, q0) in q0 for a fixed value of p0 ∈ (p∗, 1). The dependencies are mono-
tonic in agreement with Lemmas 3.6 and 4.1. The right panel shows the function F in q1 defined 
by (4.8) for K = 1 and N = 3. The function is monotonic and has a unique root in the interval 
I(p0; K). A similar picture holds for K = 2 and N = 3.

Fig. 11 show how the asymmetric, K-split, single-lobe states are constructed for the same 
value of p0 and N = 3. The left panel shows the state with K = 1 and the right panel shows the 
state with K = 2 by using orbits on the (u, v)-plane.

4.3. The mapping (0, p∗) � p0 �→ ε ∈ (0, ∞)

Fix K = 1, 2, . . . , N − 1. By Lemma 4.3, for every p0 ∈ (0, p∗), there is a unique vector 
(q1, q2, . . . , qN) satisfying (4.6) and (4.7), and this defines uniquely the following mappings:
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Fig. 11. Construction of the positive, asymmetric, K-split, single-lobe states on the (u, v)-plane for a = 0.895 and N = 3
in the case of K = 1 (left) and K = 2 (right).

(0,p∗) � p0 �→ q1(p0;K) ∈ (0,∞) and (0,p∗) � p0 �→ qN(p0;K) ∈ (0,
√

A(p0)), (4.10)

where q1(p0; K) ∈ I(p0; K) is uniquely defined as the root of F given by (4.8) and qN(p0; K) ∈
(0, 

√
A(p0)) is uniquely defined by (4.9). By using the first equation in (4.7) we also define a 

unique mapping

(0,p∗) � p0 �→ T+(p0, q1(p0;K)) ∈ (0,∞). (4.11)

The following lemmas describe the dependence of T+(p0, q1(p0; K)) on p0 which gives mono-
tonicity of the mapping (0, p∗) � p0 �→ ε = 1

π
T+(p0, q1(p0; K)) ∈ (0, ∞).

Lemma 4.4. For every K = 1, 2, . . . , N − 1, the mappings (4.10) and (4.11) are C1 for every 
p0 ∈ (0, p∗).

Proof. Recall that the period functions T+(p0, q0) and T−(p0, q0) are C1 in both p0 and q0
thanks to the representation (2.13), see the proofs of Lemmas 2.1, 3.6, and 4.1.

Consider the function G(p0, q1, qN) : (0, p∗) × (0, ∞) × (0, 
√

A(p0)) → R2 given by

G(p0, q1, qN) =
(

T+(p0, q1) − T−(p0, qN)

2Kq1 − 2(N − K)qN − √
A(p0)

)
. (4.12)

Note that the system (4.7) is equivalent to G(p0, q1, qN) = 0. The C1 dependence of q1(p0; K)

and qN(p0; K) with respect to p0 is a direct consequence of the Implicit Function Theorem 
applied to the function G. Indeed, G is a C1 function in all its variables, and the Jacobian matrix 
D(q1,qN )G(p0, q1, qN) is invertible since the determinant of

D(q1,qN )G(p0, q1, qN) =
(

∂
∂q1

T+(p0, q1) − ∂
∂qN

T−(p0, qN)

2K −2(N − K)

)

is strictly positive due to monotonicity results in Lemmas 3.6 and 4.1.
The differentiability of the function T+(p0, q1(p0; K)) in p0 comes from differentiability of 

T+(p0, q0) and q1(p0; K) in its variables. �
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Lemma 4.5. There exists p∞ ∈ (0, p∗) such that the mapping p0 �→ T+(p0, q1(p0; K)) defined 
in (4.11) is monotonically decreasing for every p0 ∈ (0, p∞) and every K = 1, 2, . . . , N − 1.

Proof. We shall prove that for every K = 1, 2, . . . , N − 1, it follows that T+(p0, q1(p0; K)) →
∞ as p0 → 0. Since this function is C1 for every p ∈ (0, p∗) by Lemma 4.4, the mapping 
p0 �→ T+(p0, q1(p0; K)) is monotonically decreasing for small positive p0 and the assertion of 
the lemma follows.

Set CN,K := 2(N−K)+1
2K

for simplicity. Since q1(p0; K) ∈ I(p0; K), it is true that q1(p0; K) ≤
CN,K

√
A(p0). Using the monotonicity of the period function in Lemma 3.6, we obtain

T+(p0, q1(p0;K)) ≥ T+(p0,CN,K

√
A(p0)),

where the lower bound diverges by Remark 2.2:

T+(p0,CN,K

√
A(p0)) → ∞ as p0 → 0.

Hence, T+(p0, q1(p0; K)) → ∞ as p0 → 0. �
4.4. Proof of Theorem 3

By Lemma 4.3, for every p0 ∈ (0, p∗), there are exactly N positive single-lobe states �(K)

with 1 ≤ K ≤ N satisfying the system of differential equations (2.2)–(2.3) with u0(0) = p0
completed with the symmetry and monotonicity conditions of Theorem 3.

For every K = 1, 2, . . . , N − 1, by using the fact that T+(p0, q1(p0; K)) = πε, we obtain 
the mapping (0, p∗) � p0 �→ ε(p0; K) = 1

π
T+(p0, q1(p0; K)) ∈ (0, ∞). By smoothness result 

in Lemma 4.4 monotonicity result in Lemma 4.5, we get the bijection

(0,p∞) � p0 �→ ε(p0;K) ∈ (ε∞(K),∞),

where p∞ ∈ (0, p∗) is defined in Lemma 4.5 independently of K . Defining ε∞ :=
max1≤K≤N−1 ε∞(K), we get all asymmetric, positive, single-lobe, K-split states exist for 
ω ∈ (−∞, ω∞), where ω∞ = −ε2∞. For K = N , the existence of symmetric, positive, single-
lobe state � ≡ �(N) follows by Theorem 1.

Moreover, for every K = 1, 2, . . . , N , the mapping (−∞, ω∞) � ω �→ �(K)(·, ω) ∈ H 2
NK(�N)

is C1 by Lemma 4.4. By construction, the mass μ(K)(ω) := Q(�(K)(·, ω)) is equal to

μ(K)(ω) = K

π∫
−π

φ2
1dx + (N − K)

π∫
−π

φ2
Ndx +

∞∫
0

φ2
0dx,

which yields

μ(K)(ω) = 2Kε(p0;K)

p+∫
p0

u2du√
A(u) − A(p+)

+ 2(N − K)ε(p0;K)

p0∫
p−

u2du√
A(u) − A(p−)

+ε(p0;K) [1 − tanh(a)] ,
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Fig. 12. The blue and red lines show respectively the dependence of T+(p0, q0) and T−(p0, q0) in q0 for p0 = 0.7078.

where the first integral is defined along the level curve with E(u, v) = E(p0, q1(p0)) and the 
second integral is defined along the level curve with E(u, v) = E(p0, qN(p0)).

As p0 → 0, we have a → ∞ and ε(p0; K) → ∞, and so μ(K)(ω) → ∞ as ω → ∞ with the 
following precise limit:

lim
ε→∞

μ

ε
= 2K

1∫
0

udu√
1 − u2

= 2K.

This asymptotic result justifies the ordering of μ(K)(ω) given by (1.13) by redefining ω∞ if 
needed.

5. Numerical approximation of positive single-lobe states

The analytical results on asymmetric, K-split, single-lobe states in Section 4 were restricted 
to the region p0 ∈ (0, p∗), for which monotonicity results of Lemmas 3.6 and 4.1 were sufficient 
to guarantee that the K-split states satisfy (4.6) and are found from the system (4.7). In other 
words, the K components are of the type (4.3) and (N − K) components are of the type (4.4).

Here we explore numerically the asymmetric, K-split, single-lobe states for the case p0 ∈
(p∗, 1) in particular, near the bifurcation point pbif ∈ (p∗, 1) found in Section 3. Fig. 12 suggests 
that the graphs of T+(p0, q0) and T−(p0, q0) in q0 do not intersect for p0 ∈ (p∗, 1). Therefore, 
the K-split single-lobe states may only be combinations of K components of the type (4.3) and 
different (N −K) components of the same type (4.3). Note that if all components are of the same 
type (4.4), the boundary condition (4.2) is not satisfied since the left-hand side is negative and 
the right-hand side is positive.

Hence, we are looking for the asymmetric, K-split, single-lobe states from the roots of the 
following system:

{
T+(p0, q1) = T+(p0, qN),

2Kq + 2(N − K)q = √
A(p )

(5.1)

1 N 0
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Fig. 13. The graph of the function F(qN ) (left) and the construction of the positive, asymmetric, K-split, single-lobe 
state on the (u, v)-plane (right) for a = 0.875 (p0 = 0.7103 ∈ (p∗, pbif)), N = 3, and K = 1. The red dashed horizontal 
line on the left panel corresponds to the value of 1

2

√
A(p0).

where q1 �= qN and q1, qN ≥ 0. Using Lemma 3.10, for every p0 ∈ (p∗, p∗∗), the period function 
T+(p0, q0) has the unique critical point q0 = qmax(p0), which corresponds to its maximum. 
Therefore, assuming q1 > qN , the first equation in system (5.1) yields the one-to-one function

(0, qmax(p0)) � qN �→ q1(qN) ∈ (qmax(p0),∞), (5.2)

for any p0 ∈ (p∗, p∗∗). It remains to compute numerically the value of qN ∈ (0, qmax(p0)) for 
which the second equation in system (5.1) with q1(qN) given by the mapping (5.2) is satisfied. 
Therefore, for p0 ∈ (p∗, p∗∗), we construct the function F : (0, qmax(p0)) → R defined as

F(qN) := Kq1(qN) + (N − K)qN (5.3)

for every qN ∈ (0, qmax(p0)). The second equation in system (5.1) is equivalent to the equation 
F(qN) = 1

2

√
A(p0).

Figs. 13 and 14 show the graph of the function F defined by (5.3) in qN (left) and the asym-
metric, K-split, single-lobe state constructed from the level curves on the (u, v)-plane (right) 
for p0 ∈ (p∗, pbif), N = 3 with K = 1 and K = 2 respectively. There exist exactly one value of 
qN ∈ (0, qmax(p0)) such that F(qN) = 1

2

√
A(p0) for both cases, which give only one state �(1)

and �(2) for this p0.
Fig. 15 shows the graph of the function F in qN for p0 ∈ (pbif, p∗∗), N = 3, with K = 1

(left) and K = 2 (right). For K = 1, there exist two values of qN ∈ (0, qmax(p0)) such that 
F(qN) = 1

2

√
A(p0), which give two states �(1) for this p0. The two states constructed from the 

level curves on the (u, v)-plane are shown on Fig. 16. The coexistence of two states �(1) for 
p0 � pbif explains the fold bifurcation seen for the red line on the insert of Fig. 3 (right). On the 
other hand, there are no values of qN ∈ (0, qmax(p0)) such that F(qN) = 1

2

√
A(p0) for K = 2. 

As a result, the state �(2) only exists for p0 � pbif, as on the green line shown on the insert of 
Fig. 3 (right).
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Fig. 14. The same as in Fig. 13 but for a = 0.875, N = 3, and K = 2.

Fig. 15. The graph of the function F(qN ) for a = 0.8726 (p0 = 0.7115 ∈ (pbif, p∗∗)), N = 3, with K = 1 (left) and 
K = 2 (right). The red dashed horizontal line on the left panel corresponds to the value of 1

2

√
A(p0).

Fig. 16. Construction of the positive, asymmetric, K-split, single-lobe state �(1) on the (u, v)-plane for each of the two 
roots on Fig. 15 (left) for a = 0.8726, N = 3, and K = 1.

Appendix A. Spectrum of −� in L2(�N)

Here we show that the spectrum of −� in L2(�N) consists of continuous spectrum on [0, ∞)

and a set of embedded eigenvalues {n2}n∈N of multiplicity N and {(n − 1
2

)2}n∈N of multiplicity 
N − 1.
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We first look for the discrete spectrum of eigenvalues λ, for which there exists � ∈ H 2
NK(�N)

such that −�� = λ�. The discrete spectrum consists of two sets, depending whether φ0 ≡ 0 or 
φ0 �= 0. If φ0(x) = 0 for every x ∈ [0, ∞), then the general solutions

φj (x) = cj cos(
√

λx) + dj sin(
√

λx), x ∈ [−π,π], j ∈ {1, . . . ,N}

satisfy φj (±π) = 0 from the continuity boundary conditions in (1.7). This yields

{
cj cos(π

√
λ) = 0,

dj sin(π
√

λ) = 0,
j ∈ {1, . . . ,N}.

From the derivative boundary condition in (1.7), we have 
∑N

j=1

[
φ′

j (π) − φ′
j (−π)

]
= 0 which 

yields

√
λ

N∑
j=1

cj sin(π
√

λ) = 0.

If cj = 0 for every j , then the eigenvalues correspond to the roots of sin(π
√

λ), which are located 
at {n2}n∈N . Each eigenvalue has multiplicity N since coefficients (d1, . . . , dN) are independent 
of each other.

If dj = 0 for every j , then the eigenvalues correspond to the roots of cos(π
√

λ), which are lo-

cated at {(n − 1
2

)2}n∈N . In addition, coefficients (c1, . . . , cN) satisfy the constraint 
∑N

j=1 cj = 0
which follows from the derivative boundary condition. Therefore, each eigenvalue has multiplic-
ity N − 1.

The second part of the discrete spectrum, if it is non-empty, correspond to φ0 �= 0. Since the 
half-line tail is semi-infinite, we have φ0 ∈ H 2(0, ∞) if and only if λ < 0, for which we obtain

φ0(x) = c0e
−√|λ|x, x ∈ [0,∞),

with some c0 and

φj (x) = cj cosh(
√|λ|x) + dj sinh(

√|λ|x), x ∈ [−π,π], j ∈ {1, . . . ,N}.

From the continuity boundary conditions in (1.7), we have φj(±π) = c0 which yield

{
cj cosh(π

√|λ|) = c0,

dj sinh(π
√|λ|) = 0,

j ∈ {1, . . . ,N}.

Hence, dj = 0 for every j and cj are uniquely expressed for every j by c0 and λ < 0. From 

the derivative boundary condition in (1.7), we have 
∑N

j=1

[
φ′

j (π) − φ′
j (−π)

]
= −c0

√|λ| which 
yields

√
λc0

(
2N tanh(π

√|λ|) + 1
)

= 0.
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This equation yields c0 = 0 since tanh(π
√|λ|) > 0. Hence, the second part of the discrete spec-

trum is empty.
Finally, the continuous part of the spectrum of −� in L2(�N) is due to the non-compact tail 

and it is equivalent to the spectrum of −� : H 2(0, ∞) ⊂ L2(0, ∞) → L2(0, ∞) which is located 
at [0, ∞). Hence, all eigenvalues of the discrete spectrum of −� in L2(�N) are embedded into 
the continuous spectrum.

Appendix B. The symmetric state � for small mass

Here we show that there exists ω0 < 0 such that for every ω ∈ (ω0, 0), the positive single-lobe 
symmetric state � of Theorem 1 is the ground state of the constrained minimization problem 
(1.5) for small μ.

Let us parameterize the negative values of ω by ω = −ε2 with ε > 0 and use the scaling 
transformation (2.1). By using the shifted NLS soliton (2.4) for u0 and the symmetry condition 
(2.7) for u1 = · · · = uN , we obtain the boundary-value problem:⎧⎨

⎩
−u′′

1(z) + u1(z) − 2u1(z)
3 = 0, z ∈ (−πε,πε),

u1(−πε) = u1(πε) = p0,

u′
1(−πε) = −u′

1(πε) = q0,

(B.1)

where p0 = sech(a) and q0 = 1
2N

sech(a) tanh(a) are defined by a > 0.
Since the support of [−πε, πε] shrinks to zero as ε → 0, the power series solution provides 

an asymptotic expansion in powers of ε:

u1(z) = u1(0) + 1

2
u1(0)

[
1 − 2|u1(0)|2

]
z2 +O(z4), z ∈ [−πε,πε].

The continuity and derivative boundary conditions imply that{
p0 = u1(0) +O(ε2),

p0

√
1 − p2

0 = 2Nπεu1(0)
[
1 − 2|u1(0)|2]+O(ε3),

which admits a unique asymptotic solution with u1(0) = p0 +O(ε2) and p0 = 1 − 2N2π2ε2 +
O(ε4) or equivalently, a = 2Nπε +O(ε3) as ε → 0.

We compute asymptotically the mass μ(ω) = Q(�(·, ω)) as follows:

μ(ω) = 2Nε

πε∫
0

u2
1(z)dz + ε [1 − tanh(a)] = ε +O(ε2) as ε → 0.

Similarly, we compute asymptotically the energy η(ω) := E(�(·, ω)) as follows:

η(ω) = 2Nε3

πε∫
0

[
[u′

1(z)]2 − u1(z)
4
]
dz + ε3

[
2

3
tanh(a)sech2(a) − 1

3
+ 1

3
tanh(a)

]

= −1
ε3 +O(ε4) as ε → 0.
3
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Therefore, Eμ = − 1
3μ3 + O(μ4), which implies that Eμ belongs to the interval (1.14). By The-

orem 2.2 of [1], this implies that � is a ground state of the constrained minimization problem 
(1.5) for small μ.

Appendix C. The asymmetric state �(K=1) for large mass

Here we show that there exists ω∞ < 0 such that for every ω ∈ (−∞, ω∞), the positive 
single-lobe asymmetric state �(K=1) of Theorem 3 is not the ground state of the constrained 
minimization problem (1.5) for large μ with N ≥ 2.

In the limit ω → −∞ (or ε → ∞ after rescaling), the solution �(K=1) of Theorem 3 consists 
of the truncated NLS soliton in one component, say in u1, and exponentially small solution in 
the other components (u2, . . . , uN) and u0. The truncated NLS soliton is given exactly by either 
the cnoidal wave

u1(z) = k√
2k2 − 1

cn

(
z√

2k2 − 1
; k
)

, z ∈R, (C.1)

or the dnoidal wave

u1(z) = 1√
2 − k2

dn

(
z√

2 − k2
; k
)

, z ∈ R, (C.2)

where k ∈ (0, 1) is the elliptic modulus and cn, dn are Jacobian elliptic functions. The parameter 
k is selected uniquely near k = 1, where u1(z) = sech(z). In fact, the Jacobi real transformation 
k �→ k−1 maps the cnoidal wave (C.1) with k < 1 to the dnoidal wave (C.2) with k > 1, therefore, 
it is sufficient to consider the single analytic expression (C.2) for k near 1.

The Dirichlet and Neumann data at the end points of [−πε, πε] are given by

p0 = u1(−πε) = 1√
2 − k2

dn

(
πε√

2 − k2
; k
)

,

and

q0 = u′
1(−πε) = k2

2 − k2 sn

(
πμ√
2 − k2

; k
)

cn

(
πμ√
2 − k2

; k
)

.

Applying the main result of [7] on the looping edge to the flower graph �N , it follows that k is 
found from the nonlinear equation 2q0 = (2N − 1)p0 + Rμ(p0, q0), where Rμ(p0, q0) denotes 
the remainder terms which are exponentially smaller than the linear terms in p0 and q0. By 
Theorem 4.3 in [7], k is found uniquely in the form

k = 1 + 8
2N − 3

2N + 1
e−2πε +O(e−4πε) as ε → ∞,

whereas the mass μ(ω) = Q(�(·, ω)) and energy η(ω) := E(�(·, ω)) are given asymptotically 
by

μ(ω) = 2ε − 16π
2N − 3

ε2e−2πε +O(εe−2πε) as ε → ∞,

2N + 1
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and

η(ω) = −2

3
ε3 +O(ε4e−2πε) as ε → ∞.

By the Comparison Lemma (Lemma 5.2 in [7]), �(K=1) is not the ground state for N ≥ 2 which 
follows from μ(ω) < 2ε. On the other hand, �(K=1) = � is the ground state for N = 1, for 
which μ(ω) > 2ε, the latter conclusion agrees with the result following from Corollary 3.4 and 
Fig. 4 of [2]. In both cases N ≥ 2 and N = 1, we have Eμ ∼ − 1

12μ3 as μ → ∞, which implies 
that the branch of �(K=1) on the (μ, η) plane approaches the upper bound of the interval (1.14)
from outside for N ≥ 2 and from inside for N = 1, in agreement with Figs. 4 and 5.
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